blob: 5f25e6b2cb6f94090ecbd8987bf1ee0659c0c95a [file] [log] [blame]
Karthik Bhat76aa6622015-04-20 04:38:33 +00001//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines common loop utility functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/LoopInfo.h"
15#include "llvm/IR/Instructions.h"
16#include "llvm/IR/PatternMatch.h"
17#include "llvm/IR/ValueHandle.h"
18#include "llvm/Support/Debug.h"
Karthik Bhat24e6cc22015-04-23 08:29:20 +000019#include "llvm/Analysis/ScalarEvolution.h"
20#include "llvm/Analysis/ScalarEvolutionExpressions.h"
21#include "llvm/IR/Module.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000022#include "llvm/Transforms/Utils/LoopUtils.h"
23
24using namespace llvm;
25using namespace llvm::PatternMatch;
26
27#define DEBUG_TYPE "loop-utils"
28
29bool ReductionDescriptor::areAllUsesIn(Instruction *I,
30 SmallPtrSetImpl<Instruction *> &Set) {
31 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
32 if (!Set.count(dyn_cast<Instruction>(*Use)))
33 return false;
34 return true;
35}
36
37bool ReductionDescriptor::AddReductionVar(PHINode *Phi, ReductionKind Kind,
38 Loop *TheLoop, bool HasFunNoNaNAttr,
39 ReductionDescriptor &RedDes) {
40 if (Phi->getNumIncomingValues() != 2)
41 return false;
42
43 // Reduction variables are only found in the loop header block.
44 if (Phi->getParent() != TheLoop->getHeader())
45 return false;
46
47 // Obtain the reduction start value from the value that comes from the loop
48 // preheader.
49 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
50
51 // ExitInstruction is the single value which is used outside the loop.
52 // We only allow for a single reduction value to be used outside the loop.
53 // This includes users of the reduction, variables (which form a cycle
54 // which ends in the phi node).
55 Instruction *ExitInstruction = nullptr;
56 // Indicates that we found a reduction operation in our scan.
57 bool FoundReduxOp = false;
58
59 // We start with the PHI node and scan for all of the users of this
60 // instruction. All users must be instructions that can be used as reduction
61 // variables (such as ADD). We must have a single out-of-block user. The cycle
62 // must include the original PHI.
63 bool FoundStartPHI = false;
64
65 // To recognize min/max patterns formed by a icmp select sequence, we store
66 // the number of instruction we saw from the recognized min/max pattern,
67 // to make sure we only see exactly the two instructions.
68 unsigned NumCmpSelectPatternInst = 0;
69 ReductionInstDesc ReduxDesc(false, nullptr);
70
71 SmallPtrSet<Instruction *, 8> VisitedInsts;
72 SmallVector<Instruction *, 8> Worklist;
73 Worklist.push_back(Phi);
74 VisitedInsts.insert(Phi);
75
76 // A value in the reduction can be used:
77 // - By the reduction:
78 // - Reduction operation:
79 // - One use of reduction value (safe).
80 // - Multiple use of reduction value (not safe).
81 // - PHI:
82 // - All uses of the PHI must be the reduction (safe).
83 // - Otherwise, not safe.
84 // - By one instruction outside of the loop (safe).
85 // - By further instructions outside of the loop (not safe).
86 // - By an instruction that is not part of the reduction (not safe).
87 // This is either:
88 // * An instruction type other than PHI or the reduction operation.
89 // * A PHI in the header other than the initial PHI.
90 while (!Worklist.empty()) {
91 Instruction *Cur = Worklist.back();
92 Worklist.pop_back();
93
94 // No Users.
95 // If the instruction has no users then this is a broken chain and can't be
96 // a reduction variable.
97 if (Cur->use_empty())
98 return false;
99
100 bool IsAPhi = isa<PHINode>(Cur);
101
102 // A header PHI use other than the original PHI.
103 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
104 return false;
105
106 // Reductions of instructions such as Div, and Sub is only possible if the
107 // LHS is the reduction variable.
