blob: 4f1e8a9fa243fd72038c7b34fa7399e0d96ae0e7 [file] [log] [blame]
Philip Reamesd16a9b12015-02-20 01:06:44 +00001//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Rewrite an existing set of gc.statepoints such that they make potential
11// relocations performed by the garbage collector explicit in the IR.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Pass.h"
16#include "llvm/Analysis/CFG.h"
17#include "llvm/ADT/SetOperations.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/ADT/DenseSet.h"
20#include "llvm/IR/BasicBlock.h"
21#include "llvm/IR/CallSite.h"
22#include "llvm/IR/Dominators.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/IRBuilder.h"
25#include "llvm/IR/InstIterator.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/IntrinsicInst.h"
29#include "llvm/IR/Module.h"
30#include "llvm/IR/Statepoint.h"
31#include "llvm/IR/Value.h"
32#include "llvm/IR/Verifier.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Transforms/Utils/BasicBlockUtils.h"
37#include "llvm/Transforms/Utils/Cloning.h"
38#include "llvm/Transforms/Utils/Local.h"
39#include "llvm/Transforms/Utils/PromoteMemToReg.h"
40
41#define DEBUG_TYPE "rewrite-statepoints-for-gc"
42
43using namespace llvm;
44
45// Print tracing output
46static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden,
47 cl::init(false));
48
49// Print the liveset found at the insert location
50static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
51 cl::init(false));
52static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size",
53 cl::Hidden, cl::init(false));
54// Print out the base pointers for debugging
55static cl::opt<bool> PrintBasePointers("spp-print-base-pointers",
56 cl::Hidden, cl::init(false));
57
Benjamin Kramer6f665452015-02-20 14:00:58 +000058namespace {
Philip Reamesd16a9b12015-02-20 01:06:44 +000059struct RewriteStatepointsForGC : public FunctionPass {
60 static char ID; // Pass identification, replacement for typeid
61
62 RewriteStatepointsForGC() : FunctionPass(ID) {
63 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
64 }
65 bool runOnFunction(Function &F) override;
66
67 void getAnalysisUsage(AnalysisUsage &AU) const override {
68 // We add and rewrite a bunch of instructions, but don't really do much
69 // else. We could in theory preserve a lot more analyses here.
70 AU.addRequired<DominatorTreeWrapperPass>();
71 }
72};
Benjamin Kramer6f665452015-02-20 14:00:58 +000073} // namespace
Philip Reamesd16a9b12015-02-20 01:06:44 +000074
75char RewriteStatepointsForGC::ID = 0;
76
77FunctionPass *llvm::createRewriteStatepointsForGCPass() {
78 return new RewriteStatepointsForGC();
79}
80
81INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
82 "Make relocations explicit at statepoints", false, false)
83INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
84INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
85 "Make relocations explicit at statepoints", false, false)
86
87namespace {
88// The type of the internal cache used inside the findBasePointers family
89// of functions. From the callers perspective, this is an opaque type and
90// should not be inspected.
91//
92// In the actual implementation this caches two relations:
93// - The base relation itself (i.e. this pointer is based on that one)
94// - The base defining value relation (i.e. before base_phi insertion)
95// Generally, after the execution of a full findBasePointer call, only the
96// base relation will remain. Internally, we add a mixture of the two
97// types, then update all the second type to the first type
98typedef std::map<Value *, Value *> DefiningValueMapTy;
Philip Reamesd16a9b12015-02-20 01:06:44 +000099
Philip Reamesd16a9b12015-02-20 01:06:44 +0000100struct PartiallyConstructedSafepointRecord {
101 /// The set of values known to be live accross this safepoint
102 std::set<llvm::Value *> liveset;
103
104 /// Mapping from live pointers to a base-defining-value
Philip Reamesf2041322015-02-20 19:26:04 +0000105 DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000106
107 /// Any new values which were added to the IR during base pointer analysis
108 /// for this safepoint
Philip Reamesf2041322015-02-20 19:26:04 +0000109 DenseSet<llvm::Value *> NewInsertedDefs;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000110
111 /// The bounds of the inserted code for the safepoint
Philip Reamesf2041322015-02-20 19:26:04 +0000112 std::pair<Instruction *, Instruction *> SafepointBounds;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000113
Philip Reamesf2041322015-02-20 19:26:04 +0000114 /// Instruction to which exceptional gc relocates are attached
115 /// Makes it easier to iterate through them during relocationViaAlloca.
116 Instruction *UnwindToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000117};
118}
119
120// TODO: Once we can get to the GCStrategy, this becomes
121// Optional<bool> isGCManagedPointer(const Value *V) const override {
122
123static bool isGCPointerType(const Type *T) {
124 if (const PointerType *PT = dyn_cast<PointerType>(T))
125 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
126 // GC managed heap. We know that a pointer into this heap needs to be
127 // updated and that no other pointer does.
128 return (1 == PT->getAddressSpace());
129 return false;
130}
131
132/// Return true if the Value is a gc reference type which is potentially used
133/// after the instruction 'loc'. This is only used with the edge reachability
134/// liveness code. Note: It is assumed the V dominates loc.
135static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT,
136 LoopInfo *LI) {
137 if (!isGCPointerType(V.getType()))
138 return false;
139
140 if (V.use_empty())
141 return false;
142
143 // Given assumption that V dominates loc, this may be live
144 return true;
145}
Benjamin Kramerd4a3a552015-02-20 13:15:49 +0000146
147#ifndef NDEBUG
Philip Reamesd16a9b12015-02-20 01:06:44 +0000148static bool isAggWhichContainsGCPtrType(Type *Ty) {
149 if (VectorType *VT = dyn_cast<VectorType>(Ty))
150 return isGCPointerType(VT->getScalarType());
151 else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
152 return isGCPointerType(AT->getElementType()) ||
153 isAggWhichContainsGCPtrType(AT->getElementType());
154 } else if (StructType *ST = dyn_cast<StructType>(Ty)) {
155 bool UnsupportedType = false;
156 for (Type *SubType : ST->subtypes())
Benjamin Kramerd4a3a552015-02-20 13:15:49 +0000157 UnsupportedType |=
158 isGCPointerType(SubType) || isAggWhichContainsGCPtrType(SubType);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000159 return UnsupportedType;
160 } else
161 return false;
162}
Benjamin Kramerd4a3a552015-02-20 13:15:49 +0000163#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +0000164
165// Conservatively identifies any definitions which might be live at the
166// given instruction. The analysis is performed immediately before the
167// given instruction. Values defined by that instruction are not considered
168// live. Values used by that instruction are considered live.
169//
170// preconditions: valid IR graph, term is either a terminator instruction or
171// a call instruction, pred is the basic block of term, DT, LI are valid
172//
173// side effects: none, does not mutate IR
174//
175// postconditions: populates liveValues as discussed above
176static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred,
177 DominatorTree &DT, LoopInfo *LI,
178 std::set<llvm::Value *> &liveValues) {
179 liveValues.clear();
180
181 assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator());
182
183 Function *F = pred->getParent();
184
185 auto is_live_gc_reference =
186 [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); };
187
188 // Are there any gc pointer arguments live over this point? This needs to be
189 // special cased since arguments aren't defined in basic blocks.
190 for (Argument &arg : F->args()) {
191 assert(!isAggWhichContainsGCPtrType(arg.getType()) &&
192 "support for FCA unimplemented");
193
194 if (is_live_gc_reference(arg)) {
195 liveValues.insert(&arg);
196 }
197 }
198
199 // Walk through all dominating blocks - the ones which can contain
200 // definitions used in this block - and check to see if any of the values
201 // they define are used in locations potentially reachable from the
202 // interesting instruction.
203 BasicBlock *BBI = pred;
204 while (true) {
205 if (TraceLSP) {
206 errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n";
207 }
208 assert(DT.dominates(BBI, pred));
209 assert(isPotentiallyReachable(BBI, pred, &DT) &&
210 "dominated block must be reachable");
211
212 // Walk through the instructions in dominating blocks and keep any
213 // that have a use potentially reachable from the block we're
214 // considering putting the safepoint in
215 for (Instruction &inst : *BBI) {
216 if (TraceLSP) {
217 errs() << "[LSP] Looking at instruction ";
218 inst.dump();
219 }
220
221 if (pred == BBI && (&inst) == term) {
222 if (TraceLSP) {
223 errs() << "[LSP] stopped because we encountered the safepoint "
224 "instruction.\n";
225 }
226
227 // If we're in the block which defines the interesting instruction,
228 // we don't want to include any values as live which are defined
229 // _after_ the interesting line or as part of the line itself
230 // i.e. "term" is the call instruction for a call safepoint, the
231 // results of the call should not be considered live in that stackmap
232 break;
233 }
234
235 assert(!isAggWhichContainsGCPtrType(inst.getType()) &&
236 "support for FCA unimplemented");
237
238 if (is_live_gc_reference(inst)) {
239 if (TraceLSP) {
240 errs() << "[LSP] found live value for this safepoint ";
241 inst.dump();
242 term->dump();
243 }
244 liveValues.insert(&inst);
245 }
246 }
247 if (!DT.getNode(BBI)->getIDom()) {
248 assert(BBI == &F->getEntryBlock() &&
249 "failed to find a dominator for something other than "
250 "the entry block");
251 break;
252 }
253 BBI = DT.getNode(BBI)->getIDom()->getBlock();
254 }
255}
256
257static bool order_by_name(llvm::Value *a, llvm::Value *b) {
258 if (a->hasName() && b->hasName()) {
259 return -1 == a->getName().compare(b->getName());
260 } else if (a->hasName() && !b->hasName()) {
261 return true;
262 } else if (!a->hasName() && b->hasName()) {
263 return false;
264 } else {
265 // Better than nothing, but not stable
266 return a < b;
267 }
268}
269
270/// Find the initial live set. Note that due to base pointer
271/// insertion, the live set may be incomplete.
