blob: c291f68bd6343adc545467775103839a61e3c2cf [file] [log] [blame]
Chris Lattner476e6df2001-12-03 17:28:42 +00001//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner476e6df2001-12-03 17:28:42 +00009//
Chris Lattnere61b67d2004-04-02 20:24:31 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
Chris Lattnere61b67d2004-04-02 20:24:31 +000014// If the trip count of a loop is computable, this pass also makes the following
15// changes:
16// 1. The exit condition for the loop is canonicalized to compare the
17// induction value against the exit value. This turns loops like:
18// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19// 2. Any use outside of the loop of an expression derived from the indvar
20// is changed to compute the derived value outside of the loop, eliminating
21// the dependence on the exit value of the induction variable. If the only
22// purpose of the loop is to compute the exit value of some derived
23// expression, this transformation will make the loop dead.
24//
Chris Lattner476e6df2001-12-03 17:28:42 +000025//===----------------------------------------------------------------------===//
26
Chris Lattner79a42ac2006-12-19 21:40:18 +000027#define DEBUG_TYPE "indvars"
Chris Lattnerb4cfa7f2002-05-07 20:03:00 +000028#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000029#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Analysis/LoopInfo.h"
34#include "llvm/Analysis/LoopPass.h"
35#include "llvm/Analysis/ScalarEvolutionExpander.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000036#include "llvm/IR/BasicBlock.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DataLayout.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/IntrinsicInst.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/IR/Type.h"
Chris Lattner83d485b2002-02-12 22:39:50 +000043#include "llvm/Support/CFG.h"
Andrew Trick56b315a2011-06-28 03:01:46 +000044#include "llvm/Support/CommandLine.h"
Chris Lattner08165592007-01-07 01:14:12 +000045#include "llvm/Support/Debug.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000046#include "llvm/Support/raw_ostream.h"
Benjamin Kramer8bcc9712012-08-29 15:32:21 +000047#include "llvm/Target/TargetLibraryInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000048#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Transforms/Utils/Local.h"
50#include "llvm/Transforms/Utils/SimplifyIndVar.h"
John Criswellb22e9b42003-12-18 17:19:19 +000051using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000052
Andrew Trick69d44522011-06-21 03:22:38 +000053STATISTIC(NumWidened , "Number of indvars widened");
Andrew Trick69d44522011-06-21 03:22:38 +000054STATISTIC(NumReplaced , "Number of exit values replaced");
55STATISTIC(NumLFTR , "Number of loop exit tests replaced");
Andrew Trick69d44522011-06-21 03:22:38 +000056STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
Andrew Trick32390552011-07-06 20:50:43 +000057STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
Chris Lattnerd3678bc2003-12-22 03:58:44 +000058
Benjamin Kramer7ba71be2011-11-26 23:01:57 +000059// Trip count verification can be enabled by default under NDEBUG if we
60// implement a strong expression equivalence checker in SCEV. Until then, we
61// use the verify-indvars flag, which may assert in some cases.
62static cl::opt<bool> VerifyIndvars(
63 "verify-indvars", cl::Hidden,
64 cl::desc("Verify the ScalarEvolution result after running indvars"));
Andrew Trick1abe2962011-05-04 02:10:13 +000065
Andrew Trick0ba77a02013-12-23 23:31:49 +000066static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden,
67 cl::desc("Reduce live induction variables."));
68
Chris Lattner79a42ac2006-12-19 21:40:18 +000069namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +000070 class IndVarSimplify : public LoopPass {
Chris Lattnere61b67d2004-04-02 20:24:31 +000071 LoopInfo *LI;
72 ScalarEvolution *SE;
Dan Gohmanfe174b62009-06-27 05:16:57 +000073 DominatorTree *DT;
Micah Villmowcdfe20b2012-10-08 16:38:25 +000074 DataLayout *TD;
Benjamin Kramer8bcc9712012-08-29 15:32:21 +000075 TargetLibraryInfo *TLI;
Andrew Trick69d44522011-06-21 03:22:38 +000076
Andrew Trick87716c92011-03-17 23:51:11 +000077 SmallVector<WeakVH, 16> DeadInsts;
Chris Lattner7e755e42003-12-23 07:47:09 +000078 bool Changed;
Chris Lattnerd3678bc2003-12-22 03:58:44 +000079 public:
Devang Patel09f162c2007-05-01 21:15:47 +000080
Dan Gohmanb0f8e992009-07-15 01:26:32 +000081 static char ID; // Pass identification, replacement for typeid
Andrew Trickf47d0af2012-03-22 17:10:11 +000082 IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0),
Andrew Trick8a3c39c2011-06-28 02:49:20 +000083 Changed(false) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +000084 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
85 }
Devang Patel09f162c2007-05-01 21:15:47 +000086
Dan Gohmanb0f8e992009-07-15 01:26:32 +000087 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
Dan Gohman43300342009-02-17 20:49:49 +000088
Dan Gohmanb0f8e992009-07-15 01:26:32 +000089 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
90 AU.addRequired<DominatorTree>();
91 AU.addRequired<LoopInfo>();
92 AU.addRequired<ScalarEvolution>();
93 AU.addRequiredID(LoopSimplifyID);
94 AU.addRequiredID(LCSSAID);
Dan Gohmanb0f8e992009-07-15 01:26:32 +000095 AU.addPreserved<ScalarEvolution>();
96 AU.addPreservedID(LoopSimplifyID);
97 AU.addPreservedID(LCSSAID);
Dan Gohmanb0f8e992009-07-15 01:26:32 +000098 AU.setPreservesCFG();
99 }
Chris Lattner7e755e42003-12-23 07:47:09 +0000100
Chris Lattnere61b67d2004-04-02 20:24:31 +0000101 private:
Andrew Trick32390552011-07-06 20:50:43 +0000102 virtual void releaseMemory() {
Andrew Trick32390552011-07-06 20:50:43 +0000103 DeadInsts.clear();
104 }
105
Andrew Trick87716c92011-03-17 23:51:11 +0000106 bool isValidRewrite(Value *FromVal, Value *ToVal);
Devang Patel2ac57e12007-03-07 06:39:01 +0000107
Andrew Trickcdc22972011-07-12 00:08:50 +0000108 void HandleFloatingPointIV(Loop *L, PHINode *PH);
109 void RewriteNonIntegerIVs(Loop *L);
110
Andrew Trick3ec331e2011-08-10 03:46:27 +0000111 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
Andrew Trick6d45a012011-08-06 07:00:37 +0000112
Andrew Trick3ec331e2011-08-10 03:46:27 +0000113 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
114
Andrew Trick7da24172011-07-18 20:32:31 +0000115 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
116 PHINode *IndVar, SCEVExpander &Rewriter);
Dan Gohmand76d71a2009-05-12 02:17:14 +0000117
Andrew Trickcdc22972011-07-12 00:08:50 +0000118 void SinkUnusedInvariants(Loop *L);
Chris Lattnerd3678bc2003-12-22 03:58:44 +0000119 };
Chris Lattner4184bcc2002-09-10 05:24:05 +0000120}
Chris Lattner91daaab2001-12-04 04:32:29 +0000121
Dan Gohmand78c4002008-05-13 00:00:25 +0000122char IndVarSimplify::ID = 0;
Owen Anderson8ac477f2010-10-12 19:48:12 +0000123INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
Andrew Trick1abe2962011-05-04 02:10:13 +0000124 "Induction Variable Simplification", false, false)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000125INITIALIZE_PASS_DEPENDENCY(DominatorTree)
126INITIALIZE_PASS_DEPENDENCY(LoopInfo)
127INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
128INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
129INITIALIZE_PASS_DEPENDENCY(LCSSA)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000130INITIALIZE_PASS_END(IndVarSimplify, "indvars",
Andrew Trick1abe2962011-05-04 02:10:13 +0000131 "Induction Variable Simplification", false, false)
Dan Gohmand78c4002008-05-13 00:00:25 +0000132
Daniel Dunbar7f39e2d2008-10-22 23:32:42 +0000133Pass *llvm::createIndVarSimplifyPass() {
Chris Lattnerd3678bc2003-12-22 03:58:44 +0000134 return new IndVarSimplify();
Chris Lattner91daaab2001-12-04 04:32:29 +0000135}
136
Andrew Trick87716c92011-03-17 23:51:11 +0000137/// isValidRewrite - Return true if the SCEV expansion generated by the
138/// rewriter can replace the original value. SCEV guarantees that it
139/// produces the same value, but the way it is produced may be illegal IR.
140/// Ideally, this function will only be called for verification.
141bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
142 // If an SCEV expression subsumed multiple pointers, its expansion could
143 // reassociate the GEP changing the base pointer. This is illegal because the
144 // final address produced by a GEP chain must be inbounds relative to its
145 // underlying object. Otherwise basic alias analysis, among other things,
146 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
147 // producing an expression involving multiple pointers. Until then, we must
148 // bail out here.
149 //
150 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
151 // because it understands lcssa phis while SCEV does not.
152 Value *FromPtr = FromVal;
153 Value *ToPtr = ToVal;
154 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
155 FromPtr = GEP->getPointerOperand();
156 }
157 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
158 ToPtr = GEP->getPointerOperand();
159 }
160 if (FromPtr != FromVal || ToPtr != ToVal) {
161 // Quickly check the common case
162 if (FromPtr == ToPtr)
163 return true;
164
165 // SCEV may have rewritten an expression that produces the GEP's pointer
166 // operand. That's ok as long as the pointer operand has the same base
167 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
168 // base of a recurrence. This handles the case in which SCEV expansion
169 // converts a pointer type recurrence into a nonrecurrent pointer base
170 // indexed by an integer recurrence.
Nadav Rotem3924cb02011-12-05 06:29:09 +0000171
172 // If the GEP base pointer is a vector of pointers, abort.
173 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
174 return false;
175
Andrew Trick87716c92011-03-17 23:51:11 +0000176 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
177 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
178 if (FromBase == ToBase)
179 return true;
180
181 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
182 << *FromBase << " != " << *ToBase << "\n");
183
184 return false;
185 }
186 return true;
187}
188
Andrew Trick638b3552011-07-20 05:32:06 +0000189/// Determine the insertion point for this user. By default, insert immediately
190/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
191/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
192/// common dominator for the incoming blocks.
193static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
194 DominatorTree *DT) {
195 PHINode *PHI = dyn_cast<PHINode>(User);
196 if (!PHI)
197 return User;
198
199 Instruction *InsertPt = 0;
200 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
201 if (PHI->getIncomingValue(i) != Def)
202 continue;
203
204 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
205 if (!InsertPt) {
206 InsertPt = InsertBB->getTerminator();
207 continue;
208 }
209 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
210 InsertPt = InsertBB->getTerminator();
211 }
212 assert(InsertPt && "Missing phi operand");
Jay Foad50bfbab2011-07-20 08:15:21 +0000213 assert((!isa<Instruction>(Def) ||
214 DT->dominates(cast<Instruction>(Def), InsertPt)) &&
Andrew Trick638b3552011-07-20 05:32:06 +0000215 "def does not dominate all uses");
216 return InsertPt;
217}
218
Andrew Trickcdc22972011-07-12 00:08:50 +0000219//===----------------------------------------------------------------------===//
220// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
221//===----------------------------------------------------------------------===//
Andrew Trick38c4e342011-05-03 22:24:10 +0000222
Andrew Trickcdc22972011-07-12 00:08:50 +0000223/// ConvertToSInt - Convert APF to an integer, if possible.