108 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
109 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
110 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
111 return false;
112
113 // Any reduction instruction must be of one of the allowed kinds.
114 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
115 if (!ReduxDesc.isReduction())
116 return false;
117
118 // A reduction operation must only have one use of the reduction value.
119 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
120 hasMultipleUsesOf(Cur, VisitedInsts))
121 return false;
122
123 // All inputs to a PHI node must be a reduction value.
124 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
125 return false;
126
127 if (Kind == RK_IntegerMinMax &&
128 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
129 ++NumCmpSelectPatternInst;
130 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
131 ++NumCmpSelectPatternInst;
132
133 // Check whether we found a reduction operator.
134 FoundReduxOp |= !IsAPhi;
135
136 // Process users of current instruction. Push non-PHI nodes after PHI nodes
137 // onto the stack. This way we are going to have seen all inputs to PHI
138 // nodes once we get to them.
139 SmallVector<Instruction *, 8> NonPHIs;
140 SmallVector<Instruction *, 8> PHIs;
141 for (User *U : Cur->users()) {
142 Instruction *UI = cast<Instruction>(U);
143
144 // Check if we found the exit user.
145 BasicBlock *Parent = UI->getParent();
146 if (!TheLoop->contains(Parent)) {
147 // Exit if you find multiple outside users or if the header phi node is
148 // being used. In this case the user uses the value of the previous
149 // iteration, in which case we would loose "VF-1" iterations of the
150 // reduction operation if we vectorize.
151 if (ExitInstruction != nullptr || Cur == Phi)
152 return false;
153
154 // The instruction used by an outside user must be the last instruction
155 // before we feed back to the reduction phi. Otherwise, we loose VF-1
156 // operations on the value.
157 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
158 return false;
159
160 ExitInstruction = Cur;
161 continue;
162 }
163
164 // Process instructions only once (termination). Each reduction cycle
165 // value must only be used once, except by phi nodes and min/max
166 // reductions which are represented as a cmp followed by a select.
167 ReductionInstDesc IgnoredVal(false, nullptr);
168 if (VisitedInsts.insert(UI).second) {
169 if (isa<PHINode>(UI))
170 PHIs.push_back(UI);
171 else
172 NonPHIs.push_back(UI);
173 } else if (!isa<PHINode>(UI) &&
174 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
175 !isa<SelectInst>(UI)) ||
176 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isReduction()))
177 return false;
178
179 // Remember that we completed the cycle.
180 if (UI == Phi)
181 FoundStartPHI = true;
182 }
183 Worklist.append(PHIs.begin(), PHIs.end());
184 Worklist.append(NonPHIs.begin(), NonPHIs.end());
185 }
186
187 // This means we have seen one but not the other instruction of the
188 // pattern or more than just a select and cmp.
189 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
190 NumCmpSelectPatternInst != 2)
191 return false;
192
193 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
194 return false;
195
196 // We found a reduction var if we have reached the original phi node and we
197 // only have a single instruction with out-of-loop users.
198
199 // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
200 // is saved as part of the ReductionDescriptor.
201
202 // Save the description of this reduction variable.
203 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
204 ReduxDesc.getMinMaxKind());
205
206 RedDes = RD;
207
208 return true;
209}
210
211/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
212/// pattern corresponding to a min(X, Y) or max(X, Y).
213ReductionInstDesc
214ReductionDescriptor::isMinMaxSelectCmpPattern(Instruction *I,
215 ReductionInstDesc &Prev) {
216
217 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
218 "Expect a select instruction");
219 Instruction *Cmp = nullptr;
220 SelectInst *Select = nullptr;
221
222 // We must handle the select(cmp()) as a single instruction. Advance to the
223 // select.
224 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
225 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
226 return ReductionInstDesc(false, I);
227 return ReductionInstDesc(Select, Prev.getMinMaxKind());
228 }
229
230 // Only handle single use cases for now.
231 if (!(Select = dyn_cast<SelectInst>(I)))
232 return ReductionInstDesc(false, I);
233 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
234 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
235 return ReductionInstDesc(false, I);
236 if (!Cmp->hasOneUse())
237 return ReductionInstDesc(false, I);
238
239 Value *CmpLeft;
240 Value *CmpRight;
241
242 // Look for a min/max pattern.