272static void
273analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS,
274 PartiallyConstructedSafepointRecord &result) {
275 Instruction *inst = CS.getInstruction();
276
277 BasicBlock *BB = inst->getParent();
278 std::set<Value *> liveset;
279 findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset);
280
281 if (PrintLiveSet) {
282 // Note: This output is used by several of the test cases
283 // The order of elemtns in a set is not stable, put them in a vec and sort
284 // by name
285 std::vector<Value *> temp;
286 temp.insert(temp.end(), liveset.begin(), liveset.end());
287 std::sort(temp.begin(), temp.end(), order_by_name);
288 errs() << "Live Variables:\n";
289 for (Value *V : temp) {
290 errs() << " " << V->getName(); // no newline
291 V->dump();
292 }
293 }
294 if (PrintLiveSetSize) {
295 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
296 errs() << "Number live values: " << liveset.size() << "\n";
297 }
298 result.liveset = liveset;
299}
300
301/// True iff this value is the null pointer constant (of any pointer type)
302static bool isNullConstant(Value *V) {
303 return isa<Constant>(V) && isa<PointerType>(V->getType()) &&
304 cast<Constant>(V)->isNullValue();
305}
306
307/// Helper function for findBasePointer - Will return a value which either a)
308/// defines the base pointer for the input or b) blocks the simple search
309/// (i.e. a PHI or Select of two derived pointers)
310static Value *findBaseDefiningValue(Value *I) {
311 assert(I->getType()->isPointerTy() &&
312 "Illegal to ask for the base pointer of a non-pointer type");
313
314 // There are instructions which can never return gc pointer values. Sanity
315 // check
316 // that this is actually true.
317 assert(!isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) &&
318 !isa<ShuffleVectorInst>(I) && "Vector types are not gc pointers");
319 assert((!isa<Instruction>(I) || isa<InvokeInst>(I) ||
320 !cast<Instruction>(I)->isTerminator()) &&
321 "With the exception of invoke terminators don't define values");
322 assert(!isa<StoreInst>(I) && !isa<FenceInst>(I) &&
323 "Can't be definitions to start with");
324 assert(!isa<ICmpInst>(I) && !isa<FCmpInst>(I) &&
325 "Comparisons don't give ops");
326 // There's a bunch of instructions which just don't make sense to apply to
327 // a pointer. The only valid reason for this would be pointer bit
328 // twiddling which we're just not going to support.
329 assert((!isa<Instruction>(I) || !cast<Instruction>(I)->isBinaryOp()) &&
330 "Binary ops on pointer values are meaningless. Unless your "
331 "bit-twiddling which we don't support");
332
333 if (Argument *Arg = dyn_cast<Argument>(I)) {
334 // An incoming argument to the function is a base pointer
335 // We should have never reached here if this argument isn't an gc value
336 assert(Arg->getType()->isPointerTy() &&
337 "Base for pointer must be another pointer");
338 return Arg;
339 }
340
341 if (GlobalVariable *global = dyn_cast<GlobalVariable>(I)) {
342 // base case
343 assert(global->getType()->isPointerTy() &&
344 "Base for pointer must be another pointer");
345 return global;
346 }
347
348 // inlining could possibly introduce phi node that contains
349 // undef if callee has multiple returns
350 if (UndefValue *undef = dyn_cast<UndefValue>(I)) {
351 assert(undef->getType()->isPointerTy() &&
352 "Base for pointer must be another pointer");
353 return undef; // utterly meaningless, but useful for dealing with
354 // partially optimized code.
355 }
356
357 // Due to inheritance, this must be _after_ the global variable and undef
358 // checks
359 if (Constant *con = dyn_cast<Constant>(I)) {
360 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
361 "order of checks wrong!");
362 // Note: Finding a constant base for something marked for relocation
363 // doesn't really make sense. The most likely case is either a) some
364 // screwed up the address space usage or b) your validating against
365 // compiled C++ code w/o the proper separation. The only real exception
366 // is a null pointer. You could have generic code written to index of
367 // off a potentially null value and have proven it null. We also use
368 // null pointers in dead paths of relocation phis (which we might later
369 // want to find a base pointer for).
370 assert(con->getType()->isPointerTy() &&
371 "Base for pointer must be another pointer");
372 assert(con->isNullValue() && "null is the only case which makes sense");
373 return con;
374 }
375
376 if (CastInst *CI = dyn_cast<CastInst>(I)) {
377 Value *def = CI->stripPointerCasts();
378 assert(def->getType()->isPointerTy() &&
379 "Base for pointer must be another pointer");
380 if (isa<CastInst>(def)) {
381 // If we find a cast instruction here, it means we've found a cast
382 // which is not simply a pointer cast (i.e. an inttoptr). We don't
383 // know how to handle int->ptr conversion.
384 llvm_unreachable("Can not find the base pointers for an inttoptr cast");
385 }
386 assert(!isa<CastInst>(def) && "shouldn't find another cast here");
387 return findBaseDefiningValue(def);
388 }
389
390 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
391 if (LI->getType()->isPointerTy()) {
392 Value *Op = LI->getOperand(0);
Nick Lewyckyeb3231e2015-02-20 07:14:02 +0000393 (void)Op;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000394 // Has to be a pointer to an gc object, or possibly an array of such?
395 assert(Op->getType()->isPointerTy());
396 return LI; // The value loaded is an gc base itself
397 }
398 }
399 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
400 Value *Op = GEP->getOperand(0);
401 if (Op->getType()->isPointerTy()) {
402 return findBaseDefiningValue(Op); // The base of this GEP is the base
403 }
404 }
405
406 if (AllocaInst *alloc = dyn_cast<AllocaInst>(I)) {
407 // An alloca represents a conceptual stack slot. It's the slot itself
408 // that the GC needs to know about, not the value in the slot.
409 assert(alloc->getType()->isPointerTy() &&
410 "Base for pointer must be another pointer");
411 return alloc;
412 }
413
414 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
415 switch (II->getIntrinsicID()) {
416 default:
417 // fall through to general call handling
418 break;
419 case Intrinsic::experimental_gc_statepoint:
420 case Intrinsic::experimental_gc_result_float:
421 case Intrinsic::experimental_gc_result_int:
422 llvm_unreachable("these don't produce pointers");
423 case Intrinsic::experimental_gc_result_ptr:
424 // This is just a special case of the CallInst check below to handle a
425 // statepoint with deopt args which hasn't been rewritten for GC yet.
426 // TODO: Assert that the statepoint isn't rewritten yet.
427 return II;
428 case Intrinsic::experimental_gc_relocate: {
429 // Rerunning safepoint insertion after safepoints are already
430 // inserted is not supported. It could probably be made to work,
431 // but why are you doing this? There's no good reason.
432 llvm_unreachable("repeat safepoint insertion is not supported");
433 }
434 case Intrinsic::gcroot:
435 // Currently, this mechanism hasn't been extended to work with gcroot.
436 // There's no reason it couldn't be, but I haven't thought about the
437 // implications much.
438 llvm_unreachable(
439 "interaction with the gcroot mechanism is not supported");
440 }
441 }
442 // We assume that functions in the source language only return base
443 // pointers. This should probably be generalized via attributes to support
444 // both source language and internal functions.
445 if (CallInst *call = dyn_cast<CallInst>(I)) {
446 assert(call->getType()->isPointerTy() &&
447 "Base for pointer must be another pointer");
448 return call;
449 }
450 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) {
451 assert(invoke->getType()->isPointerTy() &&
452 "Base for pointer must be another pointer");
453 return invoke;
454 }
455
456 // I have absolutely no idea how to implement this part yet. It's not
457 // neccessarily hard, I just haven't really looked at it yet.
458 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
459
460 if (AtomicCmpXchgInst *cas = dyn_cast<AtomicCmpXchgInst>(I)) {
461 // A CAS is effectively a atomic store and load combined under a
462 // predicate. From the perspective of base pointers, we just treat it
463 // like a load. We loaded a pointer from a address in memory, that value
464 // had better be a valid base pointer.
465 return cas->getPointerOperand();
466 }
467 if (AtomicRMWInst *atomic = dyn_cast<AtomicRMWInst>(I)) {
468 assert(AtomicRMWInst::Xchg == atomic->getOperation() &&
469 "All others are binary ops which don't apply to base pointers");
470 // semantically, a load, store pair. Treat it the same as a standard load
471 return atomic->getPointerOperand();
472 }
473
474 // The aggregate ops. Aggregates can either be in the heap or on the
475 // stack, but in either case, this is simply a field load. As a result,
476 // this is a defining definition of the base just like a load is.
477 if (ExtractValueInst *ev = dyn_cast<ExtractValueInst>(I)) {
478 return ev;
479 }
480
481 // We should never see an insert vector since that would require we be
482 // tracing back a struct value not a pointer value.
483 assert(!isa<InsertValueInst>(I) &&
484 "Base pointer for a struct is meaningless");
485
486 // The last two cases here don't return a base pointer. Instead, they
487 // return a value which dynamically selects from amoung several base
488 // derived pointers (each with it's own base potentially). It's the job of
489 // the caller to resolve these.
490 if (SelectInst *select = dyn_cast<SelectInst>(I)) {
491 return select;
492 }
493 if (PHINode *phi = dyn_cast<PHINode>(I)) {
494 return phi;
495 }
496
497 errs() << "unknown type: " << *I << "\n";
498 llvm_unreachable("unknown type");
499 return nullptr;
500}
501
502/// Returns the base defining value for this value.
Benjamin Kramer6f665452015-02-20 14:00:58 +0000503static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &cache) {
504 Value *&Cached = cache[I];
505 if (!Cached) {
506 Cached = findBaseDefiningValue(I);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000507 }
Benjamin Kramer6f665452015-02-20 14:00:58 +0000508 assert(cache[I] != nullptr);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000509
510 if (TraceLSP) {
Benjamin Kramer6f665452015-02-20 14:00:58 +0000511 errs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName()
Philip Reamesd16a9b12015-02-20 01:06:44 +0000512 << "\n";
513 }
Benjamin Kramer6f665452015-02-20 14:00:58 +0000514 return Cached;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000515}
516
517/// Return a base pointer for this value if known. Otherwise, return it's
518/// base defining value.