224static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
225 bool isExact = false;
Andrew Trickcdc22972011-07-12 00:08:50 +0000226 // See if we can convert this to an int64_t
227 uint64_t UIntVal;
228 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
229 &isExact) != APFloat::opOK || !isExact)
Andrew Trick38c4e342011-05-03 22:24:10 +0000230 return false;
Andrew Trickcdc22972011-07-12 00:08:50 +0000231 IntVal = UIntVal;
Andrew Trick38c4e342011-05-03 22:24:10 +0000232 return true;
233}
234
Andrew Trickcdc22972011-07-12 00:08:50 +0000235/// HandleFloatingPointIV - If the loop has floating induction variable
236/// then insert corresponding integer induction variable if possible.
237/// For example,
238/// for(double i = 0; i < 10000; ++i)
239/// bar(i)
240/// is converted into
241/// for(int i = 0; i < 10000; ++i)
242/// bar((double)i);
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000243///
Andrew Trickcdc22972011-07-12 00:08:50 +0000244void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
245 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
246 unsigned BackEdge = IncomingEdge^1;
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000247
Andrew Trickcdc22972011-07-12 00:08:50 +0000248 // Check incoming value.
249 ConstantFP *InitValueVal =
250 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000251
Andrew Trickcdc22972011-07-12 00:08:50 +0000252 int64_t InitValue;
253 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
254 return;
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000255
Andrew Trickcdc22972011-07-12 00:08:50 +0000256 // Check IV increment. Reject this PN if increment operation is not
257 // an add or increment value can not be represented by an integer.
258 BinaryOperator *Incr =
259 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
260 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000261
Andrew Trickcdc22972011-07-12 00:08:50 +0000262 // If this is not an add of the PHI with a constantfp, or if the constant fp
263 // is not an integer, bail out.
264 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
265 int64_t IncValue;
266 if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
267 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
268 return;
269
270 // Check Incr uses. One user is PN and the other user is an exit condition
271 // used by the conditional terminator.
272 Value::use_iterator IncrUse = Incr->use_begin();
273 Instruction *U1 = cast<Instruction>(*IncrUse++);
274 if (IncrUse == Incr->use_end()) return;
275 Instruction *U2 = cast<Instruction>(*IncrUse++);
276 if (IncrUse != Incr->use_end()) return;
277
278 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
279 // only used by a branch, we can't transform it.
280 FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
281 if (!Compare)
282 Compare = dyn_cast<FCmpInst>(U2);
283 if (Compare == 0 || !Compare->hasOneUse() ||
284 !isa<BranchInst>(Compare->use_back()))
285 return;
286
287 BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
288
289 // We need to verify that the branch actually controls the iteration count
290 // of the loop. If not, the new IV can overflow and no one will notice.
291 // The branch block must be in the loop and one of the successors must be out
292 // of the loop.
293 assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
294 if (!L->contains(TheBr->getParent()) ||
295 (L->contains(TheBr->getSuccessor(0)) &&
296 L->contains(TheBr->getSuccessor(1))))
297 return;
298
299
300 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
301 // transform it.
302 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
303 int64_t ExitValue;
304 if (ExitValueVal == 0 ||
305 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
306 return;
307
308 // Find new predicate for integer comparison.
309 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
310 switch (Compare->getPredicate()) {
311 default: return; // Unknown comparison.
312 case CmpInst::FCMP_OEQ:
313 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
314 case CmpInst::FCMP_ONE:
315 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
316 case CmpInst::FCMP_OGT:
317 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
318 case CmpInst::FCMP_OGE:
319 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
320 case CmpInst::FCMP_OLT:
321 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
322 case CmpInst::FCMP_OLE:
323 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000324 }
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000325
Andrew Trickcdc22972011-07-12 00:08:50 +0000326 // We convert the floating point induction variable to a signed i32 value if
327 // we can. This is only safe if the comparison will not overflow in a way
328 // that won't be trapped by the integer equivalent operations. Check for this
329 // now.
330 // TODO: We could use i64 if it is native and the range requires it.
Dan Gohman4a645b82010-04-12 21:13:43 +0000331
Andrew Trickcdc22972011-07-12 00:08:50 +0000332 // The start/stride/exit values must all fit in signed i32.
333 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
334 return;
335
336 // If not actually striding (add x, 0.0), avoid touching the code.
337 if (IncValue == 0)
338 return;
339
340 // Positive and negative strides have different safety conditions.
341 if (IncValue > 0) {
342 // If we have a positive stride, we require the init to be less than the
Andrew Trick3de5b8e2011-09-13 01:59:32 +0000343 // exit value.
344 if (InitValue >= ExitValue)
Andrew Trickcdc22972011-07-12 00:08:50 +0000345 return;
346
347 uint32_t Range = uint32_t(ExitValue-InitValue);
Andrew Trick3de5b8e2011-09-13 01:59:32 +0000348 // Check for infinite loop, either:
349 // while (i <= Exit) or until (i > Exit)
350 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
Andrew Trickcdc22972011-07-12 00:08:50 +0000351 if (++Range == 0) return; // Range overflows.
Dan Gohmaneb6be652009-02-12 22:19:27 +0000352 }
Chris Lattner0cec5cb2004-04-15 15:21:43 +0000353
Andrew Trickcdc22972011-07-12 00:08:50 +0000354 unsigned Leftover = Range % uint32_t(IncValue);
355
356 // If this is an equality comparison, we require that the strided value
357 // exactly land on the exit value, otherwise the IV condition will wrap
358 // around and do things the fp IV wouldn't.
359 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
360 Leftover != 0)
361 return;
362
363 // If the stride would wrap around the i32 before exiting, we can't
364 // transform the IV.
365 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
366 return;
367
Chris Lattnerd7a559e2004-04-15 20:26:22 +0000368 } else {
Andrew Trickcdc22972011-07-12 00:08:50 +0000369 // If we have a negative stride, we require the init to be greater than the
Andrew Trick3de5b8e2011-09-13 01:59:32 +0000370 // exit value.
371 if (InitValue <= ExitValue)
Andrew Trickcdc22972011-07-12 00:08:50 +0000372 return;
373
374 uint32_t Range = uint32_t(InitValue-ExitValue);
Andrew Trick3de5b8e2011-09-13 01:59:32 +0000375 // Check for infinite loop, either:
376 // while (i >= Exit) or until (i < Exit)
377 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
Andrew Trickcdc22972011-07-12 00:08:50 +0000378 if (++Range == 0) return; // Range overflows.
379 }
380
381 unsigned Leftover = Range % uint32_t(-IncValue);
382
383 // If this is an equality comparison, we require that the strided value
384 // exactly land on the exit value, otherwise the IV condition will wrap
385 // around and do things the fp IV wouldn't.
386 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
387 Leftover != 0)
388 return;
389
390 // If the stride would wrap around the i32 before exiting, we can't
391 // transform the IV.
392 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
393 return;
Chris Lattnerd7a559e2004-04-15 20:26:22 +0000394 }
Chris Lattner0cec5cb2004-04-15 15:21:43 +0000395
Chris Lattner229907c2011-07-18 04:54:35 +0000396 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
Chris Lattnere61b67d2004-04-02 20:24:31 +0000397
Andrew Trickcdc22972011-07-12 00:08:50 +0000398 // Insert new integer induction variable.
399 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
400 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
401 PN->getIncomingBlock(IncomingEdge));
Chris Lattnere61b67d2004-04-02 20:24:31 +0000402
Andrew Trickcdc22972011-07-12 00:08:50 +0000403 Value *NewAdd =
404 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
405 Incr->getName()+".int", Incr);
406 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
Dan Gohmaneb6be652009-02-12 22:19:27 +0000407
Andrew Trickcdc22972011-07-12 00:08:50 +0000408 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
409 ConstantInt::get(Int32Ty, ExitValue),
410 Compare->getName());
Dan Gohmand76d71a2009-05-12 02:17:14 +0000411
Andrew Trickcdc22972011-07-12 00:08:50 +0000412 // In the following deletions, PN may become dead and may be deleted.
413 // Use a WeakVH to observe whether this happens.
414 WeakVH WeakPH = PN;
415
416 // Delete the old floating point exit comparison. The branch starts using the
417 // new comparison.
418 NewCompare->takeName(Compare);
419 Compare->replaceAllUsesWith(NewCompare);
Benjamin Kramer8bcc9712012-08-29 15:32:21 +0000420 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
Andrew Trickcdc22972011-07-12 00:08:50 +0000421
422 // Delete the old floating point increment.
423 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
Benjamin Kramer8bcc9712012-08-29 15:32:21 +0000424 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
Andrew Trickcdc22972011-07-12 00:08:50 +0000425
426 // If the FP induction variable still has uses, this is because something else
427 // in the loop uses its value. In order to canonicalize the induction
428 // variable, we chose to eliminate the IV and rewrite it in terms of an
429 // int->fp cast.
430 //
431 // We give preference to sitofp over uitofp because it is faster on most
432 // platforms.
433 if (WeakPH) {
434 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
Bill Wendling0902a682011-08-24 20:28:43 +0000435 PN->getParent()->getFirstInsertionPt());
Andrew Trickcdc22972011-07-12 00:08:50 +0000436 PN->replaceAllUsesWith(Conv);
Benjamin Kramer8bcc9712012-08-29 15:32:21 +0000437 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
Andrew Trickcdc22972011-07-12 00:08:50 +0000438 }
Andrew Trick3ec331e2011-08-10 03:46:27 +0000439 Changed = true;
Chris Lattnere61b67d2004-04-02 20:24:31 +0000440}
441
Andrew Trickcdc22972011-07-12 00:08:50 +0000442void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
443 // First step. Check to see if there are any floating-point recurrences.
444 // If there are, change them into integer recurrences, permitting analysis by
445 // the SCEV routines.
446 //
447 BasicBlock *Header = L->getHeader();
448
449 SmallVector<WeakVH, 8> PHIs;
450 for (BasicBlock::iterator I = Header->begin();
451 PHINode *PN = dyn_cast<PHINode>(I); ++I)
452 PHIs.push_back(PN);
453
454 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
455 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
456 HandleFloatingPointIV(L, PN);
457
458 // If the loop previously had floating-point IV, ScalarEvolution
459 // may not have been able to compute a trip count. Now that we've done some
460 // re-writing, the trip count may be computable.
461 if (Changed)
462 SE->forgetLoop(L);
463}
464
465//===----------------------------------------------------------------------===//
466// RewriteLoopExitValues - Optimize IV users outside the loop.
467// As a side effect, reduces the amount of IV processing within the loop.
468//===----------------------------------------------------------------------===//
469
Chris Lattnere61b67d2004-04-02 20:24:31 +0000470/// RewriteLoopExitValues - Check to see if this loop has a computable
471/// loop-invariant execution count. If so, this means that we can compute the
472/// final value of any expressions that are recurrent in the loop, and
473/// substitute the exit values from the loop into any instructions outside of
474/// the loop that use the final values of the current expressions.
Dan Gohmand76d71a2009-05-12 02:17:14 +0000475///
476/// This is mostly redundant with the regular IndVarSimplify activities that
477/// happen later, except that it's more powerful in some cases, because it's
478/// able to brute-force evaluate arbitrary instructions as long as they have
479/// constant operands at the beginning of the loop.
