blob: d31940dca859bd598fb8a47e702ae0bec1b90c42 [file] [log] [blame]
Eugene Zelenko9248fde2017-08-24 21:22:41 +00001//===- ForwardOpTree.h ------------------------------------------*- C++ -*-===//
Michael Krusea6b2de32017-07-22 14:02:47 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Move instructions between statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "polly/ForwardOpTree.h"
Michael Kruse70af4f52017-08-07 18:40:29 +000015#include "polly/Options.h"
Michael Kruse07e8c362017-07-24 12:43:27 +000016#include "polly/ScopBuilder.h"
Michael Krusea6b2de32017-07-22 14:02:47 +000017#include "polly/ScopInfo.h"
18#include "polly/ScopPass.h"
19#include "polly/Support/GICHelper.h"
Michael Kruse70af4f52017-08-07 18:40:29 +000020#include "polly/Support/ISLOStream.h"
21#include "polly/Support/ISLTools.h"
Michael Krusea6b2de32017-07-22 14:02:47 +000022#include "polly/Support/VirtualInstruction.h"
Michael Kruse70af4f52017-08-07 18:40:29 +000023#include "polly/ZoneAlgo.h"
Eugene Zelenko9248fde2017-08-24 21:22:41 +000024#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/LoopInfo.h"
Michael Krusea6b2de32017-07-22 14:02:47 +000028#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko9248fde2017-08-24 21:22:41 +000029#include "llvm/IR/Instruction.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/Value.h"
32#include "llvm/Pass.h"
33#include "llvm/Support/Casting.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/raw_ostream.h"
39#include "isl/ctx.h"
40#include "isl/isl-noexceptions.h"
41#include <cassert>
42#include <memory>
Michael Krusea6b2de32017-07-22 14:02:47 +000043
Michael Kruse36550ba2017-08-09 12:27:35 +000044#define DEBUG_TYPE "polly-optree"
Michael Krusea6b2de32017-07-22 14:02:47 +000045
Michael Krusea6b2de32017-07-22 14:02:47 +000046using namespace llvm;
Eugene Zelenko9248fde2017-08-24 21:22:41 +000047using namespace polly;
Michael Krusea6b2de32017-07-22 14:02:47 +000048
Michael Kruse70af4f52017-08-07 18:40:29 +000049static cl::opt<bool>
50 AnalyzeKnown("polly-optree-analyze-known",
51 cl::desc("Analyze array contents for load forwarding"),
52 cl::cat(PollyCategory), cl::init(true), cl::Hidden);
53
Michael Kruse68821a82017-10-31 16:11:46 +000054static cl::opt<bool>
55 NormalizePHIs("polly-optree-normalize-phi",
56 cl::desc("Replace PHIs by their incoming values"),
57 cl::cat(PollyCategory), cl::init(false), cl::Hidden);
58
Michael Kruseef8325b2017-09-18 17:43:50 +000059static cl::opt<unsigned>
Michael Kruse70af4f52017-08-07 18:40:29 +000060 MaxOps("polly-optree-max-ops",
61 cl::desc("Maximum number of ISL operations to invest for known "
62 "analysis; 0=no limit"),
63 cl::init(1000000), cl::cat(PollyCategory), cl::Hidden);
64
65STATISTIC(KnownAnalyzed, "Number of successfully analyzed SCoPs");
66STATISTIC(KnownOutOfQuota,
67 "Analyses aborted because max_operations was reached");
Michael Kruse70af4f52017-08-07 18:40:29 +000068
Michael Krusea6b2de32017-07-22 14:02:47 +000069STATISTIC(TotalInstructionsCopied, "Number of copied instructions");
Michael Kruse70af4f52017-08-07 18:40:29 +000070STATISTIC(TotalKnownLoadsForwarded,
71 "Number of forwarded loads because their value was known");
Michael Kruse822dfe22017-10-27 14:26:14 +000072STATISTIC(TotalReloads, "Number of reloaded values");
Michael Kruse07e8c362017-07-24 12:43:27 +000073STATISTIC(TotalReadOnlyCopied, "Number of copied read-only accesses");
Michael Krusea6b2de32017-07-22 14:02:47 +000074STATISTIC(TotalForwardedTrees, "Number of forwarded operand trees");
75STATISTIC(TotalModifiedStmts,
76 "Number of statements with at least one forwarded tree");
77
78STATISTIC(ScopsModified, "Number of SCoPs with at least one forwarded tree");
79
Michael Kruse06ed5292017-08-23 13:50:30 +000080STATISTIC(NumValueWrites, "Number of scalar value writes after OpTree");
81STATISTIC(NumValueWritesInLoops,
82 "Number of scalar value writes nested in affine loops after OpTree");
83STATISTIC(NumPHIWrites, "Number of scalar phi writes after OpTree");
84STATISTIC(NumPHIWritesInLoops,
85 "Number of scalar phi writes nested in affine loops after OpTree");
86STATISTIC(NumSingletonWrites, "Number of singleton writes after OpTree");
87STATISTIC(NumSingletonWritesInLoops,
88 "Number of singleton writes nested in affine loops after OpTree");
89
Michael Krusea6b2de32017-07-22 14:02:47 +000090namespace {
91
92/// The state of whether an operand tree was/can be forwarded.
Michael Krused85e3452017-07-24 15:33:53 +000093///
94/// The items apply to an instructions and its operand tree with the instruction
95/// as the root element. If the value in question is not an instruction in the
96/// SCoP, it can be a leaf of an instruction's operand tree.
Michael Krusea6b2de32017-07-22 14:02:47 +000097enum ForwardingDecision {
Michael Krused85e3452017-07-24 15:33:53 +000098 /// The root instruction or value cannot be forwarded at all.
Michael Krusea6b2de32017-07-22 14:02:47 +000099 FD_CannotForward,
Michael Krused85e3452017-07-24 15:33:53 +0000100
101 /// The root instruction or value can be forwarded as a leaf of a larger
102 /// operand tree.
103 /// It does not make sense to move the value itself, it would just replace it
104 /// by a use of itself. For instance, a constant "5" used in a statement can
105 /// be forwarded, but it would just replace it by the same constant "5".
106 /// However, it makes sense to move as an operand of
107 ///
108 /// %add = add 5, 5
109 ///
110 /// where "5" is moved as part of a larger operand tree. "5" would be placed
111 /// (disregarding for a moment that literal constants don't have a location
112 /// and can be used anywhere) into the same statement as %add would.
Michael Kruse67752072017-07-24 15:33:58 +0000113 FD_CanForwardLeaf,
Michael Krused85e3452017-07-24 15:33:53 +0000114
Michael Kruse822dfe22017-10-27 14:26:14 +0000115 /// The root instruction can be forwarded and doing so avoids a scalar
116 /// dependency.
117 ///
118 /// This can be either because the operand tree can be moved to the target
119 /// statement, or a memory access is redirected to read from a different
120 /// location.