519static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &cache) {
520 Value *def = findBaseDefiningValueCached(I, cache);
Benjamin Kramer6f665452015-02-20 14:00:58 +0000521 auto Found = cache.find(def);
522 if (Found != cache.end()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000523 // Either a base-of relation, or a self reference. Caller must check.
Benjamin Kramer6f665452015-02-20 14:00:58 +0000524 return Found->second;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000525 }
526 // Only a BDV available
527 return def;
528}
529
530/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
531/// is it known to be a base pointer? Or do we need to continue searching.
532static bool isKnownBaseResult(Value *v) {
533 if (!isa<PHINode>(v) && !isa<SelectInst>(v)) {
534 // no recursion possible
535 return true;
536 }
537 if (cast<Instruction>(v)->getMetadata("is_base_value")) {
538 // This is a previously inserted base phi or select. We know
539 // that this is a base value.
540 return true;
541 }
542
543 // We need to keep searching
544 return false;
545}
546
547// TODO: find a better name for this
548namespace {
549class PhiState {
550public:
551 enum Status { Unknown, Base, Conflict };
552
553 PhiState(Status s, Value *b = nullptr) : status(s), base(b) {
554 assert(status != Base || b);
555 }
556 PhiState(Value *b) : status(Base), base(b) {}
557 PhiState() : status(Unknown), base(nullptr) {}
558 PhiState(const PhiState &other) : status(other.status), base(other.base) {
559 assert(status != Base || base);
560 }
561
562 Status getStatus() const { return status; }
563 Value *getBase() const { return base; }
564
565 bool isBase() const { return getStatus() == Base; }
566 bool isUnknown() const { return getStatus() == Unknown; }
567 bool isConflict() const { return getStatus() == Conflict; }
568
569 bool operator==(const PhiState &other) const {
570 return base == other.base && status == other.status;
571 }
572
573 bool operator!=(const PhiState &other) const { return !(*this == other); }
574
575 void dump() {
576 errs() << status << " (" << base << " - "
577 << (base ? base->getName() : "nullptr") << "): ";
578 }
579
580private:
581 Status status;
582 Value *base; // non null only if status == base
583};
584
585// Values of type PhiState form a lattice, and this is a helper
586// class that implementes the meet operation. The meat of the meet
587// operation is implemented in MeetPhiStates::pureMeet
588class MeetPhiStates {
589public:
590 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates.
591 explicit MeetPhiStates(const std::map<Value *, PhiState> &phiStates)
592 : phiStates(phiStates) {}
593
594 // Destructively meet the current result with the base V. V can
595 // either be a merge instruction (SelectInst / PHINode), in which
596 // case its status is looked up in the phiStates map; or a regular
597 // SSA value, in which case it is assumed to be a base.
598 void meetWith(Value *V) {
599 PhiState otherState = getStateForBDV(V);
600 assert((MeetPhiStates::pureMeet(otherState, currentResult) ==
601 MeetPhiStates::pureMeet(currentResult, otherState)) &&
602 "math is wrong: meet does not commute!");
603 currentResult = MeetPhiStates::pureMeet(otherState, currentResult);
604 }
605
606 PhiState getResult() const { return currentResult; }
607
608private:
609 const std::map<Value *, PhiState> &phiStates;
610 PhiState currentResult;
611
612 /// Return a phi state for a base defining value. We'll generate a new
613 /// base state for known bases and expect to find a cached state otherwise
614 PhiState getStateForBDV(Value *baseValue) {
615 if (isKnownBaseResult(baseValue)) {
616 return PhiState(baseValue);
617 } else {
618 return lookupFromMap(baseValue);
619 }
620 }
621
622 PhiState lookupFromMap(Value *V) {
623 auto I = phiStates.find(V);
624 assert(I != phiStates.end() && "lookup failed!");
625 return I->second;
626 }
627
628 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) {
629 switch (stateA.getStatus()) {
630 case PhiState::Unknown:
631 return stateB;
632
633 case PhiState::Base:
634 assert(stateA.getBase() && "can't be null");
635 if (stateB.isUnknown()) {
636 return stateA;
637 } else if (stateB.isBase()) {
638 if (stateA.getBase() == stateB.getBase()) {
639 assert(stateA == stateB && "equality broken!");
640 return stateA;
641 }
642 return PhiState(PhiState::Conflict);
643 } else {
644 assert(stateB.isConflict() && "only three states!");
645 return PhiState(PhiState::Conflict);
646 }
647
648 case PhiState::Conflict:
649 return stateA;
650 }
Reid Klecknera070ee52015-02-20 19:46:02 +0000651 llvm_unreachable("only three states!");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000652 }
653};
654}
655/// For a given value or instruction, figure out what base ptr it's derived
656/// from. For gc objects, this is simply itself. On success, returns a value
657/// which is the base pointer. (This is reliable and can be used for
658/// relocation.) On failure, returns nullptr.
659static Value *findBasePointer(Value *I, DefiningValueMapTy &cache,
Philip Reamesf2041322015-02-20 19:26:04 +0000660 DenseSet<llvm::Value *> &NewInsertedDefs) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000661 Value *def = findBaseOrBDV(I, cache);
662
663 if (isKnownBaseResult(def)) {
664 return def;
665 }
666
667 // Here's the rough algorithm:
668 // - For every SSA value, construct a mapping to either an actual base
669 // pointer or a PHI which obscures the base pointer.
670 // - Construct a mapping from PHI to unknown TOP state. Use an
671 // optimistic algorithm to propagate base pointer information. Lattice
672 // looks like:
673 // UNKNOWN
674 // b1 b2 b3 b4
675 // CONFLICT
676 // When algorithm terminates, all PHIs will either have a single concrete
677 // base or be in a conflict state.
678 // - For every conflict, insert a dummy PHI node without arguments. Add
679 // these to the base[Instruction] = BasePtr mapping. For every
680 // non-conflict, add the actual base.
681 // - For every conflict, add arguments for the base[a] of each input
682 // arguments.
683 //
684 // Note: A simpler form of this would be to add the conflict form of all
685 // PHIs without running the optimistic algorithm. This would be
686 // analougous to pessimistic data flow and would likely lead to an
687 // overall worse solution.
688
689 std::map<Value *, PhiState> states;
690 states[def] = PhiState();
691 // Recursively fill in all phis & selects reachable from the initial one
692 // for which we don't already know a definite base value for
693 // PERF: Yes, this is as horribly inefficient as it looks.
694 bool done = false;
695 while (!done) {
696 done = true;
697 for (auto Pair : states) {
698 Value *v = Pair.first;
699 assert(!isKnownBaseResult(v) && "why did it get added?");
700 if (PHINode *phi = dyn_cast<PHINode>(v)) {
701 unsigned NumPHIValues = phi->getNumIncomingValues();
702 assert(NumPHIValues > 0 && "zero input phis are illegal");
703 for (unsigned i = 0; i != NumPHIValues; ++i) {
704 Value *InVal = phi->getIncomingValue(i);
705 Value *local = findBaseOrBDV(InVal, cache);
706 if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
707 states[local] = PhiState();
708 done = false;
709 }
710 }
711 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) {
712 Value *local = findBaseOrBDV(sel->getTrueValue(), cache);
713 if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
714 states[local] = PhiState();
715 done = false;
716 }
717 local = findBaseOrBDV(sel->getFalseValue(), cache);
718 if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
719 states[local] = PhiState();
720 done = false;
721 }
722 }
723 }
724 }
725
726 if (TraceLSP) {
727 errs() << "States after initialization:\n";
728 for (auto Pair : states) {
729 Instruction *v = cast<Instruction>(Pair.first);
730 PhiState state = Pair.second;
731 state.dump();
732 v->dump();
733 }
734 }
735
736 // TODO: come back and revisit the state transitions around inputs which
737 // have reached conflict state. The current version seems too conservative.