Chris Lattnera337f5e2011-01-09 02:16:18 +0000480void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
Dan Gohmand76d71a2009-05-12 02:17:14 +0000481 // Verify the input to the pass in already in LCSSA form.
Dan Gohman2734ebd2010-03-10 19:38:49 +0000482 assert(L->isLCSSAForm(*DT));
Dan Gohmand76d71a2009-05-12 02:17:14 +0000483
Devang Patelb5933bb2007-08-21 00:31:24 +0000484 SmallVector<BasicBlock*, 8> ExitBlocks;
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000485 L->getUniqueExitBlocks(ExitBlocks);
Misha Brukmanb1c93172005-04-21 23:48:37 +0000486
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000487 // Find all values that are computed inside the loop, but used outside of it.
488 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
489 // the exit blocks of the loop to find them.
490 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
491 BasicBlock *ExitBB = ExitBlocks[i];
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000492
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000493 // If there are no PHI nodes in this exit block, then no values defined
494 // inside the loop are used on this path, skip it.
495 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
496 if (!PN) continue;
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000497
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000498 unsigned NumPreds = PN->getNumIncomingValues();
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000499
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000500 // Iterate over all of the PHI nodes.
501 BasicBlock::iterator BBI = ExitBB->begin();
502 while ((PN = dyn_cast<PHINode>(BBI++))) {
Torok Edwin5349cf52009-05-24 19:36:09 +0000503 if (PN->use_empty())
504 continue; // dead use, don't replace it
Dan Gohmanc43d2642010-02-18 21:34:02 +0000505
506 // SCEV only supports integer expressions for now.
507 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
508 continue;
509
Dale Johannesen1d6827a2010-02-19 07:14:22 +0000510 // It's necessary to tell ScalarEvolution about this explicitly so that
511 // it can walk the def-use list and forget all SCEVs, as it may not be
512 // watching the PHI itself. Once the new exit value is in place, there
513 // may not be a def-use connection between the loop and every instruction
514 // which got a SCEVAddRecExpr for that loop.
515 SE->forgetValue(PN);
516
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000517 // Iterate over all of the values in all the PHI nodes.
518 for (unsigned i = 0; i != NumPreds; ++i) {
519 // If the value being merged in is not integer or is not defined
520 // in the loop, skip it.
521 Value *InVal = PN->getIncomingValue(i);
Dan Gohmanc43d2642010-02-18 21:34:02 +0000522 if (!isa<Instruction>(InVal))
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000523 continue;
Chris Lattnere61b67d2004-04-02 20:24:31 +0000524
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000525 // If this pred is for a subloop, not L itself, skip it.
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000526 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000527 continue; // The Block is in a subloop, skip it.
528
529 // Check that InVal is defined in the loop.
530 Instruction *Inst = cast<Instruction>(InVal);
Dan Gohman18fa5682009-12-18 01:24:09 +0000531 if (!L->contains(Inst))
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000532 continue;
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000533
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000534 // Okay, this instruction has a user outside of the current loop
535 // and varies predictably *inside* the loop. Evaluate the value it
536 // contains when the loop exits, if possible.
Dan Gohmanaf752342009-07-07 17:06:11 +0000537 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
Andrew Trick57243da2013-10-25 21:35:56 +0000538 if (!SE->isLoopInvariant(ExitValue, L) ||
539 !isSafeToExpand(ExitValue, *SE))
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000540 continue;
Chris Lattner1f7648e2007-03-04 01:00:28 +0000541
Arnaud A. de Grandmaison87c473f2013-03-19 20:00:22 +0000542 // Computing the value outside of the loop brings no benefit if :
543 // - it is definitely used inside the loop in a way which can not be
544 // optimized away.
545 // - no use outside of the loop can take advantage of hoisting the
546 // computation out of the loop
547 if (ExitValue->getSCEVType()>=scMulExpr) {
548 unsigned NumHardInternalUses = 0;
549 unsigned NumSoftExternalUses = 0;
550 unsigned NumUses = 0;
551 for (Value::use_iterator IB=Inst->use_begin(), IE=Inst->use_end();
552 IB!=IE && NumUses<=6 ; ++IB) {
553 Instruction *UseInstr = cast<Instruction>(*IB);
554 unsigned Opc = UseInstr->getOpcode();
555 NumUses++;
556 if (L->contains(UseInstr)) {
557 if (Opc == Instruction::Call || Opc == Instruction::Ret)
558 NumHardInternalUses++;
559 } else {
560 if (Opc == Instruction::PHI) {
561 // Do not count the Phi as a use. LCSSA may have inserted
562 // plenty of trivial ones.
563 NumUses--;
564 for (Value::use_iterator PB=UseInstr->use_begin(),
565 PE=UseInstr->use_end();
566 PB!=PE && NumUses<=6 ; ++PB, ++NumUses) {
567 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
568 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
569 NumSoftExternalUses++;
570 }
571 continue;
572 }
573 if (Opc != Instruction::Call && Opc != Instruction::Ret)
574 NumSoftExternalUses++;
575 }
576 }
577 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
578 continue;
579 }
580
Dan Gohmandaafbe62009-06-26 22:53:46 +0000581 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000582
David Greene0dd384c2010-01-05 01:27:06 +0000583 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
Chris Lattnerb25de3f2009-08-23 04:37:46 +0000584 << " LoopVal = " << *Inst << "\n");
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000585
Andrew Trick87716c92011-03-17 23:51:11 +0000586 if (!isValidRewrite(Inst, ExitVal)) {
587 DeadInsts.push_back(ExitVal);
588 continue;
589 }
590 Changed = true;
591 ++NumReplaced;
592
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000593 PN->setIncomingValue(i, ExitVal);
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000594
Benjamin Kramerf1088a32012-10-19 17:53:54 +0000595 // If this instruction is dead now, delete it. Don't do it now to avoid
596 // invalidating iterators.
597 if (isInstructionTriviallyDead(Inst, TLI))
598 DeadInsts.push_back(Inst);
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000599
Dan Gohman03d5d0f2009-07-14 01:09:02 +0000600 if (NumPreds == 1) {
601 // Completely replace a single-pred PHI. This is safe, because the
602 // NewVal won't be variant in the loop, so we don't need an LCSSA phi
603 // node anymore.
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000604 PN->replaceAllUsesWith(ExitVal);
Benjamin Kramerf1088a32012-10-19 17:53:54 +0000605 PN->eraseFromParent();
Chris Lattnered30abf2007-03-03 22:48:48 +0000606 }
607 }
Dan Gohman03d5d0f2009-07-14 01:09:02 +0000608 if (NumPreds != 1) {
Dan Gohmandaafbe62009-06-26 22:53:46 +0000609 // Clone the PHI and delete the original one. This lets IVUsers and
610 // any other maps purge the original user from their records.
Devang Patel11cf3f42009-10-27 22:16:29 +0000611 PHINode *NewPN = cast<PHINode>(PN->clone());
Dan Gohmandaafbe62009-06-26 22:53:46 +0000612 NewPN->takeName(PN);
613 NewPN->insertBefore(PN);
614 PN->replaceAllUsesWith(NewPN);
615 PN->eraseFromParent();
616 }
Chris Lattnered30abf2007-03-03 22:48:48 +0000617 }
618 }
Dan Gohman1a2abe52010-03-20 03:53:53 +0000619
620 // The insertion point instruction may have been deleted; clear it out
621 // so that the rewriter doesn't trip over it later.
622 Rewriter.clearInsertPoint();
Chris Lattnere61b67d2004-04-02 20:24:31 +0000623}
624
Andrew Trickcdc22972011-07-12 00:08:50 +0000625//===----------------------------------------------------------------------===//
Andrew Trickcdc22972011-07-12 00:08:50 +0000626// IV Widening - Extend the width of an IV to cover its widest uses.
627//===----------------------------------------------------------------------===//
628
Andrew Trickf44aadf2011-05-20 18:25:42 +0000629namespace {
630 // Collect information about induction variables that are used by sign/zero
631 // extend operations. This information is recorded by CollectExtend and
632 // provides the input to WidenIV.
633 struct WideIVInfo {
Andrew Trickd50861c2011-10-15 01:38:14 +0000634 PHINode *NarrowIV;
Chris Lattner229907c2011-07-18 04:54:35 +0000635 Type *WidestNativeType; // Widest integer type created [sz]ext
Andrew Trick3ec331e2011-08-10 03:46:27 +0000636 bool IsSigned; // Was an sext user seen before a zext?
Andrew Trickf44aadf2011-05-20 18:25:42 +0000637
Andrew Trickd50861c2011-10-15 01:38:14 +0000638 WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
Andrew Trickf44aadf2011-05-20 18:25:42 +0000639 };
Andrew Trick3ec331e2011-08-10 03:46:27 +0000640
641 class WideIVVisitor : public IVVisitor {
642 ScalarEvolution *SE;
Micah Villmowcdfe20b2012-10-08 16:38:25 +0000643 const DataLayout *TD;
Andrew Trick3ec331e2011-08-10 03:46:27 +0000644
645 public:
646 WideIVInfo WI;
647
Andrew Trickd50861c2011-10-15 01:38:14 +0000648 WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
Andrew Trick0ba77a02013-12-23 23:31:49 +0000649 const DataLayout *TData, const DominatorTree *DTree):
650 SE(SCEV), TD(TData) {
651 DT = DTree;
652 WI.NarrowIV = NarrowIV;
653 }
Andrew Trick3ec331e2011-08-10 03:46:27 +0000654
655 // Implement the interface used by simplifyUsersOfIV.
656 virtual void visitCast(CastInst *Cast);
657 };
Andrew Trickf44aadf2011-05-20 18:25:42 +0000658}
659
Andrew Trick3ec331e2011-08-10 03:46:27 +0000660/// visitCast - Update information about the induction variable that is
Andrew Trickf44aadf2011-05-20 18:25:42 +0000661/// extended by this sign or zero extend operation. This is used to determine
662/// the final width of the IV before actually widening it.
Andrew Trick3ec331e2011-08-10 03:46:27 +0000663void WideIVVisitor::visitCast(CastInst *Cast) {
664 bool IsSigned = Cast->getOpcode() == Instruction::SExt;
665 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
666 return;
667
Chris Lattner229907c2011-07-18 04:54:35 +0000668 Type *Ty = Cast->getType();
Andrew Trickf44aadf2011-05-20 18:25:42 +0000669 uint64_t Width = SE->getTypeSizeInBits(Ty);
670 if (TD && !TD->isLegalInteger(Width))
671 return;
672
Andrew Trick69d44522011-06-21 03:22:38 +0000673 if (!WI.WidestNativeType) {
674 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
675 WI.IsSigned = IsSigned;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000676 return;
677 }
678
679 // We extend the IV to satisfy the sign of its first user, arbitrarily.
Andrew Trick69d44522011-06-21 03:22:38 +0000680 if (WI.IsSigned != IsSigned)
Andrew Trickf44aadf2011-05-20 18:25:42 +0000681 return;
682
Andrew Trick69d44522011-06-21 03:22:38 +0000683 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
684 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000685}
686
687namespace {
Andrew Trick22104482011-07-20 04:39:24 +0000688
689/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
690/// WideIV that computes the same value as the Narrow IV def. This avoids
691/// caching Use* pointers.