121 FD_CanForwardProfitably,
Michael Krused85e3452017-07-24 15:33:53 +0000122
Michael Kruse822dfe22017-10-27 14:26:14 +0000123 /// Used to indicate that a forwarding has be carried out successfully, and
124 /// the forwarded memory access can be deleted.
125 FD_DidForwardTree,
126
127 /// Used to indicate that a forwarding has be carried out successfully, and
128 /// the forwarded memory access is being reused.
129 FD_DidForwardLeaf,
Michael Krusea9a70862017-08-04 12:28:42 +0000130
131 /// A forwarding method cannot be applied to the operand tree.
132 /// The difference to FD_CannotForward is that there might be other methods
133 /// that can handle it.
134 /// The conditions that make an operand tree applicable must be checked even
135 /// with DoIt==true because a method following the one that returned
136 /// FD_NotApplicable might have returned FD_CanForwardTree.
137 FD_NotApplicable
Michael Krusea6b2de32017-07-22 14:02:47 +0000138};
139
140/// Implementation of operand tree forwarding for a specific SCoP.
141///
142/// For a statement that requires a scalar value (through a value read
143/// MemoryAccess), see if its operand can be moved into the statement. If so,
144/// the MemoryAccess is removed and the all the operand tree instructions are
145/// moved into the statement. All original instructions are left in the source
146/// statements. The simplification pass can clean these up.
Michael Kruse70af4f52017-08-07 18:40:29 +0000147class ForwardOpTreeImpl : ZoneAlgorithm {
Michael Krusea6b2de32017-07-22 14:02:47 +0000148private:
Michael Kruse89972e22017-09-19 22:53:20 +0000149 /// Scope guard to limit the number of isl operations for this pass.
150 IslMaxOperationsGuard &MaxOpGuard;
151
Michael Krusea6b2de32017-07-22 14:02:47 +0000152 /// How many instructions have been copied to other statements.
153 int NumInstructionsCopied = 0;
154
Michael Kruse70af4f52017-08-07 18:40:29 +0000155 /// Number of loads forwarded because their value was known.
156 int NumKnownLoadsForwarded = 0;
157
Michael Kruse822dfe22017-10-27 14:26:14 +0000158 /// Number of values reloaded from known array elements.
159 int NumReloads = 0;
160
Michael Kruse07e8c362017-07-24 12:43:27 +0000161 /// How many read-only accesses have been copied.
162 int NumReadOnlyCopied = 0;
163
Michael Krusea6b2de32017-07-22 14:02:47 +0000164 /// How many operand trees have been forwarded.
165 int NumForwardedTrees = 0;
166
167 /// Number of statements with at least one forwarded operand tree.
168 int NumModifiedStmts = 0;
169
170 /// Whether we carried out at least one change to the SCoP.
171 bool Modified = false;
172
Michael Kruse70af4f52017-08-07 18:40:29 +0000173 /// Contains the zones where array elements are known to contain a specific
174 /// value.
175 /// { [Element[] -> Zone[]] -> ValInst[] }
176 /// @see computeKnown()
177 isl::union_map Known;
178
179 /// Translator for newly introduced ValInsts to already existing ValInsts such
180 /// that new introduced load instructions can reuse the Known analysis of its
181 /// original load. { ValInst[] -> ValInst[] }
182 isl::union_map Translator;
183
184 /// Get list of array elements that do contain the same ValInst[] at Domain[].
185 ///
186 /// @param ValInst { Domain[] -> ValInst[] }
187 /// The values for which we search for alternative locations,
188 /// per statement instance.
189 ///
190 /// @return { Domain[] -> Element[] }
191 /// For each statement instance, the array elements that contain the
192 /// same ValInst.
193 isl::union_map findSameContentElements(isl::union_map ValInst) {
Michael Krusee276e9f2017-10-02 11:41:06 +0000194 assert(!ValInst.is_single_valued().is_false());
Michael Kruse70af4f52017-08-07 18:40:29 +0000195
196 // { Domain[] }
197 isl::union_set Domain = ValInst.domain();
198
199 // { Domain[] -> Scatter[] }
200 isl::union_map Schedule = getScatterFor(Domain);
201
202 // { Element[] -> [Scatter[] -> ValInst[]] }
203 isl::union_map MustKnownCurried =
204 convertZoneToTimepoints(Known, isl::dim::in, false, true).curry();
205
206 // { [Domain[] -> ValInst[]] -> Scatter[] }
207 isl::union_map DomValSched = ValInst.domain_map().apply_range(Schedule);
208
209 // { [Scatter[] -> ValInst[]] -> [Domain[] -> ValInst[]] }
210 isl::union_map SchedValDomVal =
211 DomValSched.range_product(ValInst.range_map()).reverse();
212
213 // { Element[] -> [Domain[] -> ValInst[]] }
214 isl::union_map MustKnownInst = MustKnownCurried.apply_range(SchedValDomVal);
215
216 // { Domain[] -> Element[] }
217 isl::union_map MustKnownMap =
218 MustKnownInst.uncurry().domain().unwrap().reverse();
219 simplify(MustKnownMap);
220
221 return MustKnownMap;
222 }
223
224 /// Find a single array element for each statement instance, within a single
225 /// array.
226 ///
227 /// @param MustKnown { Domain[] -> Element[] }
228 /// Set of candidate array elements.
229 /// @param Domain { Domain[] }
230 /// The statement instance for which we need elements for.
231 ///
232 /// @return { Domain[] -> Element[] }
233 /// For each statement instance, an array element out of @p MustKnown.
234 /// All array elements must be in the same array (Polly does not yet
235 /// support reading from different accesses using the same
236 /// MemoryAccess). If no mapping for all of @p Domain exists, returns
237 /// null.
238 isl::map singleLocation(isl::union_map MustKnown, isl::set Domain) {
239 // { Domain[] -> Element[] }
240 isl::map Result;
241
242 // MemoryAccesses can read only elements from a single array
243 // (i.e. not: { Dom[0] -> A[0]; Dom[1] -> B[1] }).
244 // Look through all spaces until we find one that contains at least the
245 // wanted statement instance.s
Reid Kleckner8d719a22017-08-10 21:46:22 +0000246 MustKnown.foreach_map([&](isl::map Map) -> isl::stat {
Michael Kruse70af4f52017-08-07 18:40:29 +0000247 // Get the array this is accessing.
248 isl::id ArrayId = Map.get_tuple_id(isl::dim::out);
249 ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(ArrayId.get_user());
250
251 // No support for generation of indirect array accesses.
252 if (SAI->getBasePtrOriginSAI())
253 return isl::stat::ok; // continue
254
255 // Determine whether this map contains all wanted values.
256 isl::set MapDom = Map.domain();
257 if (!Domain.is_subset(MapDom).is_true())
258 return isl::stat::ok; // continue
259
260 // There might be multiple array elements that contain the same value, but
261 // choose only one of them. lexmin is used because it returns a one-value
262 // mapping, we do not care about which one.