738
739 bool progress = true;
740 size_t oldSize = 0;
741 while (progress) {
742 oldSize = states.size();
743 progress = false;
744 for (auto Pair : states) {
745 MeetPhiStates calculateMeet(states);
746 Value *v = Pair.first;
747 assert(!isKnownBaseResult(v) && "why did it get added?");
748 assert(isa<SelectInst>(v) || isa<PHINode>(v));
749 if (SelectInst *select = dyn_cast<SelectInst>(v)) {
750 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache));
751 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache));
752 } else if (PHINode *phi = dyn_cast<PHINode>(v)) {
753 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) {
754 calculateMeet.meetWith(
755 findBaseOrBDV(phi->getIncomingValue(i), cache));
756 }
757 } else {
758 llvm_unreachable("no such state expected");
759 }
760
761 PhiState oldState = states[v];
762 PhiState newState = calculateMeet.getResult();
763 if (oldState != newState) {
764 progress = true;
765 states[v] = newState;
766 }
767 }
768
769 assert(oldSize <= states.size());
770 assert(oldSize == states.size() || progress);
771 }
772
773 if (TraceLSP) {
774 errs() << "States after meet iteration:\n";
775 for (auto Pair : states) {
776 Instruction *v = cast<Instruction>(Pair.first);
777 PhiState state = Pair.second;
778 state.dump();
779 v->dump();
780 }
781 }
782
783 // Insert Phis for all conflicts
784 for (auto Pair : states) {
785 Instruction *v = cast<Instruction>(Pair.first);
786 PhiState state = Pair.second;
787 assert(!isKnownBaseResult(v) && "why did it get added?");
788 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
789 if (state.isConflict()) {
790 if (isa<PHINode>(v)) {
791 int num_preds =
792 std::distance(pred_begin(v->getParent()), pred_end(v->getParent()));
793 assert(num_preds > 0 && "how did we reach here");
794 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v);
Philip Reamesf2041322015-02-20 19:26:04 +0000795 NewInsertedDefs.insert(phi);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000796 // Add metadata marking this as a base value
797 auto *const_1 = ConstantInt::get(
798 Type::getInt32Ty(
799 v->getParent()->getParent()->getParent()->getContext()),
800 1);
801 auto MDConst = ConstantAsMetadata::get(const_1);
802 MDNode *md = MDNode::get(
803 v->getParent()->getParent()->getParent()->getContext(), MDConst);
804 phi->setMetadata("is_base_value", md);
805 states[v] = PhiState(PhiState::Conflict, phi);
806 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) {
807 // The undef will be replaced later
808 UndefValue *undef = UndefValue::get(sel->getType());
809 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef,
810 undef, "base_select", sel);
Philip Reamesf2041322015-02-20 19:26:04 +0000811 NewInsertedDefs.insert(basesel);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000812 // Add metadata marking this as a base value
813 auto *const_1 = ConstantInt::get(
814 Type::getInt32Ty(
815 v->getParent()->getParent()->getParent()->getContext()),
816 1);
817 auto MDConst = ConstantAsMetadata::get(const_1);
818 MDNode *md = MDNode::get(
819 v->getParent()->getParent()->getParent()->getContext(), MDConst);
820 basesel->setMetadata("is_base_value", md);
821 states[v] = PhiState(PhiState::Conflict, basesel);
822 } else {
823 assert(false);
824 }
825 }
826 }
827
828 // Fixup all the inputs of the new PHIs
829 for (auto Pair : states) {
830 Instruction *v = cast<Instruction>(Pair.first);
831 PhiState state = Pair.second;
832
833 assert(!isKnownBaseResult(v) && "why did it get added?");
834 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
835 if (state.isConflict()) {
836 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) {
837 PHINode *phi = cast<PHINode>(v);
838 unsigned NumPHIValues = phi->getNumIncomingValues();
839 for (unsigned i = 0; i < NumPHIValues; i++) {
840 Value *InVal = phi->getIncomingValue(i);
841 BasicBlock *InBB = phi->getIncomingBlock(i);
842
843 // If we've already seen InBB, add the same incoming value
844 // we added for it earlier. The IR verifier requires phi
845 // nodes with multiple entries from the same basic block
846 // to have the same incoming value for each of those
847 // entries. If we don't do this check here and basephi
848 // has a different type than base, we'll end up adding two
849 // bitcasts (and hence two distinct values) as incoming
850 // values for the same basic block.
851
852 int blockIndex = basephi->getBasicBlockIndex(InBB);
853 if (blockIndex != -1) {
854 Value *oldBase = basephi->getIncomingValue(blockIndex);
855 basephi->addIncoming(oldBase, InBB);
856#ifndef NDEBUG
857 Value *base = findBaseOrBDV(InVal, cache);
858 if (!isKnownBaseResult(base)) {
859 // Either conflict or base.
860 assert(states.count(base));
861 base = states[base].getBase();
862 assert(base != nullptr && "unknown PhiState!");
Philip Reamesf2041322015-02-20 19:26:04 +0000863 assert(NewInsertedDefs.count(base) &&
Philip Reamesd16a9b12015-02-20 01:06:44 +0000864 "should have already added this in a prev. iteration!");
865 }
866
867 // In essense this assert states: the only way two
868 // values incoming from the same basic block may be
869 // different is by being different bitcasts of the same
870 // value. A cleanup that remains TODO is changing
871 // findBaseOrBDV to return an llvm::Value of the correct
872 // type (and still remain pure). This will remove the
873 // need to add bitcasts.
874 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() &&
875 "sanity -- findBaseOrBDV should be pure!");
876#endif
877 continue;
878 }
879
880 // Find either the defining value for the PHI or the normal base for
881 // a non-phi node
882 Value *base = findBaseOrBDV(InVal, cache);
883 if (!isKnownBaseResult(base)) {
884 // Either conflict or base.
885 assert(states.count(base));
886 base = states[base].getBase();
887 assert(base != nullptr && "unknown PhiState!");
888 }
889 assert(base && "can't be null");
890 // Must use original input BB since base may not be Instruction
891 // The cast is needed since base traversal may strip away bitcasts
892 if (base->getType() != basephi->getType()) {
893 base = new BitCastInst(base, basephi->getType(), "cast",
894 InBB->getTerminator());
Philip Reamesf2041322015-02-20 19:26:04 +0000895 NewInsertedDefs.insert(base);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000896 }
897 basephi->addIncoming(base, InBB);
898 }
899 assert(basephi->getNumIncomingValues() == NumPHIValues);
900 } else if (SelectInst *basesel = dyn_cast<SelectInst>(state.getBase())) {
901 SelectInst *sel = cast<SelectInst>(v);
902 // Operand 1 & 2 are true, false path respectively. TODO: refactor to
903 // something more safe and less hacky.
904 for (int i = 1; i <= 2; i++) {
905 Value *InVal = sel->getOperand(i);
906 // Find either the defining value for the PHI or the normal base for
907 // a non-phi node
908 Value *base = findBaseOrBDV(InVal, cache);
909 if (!isKnownBaseResult(base)) {
910 // Either conflict or base.
911 assert(states.count(base));
912 base = states[base].getBase();
913 assert(base != nullptr && "unknown PhiState!");
914 }
915 assert(base && "can't be null");
916 // Must use original input BB since base may not be Instruction
917 // The cast is needed since base traversal may strip away bitcasts
918 if (base->getType() != basesel->getType()) {
919 base = new BitCastInst(base, basesel->getType(), "cast", basesel);
Philip Reamesf2041322015-02-20 19:26:04 +0000920 NewInsertedDefs.insert(base);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000921 }
922 basesel->setOperand(i, base);
923 }
924 } else {
925 assert(false && "unexpected type");
926 }
927 }
928 }
929
930 // Cache all of our results so we can cheaply reuse them
931 // NOTE: This is actually two caches: one of the base defining value
932 // relation and one of the base pointer relation! FIXME
933 for (auto item : states) {
934 Value *v = item.first;
935 Value *base = item.second.getBase();
936 assert(v && base);
937 assert(!isKnownBaseResult(v) && "why did it get added?");
938
939 if (TraceLSP) {
940 std::string fromstr =
941 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "")
942 : "none";
943 errs() << "Updating base value cache"
944 << " for: " << (v->hasName() ? v->getName() : "")
945 << " from: " << fromstr
946 << " to: " << (base->hasName() ? base->getName() : "") << "\n";
947 }
948
949 assert(isKnownBaseResult(base) &&
950 "must be something we 'know' is a base pointer");
951 if (cache.count(v)) {
952 // Once we transition from the BDV relation being store in the cache to
953 // the base relation being stored, it must be stable
954 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) &&
955 "base relation should be stable");
956 }
957 cache[v] = base;
958 }
959 assert(cache.find(def) != cache.end());
960 return cache[def];
961}
962
963// For a set of live pointers (base and/or derived), identify the base
964// pointer of the object which they are derived from. This routine will
965// mutate the IR graph as needed to make the 'base' pointer live at the
966// definition site of 'derived'. This ensures that any use of 'derived' can
967// also use 'base'. This may involve the insertion of a number of
968// additional PHI nodes.
969//
970// preconditions: live is a set of pointer type Values
971//
972// side effects: may insert PHI nodes into the existing CFG, will preserve
973// CFG, will not remove or mutate any existing nodes
974//
Philip Reamesf2041322015-02-20 19:26:04 +0000975// post condition: PointerToBase contains one (derived, base) pair for every
Philip Reamesd16a9b12015-02-20 01:06:44 +0000976// pointer in live. Note that derived can be equal to base if the original
977// pointer was a base pointer.
978static void findBasePointers(const std::set<llvm::Value *> &live,
Philip Reamesf2041322015-02-20 19:26:04 +0000979 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase,
Philip Reamesd16a9b12015-02-20 01:06:44 +0000980 DominatorTree *DT, DefiningValueMapTy &DVCache,
Philip Reamesf2041322015-02-20 19:26:04 +0000981 DenseSet<llvm::Value *> &NewInsertedDefs) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000982 for (Value *ptr : live) {
Philip Reamesf2041322015-02-20 19:26:04 +0000983 Value *base = findBasePointer(ptr, DVCache, NewInsertedDefs);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000984 assert(base && "failed to find base pointer");
Philip Reamesf2041322015-02-20 19:26:04 +0000985 PointerToBase[ptr] = base;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000986 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
987 DT->dominates(cast<Instruction>(base)->getParent(),
988 cast<Instruction>(ptr)->getParent())) &&
989 "The base we found better dominate the derived pointer");
990
991 if (isNullConstant(base))
992 // If you see this trip and like to live really dangerously, the code
993 // should be correct, just with idioms the verifier can't handle. You
994 // can try disabling the verifier at your own substaintial risk.
995 llvm_unreachable("the relocation code needs adjustment to handle the"
996 "relocation of a null pointer constant without causing"
997 "false positives in the safepoint ir verifier.");
998 }
999}
1000
1001/// Find the required based pointers (and adjust the live set) for the given
1002/// parse point.