243 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
244 return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMin);
245 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
246 return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMax);
247 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
248 return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMax);
249 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
250 return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMin);
251 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
252 return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin);
253 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
254 return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax);
255 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
256 return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin);
257 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
258 return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax);
259
260 return ReductionInstDesc(false, I);
261}
262
263ReductionInstDesc ReductionDescriptor::isReductionInstr(Instruction *I,
264 ReductionKind Kind,
265 ReductionInstDesc &Prev,
266 bool HasFunNoNaNAttr) {
267 bool FP = I->getType()->isFloatingPointTy();
268 bool FastMath = FP && I->hasUnsafeAlgebra();
269 switch (I->getOpcode()) {
270 default:
271 return ReductionInstDesc(false, I);
272 case Instruction::PHI:
273 if (FP &&
274 (Kind != RK_FloatMult && Kind != RK_FloatAdd && Kind != RK_FloatMinMax))
275 return ReductionInstDesc(false, I);
276 return ReductionInstDesc(I, Prev.getMinMaxKind());
277 case Instruction::Sub:
278 case Instruction::Add:
279 return ReductionInstDesc(Kind == RK_IntegerAdd, I);
280 case Instruction::Mul:
281 return ReductionInstDesc(Kind == RK_IntegerMult, I);
282 case Instruction::And:
283 return ReductionInstDesc(Kind == RK_IntegerAnd, I);
284 case Instruction::Or:
285 return ReductionInstDesc(Kind == RK_IntegerOr, I);
286 case Instruction::Xor:
287 return ReductionInstDesc(Kind == RK_IntegerXor, I);
288 case Instruction::FMul:
289 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
290 case Instruction::FSub:
291 case Instruction::FAdd:
292 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
293 case Instruction::FCmp:
294 case Instruction::ICmp:
295 case Instruction::Select:
296 if (Kind != RK_IntegerMinMax &&
297 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
298 return ReductionInstDesc(false, I);
299 return isMinMaxSelectCmpPattern(I, Prev);
300 }
301}
302
303bool ReductionDescriptor::hasMultipleUsesOf(
304 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
305 unsigned NumUses = 0;
306 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
307 ++Use) {
308 if (Insts.count(dyn_cast<Instruction>(*Use)))
309 ++NumUses;
310 if (NumUses > 1)
311 return true;
312 }
313
314 return false;
315}
316bool ReductionDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
317 ReductionDescriptor &RedDes) {
318
319 bool HasFunNoNaNAttr = false;
320 BasicBlock *Header = TheLoop->getHeader();
321 Function &F = *Header->getParent();
322 if (F.hasFnAttribute("no-nans-fp-math"))
323 HasFunNoNaNAttr =
324 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
325
326 if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
327 DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
328 return true;
329 }
330 if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
331 DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
332 return true;
333 }
334 if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
335 DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
336 return true;
337 }
338 if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
339 DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
340 return true;
341 }
342 if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
343 DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
344 return true;
345 }
346 if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
347 RedDes)) {
348 DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
349 return true;
350 }
351 if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
352 DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
353 return true;
354 }
355 if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
356 DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
357 return true;
358 }
359 if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
360 DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
361 return true;
362 }
363 // Not a reduction of known type.
364 return false;
365}
366
367/// This function returns the identity element (or neutral element) for
368/// the operation K.
369Constant *ReductionDescriptor::getReductionIdentity(ReductionKind K, Type *Tp) {
370 switch (K) {
371 case RK_IntegerXor:
372 case RK_IntegerAdd:
373 case RK_IntegerOr:
374 // Adding, Xoring, Oring zero to a number does not change it.
375 return ConstantInt::get(Tp, 0);
376 case RK_IntegerMult:
377 // Multiplying a number by 1 does not change it.
378 return ConstantInt::get(Tp, 1);
379 case RK_IntegerAnd:
380 // AND-ing a number with an all-1 value does not change it.