263 // TODO: Get the simplest access function.
264 Result = Map.lexmin();
265 return isl::stat::error; // break
266 });
267
268 return Result;
269 }
270
271public:
Michael Kruse89972e22017-09-19 22:53:20 +0000272 ForwardOpTreeImpl(Scop *S, LoopInfo *LI, IslMaxOperationsGuard &MaxOpGuard)
273 : ZoneAlgorithm("polly-optree", S, LI), MaxOpGuard(MaxOpGuard) {}
Eugene Zelenko9248fde2017-08-24 21:22:41 +0000274
Michael Kruse70af4f52017-08-07 18:40:29 +0000275 /// Compute the zones of known array element contents.
276 ///
277 /// @return True if the computed #Known is usable.
278 bool computeKnownValues() {
279 isl::union_map MustKnown, KnownFromLoad, KnownFromInit;
280
281 // Check that nothing strange occurs.
Michael Kruse47281842017-08-28 20:39:07 +0000282 collectCompatibleElts();
Michael Kruse70af4f52017-08-07 18:40:29 +0000283
Michael Kruse70af4f52017-08-07 18:40:29 +0000284 {
Michael Kruse89972e22017-09-19 22:53:20 +0000285 IslQuotaScope QuotaScope = MaxOpGuard.enter();
Michael Kruse70af4f52017-08-07 18:40:29 +0000286
287 computeCommon();
Michael Kruse68821a82017-10-31 16:11:46 +0000288 if (NormalizePHIs)
289 computeNormalizedPHIs();
Michael Kruse70af4f52017-08-07 18:40:29 +0000290 Known = computeKnown(true, true);
Michael Kruse70af4f52017-08-07 18:40:29 +0000291
292 // Preexisting ValInsts use the known content analysis of themselves.
293 Translator = makeIdentityMap(Known.range(), false);
294 }
295
Michael Kruse68821a82017-10-31 16:11:46 +0000296 if (!Known || !Translator || !NormalizeMap) {
Michael Kruse70af4f52017-08-07 18:40:29 +0000297 assert(isl_ctx_last_error(IslCtx.get()) == isl_error_quota);
Michael Kruse70af4f52017-08-07 18:40:29 +0000298 Known = nullptr;
299 Translator = nullptr;
Michael Kruse68821a82017-10-31 16:11:46 +0000300 NormalizeMap = nullptr;
Michael Kruse70af4f52017-08-07 18:40:29 +0000301 DEBUG(dbgs() << "Known analysis exceeded max_operations\n");
302 return false;
303 }
304
305 KnownAnalyzed++;
306 DEBUG(dbgs() << "All known: " << Known << "\n");
307
308 return true;
309 }
310
Michael Krusea6b2de32017-07-22 14:02:47 +0000311 void printStatistics(raw_ostream &OS, int Indent = 0) {
312 OS.indent(Indent) << "Statistics {\n";
313 OS.indent(Indent + 4) << "Instructions copied: " << NumInstructionsCopied
314 << '\n';
Michael Kruse70af4f52017-08-07 18:40:29 +0000315 OS.indent(Indent + 4) << "Known loads forwarded: " << NumKnownLoadsForwarded
316 << '\n';
Michael Krusecc6ea8e2017-10-27 14:48:34 +0000317 OS.indent(Indent + 4) << "Reloads: " << NumReloads << '\n';
Michael Kruse07e8c362017-07-24 12:43:27 +0000318 OS.indent(Indent + 4) << "Read-only accesses copied: " << NumReadOnlyCopied
319 << '\n';
Michael Krusea6b2de32017-07-22 14:02:47 +0000320 OS.indent(Indent + 4) << "Operand trees forwarded: " << NumForwardedTrees
321 << '\n';
322 OS.indent(Indent + 4) << "Statements with forwarded operand trees: "
323 << NumModifiedStmts << '\n';
324 OS.indent(Indent) << "}\n";
325 }
326
Eugene Zelenko9248fde2017-08-24 21:22:41 +0000327 void printStatements(raw_ostream &OS, int Indent = 0) const {
Michael Krusea6b2de32017-07-22 14:02:47 +0000328 OS.indent(Indent) << "After statements {\n";
329 for (auto &Stmt : *S) {
330 OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
331 for (auto *MA : Stmt)
332 MA->print(OS);
333
334 OS.indent(Indent + 12);
335 Stmt.printInstructions(OS);
336 }
337 OS.indent(Indent) << "}\n";
338 }
339
Michael Kruse70af4f52017-08-07 18:40:29 +0000340 /// Create a new MemoryAccess of type read and MemoryKind::Array.
341 ///
342 /// @param Stmt The statement in which the access occurs.
343 /// @param LI The instruction that does the access.
344 /// @param AccessRelation The array element that each statement instance
345 /// accesses.
346 ///
347 /// @param The newly created access.
348 MemoryAccess *makeReadArrayAccess(ScopStmt *Stmt, LoadInst *LI,
349 isl::map AccessRelation) {
350 isl::id ArrayId = AccessRelation.get_tuple_id(isl::dim::out);
351 ScopArrayInfo *SAI = reinterpret_cast<ScopArrayInfo *>(ArrayId.get_user());
352
353 // Create a dummy SCEV access, to be replaced anyway.
354 SmallVector<const SCEV *, 4> Sizes;
355 Sizes.reserve(SAI->getNumberOfDimensions());
356 SmallVector<const SCEV *, 4> Subscripts;
357 Subscripts.reserve(SAI->getNumberOfDimensions());
358 for (unsigned i = 0; i < SAI->getNumberOfDimensions(); i += 1) {
359 Sizes.push_back(SAI->getDimensionSize(i));
360 Subscripts.push_back(nullptr);
361 }
362
363 MemoryAccess *Access =
364 new MemoryAccess(Stmt, LI, MemoryAccess::READ, SAI->getBasePtr(),
365 LI->getType(), true, {}, Sizes, LI, MemoryKind::Array);
366 S->addAccessFunction(Access);
367 Stmt->addAccess(Access, true);
368
369 Access->setNewAccessRelation(AccessRelation);
370
371 return Access;
372 }
373
374 /// For an llvm::Value defined in @p DefStmt, compute the RAW dependency for a
375 /// use in every instance of @p UseStmt.
376 ///
377 /// @param UseStmt Statement a scalar is used in.
378 /// @param DefStmt Statement a scalar is defined in.
379 ///
380 /// @return { DomainUse[] -> DomainDef[] }
381 isl::map computeUseToDefFlowDependency(ScopStmt *UseStmt, ScopStmt *DefStmt) {
382 // { DomainUse[] -> Scatter[] }
383 isl::map UseScatter = getScatterFor(UseStmt);
384
385 // { Zone[] -> DomainDef[] }
386 isl::map ReachDefZone = getScalarReachingDefinition(DefStmt);
387
388 // { Scatter[] -> DomainDef[] }
389 isl::map ReachDefTimepoints =
390 convertZoneToTimepoints(ReachDefZone, isl::dim::in, false, true);
391
392 // { DomainUse[] -> DomainDef[] }
393 return UseScatter.apply_range(ReachDefTimepoints);
394 }
395
396 /// Forward a load by reading from an array element that contains the same
397 /// value. Typically the location it was loaded from.