692struct NarrowIVDefUse {
693 Instruction *NarrowDef;
694 Instruction *NarrowUse;
695 Instruction *WideDef;
696
697 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
698
699 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
700 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
701};
702
Andrew Trickf44aadf2011-05-20 18:25:42 +0000703/// WidenIV - The goal of this transform is to remove sign and zero extends
704/// without creating any new induction variables. To do this, it creates a new
705/// phi of the wider type and redirects all users, either removing extends or
706/// inserting truncs whenever we stop propagating the type.
707///
708class WidenIV {
Andrew Trick69d44522011-06-21 03:22:38 +0000709 // Parameters
Andrew Trickf44aadf2011-05-20 18:25:42 +0000710 PHINode *OrigPhi;
Chris Lattner229907c2011-07-18 04:54:35 +0000711 Type *WideType;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000712 bool IsSigned;
713
Andrew Trick69d44522011-06-21 03:22:38 +0000714 // Context
715 LoopInfo *LI;
716 Loop *L;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000717 ScalarEvolution *SE;
Andrew Trick69d44522011-06-21 03:22:38 +0000718 DominatorTree *DT;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000719
Andrew Trick69d44522011-06-21 03:22:38 +0000720 // Result
Andrew Trickf44aadf2011-05-20 18:25:42 +0000721 PHINode *WidePhi;
722 Instruction *WideInc;
723 const SCEV *WideIncExpr;
Andrew Trick69d44522011-06-21 03:22:38 +0000724 SmallVectorImpl<WeakVH> &DeadInsts;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000725
Andrew Trick69d44522011-06-21 03:22:38 +0000726 SmallPtrSet<Instruction*,16> Widened;
Andrew Trick22104482011-07-20 04:39:24 +0000727 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000728
729public:
Andrew Trickd50861c2011-10-15 01:38:14 +0000730 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
Andrew Trick69d44522011-06-21 03:22:38 +0000731 ScalarEvolution *SEv, DominatorTree *DTree,
Andrew Trick7fac79e2011-05-26 00:46:11 +0000732 SmallVectorImpl<WeakVH> &DI) :
Andrew Trickd50861c2011-10-15 01:38:14 +0000733 OrigPhi(WI.NarrowIV),
Andrew Trick69d44522011-06-21 03:22:38 +0000734 WideType(WI.WidestNativeType),
735 IsSigned(WI.IsSigned),
Andrew Trickf44aadf2011-05-20 18:25:42 +0000736 LI(LInfo),
737 L(LI->getLoopFor(OrigPhi->getParent())),
738 SE(SEv),
Andrew Trick7fac79e2011-05-26 00:46:11 +0000739 DT(DTree),
Andrew Trickf44aadf2011-05-20 18:25:42 +0000740 WidePhi(0),
741 WideInc(0),
Andrew Trick69d44522011-06-21 03:22:38 +0000742 WideIncExpr(0),
743 DeadInsts(DI) {
Andrew Trickf44aadf2011-05-20 18:25:42 +0000744 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
745 }
746
Andrew Trick69d44522011-06-21 03:22:38 +0000747 PHINode *CreateWideIV(SCEVExpander &Rewriter);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000748
749protected:
Andrew Tricke0e30532011-09-28 01:35:36 +0000750 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
751 Instruction *Use);
752
Andrew Trick22104482011-07-20 04:39:24 +0000753 Instruction *CloneIVUser(NarrowIVDefUse DU);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000754
Andrew Trick92905a12011-07-05 18:19:39 +0000755 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
756
Andrew Trickc7868bf02011-09-10 01:24:17 +0000757 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
758
Andrew Trickc908b432012-01-20 07:41:13 +0000759 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
Andrew Trick6d123092011-07-02 02:34:25 +0000760
761 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000762};
763} // anonymous namespace
764
Andrew Tricke0e30532011-09-28 01:35:36 +0000765/// isLoopInvariant - Perform a quick domtree based check for loop invariance
766/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
767/// gratuitous for this purpose.
768static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
769 Instruction *Inst = dyn_cast<Instruction>(V);
770 if (!Inst)
771 return true;
772
773 return DT->properlyDominates(Inst->getParent(), L->getHeader());
774}
775
776Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
777 Instruction *Use) {
778 // Set the debug location and conservative insertion point.
779 IRBuilder<> Builder(Use);
780 // Hoist the insertion point into loop preheaders as far as possible.
781 for (const Loop *L = LI->getLoopFor(Use->getParent());
782 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
783 L = L->getParentLoop())
784 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
785
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000786 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
787 Builder.CreateZExt(NarrowOper, WideType);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000788}
789
790/// CloneIVUser - Instantiate a wide operation to replace a narrow
791/// operation. This only needs to handle operations that can evaluation to
792/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
Andrew Trick22104482011-07-20 04:39:24 +0000793Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
794 unsigned Opcode = DU.NarrowUse->getOpcode();
Andrew Trickf44aadf2011-05-20 18:25:42 +0000795 switch (Opcode) {
796 default:
797 return 0;
798 case Instruction::Add:
799 case Instruction::Mul:
800 case Instruction::UDiv:
801 case Instruction::Sub:
802 case Instruction::And:
803 case Instruction::Or:
804 case Instruction::Xor:
805 case Instruction::Shl:
806 case Instruction::LShr:
807 case Instruction::AShr:
Andrew Trick22104482011-07-20 04:39:24 +0000808 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
Andrew Trickf44aadf2011-05-20 18:25:42 +0000809
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000810 // Replace NarrowDef operands with WideDef. Otherwise, we don't know
811 // anything about the narrow operand yet so must insert a [sz]ext. It is
812 // probably loop invariant and will be folded or hoisted. If it actually
813 // comes from a widened IV, it should be removed during a future call to
814 // WidenIVUse.
Andrew Trick22104482011-07-20 04:39:24 +0000815 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
Andrew Tricke0e30532011-09-28 01:35:36 +0000816 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
Andrew Trick22104482011-07-20 04:39:24 +0000817 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
Andrew Tricke0e30532011-09-28 01:35:36 +0000818 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000819
Andrew Trick22104482011-07-20 04:39:24 +0000820 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000821 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000822 LHS, RHS,
Andrew Trickf44aadf2011-05-20 18:25:42 +0000823 NarrowBO->getName());
Andrew Tricke0e30532011-09-28 01:35:36 +0000824 IRBuilder<> Builder(DU.NarrowUse);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000825 Builder.Insert(WideBO);
Andrew Trickefe89ad2011-06-30 19:02:17 +0000826 if (const OverflowingBinaryOperator *OBO =
827 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
828 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
829 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
830 }
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000831 return WideBO;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000832 }
Andrew Trickf44aadf2011-05-20 18:25:42 +0000833}
834
Andrew Trickc7868bf02011-09-10 01:24:17 +0000835/// No-wrap operations can transfer sign extension of their result to their
836/// operands. Generate the SCEV value for the widened operation without
837/// actually modifying the IR yet. If the expression after extending the
838/// operands is an AddRec for this loop, return it.
839const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
840 // Handle the common case of add<nsw/nuw>
841 if (DU.NarrowUse->getOpcode() != Instruction::Add)
842 return 0;
843
844 // One operand (NarrowDef) has already been extended to WideDef. Now determine
845 // if extending the other will lead to a recurrence.
846 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
847 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
848
849 const SCEV *ExtendOperExpr = 0;
850 const OverflowingBinaryOperator *OBO =
851 cast<OverflowingBinaryOperator>(DU.NarrowUse);
852 if (IsSigned && OBO->hasNoSignedWrap())
853 ExtendOperExpr = SE->getSignExtendExpr(
854 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
855 else if(!IsSigned && OBO->hasNoUnsignedWrap())
856 ExtendOperExpr = SE->getZeroExtendExpr(
857 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
858 else
859 return 0;
860
Andrew Trickd25089f2011-11-29 02:16:38 +0000861 // When creating this AddExpr, don't apply the current operations NSW or NUW
862 // flags. This instruction may be guarded by control flow that the no-wrap
863 // behavior depends on. Non-control-equivalent instructions can be mapped to
864 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
865 // semantics to those operations.
Andrew Trickc7868bf02011-09-10 01:24:17 +0000866 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
Andrew Trickd25089f2011-11-29 02:16:38 +0000867 SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
Andrew Trickc7868bf02011-09-10 01:24:17 +0000868
869 if (!AddRec || AddRec->getLoop() != L)
870 return 0;
871 return AddRec;
872}
873
Andrew Trick465f42f2011-09-09 17:35:10 +0000874/// GetWideRecurrence - Is this instruction potentially interesting from
875/// IVUsers' perspective after widening it's type? In other words, can the
876/// extend be safely hoisted out of the loop with SCEV reducing the value to a
877/// recurrence on the same loop. If so, return the sign or zero extended
878/// recurrence. Otherwise return NULL.
Andrew Trick92905a12011-07-05 18:19:39 +0000879const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
880 if (!SE->isSCEVable(NarrowUse->getType()))
881 return 0;
882
883 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
884 if (SE->getTypeSizeInBits(NarrowExpr->getType())
885 >= SE->getTypeSizeInBits(WideType)) {
886 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
887 // index. So don't follow this use.
888 return 0;
889 }
890
891 const SCEV *WideExpr = IsSigned ?
892 SE->getSignExtendExpr(NarrowExpr, WideType) :
893 SE->getZeroExtendExpr(NarrowExpr, WideType);
894 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
895 if (!AddRec || AddRec->getLoop() != L)
896 return 0;
Andrew Trick92905a12011-07-05 18:19:39 +0000897 return AddRec;
898}
899
Andrew Trickf44aadf2011-05-20 18:25:42 +0000900/// WidenIVUse - Determine whether an individual user of the narrow IV can be
901/// widened. If so, return the wide clone of the user.
Andrew Trickc908b432012-01-20 07:41:13 +0000902Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
Andrew Trickecdd6e42011-06-29 23:03:57 +0000903
Andrew Trick6d123092011-07-02 02:34:25 +0000904 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
Andrew Trick22104482011-07-20 04:39:24 +0000905 if (isa<PHINode>(DU.NarrowUse) &&
906 LI->getLoopFor(DU.NarrowUse->getParent()) != L)
Andrew Trickf44aadf2011-05-20 18:25:42 +0000907 return 0;
908
Andrew Trickf44aadf2011-05-20 18:25:42 +0000909 // Our raison d'etre! Eliminate sign and zero extension.
Andrew Trick22104482011-07-20 04:39:24 +0000910 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
911 Value *NewDef = DU.WideDef;
912 if (DU.NarrowUse->getType() != WideType) {
913 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000914 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
915 if (CastWidth < IVWidth) {
916 // The cast isn't as wide as the IV, so insert a Trunc.
Andrew Trick22104482011-07-20 04:39:24 +0000917 IRBuilder<> Builder(DU.NarrowUse);
918 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000919 }
920 else {
921 // A wider extend was hidden behind a narrower one. This may induce
922 // another round of IV widening in which the intermediate IV becomes
923 // dead. It should be very rare.
924 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
Andrew Trick22104482011-07-20 04:39:24 +0000925 << " not wide enough to subsume " << *DU.NarrowUse << "\n");
926 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
927 NewDef = DU.NarrowUse;
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000928 }
929 }
Andrew Trick22104482011-07-20 04:39:24 +0000930 if (NewDef != DU.NarrowUse) {
931 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
932 << " replaced by " << *DU.WideDef << "\n");
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000933 ++NumElimExt;
Andrew Trick22104482011-07-20 04:39:24 +0000934 DU.NarrowUse->replaceAllUsesWith(NewDef);
935 DeadInsts.push_back(DU.NarrowUse);
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000936 }
Andrew Trick69d44522011-06-21 03:22:38 +0000937 // Now that the extend is gone, we want to expose it's uses for potential
938 // further simplification. We don't need to directly inform SimplifyIVUsers
939 // of the new users, because their parent IV will be processed later as a
940 // new loop phi. If we preserved IVUsers analysis, we would also want to
941 // push the uses of WideDef here.