1003static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1004 const CallSite &CS,
1005 PartiallyConstructedSafepointRecord &result) {
Philip Reamesf2041322015-02-20 19:26:04 +00001006 DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
1007 DenseSet<llvm::Value *> NewInsertedDefs;
1008 findBasePointers(result.liveset, PointerToBase, &DT, DVCache, NewInsertedDefs);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001009
1010 if (PrintBasePointers) {
1011 errs() << "Base Pairs (w/o Relocation):\n";
Philip Reamesf2041322015-02-20 19:26:04 +00001012 for (auto Pair : PointerToBase) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001013 errs() << " derived %" << Pair.first->getName() << " base %"
1014 << Pair.second->getName() << "\n";
1015 }
1016 }
1017
Philip Reamesf2041322015-02-20 19:26:04 +00001018 result.PointerToBase = PointerToBase;
1019 result.NewInsertedDefs = NewInsertedDefs;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001020}
1021
1022/// Check for liveness of items in the insert defs and add them to the live
1023/// and base pointer sets
1024static void fixupLiveness(DominatorTree &DT, const CallSite &CS,
1025 const std::set<Value *> &allInsertedDefs,
1026 PartiallyConstructedSafepointRecord &result) {
1027 Instruction *inst = CS.getInstruction();
1028
Philip Reamesf2041322015-02-20 19:26:04 +00001029 auto liveset = result.liveset;
1030 auto PointerToBase = result.PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001031
1032 auto is_live_gc_reference =
1033 [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); };
1034
1035 // For each new definition, check to see if a) the definition dominates the
1036 // instruction we're interested in, and b) one of the uses of that definition
1037 // is edge-reachable from the instruction we're interested in. This is the
1038 // same definition of liveness we used in the intial liveness analysis
1039 for (Value *newDef : allInsertedDefs) {
1040 if (liveset.count(newDef)) {
1041 // already live, no action needed
1042 continue;
1043 }
1044
1045 // PERF: Use DT to check instruction domination might not be good for
1046 // compilation time, and we could change to optimal solution if this
1047 // turn to be a issue
1048 if (!DT.dominates(cast<Instruction>(newDef), inst)) {
1049 // can't possibly be live at inst
1050 continue;
1051 }
1052
1053 if (is_live_gc_reference(*newDef)) {
Philip Reamesf2041322015-02-20 19:26:04 +00001054 // Add the live new defs into liveset and PointerToBase
Philip Reamesd16a9b12015-02-20 01:06:44 +00001055 liveset.insert(newDef);
Philip Reamesf2041322015-02-20 19:26:04 +00001056 PointerToBase[newDef] = newDef;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001057 }
1058 }
1059
1060 result.liveset = liveset;
Philip Reamesf2041322015-02-20 19:26:04 +00001061 result.PointerToBase = PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001062}
1063
1064static void fixupLiveReferences(
1065 Function &F, DominatorTree &DT, Pass *P,
1066 const std::set<llvm::Value *> &allInsertedDefs,
1067 std::vector<CallSite> &toUpdate,
1068 std::vector<struct PartiallyConstructedSafepointRecord> &records) {
1069 for (size_t i = 0; i < records.size(); i++) {
1070 struct PartiallyConstructedSafepointRecord &info = records[i];
1071 CallSite &CS = toUpdate[i];
1072 fixupLiveness(DT, CS, allInsertedDefs, info);
1073 }
1074}
1075
1076// Normalize basic block to make it ready to be target of invoke statepoint.
1077// It means spliting it to have single predecessor. Return newly created BB
1078// ready to be successor of invoke statepoint.
1079static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB,
1080 BasicBlock *InvokeParent,
1081 Pass *P) {
1082 BasicBlock *ret = BB;
1083
1084 if (!BB->getUniquePredecessor()) {
1085 ret = SplitBlockPredecessors(BB, InvokeParent, "");
1086 }
1087
1088 // Another requirement for such basic blocks is to not have any phi nodes.
1089 // Since we just ensured that new BB will have single predecessor,
1090 // all phi nodes in it will have one value. Here it would be naturall place
1091 // to
1092 // remove them all. But we can not do this because we are risking to remove
1093 // one of the values stored in liveset of another statepoint. We will do it
1094 // later after placing all safepoints.
1095
1096 return ret;
1097}
1098
1099static void
1100VerifySafepointBounds(const std::pair<Instruction *, Instruction *> &bounds) {
1101 assert(bounds.first->getParent() && bounds.second->getParent() &&
1102 "both must belong to basic blocks");
1103 if (bounds.first->getParent() == bounds.second->getParent()) {
1104 // This is a call safepoint
1105 // TODO: scan the range to find the statepoint
1106 // TODO: check that the following instruction is not a gc_relocate or
1107 // gc_result
1108 } else {
1109 // This is an invoke safepoint
1110 InvokeInst *invoke = dyn_cast<InvokeInst>(bounds.first);
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00001111 (void)invoke;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001112 assert(invoke && "only continues over invokes!");
1113 assert(invoke->getNormalDest() == bounds.second->getParent() &&
1114 "safepoint should continue into normal exit block");
1115 }
1116}
1117
1118static int find_index(const SmallVectorImpl<Value *> &livevec, Value *val) {
1119 auto itr = std::find(livevec.begin(), livevec.end(), val);
1120 assert(livevec.end() != itr);
1121 size_t index = std::distance(livevec.begin(), itr);
1122 assert(index < livevec.size());
1123 return index;
1124}
1125
1126// Create new attribute set containing only attributes which can be transfered
1127// from original call to the safepoint.
1128static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1129 AttributeSet ret;
1130
1131 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1132 unsigned index = AS.getSlotIndex(Slot);
1133
1134 if (index == AttributeSet::ReturnIndex ||
1135 index == AttributeSet::FunctionIndex) {
1136
1137 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end;
1138 ++it) {
1139 Attribute attr = *it;
1140
1141 // Do not allow certain attributes - just skip them
1142 // Safepoint can not be read only or read none.
1143 if (attr.hasAttribute(Attribute::ReadNone) ||
1144 attr.hasAttribute(Attribute::ReadOnly))
1145 continue;
1146
1147 ret = ret.addAttributes(
1148 AS.getContext(), index,
1149 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr)));
1150 }
1151 }
1152
1153 // Just skip parameter attributes for now
1154 }
1155
1156 return ret;
1157}
1158
1159/// Helper function to place all gc relocates necessary for the given
1160/// statepoint.
1161/// Inputs:
1162/// liveVariables - list of variables to be relocated.
1163/// liveStart - index of the first live variable.
1164/// basePtrs - base pointers.
1165/// statepointToken - statepoint instruction to which relocates should be
1166/// bound.
1167/// Builder - Llvm IR builder to be used to construct new calls.
1168/// Returns array with newly created relocates.
1169static std::vector<llvm::Instruction *>
1170CreateGCRelocates(const SmallVectorImpl<llvm::Value *> &liveVariables,
1171 const int liveStart,
1172 const SmallVectorImpl<llvm::Value *> &basePtrs,
1173 Instruction *statepointToken, IRBuilder<> Builder) {
1174
1175 std::vector<llvm::Instruction *> newDefs;
1176
1177 Module *M = statepointToken->getParent()->getParent()->getParent();
1178
1179 for (unsigned i = 0; i < liveVariables.size(); i++) {
1180 // We generate a (potentially) unique declaration for every pointer type
1181 // combination. This results is some blow up the function declarations in
1182 // the IR, but removes the need for argument bitcasts which shrinks the IR
1183 // greatly and makes it much more readable.
1184 std::vector<Type *> types; // one per 'any' type
1185 types.push_back(liveVariables[i]->getType()); // result type
1186 Value *gc_relocate_decl = Intrinsic::getDeclaration(
1187 M, Intrinsic::experimental_gc_relocate, types);
1188
1189 // Generate the gc.relocate call and save the result
1190 Value *baseIdx =
1191 ConstantInt::get(Type::getInt32Ty(M->getContext()),
1192 liveStart + find_index(liveVariables, basePtrs[i]));
1193 Value *liveIdx = ConstantInt::get(
1194 Type::getInt32Ty(M->getContext()),
1195 liveStart + find_index(liveVariables, liveVariables[i]));
1196
1197 // only specify a debug name if we can give a useful one
1198 Value *reloc = Builder.CreateCall3(
1199 gc_relocate_decl, statepointToken, baseIdx, liveIdx,
1200 liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated"
1201 : "");
1202 // Trick CodeGen into thinking there are lots of free registers at this
1203 // fake call.
1204 cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold);
1205
1206 newDefs.push_back(cast<Instruction>(reloc));
1207 }
1208 assert(newDefs.size() == liveVariables.size() &&
1209 "missing or extra redefinition at safepoint");
1210
1211 return newDefs;
1212}
1213
1214static void
1215makeStatepointExplicitImpl(const CallSite &CS, /* to replace */
1216 const SmallVectorImpl<llvm::Value *> &basePtrs,
1217 const SmallVectorImpl<llvm::Value *> &liveVariables,
1218 Pass *P,
1219 PartiallyConstructedSafepointRecord &result) {
1220 assert(basePtrs.size() == liveVariables.size());
1221 assert(isStatepoint(CS) &&
1222 "This method expects to be rewriting a statepoint");
1223
1224 BasicBlock *BB = CS.getInstruction()->getParent();
1225 assert(BB);
1226 Function *F = BB->getParent();
1227 assert(F && "must be set");
1228 Module *M = F->getParent();
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00001229 (void)M;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001230 assert(M && "must be set");
1231
1232 // We're not changing the function signature of the statepoint since the gc
1233 // arguments go into the var args section.
1234 Function *gc_statepoint_decl = CS.getCalledFunction();
1235
1236 // Then go ahead and use the builder do actually do the inserts. We insert
1237 // immediately before the previous instruction under the assumption that all
1238 // arguments will be available here. We can't insert afterwards since we may
1239 // be replacing a terminator.
1240 Instruction *insertBefore = CS.getInstruction();
1241 IRBuilder<> Builder(insertBefore);
1242 // Copy all of the arguments from the original statepoint - this includes the
1243 // target, call args, and deopt args
1244 std::vector<llvm::Value *> args;
1245 args.insert(args.end(), CS.arg_begin(), CS.arg_end());
1246 // TODO: Clear the 'needs rewrite' flag
1247
1248 // add all the pointers to be relocated (gc arguments)
1249 // Capture the start of the live variable list for use in the gc_relocates
1250 const int live_start = args.size();
1251 args.insert(args.end(), liveVariables.begin(), liveVariables.end());
1252
1253 // Create the statepoint given all the arguments
1254 Instruction *token = nullptr;
1255 AttributeSet return_attributes;
1256 if (CS.isCall()) {
1257 CallInst *toReplace = cast<CallInst>(CS.getInstruction());
1258 CallInst *call =
1259 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token");
1260 call->setTailCall(toReplace->isTailCall());
1261 call->setCallingConv(toReplace->getCallingConv());
1262
1263 // Currently we will fail on parameter attributes and on certain
1264 // function attributes.