398 ///
399 /// @param TargetStmt The statement the operand tree will be copied to.
400 /// @param Inst The (possibly speculatable) instruction to forward.
401 /// @param UseStmt The statement that uses @p Inst.
402 /// @param UseLoop The loop @p Inst is used in.
403 /// @param UseToTarget { DomainUse[] -> DomainTarget[] }
404 /// A mapping from the statement instance @p Inst is used
405 /// to the statement instance it is forwarded to.
406 /// @param DefStmt The statement @p Inst is defined in.
407 /// @param DefLoop The loop which contains @p Inst.
408 /// @param DefToTarget { DomainDef[] -> DomainTarget[] }
409 /// A mapping from the statement instance @p Inst is
410 /// defined to the statement instance it is forwarded to.
411 /// @param DoIt If false, only determine whether an operand tree can be
412 /// forwarded. If true, carry out the forwarding. Do not
413 /// use DoIt==true if an operand tree is not known to be
414 /// forwardable.
415 ///
Michael Kruse822dfe22017-10-27 14:26:14 +0000416 /// @return FD_NotApplicable if @p Inst cannot be forwarded by creating a new
417 /// load.
418 /// FD_CannotForward if the pointer operand cannot be forwarded.
419 /// FD_CanForwardProfitably if @p Inst is forwardable.
420 /// FD_DidForwardTree if @p DoIt was true.
Michael Kruse70af4f52017-08-07 18:40:29 +0000421 ForwardingDecision forwardKnownLoad(ScopStmt *TargetStmt, Instruction *Inst,
422 ScopStmt *UseStmt, Loop *UseLoop,
423 isl::map UseToTarget, ScopStmt *DefStmt,
424 Loop *DefLoop, isl::map DefToTarget,
425 bool DoIt) {
426 // Cannot do anything without successful known analysis.
Michael Kruse89972e22017-09-19 22:53:20 +0000427 if (Known.is_null() || Translator.is_null() || UseToTarget.is_null() ||
428 DefToTarget.is_null() || MaxOpGuard.hasQuotaExceeded())
Michael Kruse70af4f52017-08-07 18:40:29 +0000429 return FD_NotApplicable;
430
431 LoadInst *LI = dyn_cast<LoadInst>(Inst);
432 if (!LI)
433 return FD_NotApplicable;
434
Michael Kruse7954a222017-09-03 16:09:38 +0000435 // If the load is already in the statement, no forwarding is necessary.
Michael Kruse70af4f52017-08-07 18:40:29 +0000436 // However, it might happen that the LoadInst is already present in the
437 // statement's instruction list. In that case we do as follows:
438 // - For the evaluation (DoIt==false), we can trivially forward it as it is
439 // benefit of forwarding an already present instruction.
Michael Kruse7954a222017-09-03 16:09:38 +0000440 // - For the execution (DoIt==true), prepend the instruction (to make it
Michael Kruse70af4f52017-08-07 18:40:29 +0000441 // available to all instructions following in the instruction list), but
442 // do not add another MemoryAccess.
443 MemoryAccess *Access = TargetStmt->getArrayAccessOrNULLFor(LI);
444 if (Access && !DoIt)
Michael Kruse822dfe22017-10-27 14:26:14 +0000445 return FD_CanForwardProfitably;
Michael Kruse70af4f52017-08-07 18:40:29 +0000446
447 ForwardingDecision OpDecision =
448 forwardTree(TargetStmt, LI->getPointerOperand(), DefStmt, DefLoop,
449 DefToTarget, DoIt);
450 switch (OpDecision) {
451 case FD_CannotForward:
452 assert(!DoIt);
453 return OpDecision;
454
455 case FD_CanForwardLeaf:
Michael Kruse822dfe22017-10-27 14:26:14 +0000456 case FD_CanForwardProfitably:
Michael Kruse70af4f52017-08-07 18:40:29 +0000457 assert(!DoIt);
458 break;
459
Michael Kruse822dfe22017-10-27 14:26:14 +0000460 case FD_DidForwardLeaf:
461 case FD_DidForwardTree:
Michael Kruse70af4f52017-08-07 18:40:29 +0000462 assert(DoIt);
463 break;
464
465 default:
466 llvm_unreachable("Shouldn't return this");
467 }
468
Michael Kruse89972e22017-09-19 22:53:20 +0000469 IslQuotaScope QuotaScope = MaxOpGuard.enter(!DoIt);
470
Michael Kruse70af4f52017-08-07 18:40:29 +0000471 // { DomainDef[] -> ValInst[] }
472 isl::map ExpectedVal = makeValInst(Inst, UseStmt, UseLoop);
Michael Kruse68821a82017-10-31 16:11:46 +0000473 assert(isNormalized(ExpectedVal) && "LoadInsts are always normalized");
Michael Kruse70af4f52017-08-07 18:40:29 +0000474
475 // { DomainTarget[] -> ValInst[] }
476 isl::map TargetExpectedVal = ExpectedVal.apply_domain(UseToTarget);
477 isl::union_map TranslatedExpectedVal =
478 isl::union_map(TargetExpectedVal).apply_range(Translator);
479
480 // { DomainTarget[] -> Element[] }
481 isl::union_map Candidates = findSameContentElements(TranslatedExpectedVal);
482
483 isl::map SameVal = singleLocation(Candidates, getDomainFor(TargetStmt));
484 if (!SameVal)
Michael Kruse822dfe22017-10-27 14:26:14 +0000485 return FD_NotApplicable;
486
487 if (DoIt)
488 TargetStmt->prependInstruction(LI);
Michael Kruse70af4f52017-08-07 18:40:29 +0000489
490 if (!DoIt)
Michael Kruse822dfe22017-10-27 14:26:14 +0000491 return FD_CanForwardProfitably;
Michael Kruse70af4f52017-08-07 18:40:29 +0000492
493 if (Access) {
494 DEBUG(dbgs() << " forwarded known load with preexisting MemoryAccess"
495 << Access << "\n");
496 } else {
497 Access = makeReadArrayAccess(TargetStmt, LI, SameVal);
498 DEBUG(dbgs() << " forwarded known load with new MemoryAccess" << Access
499 << "\n");
500
501 // { ValInst[] }
502 isl::space ValInstSpace = ExpectedVal.get_space().range();
503
504 // After adding a new load to the SCoP, also update the Known content
505 // about it. The new load will have a known ValInst of
506 // { [DomainTarget[] -> Value[]] }
507 // but which -- because it is a copy of it -- has same value as the
508 // { [DomainDef[] -> Value[]] }
509 // that it replicates. Instead of cloning the known content of
510 // [DomainDef[] -> Value[]]
511 // for DomainTarget[], we add a 'translator' that maps
512 // [DomainTarget[] -> Value[]] to [DomainDef[] -> Value[]]
513 // before comparing to the known content.