Andrew Trickf44aadf2011-05-20 18:25:42 +0000942
943 // No further widening is needed. The deceased [sz]ext had done it for us.
944 return 0;
945 }
Andrew Trick6d123092011-07-02 02:34:25 +0000946
947 // Does this user itself evaluate to a recurrence after widening?
Andrew Trick22104482011-07-20 04:39:24 +0000948 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000949 if (!WideAddRec) {
Andrew Trickc7868bf02011-09-10 01:24:17 +0000950 WideAddRec = GetExtendedOperandRecurrence(DU);
951 }
952 if (!WideAddRec) {
Andrew Trickf44aadf2011-05-20 18:25:42 +0000953 // This user does not evaluate to a recurence after widening, so don't
954 // follow it. Instead insert a Trunc to kill off the original use,
955 // eventually isolating the original narrow IV so it can be removed.
Andrew Trick638b3552011-07-20 05:32:06 +0000956 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
Andrew Trick22104482011-07-20 04:39:24 +0000957 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
958 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000959 return 0;
960 }
Andrew Trick7da24172011-07-18 20:32:31 +0000961 // Assume block terminators cannot evaluate to a recurrence. We can't to
Andrew Trick6d123092011-07-02 02:34:25 +0000962 // insert a Trunc after a terminator if there happens to be a critical edge.
Andrew Trick22104482011-07-20 04:39:24 +0000963 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
Andrew Trick6d123092011-07-02 02:34:25 +0000964 "SCEV is not expected to evaluate a block terminator");
Andrew Trickecdd6e42011-06-29 23:03:57 +0000965
Andrew Trick7fac79e2011-05-26 00:46:11 +0000966 // Reuse the IV increment that SCEVExpander created as long as it dominates
967 // NarrowUse.
Andrew Trickf44aadf2011-05-20 18:25:42 +0000968 Instruction *WideUse = 0;
Andrew Trickf9201c52011-10-11 02:28:51 +0000969 if (WideAddRec == WideIncExpr
Andrew Trickc908b432012-01-20 07:41:13 +0000970 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
Andrew Trickf44aadf2011-05-20 18:25:42 +0000971 WideUse = WideInc;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000972 else {
Andrew Trick22104482011-07-20 04:39:24 +0000973 WideUse = CloneIVUser(DU);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000974 if (!WideUse)
975 return 0;
976 }
Andrew Trick6d123092011-07-02 02:34:25 +0000977 // Evaluation of WideAddRec ensured that the narrow expression could be
978 // extended outside the loop without overflow. This suggests that the wide use
Andrew Trickf44aadf2011-05-20 18:25:42 +0000979 // evaluates to the same expression as the extended narrow use, but doesn't
980 // absolutely guarantee it. Hence the following failsafe check. In rare cases
Andrew Trick69d44522011-06-21 03:22:38 +0000981 // where it fails, we simply throw away the newly created wide use.
Andrew Trickf44aadf2011-05-20 18:25:42 +0000982 if (WideAddRec != SE->getSCEV(WideUse)) {
983 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
984 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
985 DeadInsts.push_back(WideUse);
986 return 0;
987 }
988
989 // Returning WideUse pushes it on the worklist.
990 return WideUse;
991}
992
Andrew Trick6d123092011-07-02 02:34:25 +0000993/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
994///
995void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
996 for (Value::use_iterator UI = NarrowDef->use_begin(),
997 UE = NarrowDef->use_end(); UI != UE; ++UI) {
Andrew Trick22104482011-07-20 04:39:24 +0000998 Instruction *NarrowUse = cast<Instruction>(*UI);
Andrew Trick6d123092011-07-02 02:34:25 +0000999
1000 // Handle data flow merges and bizarre phi cycles.
Andrew Trick22104482011-07-20 04:39:24 +00001001 if (!Widened.insert(NarrowUse))
Andrew Trick6d123092011-07-02 02:34:25 +00001002 continue;
1003
Andrew Trick22104482011-07-20 04:39:24 +00001004 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
Andrew Trick6d123092011-07-02 02:34:25 +00001005 }
1006}
1007
Andrew Trickf44aadf2011-05-20 18:25:42 +00001008/// CreateWideIV - Process a single induction variable. First use the
1009/// SCEVExpander to create a wide induction variable that evaluates to the same
1010/// recurrence as the original narrow IV. Then use a worklist to forward
Andrew Trick69d44522011-06-21 03:22:38 +00001011/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
Andrew Trickf44aadf2011-05-20 18:25:42 +00001012/// interesting IV users, the narrow IV will be isolated for removal by
1013/// DeleteDeadPHIs.
1014///
1015/// It would be simpler to delete uses as they are processed, but we must avoid
1016/// invalidating SCEV expressions.
1017///
Andrew Trick69d44522011-06-21 03:22:38 +00001018PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
Andrew Trickf44aadf2011-05-20 18:25:42 +00001019 // Is this phi an induction variable?
1020 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1021 if (!AddRec)
Andrew Trick69d44522011-06-21 03:22:38 +00001022 return NULL;
Andrew Trickf44aadf2011-05-20 18:25:42 +00001023
1024 // Widen the induction variable expression.
1025 const SCEV *WideIVExpr = IsSigned ?
1026 SE->getSignExtendExpr(AddRec, WideType) :
1027 SE->getZeroExtendExpr(AddRec, WideType);
1028
1029 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1030 "Expect the new IV expression to preserve its type");
1031
1032 // Can the IV be extended outside the loop without overflow?
1033 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1034 if (!AddRec || AddRec->getLoop() != L)
Andrew Trick69d44522011-06-21 03:22:38 +00001035 return NULL;
Andrew Trickf44aadf2011-05-20 18:25:42 +00001036
Andrew Trick69d44522011-06-21 03:22:38 +00001037 // An AddRec must have loop-invariant operands. Since this AddRec is
Andrew Trickf44aadf2011-05-20 18:25:42 +00001038 // materialized by a loop header phi, the expression cannot have any post-loop
1039 // operands, so they must dominate the loop header.
1040 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1041 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1042 && "Loop header phi recurrence inputs do not dominate the loop");
1043
1044 // The rewriter provides a value for the desired IV expression. This may
1045 // either find an existing phi or materialize a new one. Either way, we
1046 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1047 // of the phi-SCC dominates the loop entry.
1048 Instruction *InsertPt = L->getHeader()->begin();
1049 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1050
1051 // Remembering the WideIV increment generated by SCEVExpander allows
1052 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1053 // employ a general reuse mechanism because the call above is the only call to
1054 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
Andrew Trick7fac79e2011-05-26 00:46:11 +00001055 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1056 WideInc =
1057 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1058 WideIncExpr = SE->getSCEV(WideInc);
1059 }
Andrew Trickf44aadf2011-05-20 18:25:42 +00001060
1061 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1062 ++NumWidened;
1063
1064 // Traverse the def-use chain using a worklist starting at the original IV.
Andrew Trick6d123092011-07-02 02:34:25 +00001065 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
Andrew Trickf44aadf2011-05-20 18:25:42 +00001066
Andrew Trick6d123092011-07-02 02:34:25 +00001067 Widened.insert(OrigPhi);
1068 pushNarrowIVUsers(OrigPhi, WidePhi);
1069
Andrew Trickf44aadf2011-05-20 18:25:42 +00001070 while (!NarrowIVUsers.empty()) {
Andrew Trick22104482011-07-20 04:39:24 +00001071 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
Andrew Trickf44aadf2011-05-20 18:25:42 +00001072
Andrew Trick7fac79e2011-05-26 00:46:11 +00001073 // Process a def-use edge. This may replace the use, so don't hold a
1074 // use_iterator across it.
Andrew Trickc908b432012-01-20 07:41:13 +00001075 Instruction *WideUse = WidenIVUse(DU, Rewriter);
Andrew Trickf44aadf2011-05-20 18:25:42 +00001076
Andrew Trick7fac79e2011-05-26 00:46:11 +00001077 // Follow all def-use edges from the previous narrow use.
Andrew Trick6d123092011-07-02 02:34:25 +00001078 if (WideUse)
Andrew Trick22104482011-07-20 04:39:24 +00001079 pushNarrowIVUsers(DU.NarrowUse, WideUse);
Andrew Trick6d123092011-07-02 02:34:25 +00001080
Andrew Trick7fac79e2011-05-26 00:46:11 +00001081 // WidenIVUse may have removed the def-use edge.
Andrew Trick22104482011-07-20 04:39:24 +00001082 if (DU.NarrowDef->use_empty())
1083 DeadInsts.push_back(DU.NarrowDef);
Andrew Trickf44aadf2011-05-20 18:25:42 +00001084 }
Andrew Trick69d44522011-06-21 03:22:38 +00001085 return WidePhi;
Andrew Trickf44aadf2011-05-20 18:25:42 +00001086}
1087
Andrew Trickcdc22972011-07-12 00:08:50 +00001088//===----------------------------------------------------------------------===//
1089// Simplification of IV users based on SCEV evaluation.
1090//===----------------------------------------------------------------------===//
1091
Andrew Trick81683ed2011-05-12 00:04:28 +00001092
Andrew Trick3ec331e2011-08-10 03:46:27 +00001093/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1094/// users. Each successive simplification may push more users which may
Andrew Trick69d44522011-06-21 03:22:38 +00001095/// themselves be candidates for simplification.
1096///
Andrew Trick3ec331e2011-08-10 03:46:27 +00001097/// Sign/Zero extend elimination is interleaved with IV simplification.
Andrew Trick69d44522011-06-21 03:22:38 +00001098///
Andrew Trick3ec331e2011-08-10 03:46:27 +00001099void IndVarSimplify::SimplifyAndExtend(Loop *L,
1100 SCEVExpander &Rewriter,
1101 LPPassManager &LPM) {
Andrew Trickd50861c2011-10-15 01:38:14 +00001102 SmallVector<WideIVInfo, 8> WideIVs;
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001103
Andrew Trick69d44522011-06-21 03:22:38 +00001104 SmallVector<PHINode*, 8> LoopPhis;
1105 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1106 LoopPhis.push_back(cast<PHINode>(I));
1107 }
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001108 // Each round of simplification iterates through the SimplifyIVUsers worklist
1109 // for all current phis, then determines whether any IVs can be
1110 // widened. Widening adds new phis to LoopPhis, inducing another round of
1111 // simplification on the wide IVs.
Andrew Trick69d44522011-06-21 03:22:38 +00001112 while (!LoopPhis.empty()) {
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001113 // Evaluate as many IV expressions as possible before widening any IVs. This
Andrew Trick4426f5b2011-06-28 16:45:04 +00001114 // forces SCEV to set no-wrap flags before evaluating sign/zero
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001115 // extension. The first time SCEV attempts to normalize sign/zero extension,
1116 // the result becomes final. So for the most predictable results, we delay
1117 // evaluation of sign/zero extend evaluation until needed, and avoid running
Andrew Trick3ec331e2011-08-10 03:46:27 +00001118 // other SCEV based analysis prior to SimplifyAndExtend.