1265 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
1266 // In case if we can handle this set of sttributes - set up function attrs
1267 // directly on statepoint and return attrs later for gc_result intrinsic.
1268 call->setAttributes(new_attrs.getFnAttributes());
1269 return_attributes = new_attrs.getRetAttributes();
1270
1271 token = call;
1272
1273 // Put the following gc_result and gc_relocate calls immediately after the
1274 // the old call (which we're about to delete)
1275 BasicBlock::iterator next(toReplace);
1276 assert(BB->end() != next && "not a terminator, must have next");
1277 next++;
1278 Instruction *IP = &*(next);
1279 Builder.SetInsertPoint(IP);
1280 Builder.SetCurrentDebugLocation(IP->getDebugLoc());
1281
1282 } else if (CS.isInvoke()) {
1283 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction());
1284
1285 // Insert the new invoke into the old block. We'll remove the old one in a
1286 // moment at which point this will become the new terminator for the
1287 // original block.
1288 InvokeInst *invoke = InvokeInst::Create(
1289 gc_statepoint_decl, toReplace->getNormalDest(),
1290 toReplace->getUnwindDest(), args, "", toReplace->getParent());
1291 invoke->setCallingConv(toReplace->getCallingConv());
1292
1293 // Currently we will fail on parameter attributes and on certain
1294 // function attributes.
1295 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
1296 // In case if we can handle this set of sttributes - set up function attrs
1297 // directly on statepoint and return attrs later for gc_result intrinsic.
1298 invoke->setAttributes(new_attrs.getFnAttributes());
1299 return_attributes = new_attrs.getRetAttributes();
1300
1301 token = invoke;
1302
1303 // Generate gc relocates in exceptional path
1304 BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint(
1305 toReplace->getUnwindDest(), invoke->getParent(), P);
1306
1307 Instruction *IP = &*(unwindBlock->getFirstInsertionPt());
1308 Builder.SetInsertPoint(IP);
1309 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc());
1310
1311 // Extract second element from landingpad return value. We will attach
1312 // exceptional gc relocates to it.
1313 const unsigned idx = 1;
1314 Instruction *exceptional_token =
1315 cast<Instruction>(Builder.CreateExtractValue(
1316 unwindBlock->getLandingPadInst(), idx, "relocate_token"));
Philip Reamesf2041322015-02-20 19:26:04 +00001317 result.UnwindToken = exceptional_token;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001318
1319 // Just throw away return value. We will use the one we got for normal
1320 // block.
1321 (void)CreateGCRelocates(liveVariables, live_start, basePtrs,
1322 exceptional_token, Builder);
1323
1324 // Generate gc relocates and returns for normal block
1325 BasicBlock *normalDest = normalizeBBForInvokeSafepoint(
1326 toReplace->getNormalDest(), invoke->getParent(), P);
1327
1328 IP = &*(normalDest->getFirstInsertionPt());
1329 Builder.SetInsertPoint(IP);
1330
1331 // gc relocates will be generated later as if it were regular call
1332 // statepoint
1333 } else {
1334 llvm_unreachable("unexpect type of CallSite");
1335 }
1336 assert(token);
1337
1338 // Take the name of the original value call if it had one.
1339 token->takeName(CS.getInstruction());
1340
1341 // The GCResult is already inserted, we just need to find it
1342 Instruction *gc_result = nullptr;
1343 /* scope */ {
1344 Instruction *toReplace = CS.getInstruction();
1345 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) &&
1346 "only valid use before rewrite is gc.result");
1347 if (toReplace->hasOneUse()) {
1348 Instruction *GCResult = cast<Instruction>(*toReplace->user_begin());
1349 assert(isGCResult(GCResult));
1350 gc_result = GCResult;
1351 }
1352 }
1353
1354 // Update the gc.result of the original statepoint (if any) to use the newly
1355 // inserted statepoint. This is safe to do here since the token can't be
1356 // considered a live reference.
1357 CS.getInstruction()->replaceAllUsesWith(token);
1358
1359 // Second, create a gc.relocate for every live variable
1360 std::vector<llvm::Instruction *> newDefs =
1361 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder);
1362
1363 // Need to pass through the last part of the safepoint block so that we
1364 // don't accidentally update uses in a following gc.relocate which is
1365 // still conceptually part of the same safepoint. Gah.
1366 Instruction *last = nullptr;
1367 if (!newDefs.empty()) {
1368 last = newDefs.back();
1369 } else if (gc_result) {
1370 last = gc_result;
1371 } else {
1372 last = token;
1373 }
1374 assert(last && "can't be null");
1375 const auto bounds = std::make_pair(token, last);
1376
1377 // Sanity check our results - this is slightly non-trivial due to invokes
1378 VerifySafepointBounds(bounds);
1379
Philip Reamesf2041322015-02-20 19:26:04 +00001380 result.SafepointBounds = bounds;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001381}
1382
1383namespace {
1384struct name_ordering {
1385 Value *base;
1386 Value *derived;
1387 bool operator()(name_ordering const &a, name_ordering const &b) {
1388 return -1 == a.derived->getName().compare(b.derived->getName());
1389 }
1390};
1391}
1392static void stablize_order(SmallVectorImpl<Value *> &basevec,
1393 SmallVectorImpl<Value *> &livevec) {
1394 assert(basevec.size() == livevec.size());
1395
1396 std::vector<name_ordering> temp;
1397 for (size_t i = 0; i < basevec.size(); i++) {
1398 name_ordering v;
1399 v.base = basevec[i];
1400 v.derived = livevec[i];
1401 temp.push_back(v);
1402 }
1403 std::sort(temp.begin(), temp.end(), name_ordering());
1404 for (size_t i = 0; i < basevec.size(); i++) {
1405 basevec[i] = temp[i].base;
1406 livevec[i] = temp[i].derived;
1407 }
1408}
1409
1410// Replace an existing gc.statepoint with a new one and a set of gc.relocates
1411// which make the relocations happening at this safepoint explicit.
1412//
1413// WARNING: Does not do any fixup to adjust users of the original live
1414// values. That's the callers responsibility.
1415static void
1416makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P,
1417 PartiallyConstructedSafepointRecord &result) {
Philip Reamesf2041322015-02-20 19:26:04 +00001418 auto liveset = result.liveset;
1419 auto PointerToBase = result.PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001420
1421 // Convert to vector for efficient cross referencing.
1422 SmallVector<Value *, 64> basevec, livevec;
1423 livevec.reserve(liveset.size());
1424 basevec.reserve(liveset.size());
1425 for (Value *L : liveset) {
1426 livevec.push_back(L);
1427
Philip Reamesf2041322015-02-20 19:26:04 +00001428 assert(PointerToBase.find(L) != PointerToBase.end());
1429 Value *base = PointerToBase[L];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001430 basevec.push_back(base);
1431 }
1432 assert(livevec.size() == basevec.size());
1433
1434 // To make the output IR slightly more stable (for use in diffs), ensure a
1435 // fixed order of the values in the safepoint (by sorting the value name).
1436 // The order is otherwise meaningless.
1437 stablize_order(basevec, livevec);
1438
1439 // Do the actual rewriting and delete the old statepoint
1440 makeStatepointExplicitImpl(CS, basevec, livevec, P, result);
1441 CS.getInstruction()->eraseFromParent();
1442}
1443
1444// Helper function for the relocationViaAlloca.
1445// It receives iterator to the statepoint gc relocates and emits store to the
1446// assigned
1447// location (via allocaMap) for the each one of them.
1448// Add visited values into the visitedLiveValues set we will later use them
1449// for sanity check.
1450static void
1451insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs,
1452 DenseMap<Value *, Value *> &allocaMap,
1453 DenseSet<Value *> &visitedLiveValues) {
1454
1455 for (User *U : gcRelocs) {
1456 if (!isa<IntrinsicInst>(U))
1457 continue;
1458
1459 IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U);
1460
1461 // We only care about relocates
1462 if (relocatedValue->getIntrinsicID() !=
1463 Intrinsic::experimental_gc_relocate) {
1464 continue;
1465 }
1466
1467 GCRelocateOperands relocateOperands(relocatedValue);
1468 Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr());
1469 assert(allocaMap.count(originalValue));
1470 Value *alloca = allocaMap[originalValue];
1471
1472 // Emit store into the related alloca
1473 StoreInst *store = new StoreInst(relocatedValue, alloca);
1474 store->insertAfter(relocatedValue);
1475
1476#ifndef NDEBUG
1477 visitedLiveValues.insert(originalValue);
1478#endif
1479 }
1480}
1481
1482/// do all the relocation update via allocas and mem2reg
1483static void relocationViaAlloca(
1484 Function &F, DominatorTree &DT, const std::vector<Value *> &live,
1485 const std::vector<struct PartiallyConstructedSafepointRecord> &records) {
1486#ifndef NDEBUG
1487 int initialAllocaNum = 0;
1488
1489 // record initial number of allocas
1490 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end;
1491 itr++) {
1492 if (isa<AllocaInst>(*itr))
1493 initialAllocaNum++;
1494 }
1495#endif
1496
1497 // TODO-PERF: change data structures, reserve
1498 DenseMap<Value *, Value *> allocaMap;
1499 SmallVector<AllocaInst *, 200> PromotableAllocas;
1500 PromotableAllocas.reserve(live.size());
1501
1502 // emit alloca for each live gc pointer
1503 for (unsigned i = 0; i < live.size(); i++) {
1504 Value *liveValue = live[i];
1505 AllocaInst *alloca = new AllocaInst(liveValue->getType(), "",
1506 F.getEntryBlock().getFirstNonPHI());
1507 allocaMap[liveValue] = alloca;
1508 PromotableAllocas.push_back(alloca);
1509 }
1510
1511 // The next two loops are part of the same conceptual operation. We need to
1512 // insert a store to the alloca after the original def and at each
1513 // redefinition. We need to insert a load before each use. These are split
1514 // into distinct loops for performance reasons.