514 // TODO: 'Translator' could also be used to map PHINodes to their incoming
515 // ValInsts.
516 if (ValInstSpace.is_wrapping()) {
517 // { DefDomain[] -> Value[] }
518 isl::map ValInsts = ExpectedVal.range().unwrap();
519
520 // { DefDomain[] }
521 isl::set DefDomain = ValInsts.domain();
522
523 // { Value[] }
524 isl::space ValSpace = ValInstSpace.unwrap().range();
525
526 // { Value[] -> Value[] }
527 isl::map ValToVal =
528 isl::map::identity(ValSpace.map_from_domain_and_range(ValSpace));
529
530 // { [TargetDomain[] -> Value[]] -> [DefDomain[] -> Value] }
531 isl::map LocalTranslator = DefToTarget.reverse().product(ValToVal);
532
533 Translator = Translator.add_map(LocalTranslator);
534 DEBUG(dbgs() << " local translator is " << LocalTranslator
535 << "\n");
536 }
537 }
538 DEBUG(dbgs() << " expected values where " << TargetExpectedVal
539 << "\n");
540 DEBUG(dbgs() << " candidate elements where " << Candidates << "\n");
541 assert(Access);
542
543 NumKnownLoadsForwarded++;
544 TotalKnownLoadsForwarded++;
Michael Kruse822dfe22017-10-27 14:26:14 +0000545 return FD_DidForwardTree;
546 }
547
548 /// Forward a scalar by redirecting the access to an array element that stores
549 /// the same value.
550 ///
551 /// @param TargetStmt The statement the operand tree will be copied to.
552 /// @param Inst The scalar to forward.
553 /// @param UseStmt The statement that uses @p Inst.
554 /// @param UseLoop The loop @p Inst is used in.
555 /// @param UseToTarget { DomainUse[] -> DomainTarget[] }
556 /// A mapping from the statement instance @p Inst is used
557 /// in, to the statement instance it is forwarded to.
558 /// @param DefStmt The statement @p Inst is defined in.
559 /// @param DefLoop The loop which contains @p Inst.
560 /// @param DefToTarget { DomainDef[] -> DomainTarget[] }
561 /// A mapping from the statement instance @p Inst is
562 /// defined in, to the statement instance it is forwarded
563 /// to.
564 /// @param DoIt If false, only determine whether an operand tree can be
565 /// forwarded. If true, carry out the forwarding. Do not
566 /// use DoIt==true if an operand tree is not known to be
567 /// forwardable.
568 ///
569 /// @return FD_NotApplicable if @p Inst cannot be reloaded.
570 /// FD_CanForwardLeaf if @p Inst can be reloaded.
571 /// FD_CanForwardProfitably if @p Inst has been reloaded.
572 /// FD_DidForwardLeaf if @p DoIt was true.
573 ForwardingDecision reloadKnownContent(ScopStmt *TargetStmt, Instruction *Inst,
574 ScopStmt *UseStmt, Loop *UseLoop,
575 isl::map UseToTarget, ScopStmt *DefStmt,
576 Loop *DefLoop, isl::map DefToTarget,
577 bool DoIt) {
578 // Cannot do anything without successful known analysis.
Michael Kruse4d3f3c72017-11-06 17:48:14 +0000579 if (Known.is_null() || Translator.is_null() || UseToTarget.is_null() ||
580 DefToTarget.is_null() || MaxOpGuard.hasQuotaExceeded())
Michael Kruse822dfe22017-10-27 14:26:14 +0000581 return FD_NotApplicable;
582
583 MemoryAccess *Access = TargetStmt->lookupInputAccessOf(Inst);
584 if (Access && Access->isLatestArrayKind()) {
585 if (DoIt)
586 return FD_DidForwardLeaf;
587 return FD_CanForwardLeaf;
588 }
589
Michael Kruse4d3f3c72017-11-06 17:48:14 +0000590 // Don't spend too much time analyzing whether it can be reloaded. When
591 // carrying-out the forwarding, we cannot bail-out in the middle of the
592 // transformation. It also shouldn't take as long because some results are
593 // cached.
594 IslQuotaScope QuotaScope = MaxOpGuard.enter(!DoIt);
595
Michael Kruse822dfe22017-10-27 14:26:14 +0000596 // { DomainDef[] -> ValInst[] }
Michael Kruse68821a82017-10-31 16:11:46 +0000597 isl::union_map ExpectedVal = makeNormalizedValInst(Inst, UseStmt, UseLoop);
Michael Kruse822dfe22017-10-27 14:26:14 +0000598
599 // { DomainTarget[] -> ValInst[] }
600 isl::union_map TargetExpectedVal = ExpectedVal.apply_domain(UseToTarget);
601 isl::union_map TranslatedExpectedVal =
602 TargetExpectedVal.apply_range(Translator);
603
604 // { DomainTarget[] -> Element[] }
605 isl::union_map Candidates = findSameContentElements(TranslatedExpectedVal);
606
607 isl::map SameVal = singleLocation(Candidates, getDomainFor(TargetStmt));
608 if (!SameVal)
609 return FD_NotApplicable;
610
611 if (!DoIt)
612 return FD_CanForwardProfitably;
613
614 if (!Access)
615 Access = TargetStmt->ensureValueRead(Inst);
616
617 simplify(SameVal);
618 Access->setNewAccessRelation(SameVal);
619
620 TotalReloads++;
621 NumReloads++;
622 return FD_DidForwardLeaf;
Michael Kruse70af4f52017-08-07 18:40:29 +0000623 }
624
Michael Krusea9a70862017-08-04 12:28:42 +0000625 /// Forwards a speculatively executable instruction.
626 ///
Michael Kruse70af4f52017-08-07 18:40:29 +0000627 /// @param TargetStmt The statement the operand tree will be copied to.
628 /// @param UseInst The (possibly speculatable) instruction to forward.
629 /// @param DefStmt The statement @p UseInst is defined in.
630 /// @param DefLoop The loop which contains @p UseInst.
631 /// @param DefToTarget { DomainDef[] -> DomainTarget[] }
632 /// A mapping from the statement instance @p UseInst is
633 /// defined to the statement instance it is forwarded to.
634 /// @param DoIt If false, only determine whether an operand tree can be
635 /// forwarded. If true, carry out the forwarding. Do not
636 /// use DoIt==true if an operand tree is not known to be
637 /// forwardable.
Michael Krusea9a70862017-08-04 12:28:42 +0000638 ///
Michael Kruse70af4f52017-08-07 18:40:29 +0000639 /// @return FD_NotApplicable if @p UseInst is not speculatable.
640 /// FD_CannotForward if one of @p UseInst's operands is not
641 /// forwardable.
642 /// FD_CanForwardTree if @p UseInst is forwardable.
643 /// FD_DidForward if @p DoIt was true.