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001119 do {
1120 PHINode *CurrIV = LoopPhis.pop_back_val();
Andrew Trick69d44522011-06-21 03:22:38 +00001121
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001122 // Information about sign/zero extensions of CurrIV.
Andrew Trick0ba77a02013-12-23 23:31:49 +00001123 WideIVVisitor WIV(CurrIV, SE, TD, DT);
1124 if (ReduceLiveIVs)
1125 WIV.setSplitOverflowIntrinsics();
Andrew Trick69d44522011-06-21 03:22:38 +00001126
Andrew Tricke629d002011-08-10 04:22:26 +00001127 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
Andrew Trick69d44522011-06-21 03:22:38 +00001128
Andrew Trick3ec331e2011-08-10 03:46:27 +00001129 if (WIV.WI.WidestNativeType) {
Andrew Trickd50861c2011-10-15 01:38:14 +00001130 WideIVs.push_back(WIV.WI);
Andrew Trick69d44522011-06-21 03:22:38 +00001131 }
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001132 } while(!LoopPhis.empty());
1133
Andrew Trickd50861c2011-10-15 01:38:14 +00001134 for (; !WideIVs.empty(); WideIVs.pop_back()) {
1135 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
Andrew Trick69d44522011-06-21 03:22:38 +00001136 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1137 Changed = true;
1138 LoopPhis.push_back(WidePhi);
1139 }
1140 }
1141 }
1142}
1143
Andrew Trickcdc22972011-07-12 00:08:50 +00001144//===----------------------------------------------------------------------===//
1145// LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1146//===----------------------------------------------------------------------===//
1147
Andrew Trick465f42f2011-09-09 17:35:10 +00001148/// Check for expressions that ScalarEvolution generates to compute
1149/// BackedgeTakenInfo. If these expressions have not been reduced, then
1150/// expanding them may incur additional cost (albeit in the loop preheader).
Andrew Tricka27d8b12011-07-18 18:21:35 +00001151static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
Andrew Trickdbe2bdf2011-12-12 22:46:16 +00001152 SmallPtrSet<const SCEV*, 8> &Processed,
Andrew Tricka27d8b12011-07-18 18:21:35 +00001153 ScalarEvolution *SE) {
Andrew Trickdbe2bdf2011-12-12 22:46:16 +00001154 if (!Processed.insert(S))
1155 return false;
1156
Andrew Tricka27d8b12011-07-18 18:21:35 +00001157 // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1158 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1159 // precise expression, rather than a UDiv from the user's code. If we can't
1160 // find a UDiv in the code with some simple searching, assume the former and
1161 // forego rewriting the loop.
1162 if (isa<SCEVUDivExpr>(S)) {
1163 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1164 if (!OrigCond) return true;
1165 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1166 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1167 if (R != S) {
1168 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1169 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1170 if (L != S)
1171 return true;
1172 }
1173 }
1174
Andrew Tricka27d8b12011-07-18 18:21:35 +00001175 // Recurse past add expressions, which commonly occur in the
1176 // BackedgeTakenCount. They may already exist in program code, and if not,
1177 // they are not too expensive rematerialize.
1178 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1179 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1180 I != E; ++I) {
Andrew Trickdbe2bdf2011-12-12 22:46:16 +00001181 if (isHighCostExpansion(*I, BI, Processed, SE))
Andrew Tricka27d8b12011-07-18 18:21:35 +00001182 return true;
1183 }
1184 return false;
1185 }
1186
1187 // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1188 // the exit condition.
1189 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1190 return true;
1191
Nick Lewycky1b3167e2012-01-28 23:33:44 +00001192 // If we haven't recognized an expensive SCEV pattern, assume it's an
1193 // expression produced by program code.
Andrew Tricka27d8b12011-07-18 18:21:35 +00001194 return false;
1195}
1196
Andrew Trickcdc22972011-07-12 00:08:50 +00001197/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1198/// count expression can be safely and cheaply expanded into an instruction
1199/// sequence that can be used by LinearFunctionTestReplace.
Andrew Trickc2c79c92011-11-02 17:19:57 +00001200///
1201/// TODO: This fails for pointer-type loop counters with greater than one byte
1202/// strides, consequently preventing LFTR from running. For the purpose of LFTR
1203/// we could skip this check in the case that the LFTR loop counter (chosen by
1204/// FindLoopCounter) is also pointer type. Instead, we could directly convert
1205/// the loop test to an inequality test by checking the target data's alignment
1206/// of element types (given that the initial pointer value originates from or is
1207/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1208/// However, we don't yet have a strong motivation for converting loop tests
1209/// into inequality tests.
Andrew Trickcdc22972011-07-12 00:08:50 +00001210static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1211 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1212 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1213 BackedgeTakenCount->isZero())
1214 return false;
1215
1216 if (!L->getExitingBlock())
1217 return false;
1218
1219 // Can't rewrite non-branch yet.
1220 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1221 if (!BI)
1222 return false;
1223
Andrew Trickdbe2bdf2011-12-12 22:46:16 +00001224 SmallPtrSet<const SCEV*, 8> Processed;
1225 if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
Andrew Tricka27d8b12011-07-18 18:21:35 +00001226 return false;
1227
Andrew Trickcdc22972011-07-12 00:08:50 +00001228 return true;
1229}
1230
Andrew Trick7da24172011-07-18 20:32:31 +00001231/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1232/// invariant value to the phi.
1233static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1234 Instruction *IncI = dyn_cast<Instruction>(IncV);
1235 if (!IncI)
1236 return 0;
1237
1238 switch (IncI->getOpcode()) {
1239 case Instruction::Add:
1240 case Instruction::Sub:
1241 break;
1242 case Instruction::GetElementPtr:
1243 // An IV counter must preserve its type.
1244 if (IncI->getNumOperands() == 2)
1245 break;
1246 default:
1247 return 0;
1248 }
1249
1250 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1251 if (Phi && Phi->getParent() == L->getHeader()) {
1252 if (isLoopInvariant(IncI->getOperand(1), L, DT))
1253 return Phi;
1254 return 0;
1255 }
1256 if (IncI->getOpcode() == Instruction::GetElementPtr)
1257 return 0;
1258
1259 // Allow add/sub to be commuted.
1260 Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1261 if (Phi && Phi->getParent() == L->getHeader()) {
1262 if (isLoopInvariant(IncI->getOperand(0), L, DT))
1263 return Phi;
1264 }
1265 return 0;
1266}
1267
Andrew Trickc0872662012-07-18 04:35:10 +00001268/// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1269static ICmpInst *getLoopTest(Loop *L) {
Andrew Trick7da24172011-07-18 20:32:31 +00001270 assert(L->getExitingBlock() && "expected loop exit");
1271
1272 BasicBlock *LatchBlock = L->getLoopLatch();
1273 // Don't bother with LFTR if the loop is not properly simplified.
1274 if (!LatchBlock)
Andrew Trickc0872662012-07-18 04:35:10 +00001275 return 0;
Andrew Trick7da24172011-07-18 20:32:31 +00001276
1277 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1278 assert(BI && "expected exit branch");
1279
Andrew Trickc0872662012-07-18 04:35:10 +00001280 return dyn_cast<ICmpInst>(BI->getCondition());
1281}
1282
1283/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1284/// that the current exit test is already sufficiently canonical.
1285static bool needsLFTR(Loop *L, DominatorTree *DT) {
Andrew Trick7da24172011-07-18 20:32:31 +00001286 // Do LFTR to simplify the exit condition to an ICMP.
Andrew Trickc0872662012-07-18 04:35:10 +00001287 ICmpInst *Cond = getLoopTest(L);
Andrew Trick7da24172011-07-18 20:32:31 +00001288 if (!Cond)
1289 return true;
1290
1291 // Do LFTR to simplify the exit ICMP to EQ/NE
1292 ICmpInst::Predicate Pred = Cond->getPredicate();
1293 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1294 return true;
1295
1296 // Look for a loop invariant RHS
1297 Value *LHS = Cond->getOperand(0);
1298 Value *RHS = Cond->getOperand(1);
1299 if (!isLoopInvariant(RHS, L, DT)) {
1300 if (!isLoopInvariant(LHS, L, DT))
1301 return true;
1302 std::swap(LHS, RHS);
1303 }
1304 // Look for a simple IV counter LHS
1305 PHINode *Phi = dyn_cast<PHINode>(LHS);
1306 if (!Phi)
1307 Phi = getLoopPhiForCounter(LHS, L, DT);
1308
1309 if (!Phi)
1310 return true;
1311
Jakub Staszake076cac2012-10-04 19:08:30 +00001312 // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
Jakub Staszakf8a81292012-10-03 23:59:47 +00001313 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1314 if (Idx < 0)
1315 return true;
Jakub Staszake076cac2012-10-04 19:08:30 +00001316
1317 // Do LFTR if the exit condition's IV is *not* a simple counter.
Jakub Staszakf8a81292012-10-03 23:59:47 +00001318 Value *IncV = Phi->getIncomingValue(Idx);
Andrew Trick7da24172011-07-18 20:32:31 +00001319 return Phi != getLoopPhiForCounter(IncV, L, DT);
1320}
1321
Andrew Trickc0872662012-07-18 04:35:10 +00001322/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1323/// down to checking that all operands are constant and listing instructions
1324/// that may hide undef.
1325static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited,
1326 unsigned Depth) {
1327 if (isa<Constant>(V))
1328 return !isa<UndefValue>(V);
1329
1330 if (Depth >= 6)
1331 return false;
1332
1333 // Conservatively handle non-constant non-instructions. For example, Arguments
1334 // may be undef.
1335 Instruction *I = dyn_cast<Instruction>(V);
1336 if (!I)
1337 return false;
1338
1339 // Load and return values may be undef.
1340 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1341 return false;
1342
1343 // Optimistically handle other instructions.
1344 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
1345 if (!Visited.insert(*OI))
1346 continue;
1347 if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
1348 return false;
1349 }
1350 return true;
1351}
1352
1353/// Return true if the given value is concrete. We must prove that undef can
1354/// never reach it.
1355///
1356/// TODO: If we decide that this is a good approach to checking for undef, we
1357/// may factor it into a common location.
1358static bool hasConcreteDef(Value *V) {
1359 SmallPtrSet<Value*, 8> Visited;
1360 Visited.insert(V);
1361 return hasConcreteDefImpl(V, Visited, 0);
1362}
1363
Andrew Trick7da24172011-07-18 20:32:31 +00001364/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1365/// be rewritten) loop exit test.
1366static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1367 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1368 Value *IncV = Phi->getIncomingValue(LatchIdx);
1369
1370 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1371 UI != UE; ++UI) {
1372 if (*UI != Cond && *UI != IncV) return false;
1373 }
1374
1375 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1376 UI != UE; ++UI) {
1377 if (*UI != Cond && *UI != Phi) return false;
1378 }
1379 return true;
1380}
1381
1382/// FindLoopCounter - Find an affine IV in canonical form.
1383///
Andrew Trickc2c79c92011-11-02 17:19:57 +00001384/// BECount may be an i8* pointer type. The pointer difference is already
1385/// valid count without scaling the address stride, so it remains a pointer
1386/// expression as far as SCEV is concerned.
1387///
Andrew Trickc0872662012-07-18 04:35:10 +00001388/// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1389///
Andrew Trick7da24172011-07-18 20:32:31 +00001390/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1391///
1392/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1393/// This is difficult in general for SCEV because of potential overflow. But we
1394/// could at least handle constant BECounts.