381 return ConstantInt::get(Tp, -1, true);
382 case RK_FloatMult:
383 // Multiplying a number by 1 does not change it.
384 return ConstantFP::get(Tp, 1.0L);
385 case RK_FloatAdd:
386 // Adding zero to a number does not change it.
387 return ConstantFP::get(Tp, 0.0L);
388 default:
389 llvm_unreachable("Unknown reduction kind");
390 }
391}
392
393/// This function translates the reduction kind to an LLVM binary operator.
394unsigned ReductionDescriptor::getReductionBinOp(ReductionKind Kind) {
395 switch (Kind) {
396 case RK_IntegerAdd:
397 return Instruction::Add;
398 case RK_IntegerMult:
399 return Instruction::Mul;
400 case RK_IntegerOr:
401 return Instruction::Or;
402 case RK_IntegerAnd:
403 return Instruction::And;
404 case RK_IntegerXor:
405 return Instruction::Xor;
406 case RK_FloatMult:
407 return Instruction::FMul;
408 case RK_FloatAdd:
409 return Instruction::FAdd;
410 case RK_IntegerMinMax:
411 return Instruction::ICmp;
412 case RK_FloatMinMax:
413 return Instruction::FCmp;
414 default:
415 llvm_unreachable("Unknown reduction operation");
416 }
417}
418
419Value *
420ReductionDescriptor::createMinMaxOp(IRBuilder<> &Builder,
421 ReductionInstDesc::MinMaxReductionKind RK,
422 Value *Left, Value *Right) {
423 CmpInst::Predicate P = CmpInst::ICMP_NE;
424 switch (RK) {
425 default:
426 llvm_unreachable("Unknown min/max reduction kind");
427 case ReductionInstDesc::MRK_UIntMin:
428 P = CmpInst::ICMP_ULT;
429 break;
430 case ReductionInstDesc::MRK_UIntMax:
431 P = CmpInst::ICMP_UGT;
432 break;
433 case ReductionInstDesc::MRK_SIntMin:
434 P = CmpInst::ICMP_SLT;
435 break;
436 case ReductionInstDesc::MRK_SIntMax:
437 P = CmpInst::ICMP_SGT;
438 break;
439 case ReductionInstDesc::MRK_FloatMin:
440 P = CmpInst::FCMP_OLT;
441 break;
442 case ReductionInstDesc::MRK_FloatMax:
443 P = CmpInst::FCMP_OGT;
444 break;
445 }
446
447 Value *Cmp;
448 if (RK == ReductionInstDesc::MRK_FloatMin ||
449 RK == ReductionInstDesc::MRK_FloatMax)
450 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
451 else
452 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
453
454 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
455 return Select;
456}
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000457
458bool llvm::isInductionPHI(PHINode *Phi, ScalarEvolution *SE,
459 ConstantInt *&StepValue) {
460 Type *PhiTy = Phi->getType();
461 // We only handle integer and pointer inductions variables.
462 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
463 return false;
464
465 // Check that the PHI is consecutive.
466 const SCEV *PhiScev = SE->getSCEV(Phi);
467 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
468 if (!AR) {
469 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
470 return false;
471 }
472
473 const SCEV *Step = AR->getStepRecurrence(*SE);
474 // Calculate the pointer stride and check if it is consecutive.
475 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
476 if (!C)
477 return false;
478
479 ConstantInt *CV = C->getValue();
480 if (PhiTy->isIntegerTy()) {
481 StepValue = CV;
482 return true;
483 }
484
485 assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
486 Type *PointerElementType = PhiTy->getPointerElementType();
487 // The pointer stride cannot be determined if the pointer element type is not
488 // sized.
489 if (!PointerElementType->isSized())
490 return false;
491
492 const DataLayout &DL = Phi->getModule()->getDataLayout();
493 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
David Majnemerb58f32f2015-06-05 10:52:40 +0000494 if (!Size)
495 return false;
496
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000497 int64_t CVSize = CV->getSExtValue();
498 if (CVSize % Size)
499 return false;
500 StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size);
501 return true;
502}