Michael Krusea9a70862017-08-04 12:28:42 +0000644 ForwardingDecision forwardSpeculatable(ScopStmt *TargetStmt,
645 Instruction *UseInst,
Michael Kruse70af4f52017-08-07 18:40:29 +0000646 ScopStmt *DefStmt, Loop *DefLoop,
647 isl::map DefToTarget, bool DoIt) {
Michael Krusea9a70862017-08-04 12:28:42 +0000648 // PHIs, unless synthesizable, are not yet supported.
649 if (isa<PHINode>(UseInst))
650 return FD_NotApplicable;
651
652 // Compatible instructions must satisfy the following conditions:
653 // 1. Idempotent (instruction will be copied, not moved; although its
654 // original instance might be removed by simplification)
655 // 2. Not access memory (There might be memory writes between)
656 // 3. Not cause undefined behaviour (we might copy to a location when the
657 // original instruction was no executed; this is currently not possible
658 // because we do not forward PHINodes)
659 // 4. Not leak memory if executed multiple times (i.e. malloc)
660 //
661 // Instruction::mayHaveSideEffects is not sufficient because it considers
662 // malloc to not have side-effects. llvm::isSafeToSpeculativelyExecute is
663 // not sufficient because it allows memory accesses.
664 if (mayBeMemoryDependent(*UseInst))
665 return FD_NotApplicable;
666
Michael Krusea9a70862017-08-04 12:28:42 +0000667 if (DoIt) {
668 // To ensure the right order, prepend this instruction before its
669 // operands. This ensures that its operands are inserted before the
670 // instruction using them.
671 // TODO: The operand tree is not really a tree, but a DAG. We should be
672 // able to handle DAGs without duplication.
673 TargetStmt->prependInstruction(UseInst);
674 NumInstructionsCopied++;
675 TotalInstructionsCopied++;
676 }
677
678 for (Value *OpVal : UseInst->operand_values()) {
679 ForwardingDecision OpDecision =
Michael Kruse70af4f52017-08-07 18:40:29 +0000680 forwardTree(TargetStmt, OpVal, DefStmt, DefLoop, DefToTarget, DoIt);
Michael Krusea9a70862017-08-04 12:28:42 +0000681 switch (OpDecision) {
682 case FD_CannotForward:
683 assert(!DoIt);
684 return FD_CannotForward;
685
686 case FD_CanForwardLeaf:
Michael Kruse822dfe22017-10-27 14:26:14 +0000687 case FD_CanForwardProfitably:
Michael Krusea9a70862017-08-04 12:28:42 +0000688 assert(!DoIt);
689 break;
690
Michael Kruse822dfe22017-10-27 14:26:14 +0000691 case FD_DidForwardLeaf:
692 case FD_DidForwardTree:
Michael Krusea9a70862017-08-04 12:28:42 +0000693 assert(DoIt);
694 break;
695
696 case FD_NotApplicable:
697 llvm_unreachable("forwardTree should never return FD_NotApplicable");
698 }
699 }
700
701 if (DoIt)
Michael Kruse822dfe22017-10-27 14:26:14 +0000702 return FD_DidForwardTree;
703 return FD_CanForwardProfitably;
Michael Krusea9a70862017-08-04 12:28:42 +0000704 }
705
Michael Krusea6b2de32017-07-22 14:02:47 +0000706 /// Determines whether an operand tree can be forwarded or carries out a
707 /// forwarding, depending on the @p DoIt flag.
708 ///
Michael Kruse70af4f52017-08-07 18:40:29 +0000709 /// @param TargetStmt The statement the operand tree will be copied to.
710 /// @param UseVal The value (usually an instruction) which is root of an
711 /// operand tree.
712 /// @param UseStmt The statement that uses @p UseVal.
713 /// @param UseLoop The loop @p UseVal is used in.
714 /// @param UseToTarget { DomainUse[] -> DomainTarget[] }
715 /// A mapping from the statement instance @p UseVal is used
716 /// to the statement instance it is forwarded to.
717 /// @param DoIt If false, only determine whether an operand tree can be
718 /// forwarded. If true, carry out the forwarding. Do not
719 /// use DoIt==true if an operand tree is not known to be
720 /// forwardable.
Michael Krusea6b2de32017-07-22 14:02:47 +0000721 ///
Michael Kruse5b8a9092017-07-24 12:39:46 +0000722 /// @return If DoIt==false, return whether the operand tree can be forwarded.
723 /// If DoIt==true, return FD_DidForward.
Eugene Zelenko9248fde2017-08-24 21:22:41 +0000724 ForwardingDecision forwardTree(ScopStmt *TargetStmt, Value *UseVal,
725 ScopStmt *UseStmt, Loop *UseLoop,
Michael Kruse70af4f52017-08-07 18:40:29 +0000726 isl::map UseToTarget, bool DoIt) {
727 ScopStmt *DefStmt = nullptr;
728 Loop *DefLoop = nullptr;
729
730 // { DefDomain[] -> TargetDomain[] }
731 isl::map DefToTarget;
732
Michael Krusea6b2de32017-07-22 14:02:47 +0000733 VirtualUse VUse = VirtualUse::create(UseStmt, UseLoop, UseVal, true);
734 switch (VUse.getKind()) {
735 case VirtualUse::Constant:
736 case VirtualUse::Block:
Michael Krusee5f47062017-07-22 14:30:02 +0000737 case VirtualUse::Hoisted:
Michael Krusea6b2de32017-07-22 14:02:47 +0000738 // These can be used anywhere without special considerations.
739 if (DoIt)
Michael Kruse822dfe22017-10-27 14:26:14 +0000740 return FD_DidForwardTree;
Michael Kruse67752072017-07-24 15:33:58 +0000741 return FD_CanForwardLeaf;
Michael Krusea6b2de32017-07-22 14:02:47 +0000742
Michael Kruse9f6e41c2017-07-31 19:46:21 +0000743 case VirtualUse::Synthesizable: {
744 // ScopExpander will take care for of generating the code at the new
745 // location.
746 if (DoIt)
Michael Kruse822dfe22017-10-27 14:26:14 +0000747 return FD_DidForwardTree;
Michael Kruse9f6e41c2017-07-31 19:46:21 +0000748
749 // Check if the value is synthesizable at the new location as well. This
750 // might be possible when leaving a loop for which ScalarEvolution is
751 // unable to derive the exit value for.
752 // TODO: If there is a LCSSA PHI at the loop exit, use that one.
753 // If the SCEV contains a SCEVAddRecExpr, we currently depend on that we
754 // do not forward past its loop header. This would require us to use a
755 // previous loop induction variable instead the current one. We currently
756 // do not allow forwarding PHI nodes, thus this should never occur (the
757 // only exception where no phi is necessary being an unreachable loop
758 // without edge from the outside).