1515
1516 // update gc pointer after each statepoint
1517 // either store a relocated value or null (if no relocated value found for
1518 // this gc pointer and it is not a gc_result)
1519 // this must happen before we update the statepoint with load of alloca
1520 // otherwise we lose the link between statepoint and old def
1521 for (size_t i = 0; i < records.size(); i++) {
1522 const struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesf2041322015-02-20 19:26:04 +00001523 Value *statepoint = info.SafepointBounds.first;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001524
1525 // This will be used for consistency check
1526 DenseSet<Value *> visitedLiveValues;
1527
1528 // Insert stores for normal statepoint gc relocates
1529 insertRelocationStores(statepoint->users(), allocaMap, visitedLiveValues);
1530
1531 // In case if it was invoke statepoint
1532 // we will insert stores for exceptional path gc relocates.
1533 if (isa<InvokeInst>(statepoint)) {
Philip Reamesf2041322015-02-20 19:26:04 +00001534 insertRelocationStores(info.UnwindToken->users(),
Philip Reamesd16a9b12015-02-20 01:06:44 +00001535 allocaMap, visitedLiveValues);
1536 }
1537
1538#ifndef NDEBUG
Philip Reamesf2041322015-02-20 19:26:04 +00001539 // As a debuging aid, pretend that an unrelocated pointer becomes null at
1540 // the gc.statepoint. This will turn some subtle GC problems into slightly
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001541 // easier to debug SEGVs
1542 SmallVector<AllocaInst *, 64> ToClobber;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001543 for (auto Pair : allocaMap) {
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001544 Value *Def = Pair.first;
1545 AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001546
1547 // This value was relocated
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001548 if (visitedLiveValues.count(Def)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001549 continue;
1550 }
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001551 ToClobber.push_back(Alloca);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001552 }
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001553
1554 Instruction *Statepoint = info.SafepointBounds.first;
1555 auto InsertClobbersAt = [&](Instruction *IP) {
1556 for (auto *AI : ToClobber) {
1557 auto AIType = cast<PointerType>(AI->getType());
1558 auto PT = cast<PointerType>(AIType->getElementType());
1559 Constant *CPN = ConstantPointerNull::get(PT);
1560 StoreInst *store = new StoreInst(CPN, AI);
1561 store->insertBefore(IP);
1562 }
1563 };
1564
1565 // Insert the clobbering stores. These may get intermixed with the
1566 // gc.results and gc.relocates, but that's fine.
1567 if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1568 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt());
1569 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt());
1570 } else if (auto CI = dyn_cast<CallInst>(Statepoint)) {
1571 BasicBlock::iterator Next(CI);
1572 Next++;
1573 InsertClobbersAt(Next);
1574 } else
1575 llvm_unreachable("illegal statepoint instruction type?");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001576#endif
1577 }
1578 // update use with load allocas and add store for gc_relocated
1579 for (auto Pair : allocaMap) {
1580 Value *def = Pair.first;
1581 Value *alloca = Pair.second;
1582
1583 // we pre-record the uses of allocas so that we dont have to worry about
1584 // later update
1585 // that change the user information.
1586 SmallVector<Instruction *, 20> uses;
1587 // PERF: trade a linear scan for repeated reallocation
1588 uses.reserve(std::distance(def->user_begin(), def->user_end()));
1589 for (User *U : def->users()) {
1590 if (!isa<ConstantExpr>(U)) {
1591 // If the def has a ConstantExpr use, then the def is either a
1592 // ConstantExpr use itself or null. In either case
1593 // (recursively in the first, directly in the second), the oop
1594 // it is ultimately dependent on is null and this particular
1595 // use does not need to be fixed up.
1596 uses.push_back(cast<Instruction>(U));
1597 }
1598 }
1599
1600 std::sort(uses.begin(), uses.end());
1601 auto last = std::unique(uses.begin(), uses.end());
1602 uses.erase(last, uses.end());
1603
1604 for (Instruction *use : uses) {
1605 if (isa<PHINode>(use)) {
1606 PHINode *phi = cast<PHINode>(use);
1607 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) {
1608 if (def == phi->getIncomingValue(i)) {
1609 LoadInst *load = new LoadInst(
1610 alloca, "", phi->getIncomingBlock(i)->getTerminator());
1611 phi->setIncomingValue(i, load);
1612 }
1613 }
1614 } else {
1615 LoadInst *load = new LoadInst(alloca, "", use);
1616 use->replaceUsesOfWith(def, load);
1617 }
1618 }
1619
1620 // emit store for the initial gc value
1621 // store must be inserted after load, otherwise store will be in alloca's
1622 // use list and an extra load will be inserted before it
1623 StoreInst *store = new StoreInst(def, alloca);
1624 if (isa<Instruction>(def)) {
1625 store->insertAfter(cast<Instruction>(def));
1626 } else {
1627 assert((isa<Argument>(def) || isa<GlobalVariable>(def) ||
1628 (isa<Constant>(def) && cast<Constant>(def)->isNullValue())) &&
1629 "Must be argument or global");
1630 store->insertAfter(cast<Instruction>(alloca));
1631 }
1632 }
1633
1634 assert(PromotableAllocas.size() == live.size() &&
1635 "we must have the same allocas with lives");
1636 if (!PromotableAllocas.empty()) {
1637 // apply mem2reg to promote alloca to SSA
1638 PromoteMemToReg(PromotableAllocas, DT);
1639 }
1640
1641#ifndef NDEBUG
1642 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end;
1643 itr++) {
1644 if (isa<AllocaInst>(*itr))
1645 initialAllocaNum--;
1646 }
1647 assert(initialAllocaNum == 0 && "We must not introduce any extra allocas");
1648#endif
1649}
1650
1651/// Implement a unique function which doesn't require we sort the input
1652/// vector. Doing so has the effect of changing the output of a couple of
1653/// tests in ways which make them less useful in testing fused safepoints.
1654template <typename T> static void unique_unsorted(std::vector<T> &vec) {
1655 DenseSet<T> seen;
1656 std::vector<T> tmp;
1657 vec.reserve(vec.size());
1658 std::swap(tmp, vec);
1659 for (auto V : tmp) {
1660 if (seen.insert(V).second) {
1661 vec.push_back(V);
1662 }
1663 }
1664}
1665
1666static Function *getUseHolder(Module &M) {
1667 FunctionType *ftype =
1668 FunctionType::get(Type::getVoidTy(M.getContext()), true);
1669 Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype));
1670 return Func;
1671}
1672
1673/// Insert holders so that each Value is obviously live through the entire
1674/// liftetime of the call.
1675static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1676 std::vector<CallInst *> &holders) {
1677 Module *M = CS.getInstruction()->getParent()->getParent()->getParent();
1678 Function *Func = getUseHolder(*M);
1679 if (CS.isCall()) {
1680 // For call safepoints insert dummy calls right after safepoint
1681 BasicBlock::iterator next(CS.getInstruction());
1682 next++;
1683 CallInst *base_holder = CallInst::Create(Func, Values, "", next);
1684 holders.push_back(base_holder);
1685 } else if (CS.isInvoke()) {
1686 // For invoke safepooints insert dummy calls both in normal and
1687 // exceptional destination blocks
1688 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction());
1689 CallInst *normal_holder = CallInst::Create(
1690 Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt());
1691 CallInst *unwind_holder = CallInst::Create(
1692 Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt());
1693 holders.push_back(normal_holder);
1694 holders.push_back(unwind_holder);
1695 } else {
1696 assert(false && "Unsupported");
1697 }
1698}
1699
1700static void findLiveReferences(
1701 Function &F, DominatorTree &DT, Pass *P, std::vector<CallSite> &toUpdate,
1702 std::vector<struct PartiallyConstructedSafepointRecord> &records) {
1703 for (size_t i = 0; i < records.size(); i++) {
1704 struct PartiallyConstructedSafepointRecord &info = records[i];
1705 CallSite &CS = toUpdate[i];
1706 analyzeParsePointLiveness(DT, CS, info);
1707 }
1708}
1709
1710static void addBasesAsLiveValues(std::set<Value *> &liveset,
Philip Reamesf2041322015-02-20 19:26:04 +00001711 DenseMap<Value *, Value *> &PointerToBase) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001712 // Identify any base pointers which are used in this safepoint, but not
1713 // themselves relocated. We need to relocate them so that later inserted
1714 // safepoints can get the properly relocated base register.
1715 DenseSet<Value *> missing;
1716 for (Value *L : liveset) {
Philip Reamesf2041322015-02-20 19:26:04 +00001717 assert(PointerToBase.find(L) != PointerToBase.end());
1718 Value *base = PointerToBase[L];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001719 assert(base);
1720 if (liveset.find(base) == liveset.end()) {
Philip Reamesf2041322015-02-20 19:26:04 +00001721 assert(PointerToBase.find(base) == PointerToBase.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001722 // uniqued by set insert
1723 missing.insert(base);
1724 }
1725 }
1726
1727 // Note that we want these at the end of the list, otherwise
1728 // register placement gets screwed up once we lower to STATEPOINT
1729 // instructions. This is an utter hack, but there doesn't seem to be a
1730 // better one.