1395static PHINode *
1396FindLoopCounter(Loop *L, const SCEV *BECount,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001397 ScalarEvolution *SE, DominatorTree *DT, const DataLayout *TD) {
Andrew Trick7da24172011-07-18 20:32:31 +00001398 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1399
1400 Value *Cond =
1401 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1402
1403 // Loop over all of the PHI nodes, looking for a simple counter.
1404 PHINode *BestPhi = 0;
1405 const SCEV *BestInit = 0;
1406 BasicBlock *LatchBlock = L->getLoopLatch();
1407 assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1408
1409 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1410 PHINode *Phi = cast<PHINode>(I);
1411 if (!SE->isSCEVable(Phi->getType()))
1412 continue;
1413
Andrew Trickc2c79c92011-11-02 17:19:57 +00001414 // Avoid comparing an integer IV against a pointer Limit.
1415 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1416 continue;
1417
Andrew Trick7da24172011-07-18 20:32:31 +00001418 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1419 if (!AR || AR->getLoop() != L || !AR->isAffine())
1420 continue;
1421
1422 // AR may be a pointer type, while BECount is an integer type.
1423 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1424 // AR may not be a narrower type, or we may never exit.
1425 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1426 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1427 continue;
1428
1429 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1430 if (!Step || !Step->isOne())
1431 continue;
1432
1433 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1434 Value *IncV = Phi->getIncomingValue(LatchIdx);
1435 if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1436 continue;
1437
Andrew Trickc0872662012-07-18 04:35:10 +00001438 // Avoid reusing a potentially undef value to compute other values that may
1439 // have originally had a concrete definition.
1440 if (!hasConcreteDef(Phi)) {
1441 // We explicitly allow unknown phis as long as they are already used by
1442 // the loop test. In this case we assume that performing LFTR could not
1443 // increase the number of undef users.
1444 if (ICmpInst *Cond = getLoopTest(L)) {
1445 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1446 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1447 continue;
1448 }
1449 }
1450 }
Andrew Trick7da24172011-07-18 20:32:31 +00001451 const SCEV *Init = AR->getStart();
1452
1453 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1454 // Don't force a live loop counter if another IV can be used.
1455 if (AlmostDeadIV(Phi, LatchBlock, Cond))
1456 continue;
1457
1458 // Prefer to count-from-zero. This is a more "canonical" counter form. It
1459 // also prefers integer to pointer IVs.
1460 if (BestInit->isZero() != Init->isZero()) {
1461 if (BestInit->isZero())
1462 continue;
1463 }
1464 // If two IVs both count from zero or both count from nonzero then the
1465 // narrower is likely a dead phi that has been widened. Use the wider phi
1466 // to allow the other to be eliminated.
Andrew Trick0d07dfc2012-07-18 04:35:13 +00001467 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
Andrew Trick7da24172011-07-18 20:32:31 +00001468 continue;
1469 }
1470 BestPhi = Phi;
1471 BestInit = Init;
1472 }
1473 return BestPhi;
1474}
1475
Andrew Trickc2c79c92011-11-02 17:19:57 +00001476/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1477/// holds the RHS of the new loop test.
1478static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
Chandler Carruth7ec50852012-11-01 08:07:29 +00001479 SCEVExpander &Rewriter, ScalarEvolution *SE) {
Andrew Trickc2c79c92011-11-02 17:19:57 +00001480 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1481 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1482 const SCEV *IVInit = AR->getStart();
1483
1484 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1485 // finds a valid pointer IV. Sign extend BECount in order to materialize a
1486 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1487 // the existing GEPs whenever possible.
1488 if (IndVar->getType()->isPointerTy()
1489 && !IVCount->getType()->isPointerTy()) {
1490
Juergen Ributzkad04d0962013-10-24 05:29:56 +00001491 // IVOffset will be the new GEP offset that is interpreted by GEP as a
1492 // signed value. IVCount on the other hand represents the loop trip count,
1493 // which is an unsigned value. FindLoopCounter only allows induction
1494 // variables that have a positive unit stride of one. This means we don't
1495 // have to handle the case of negative offsets (yet) and just need to zero
1496 // extend IVCount.
Andrew Trickc2c79c92011-11-02 17:19:57 +00001497 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
Juergen Ributzkad04d0962013-10-24 05:29:56 +00001498 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
Andrew Trickc2c79c92011-11-02 17:19:57 +00001499
1500 // Expand the code for the iteration count.
1501 assert(SE->isLoopInvariant(IVOffset, L) &&
1502 "Computed iteration count is not loop invariant!");
1503 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1504 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1505
1506 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1507 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1508 // We could handle pointer IVs other than i8*, but we need to compensate for
1509 // gep index scaling. See canExpandBackedgeTakenCount comments.
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00001510 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
Chandler Carruth7ec50852012-11-01 08:07:29 +00001511 cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
Andrew Trickc2c79c92011-11-02 17:19:57 +00001512 && "unit stride pointer IV must be i8*");
1513
1514 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1515 return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
1516 }
1517 else {
1518 // In any other case, convert both IVInit and IVCount to integers before
1519 // comparing. This may result in SCEV expension of pointers, but in practice
1520 // SCEV will fold the pointer arithmetic away as such:
1521 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1522 //
1523 // Valid Cases: (1) both integers is most common; (2) both may be pointers
Andrew Trickada23562013-10-24 00:43:38 +00001524 // for simple memset-style loops.
1525 //
1526 // IVInit integer and IVCount pointer would only occur if a canonical IV
1527 // were generated on top of case #2, which is not expected.
Andrew Trickc2c79c92011-11-02 17:19:57 +00001528
1529 const SCEV *IVLimit = 0;
1530 // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1531 // For non-zero Start, compute IVCount here.
1532 if (AR->getStart()->isZero())
1533 IVLimit = IVCount;
1534 else {
1535 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1536 const SCEV *IVInit = AR->getStart();
1537
1538 // For integer IVs, truncate the IV before computing IVInit + BECount.
1539 if (SE->getTypeSizeInBits(IVInit->getType())
1540 > SE->getTypeSizeInBits(IVCount->getType()))
1541 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1542
1543 IVLimit = SE->getAddExpr(IVInit, IVCount);
1544 }
1545 // Expand the code for the iteration count.
1546 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1547 IRBuilder<> Builder(BI);
1548 assert(SE->isLoopInvariant(IVLimit, L) &&
1549 "Computed iteration count is not loop invariant!");
1550 // Ensure that we generate the same type as IndVar, or a smaller integer
1551 // type. In the presence of null pointer values, we have an integer type
1552 // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1553 Type *LimitTy = IVCount->getType()->isPointerTy() ?
1554 IndVar->getType() : IVCount->getType();
1555 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1556 }
1557}
1558
Andrew Trickcdc22972011-07-12 00:08:50 +00001559/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1560/// loop to be a canonical != comparison against the incremented loop induction
1561/// variable. This pass is able to rewrite the exit tests of any loop where the
1562/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1563/// is actually a much broader range than just linear tests.
Andrew Trick7da24172011-07-18 20:32:31 +00001564Value *IndVarSimplify::
Andrew Trickcdc22972011-07-12 00:08:50 +00001565LinearFunctionTestReplace(Loop *L,
1566 const SCEV *BackedgeTakenCount,
1567 PHINode *IndVar,
1568 SCEVExpander &Rewriter) {
1569 assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
Andrew Trickcdc22972011-07-12 00:08:50 +00001570
Andrew Trick2b718482013-07-12 22:08:44 +00001571 // Initialize CmpIndVar and IVCount to their preincremented values.
1572 Value *CmpIndVar = IndVar;
1573 const SCEV *IVCount = BackedgeTakenCount;
Andrew Trick7da24172011-07-18 20:32:31 +00001574
Andrew Trickc2c79c92011-11-02 17:19:57 +00001575 // If the exiting block is the same as the backedge block, we prefer to
1576 // compare against the post-incremented value, otherwise we must compare
1577 // against the preincremented value.
Andrew Trickcdc22972011-07-12 00:08:50 +00001578 if (L->getExitingBlock() == L->getLoopLatch()) {
1579 // Add one to the "backedge-taken" count to get the trip count.
Andrew Trick2b718482013-07-12 22:08:44 +00001580 // This addition may overflow, which is valid as long as the comparison is
1581 // truncated to BackedgeTakenCount->getType().
1582 IVCount = SE->getAddExpr(BackedgeTakenCount,
1583 SE->getConstant(BackedgeTakenCount->getType(), 1));
Andrew Trickcdc22972011-07-12 00:08:50 +00001584 // The BackedgeTaken expression contains the number of times that the
1585 // backedge branches to the loop header. This is one less than the
1586 // number of times the loop executes, so use the incremented indvar.
1587 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
Andrew Trickcdc22972011-07-12 00:08:50 +00001588 }
1589
Chandler Carruth7ec50852012-11-01 08:07:29 +00001590 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
Andrew Trickc2c79c92011-11-02 17:19:57 +00001591 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1592 && "genLoopLimit missed a cast");
Andrew Trickcdc22972011-07-12 00:08:50 +00001593
1594 // Insert a new icmp_ne or icmp_eq instruction before the branch.
Andrew Trickc2c79c92011-11-02 17:19:57 +00001595 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
Andrew Trick7da24172011-07-18 20:32:31 +00001596 ICmpInst::Predicate P;
Andrew Trickcdc22972011-07-12 00:08:50 +00001597 if (L->contains(BI->getSuccessor(0)))
Andrew Trick7da24172011-07-18 20:32:31 +00001598 P = ICmpInst::ICMP_NE;
Andrew Trickcdc22972011-07-12 00:08:50 +00001599 else
Andrew Trick7da24172011-07-18 20:32:31 +00001600 P = ICmpInst::ICMP_EQ;
Andrew Trickcdc22972011-07-12 00:08:50 +00001601
1602 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1603 << " LHS:" << *CmpIndVar << '\n'
1604 << " op:\t"
Andrew Trick7da24172011-07-18 20:32:31 +00001605 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1606 << " RHS:\t" << *ExitCnt << "\n"
Andrew Trickc2c79c92011-11-02 17:19:57 +00001607 << " IVCount:\t" << *IVCount << "\n");
Andrew Trickcdc22972011-07-12 00:08:50 +00001608
Andrew Tricka1e41182013-07-12 22:08:48 +00001609 IRBuilder<> Builder(BI);
1610
Andrew Trick2b718482013-07-12 22:08:44 +00001611 // LFTR can ignore IV overflow and truncate to the width of
1612 // BECount. This avoids materializing the add(zext(add)) expression.
Andrew Tricka1e41182013-07-12 22:08:48 +00001613 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1614 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1615 if (CmpIndVarSize > ExitCntSize) {
1616 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1617 const SCEV *ARStart = AR->getStart();
1618 const SCEV *ARStep = AR->getStepRecurrence(*SE);
1619 // For constant IVCount, avoid truncation.
1620 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
1621 const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue();
1622 APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue();
1623 // Note that the post-inc value of BackedgeTakenCount may have overflowed
1624 // above such that IVCount is now zero.