759 VirtualUse TargetUse = VirtualUse::create(
760 S, TargetStmt, TargetStmt->getSurroundingLoop(), UseVal, true);
761 if (TargetUse.getKind() == VirtualUse::Synthesizable)
762 return FD_CanForwardLeaf;
763
764 DEBUG(dbgs() << " Synthesizable would not be synthesizable anymore: "
765 << *UseVal << "\n");
Michael Krusea6b2de32017-07-22 14:02:47 +0000766 return FD_CannotForward;
Michael Kruse9f6e41c2017-07-31 19:46:21 +0000767 }
Michael Krusea6b2de32017-07-22 14:02:47 +0000768
Michael Krusea6b2de32017-07-22 14:02:47 +0000769 case VirtualUse::ReadOnly:
Michael Krused85e3452017-07-24 15:33:53 +0000770 // Note that we cannot return FD_CanForwardTree here. With a operand tree
771 // depth of 0, UseVal is the use in TargetStmt that we try to replace.
772 // With -polly-analyze-read-only-scalars=true we would ensure the
773 // existence of a MemoryAccess (which already exists for a leaf) and be
774 // removed again by tryForwardTree because it's goal is to remove this
775 // scalar MemoryAccess. It interprets FD_CanForwardTree as the permission
776 // to do so.
Michael Kruse07e8c362017-07-24 12:43:27 +0000777 if (!DoIt)
Michael Kruse67752072017-07-24 15:33:58 +0000778 return FD_CanForwardLeaf;
Michael Kruse07e8c362017-07-24 12:43:27 +0000779
780 // If we model read-only scalars, we need to create a MemoryAccess for it.
781 if (ModelReadOnlyScalars)
782 TargetStmt->ensureValueRead(UseVal);
783
784 NumReadOnlyCopied++;
785 TotalReadOnlyCopied++;
Michael Kruse822dfe22017-10-27 14:26:14 +0000786 return FD_DidForwardLeaf;
Michael Krusea6b2de32017-07-22 14:02:47 +0000787
788 case VirtualUse::Intra:
Michael Kruse70af4f52017-08-07 18:40:29 +0000789 // Knowing that UseStmt and DefStmt are the same statement instance, just
790 // reuse the information about UseStmt for DefStmt
791 DefStmt = UseStmt;
792 DefToTarget = UseToTarget;
Michael Krusea6b2de32017-07-22 14:02:47 +0000793
Michael Kruse70af4f52017-08-07 18:40:29 +0000794 LLVM_FALLTHROUGH;
795 case VirtualUse::Inter:
796 Instruction *Inst = cast<Instruction>(UseVal);
797
Michael Krusecd3b9fe2017-08-09 16:45:37 +0000798 if (!DefStmt) {
Michael Kruse70af4f52017-08-07 18:40:29 +0000799 DefStmt = S->getStmtFor(Inst);
Michael Krusecd3b9fe2017-08-09 16:45:37 +0000800 if (!DefStmt)
801 return FD_CannotForward;
802 }
803
Michael Kruse70af4f52017-08-07 18:40:29 +0000804 DefLoop = LI->getLoopFor(Inst->getParent());
805
806 if (DefToTarget.is_null() && !Known.is_null()) {
Michael Kruse89972e22017-09-19 22:53:20 +0000807 IslQuotaScope QuotaScope = MaxOpGuard.enter(!DoIt);
808
Michael Kruse70af4f52017-08-07 18:40:29 +0000809 // { UseDomain[] -> DefDomain[] }
810 isl::map UseToDef = computeUseToDefFlowDependency(UseStmt, DefStmt);
811
812 // { DefDomain[] -> UseDomain[] -> TargetDomain[] } shortened to
813 // { DefDomain[] -> TargetDomain[] }
814 DefToTarget = UseToTarget.apply_domain(UseToDef);
815 simplify(DefToTarget);
816 }
817
818 ForwardingDecision SpeculativeResult = forwardSpeculatable(
819 TargetStmt, Inst, DefStmt, DefLoop, DefToTarget, DoIt);
Michael Krusea9a70862017-08-04 12:28:42 +0000820 if (SpeculativeResult != FD_NotApplicable)
821 return SpeculativeResult;
Michael Kruse9f6e41c2017-07-31 19:46:21 +0000822
Michael Kruse70af4f52017-08-07 18:40:29 +0000823 ForwardingDecision KnownResult =
824 forwardKnownLoad(TargetStmt, Inst, UseStmt, UseLoop, UseToTarget,
825 DefStmt, DefLoop, DefToTarget, DoIt);
826 if (KnownResult != FD_NotApplicable)
827 return KnownResult;
828
Michael Kruse822dfe22017-10-27 14:26:14 +0000829 ForwardingDecision ReloadResult =
830 reloadKnownContent(TargetStmt, Inst, UseStmt, UseLoop, UseToTarget,
831 DefStmt, DefLoop, DefToTarget, DoIt);
832 if (ReloadResult != FD_NotApplicable)
833 return ReloadResult;
834
Michael Krusea9a70862017-08-04 12:28:42 +0000835 // When no method is found to forward the operand tree, we effectively
836 // cannot handle it.
837 DEBUG(dbgs() << " Cannot forward instruction: " << *Inst << "\n");
838 return FD_CannotForward;
Michael Krusea6b2de32017-07-22 14:02:47 +0000839 }
840
841 llvm_unreachable("Case unhandled");
842 }
843
844 /// Try to forward an operand tree rooted in @p RA.
845 bool tryForwardTree(MemoryAccess *RA) {
846 assert(RA->isLatestScalarKind());
847 DEBUG(dbgs() << "Trying to forward operand tree " << RA << "...\n");
848
849 ScopStmt *Stmt = RA->getStatement();
850 Loop *InLoop = Stmt->getSurroundingLoop();
851
Michael Kruse70af4f52017-08-07 18:40:29 +0000852 isl::map TargetToUse;
853 if (!Known.is_null()) {
854 isl::space DomSpace = Stmt->getDomainSpace();
855 TargetToUse =
856 isl::map::identity(DomSpace.map_from_domain_and_range(DomSpace));
857 }
858
859 ForwardingDecision Assessment = forwardTree(
860 Stmt, RA->getAccessValue(), Stmt, InLoop, TargetToUse, false);
Michael Kruse822dfe22017-10-27 14:26:14 +0000861 assert(Assessment != FD_DidForwardTree && Assessment != FD_DidForwardLeaf);
862 if (Assessment != FD_CanForwardProfitably)
Michael Krusea6b2de32017-07-22 14:02:47 +0000863 return false;
864
Michael Kruse70af4f52017-08-07 18:40:29 +0000865 ForwardingDecision Execution = forwardTree(Stmt, RA->getAccessValue(), Stmt,
866 InLoop, TargetToUse, true);
Michael Kruse822dfe22017-10-27 14:26:14 +0000867 assert(((Execution == FD_DidForwardTree) ||
868 (Execution == FD_DidForwardLeaf)) &&
Michael Krusefd350892017-08-01 22:15:04 +0000869 "A previous positive assessment must also be executable");
Michael Krusea6b2de32017-07-22 14:02:47 +0000870
Michael Kruse822dfe22017-10-27 14:26:14 +0000871 if (Execution == FD_DidForwardTree)
872 Stmt->removeSingleMemoryAccess(RA);
Michael Krusea6b2de32017-07-22 14:02:47 +0000873 return true;
874 }
875
Michael Krusea6b2de32017-07-22 14:02:47 +0000876 /// Return which SCoP this instance is processing.