1731 for (Value *base : missing) {
1732 assert(base);
1733 liveset.insert(base);
Philip Reamesf2041322015-02-20 19:26:04 +00001734 PointerToBase[base] = base;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001735 }
Philip Reamesf2041322015-02-20 19:26:04 +00001736 assert(liveset.size() == PointerToBase.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001737}
1738
1739static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
1740 std::vector<CallSite> &toUpdate) {
1741#ifndef NDEBUG
1742 // sanity check the input
1743 std::set<CallSite> uniqued;
1744 uniqued.insert(toUpdate.begin(), toUpdate.end());
1745 assert(uniqued.size() == toUpdate.size() && "no duplicates please!");
1746
1747 for (size_t i = 0; i < toUpdate.size(); i++) {
1748 CallSite &CS = toUpdate[i];
1749 assert(CS.getInstruction()->getParent()->getParent() == &F);
1750 assert(isStatepoint(CS) && "expected to already be a deopt statepoint");
1751 }
1752#endif
1753
1754 // A list of dummy calls added to the IR to keep various values obviously
1755 // live in the IR. We'll remove all of these when done.
1756 std::vector<CallInst *> holders;
1757
1758 // Insert a dummy call with all of the arguments to the vm_state we'll need
1759 // for the actual safepoint insertion. This ensures reference arguments in
1760 // the deopt argument list are considered live through the safepoint (and
1761 // thus makes sure they get relocated.)
1762 for (size_t i = 0; i < toUpdate.size(); i++) {
1763 CallSite &CS = toUpdate[i];
1764 Statepoint StatepointCS(CS);
1765
1766 SmallVector<Value *, 64> DeoptValues;
1767 for (Use &U : StatepointCS.vm_state_args()) {
1768 Value *Arg = cast<Value>(&U);
1769 if (isGCPointerType(Arg->getType()))
1770 DeoptValues.push_back(Arg);
1771 }
1772 insertUseHolderAfter(CS, DeoptValues, holders);
1773 }
1774
1775 std::vector<struct PartiallyConstructedSafepointRecord> records;
1776 records.reserve(toUpdate.size());
1777 for (size_t i = 0; i < toUpdate.size(); i++) {
1778 struct PartiallyConstructedSafepointRecord info;
1779 records.push_back(info);
1780 }
1781 assert(records.size() == toUpdate.size());
1782
1783 // A) Identify all gc pointers which are staticly live at the given call
1784 // site.
1785 findLiveReferences(F, DT, P, toUpdate, records);
1786
1787 // B) Find the base pointers for each live pointer
1788 /* scope for caching */ {
1789 // Cache the 'defining value' relation used in the computation and
1790 // insertion of base phis and selects. This ensures that we don't insert
1791 // large numbers of duplicate base_phis.
1792 DefiningValueMapTy DVCache;
1793
1794 for (size_t i = 0; i < records.size(); i++) {
1795 struct PartiallyConstructedSafepointRecord &info = records[i];
1796 CallSite &CS = toUpdate[i];
1797 findBasePointers(DT, DVCache, CS, info);
1798 }
1799 } // end of cache scope
1800
1801 // The base phi insertion logic (for any safepoint) may have inserted new
1802 // instructions which are now live at some safepoint. The simplest such
1803 // example is:
1804 // loop:
1805 // phi a <-- will be a new base_phi here
1806 // safepoint 1 <-- that needs to be live here
1807 // gep a + 1
1808 // safepoint 2
1809 // br loop
1810 std::set<llvm::Value *> allInsertedDefs;
1811 for (size_t i = 0; i < records.size(); i++) {
1812 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesf2041322015-02-20 19:26:04 +00001813 allInsertedDefs.insert(info.NewInsertedDefs.begin(),
1814 info.NewInsertedDefs.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001815 }
1816
1817 // We insert some dummy calls after each safepoint to definitely hold live
1818 // the base pointers which were identified for that safepoint. We'll then
1819 // ask liveness for _every_ base inserted to see what is now live. Then we
1820 // remove the dummy calls.
1821 holders.reserve(holders.size() + records.size());
1822 for (size_t i = 0; i < records.size(); i++) {
1823 struct PartiallyConstructedSafepointRecord &info = records[i];
1824 CallSite &CS = toUpdate[i];
1825
1826 SmallVector<Value *, 128> Bases;
Philip Reamesf2041322015-02-20 19:26:04 +00001827 for (auto Pair : info.PointerToBase) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001828 Bases.push_back(Pair.second);
1829 }
1830 insertUseHolderAfter(CS, Bases, holders);
1831 }
1832
1833 // Add the bases explicitly to the live vector set. This may result in a few
1834 // extra relocations, but the base has to be available whenever a pointer
1835 // derived from it is used. Thus, we need it to be part of the statepoint's
1836 // gc arguments list. TODO: Introduce an explicit notion (in the following
1837 // code) of the GC argument list as seperate from the live Values at a
1838 // given statepoint.
1839 for (size_t i = 0; i < records.size(); i++) {
1840 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesf2041322015-02-20 19:26:04 +00001841 addBasesAsLiveValues(info.liveset, info.PointerToBase);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001842 }
1843
1844 // If we inserted any new values, we need to adjust our notion of what is
1845 // live at a particular safepoint.
1846 if (!allInsertedDefs.empty()) {
1847 fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records);
1848 }
1849 if (PrintBasePointers) {
1850 for (size_t i = 0; i < records.size(); i++) {
1851 struct PartiallyConstructedSafepointRecord &info = records[i];
1852 errs() << "Base Pairs: (w/Relocation)\n";
Philip Reamesf2041322015-02-20 19:26:04 +00001853 for (auto Pair : info.PointerToBase) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001854 errs() << " derived %" << Pair.first->getName() << " base %"
1855 << Pair.second->getName() << "\n";
1856 }
1857 }
1858 }
1859 for (size_t i = 0; i < holders.size(); i++) {
1860 holders[i]->eraseFromParent();
1861 holders[i] = nullptr;
1862 }
1863 holders.clear();
1864
1865 // Now run through and replace the existing statepoints with new ones with
1866 // the live variables listed. We do not yet update uses of the values being
1867 // relocated. We have references to live variables that need to
1868 // survive to the last iteration of this loop. (By construction, the
1869 // previous statepoint can not be a live variable, thus we can and remove
1870 // the old statepoint calls as we go.)
1871 for (size_t i = 0; i < records.size(); i++) {
1872 struct PartiallyConstructedSafepointRecord &info = records[i];
1873 CallSite &CS = toUpdate[i];
1874 makeStatepointExplicit(DT, CS, P, info);
1875 }
1876 toUpdate.clear(); // prevent accident use of invalid CallSites
1877
1878 // In case if we inserted relocates in a different basic block than the
1879 // original safepoint (this can happen for invokes). We need to be sure that
1880 // original values were not used in any of the phi nodes at the
1881 // beginning of basic block containing them. Because we know that all such
1882 // blocks will have single predecessor we can safely assume that all phi
1883 // nodes have single entry (because of normalizeBBForInvokeSafepoint).
1884 // Just remove them all here.
1885 for (size_t i = 0; i < records.size(); i++) {
Philip Reamesf2041322015-02-20 19:26:04 +00001886 Instruction *I = records[i].SafepointBounds.first;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001887
1888 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) {
1889 FoldSingleEntryPHINodes(invoke->getNormalDest());
1890 assert(!isa<PHINode>(invoke->getNormalDest()->begin()));
1891
1892 FoldSingleEntryPHINodes(invoke->getUnwindDest());
1893 assert(!isa<PHINode>(invoke->getUnwindDest()->begin()));
1894 }
1895 }
1896
1897 // Do all the fixups of the original live variables to their relocated selves
1898 std::vector<Value *> live;
1899 for (size_t i = 0; i < records.size(); i++) {
1900 struct PartiallyConstructedSafepointRecord &info = records[i];
1901 // We can't simply save the live set from the original insertion. One of
1902 // the live values might be the result of a call which needs a safepoint.
1903 // That Value* no longer exists and we need to use the new gc_result.
1904 // Thankfully, the liveset is embedded in the statepoint (and updated), so
1905 // we just grab that.
Philip Reamesf2041322015-02-20 19:26:04 +00001906 Statepoint statepoint(info.SafepointBounds.first);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001907 live.insert(live.end(), statepoint.gc_args_begin(),
1908 statepoint.gc_args_end());
1909 }
1910 unique_unsorted(live);
1911
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00001912#ifndef NDEBUG
Philip Reamesd16a9b12015-02-20 01:06:44 +00001913 // sanity check
1914 for (auto ptr : live) {
1915 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type");
1916 }
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00001917#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00001918
1919 relocationViaAlloca(F, DT, live, records);
1920 return !records.empty();
1921}
1922
1923/// Returns true if this function should be rewritten by this pass. The main
1924/// point of this function is as an extension point for custom logic.
1925static bool shouldRewriteStatepointsIn(Function &F) {
1926 // TODO: This should check the GCStrategy
Philip Reames2ef029c2015-02-20 18:56:14 +00001927 if (F.hasGC()) {
1928 const std::string StatepointExampleName("statepoint-example");
1929 return StatepointExampleName == F.getGC();
1930 } else
1931 return false;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001932}
1933
1934bool RewriteStatepointsForGC::runOnFunction(Function &F) {
1935 // Nothing to do for declarations.
1936 if (F.isDeclaration() || F.empty())
1937 return false;
1938
1939 // Policy choice says not to rewrite - the most common reason is that we're
1940 // compiling code without a GCStrategy.
1941 if (!shouldRewriteStatepointsIn(F))
1942 return false;
1943
1944 // Gather all the statepoints which need rewritten.
1945 std::vector<CallSite> ParsePointNeeded;
1946 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end;
1947 itr++) {
1948 // TODO: only the ones with the flag set!
1949 if (isStatepoint(*itr))
1950 ParsePointNeeded.push_back(CallSite(&*itr));
1951 }
1952
1953 // Return early if no work to do.
1954 if (ParsePointNeeded.empty())
1955 return false;
1956
1957 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1958 return insertParsePoints(F, DT, this, ParsePointNeeded);
1959}