1625 if (IVCount != BackedgeTakenCount && Count == 0) {
1626 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
1627 ++Count;
1628 }
1629 else
1630 Count = Count.zext(CmpIndVarSize);
1631 APInt NewLimit;
1632 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
1633 NewLimit = Start - Count;
1634 else
1635 NewLimit = Start + Count;
1636 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
Andrew Trick7da24172011-07-18 20:32:31 +00001637
Andrew Tricka1e41182013-07-12 22:08:48 +00001638 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n");
1639 } else {
1640 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1641 "lftr.wideiv");
1642 }
1643 }
Andrew Trick7da24172011-07-18 20:32:31 +00001644 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
Andrew Trickcdc22972011-07-12 00:08:50 +00001645 Value *OrigCond = BI->getCondition();
1646 // It's tempting to use replaceAllUsesWith here to fully replace the old
1647 // comparison, but that's not immediately safe, since users of the old
1648 // comparison may not be dominated by the new comparison. Instead, just
1649 // update the branch to use the new comparison; in the common case this
1650 // will make old comparison dead.
1651 BI->setCondition(Cond);
1652 DeadInsts.push_back(OrigCond);
1653
1654 ++NumLFTR;
1655 Changed = true;
1656 return Cond;
1657}
1658
1659//===----------------------------------------------------------------------===//
1660// SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1661//===----------------------------------------------------------------------===//
1662
1663/// If there's a single exit block, sink any loop-invariant values that
1664/// were defined in the preheader but not used inside the loop into the
1665/// exit block to reduce register pressure in the loop.
1666void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1667 BasicBlock *ExitBlock = L->getExitBlock();
1668 if (!ExitBlock) return;
1669
1670 BasicBlock *Preheader = L->getLoopPreheader();
1671 if (!Preheader) return;
1672
Bill Wendling0902a682011-08-24 20:28:43 +00001673 Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
Andrew Trickcdc22972011-07-12 00:08:50 +00001674 BasicBlock::iterator I = Preheader->getTerminator();
1675 while (I != Preheader->begin()) {
1676 --I;
1677 // New instructions were inserted at the end of the preheader.
1678 if (isa<PHINode>(I))
1679 break;
1680
1681 // Don't move instructions which might have side effects, since the side
1682 // effects need to complete before instructions inside the loop. Also don't
1683 // move instructions which might read memory, since the loop may modify
1684 // memory. Note that it's okay if the instruction might have undefined
1685 // behavior: LoopSimplify guarantees that the preheader dominates the exit
1686 // block.
1687 if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1688 continue;
1689
1690 // Skip debug info intrinsics.
1691 if (isa<DbgInfoIntrinsic>(I))
1692 continue;
1693
Bill Wendlingeed1e892011-08-26 20:40:15 +00001694 // Skip landingpad instructions.
1695 if (isa<LandingPadInst>(I))
1696 continue;
1697
Eli Friedman73beaf72011-10-27 01:33:51 +00001698 // Don't sink alloca: we never want to sink static alloca's out of the
1699 // entry block, and correctly sinking dynamic alloca's requires
1700 // checks for stacksave/stackrestore intrinsics.
1701 // FIXME: Refactor this check somehow?
1702 if (isa<AllocaInst>(I))
1703 continue;
Andrew Trickcdc22972011-07-12 00:08:50 +00001704
1705 // Determine if there is a use in or before the loop (direct or
1706 // otherwise).
1707 bool UsedInLoop = false;
1708 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1709 UI != UE; ++UI) {
1710 User *U = *UI;
1711 BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1712 if (PHINode *P = dyn_cast<PHINode>(U)) {
1713 unsigned i =
1714 PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1715 UseBB = P->getIncomingBlock(i);
1716 }
1717 if (UseBB == Preheader || L->contains(UseBB)) {
1718 UsedInLoop = true;
1719 break;
1720 }
1721 }
1722
1723 // If there is, the def must remain in the preheader.
1724 if (UsedInLoop)
1725 continue;
1726
1727 // Otherwise, sink it to the exit block.
1728 Instruction *ToMove = I;
1729 bool Done = false;
1730
1731 if (I != Preheader->begin()) {
1732 // Skip debug info intrinsics.
1733 do {
1734 --I;
1735 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1736
1737 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1738 Done = true;
1739 } else {
1740 Done = true;
1741 }
1742
1743 ToMove->moveBefore(InsertPt);
1744 if (Done) break;
1745 InsertPt = ToMove;
1746 }
1747}
1748
1749//===----------------------------------------------------------------------===//
1750// IndVarSimplify driver. Manage several subpasses of IV simplification.
1751//===----------------------------------------------------------------------===//
1752
Dan Gohmaneb6be652009-02-12 22:19:27 +00001753bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
Dan Gohmanf3aea7a2010-06-18 01:35:11 +00001754 // If LoopSimplify form is not available, stay out of trouble. Some notes:
1755 // - LSR currently only supports LoopSimplify-form loops. Indvars'
1756 // canonicalization can be a pessimization without LSR to "clean up"
1757 // afterwards.
1758 // - We depend on having a preheader; in particular,
1759 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
1760 // and we're in trouble if we can't find the induction variable even when
1761 // we've manually inserted one.
1762 if (!L->isLoopSimplifyForm())
1763 return false;
1764
Devang Patel2ac57e12007-03-07 06:39:01 +00001765 LI = &getAnalysis<LoopInfo>();
1766 SE = &getAnalysis<ScalarEvolution>();
Dan Gohmanfe174b62009-06-27 05:16:57 +00001767 DT = &getAnalysis<DominatorTree>();
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001768 TD = getAnalysisIfAvailable<DataLayout>();
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00001769 TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
Andrew Trick1abe2962011-05-04 02:10:13 +00001770
Andrew Trick87716c92011-03-17 23:51:11 +00001771 DeadInsts.clear();
Devang Patel2ac57e12007-03-07 06:39:01 +00001772 Changed = false;
Dan Gohman43300342009-02-17 20:49:49 +00001773
Dan Gohman0a40ad92009-04-16 03:18:22 +00001774 // If there are any floating-point recurrences, attempt to
Dan Gohman43300342009-02-17 20:49:49 +00001775 // transform them to use integer recurrences.
1776 RewriteNonIntegerIVs(L);
1777
Dan Gohmanaf752342009-07-07 17:06:11 +00001778 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
Chris Lattner1f7648e2007-03-04 01:00:28 +00001779
Dan Gohmandaafbe62009-06-26 22:53:46 +00001780 // Create a rewriter object which we'll use to transform the code with.
Andrew Trick411daa52011-06-28 05:07:32 +00001781 SCEVExpander Rewriter(*SE, "indvars");
Andrew Trickf9201c52011-10-11 02:28:51 +00001782#ifndef NDEBUG
1783 Rewriter.setDebugType(DEBUG_TYPE);
1784#endif
Andrew Trick163b4a72011-06-27 23:17:44 +00001785
1786 // Eliminate redundant IV users.
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001787 //
1788 // Simplification works best when run before other consumers of SCEV. We
1789 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1790 // other expressions involving loop IVs have been evaluated. This helps SCEV
Andrew Trick4426f5b2011-06-28 16:45:04 +00001791 // set no-wrap flags before normalizing sign/zero extension.
Andrew Trickf47d0af2012-03-22 17:10:11 +00001792 Rewriter.disableCanonicalMode();
1793 SimplifyAndExtend(L, Rewriter, LPM);
Andrew Trick1abe2962011-05-04 02:10:13 +00001794
Chris Lattnere61b67d2004-04-02 20:24:31 +00001795 // Check to see if this loop has a computable loop-invariant execution count.
1796 // If so, this means that we can compute the final value of any expressions
1797 // that are recurrent in the loop, and substitute the exit values from the
1798 // loop into any instructions outside of the loop that use the final values of
1799 // the current expressions.
Chris Lattner0b18c1d2002-05-10 15:38:35 +00001800 //
Dan Gohman0bddac12009-02-24 18:55:53 +00001801 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
Dan Gohman8c16b382010-02-22 04:11:59 +00001802 RewriteLoopExitValues(L, Rewriter);
Chris Lattner476e6df2001-12-03 17:28:42 +00001803
Andrew Trick9ea55dc2011-07-16 01:06:48 +00001804 // Eliminate redundant IV cycles.
Andrew Trickf47d0af2012-03-22 17:10:11 +00001805 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
Andrew Trick32390552011-07-06 20:50:43 +00001806
Dan Gohmaneb6be652009-02-12 22:19:27 +00001807 // If we have a trip count expression, rewrite the loop's exit condition
1808 // using it. We can currently only handle loops with a single exit.
Andrew Trick25553ab2012-03-24 00:51:17 +00001809 if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
1810 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
1811 if (IndVar) {
1812 // Check preconditions for proper SCEVExpander operation. SCEV does not
1813 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1814 // pass that uses the SCEVExpander must do it. This does not work well for
1815 // loop passes because SCEVExpander makes assumptions about all loops, while
1816 // LoopPassManager only forces the current loop to be simplified.
1817 //
1818 // FIXME: SCEV expansion has no way to bail out, so the caller must
1819 // explicitly check any assumptions made by SCEV. Brittle.
1820 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1821 if (!AR || AR->getLoop()->getLoopPreheader())
1822 (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1823 Rewriter);
1824 }
Chris Lattnerc1a682d2004-04-22 14:59:40 +00001825 }
Andrew Trick87716c92011-03-17 23:51:11 +00001826 // Clear the rewriter cache, because values that are in the rewriter's cache
1827 // can be deleted in the loop below, causing the AssertingVH in the cache to
1828 // trigger.
1829 Rewriter.clear();
1830
1831 // Now that we're done iterating through lists, clean up any instructions
1832 // which are now dead.
1833 while (!DeadInsts.empty())
1834 if (Instruction *Inst =
1835 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00001836 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
Andrew Trick87716c92011-03-17 23:51:11 +00001837
Dan Gohmandaafbe62009-06-26 22:53:46 +00001838 // The Rewriter may not be used from this point on.
Torok Edwin26895b52009-05-24 20:08:21 +00001839
Dan Gohmand76d71a2009-05-12 02:17:14 +00001840 // Loop-invariant instructions in the preheader that aren't used in the
1841 // loop may be sunk below the loop to reduce register pressure.
Dan Gohmandaafbe62009-06-26 22:53:46 +00001842 SinkUnusedInvariants(L);
Dan Gohmand76d71a2009-05-12 02:17:14 +00001843
Dan Gohmand76d71a2009-05-12 02:17:14 +00001844 // Clean up dead instructions.
Benjamin Kramer8bcc9712012-08-29 15:32:21 +00001845 Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
Dan Gohmand76d71a2009-05-12 02:17:14 +00001846 // Check a post-condition.
Andrew Trick494c5492011-07-18 18:44:20 +00001847 assert(L->isLCSSAForm(*DT) &&
1848 "Indvars did not leave the loop in lcssa form!");
1849
1850 // Verify that LFTR, and any other change have not interfered with SCEV's
1851 // ability to compute trip count.
1852#ifndef NDEBUG
Andrew Trickf47d0af2012-03-22 17:10:11 +00001853 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
Andrew Trick494c5492011-07-18 18:44:20 +00001854 SE->forgetLoop(L);
1855 const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1856 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1857 SE->getTypeSizeInBits(NewBECount->getType()))
1858 NewBECount = SE->getTruncateOrNoop(NewBECount,
1859 BackedgeTakenCount->getType());
1860 else
1861 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1862 NewBECount->getType());
1863 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
1864 }
1865#endif
1866
Devang Patel2ac57e12007-03-07 06:39:01 +00001867 return Changed;
Chris Lattner476e6df2001-12-03 17:28:42 +00001868}