877 Scop *getScop() const { return S; }
878
879 /// Run the algorithm: Use value read accesses as operand tree roots and try
880 /// to forward them into the statement.
881 bool forwardOperandTrees() {
882 for (ScopStmt &Stmt : *S) {
Michael Krusea6b2de32017-07-22 14:02:47 +0000883 bool StmtModified = false;
884
885 // Because we are modifying the MemoryAccess list, collect them first to
886 // avoid iterator invalidation.
887 SmallVector<MemoryAccess *, 16> Accs;
888 for (MemoryAccess *RA : Stmt) {
889 if (!RA->isRead())
890 continue;
891 if (!RA->isLatestScalarKind())
892 continue;
893
894 Accs.push_back(RA);
895 }
896
897 for (MemoryAccess *RA : Accs) {
898 if (tryForwardTree(RA)) {
899 Modified = true;
900 StmtModified = true;
901 NumForwardedTrees++;
902 TotalForwardedTrees++;
903 }
904 }
905
906 if (StmtModified) {
907 NumModifiedStmts++;
908 TotalModifiedStmts++;
909 }
910 }
911
912 if (Modified)
913 ScopsModified++;
914 return Modified;
915 }
916
917 /// Print the pass result, performed transformations and the SCoP after the
918 /// transformation.
Eugene Zelenko9248fde2017-08-24 21:22:41 +0000919 void print(raw_ostream &OS, int Indent = 0) {
Michael Krusea6b2de32017-07-22 14:02:47 +0000920 printStatistics(OS, Indent);
921
922 if (!Modified) {
923 // This line can easily be checked in regression tests.
924 OS << "ForwardOpTree executed, but did not modify anything\n";
925 return;
926 }
927
928 printStatements(OS, Indent);
929 }
930};
931
932/// Pass that redirects scalar reads to array elements that are known to contain
933/// the same value.
934///
935/// This reduces the number of scalar accesses and therefore potentially
936/// increases the freedom of the scheduler. In the ideal case, all reads of a
937/// scalar definition are redirected (We currently do not care about removing
938/// the write in this case). This is also useful for the main DeLICM pass as
939/// there are less scalars to be mapped.
940class ForwardOpTree : public ScopPass {
941private:
Michael Krusea6b2de32017-07-22 14:02:47 +0000942 /// The pass implementation, also holding per-scop data.
943 std::unique_ptr<ForwardOpTreeImpl> Impl;
944
945public:
946 static char ID;
947
948 explicit ForwardOpTree() : ScopPass(ID) {}
Eugene Zelenko9248fde2017-08-24 21:22:41 +0000949 ForwardOpTree(const ForwardOpTree &) = delete;
950 ForwardOpTree &operator=(const ForwardOpTree &) = delete;
Michael Krusea6b2de32017-07-22 14:02:47 +0000951
Eugene Zelenko9248fde2017-08-24 21:22:41 +0000952 void getAnalysisUsage(AnalysisUsage &AU) const override {
Michael Krusea6b2de32017-07-22 14:02:47 +0000953 AU.addRequiredTransitive<ScopInfoRegionPass>();
954 AU.addRequired<LoopInfoWrapperPass>();
955 AU.setPreservesAll();
956 }
957
Eugene Zelenko9248fde2017-08-24 21:22:41 +0000958 bool runOnScop(Scop &S) override {
Michael Krusea6b2de32017-07-22 14:02:47 +0000959 // Free resources for previous SCoP's computation, if not yet done.
960 releaseMemory();
961
962 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Michael Krusea6b2de32017-07-22 14:02:47 +0000963
Michael Kruse89972e22017-09-19 22:53:20 +0000964 {
965 IslMaxOperationsGuard MaxOpGuard(S.getIslCtx(), MaxOps, false);
966 Impl = llvm::make_unique<ForwardOpTreeImpl>(&S, &LI, MaxOpGuard);
967
968 if (AnalyzeKnown) {
969 DEBUG(dbgs() << "Prepare forwarders...\n");
970 Impl->computeKnownValues();
971 }
972
973 DEBUG(dbgs() << "Forwarding operand trees...\n");
974 Impl->forwardOperandTrees();
975
976 if (MaxOpGuard.hasQuotaExceeded()) {
977 DEBUG(dbgs() << "Not all operations completed because of "
978 "max_operations exceeded\n");
979 KnownOutOfQuota++;
980 }
Michael Kruse70af4f52017-08-07 18:40:29 +0000981 }
982
Michael Krusea6b2de32017-07-22 14:02:47 +0000983 DEBUG(dbgs() << "\nFinal Scop:\n");
984 DEBUG(dbgs() << S);
985
Michael Kruse06ed5292017-08-23 13:50:30 +0000986 // Update statistics
987 auto ScopStats = S.getStatistics();
988 NumValueWrites += ScopStats.NumValueWrites;
989 NumValueWritesInLoops += ScopStats.NumValueWritesInLoops;
990 NumPHIWrites += ScopStats.NumPHIWrites;
991 NumPHIWritesInLoops += ScopStats.NumPHIWritesInLoops;
992 NumSingletonWrites += ScopStats.NumSingletonWrites;
993 NumSingletonWritesInLoops += ScopStats.NumSingletonWritesInLoops;
994
Michael Krusea6b2de32017-07-22 14:02:47 +0000995 return false;
996 }
997
Eugene Zelenko9248fde2017-08-24 21:22:41 +0000998 void printScop(raw_ostream &OS, Scop &S) const override {
Michael Krusea6b2de32017-07-22 14:02:47 +0000999 if (!Impl)
1000 return;
1001
1002 assert(Impl->getScop() == &S);
1003 Impl->print(OS);
1004 }
1005
Eugene Zelenko9248fde2017-08-24 21:22:41 +00001006 void releaseMemory() override { Impl.reset(); }
Michael Krusea6b2de32017-07-22 14:02:47 +00001007}; // class ForwardOpTree
1008
1009char ForwardOpTree::ID;
Eugene Zelenko9248fde2017-08-24 21:22:41 +00001010
1011} // namespace
Michael Krusea6b2de32017-07-22 14:02:47 +00001012
1013ScopPass *polly::createForwardOpTreePass() { return new ForwardOpTree(); }
1014
1015INITIALIZE_PASS_BEGIN(ForwardOpTree, "polly-optree",
1016 "Polly - Forward operand tree", false, false)
1017INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1018INITIALIZE_PASS_END(ForwardOpTree, "polly-optree",
1019 "Polly - Forward operand tree", false, false)