blob: 2dc44eb35559613182241949de4b709749212b47 [file] [log] [blame]
Guy Benyei11169dd2012-12-18 14:30:41 +00001//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14// http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/ABI.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33
34#define MANGLE_CHECKER 0
35
36#if MANGLE_CHECKER
37#include <cxxabi.h>
38#endif
39
40using namespace clang;
41
42namespace {
43
44/// \brief Retrieve the declaration context that should be used when mangling
45/// the given declaration.
46static const DeclContext *getEffectiveDeclContext(const Decl *D) {
47 // The ABI assumes that lambda closure types that occur within
48 // default arguments live in the context of the function. However, due to
49 // the way in which Clang parses and creates function declarations, this is
50 // not the case: the lambda closure type ends up living in the context
51 // where the function itself resides, because the function declaration itself
52 // had not yet been created. Fix the context here.
53 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
54 if (RD->isLambda())
55 if (ParmVarDecl *ContextParam
56 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
57 return ContextParam->getDeclContext();
58 }
59
Eli Friedman95f50122013-07-02 17:52:28 +000060 const DeclContext *DC = D->getDeclContext();
61 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
62 return getEffectiveDeclContext(CD);
63
64 return DC;
Guy Benyei11169dd2012-12-18 14:30:41 +000065}
66
67static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
68 return getEffectiveDeclContext(cast<Decl>(DC));
69}
Eli Friedman95f50122013-07-02 17:52:28 +000070
71static bool isLocalContainerContext(const DeclContext *DC) {
72 return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
73}
74
Eli Friedmaneecc09a2013-07-05 20:27:40 +000075static const RecordDecl *GetLocalClassDecl(const Decl *D) {
Eli Friedman92821742013-07-02 02:01:18 +000076 const DeclContext *DC = getEffectiveDeclContext(D);
Guy Benyei11169dd2012-12-18 14:30:41 +000077 while (!DC->isNamespace() && !DC->isTranslationUnit()) {
Eli Friedman95f50122013-07-02 17:52:28 +000078 if (isLocalContainerContext(DC))
Eli Friedmaneecc09a2013-07-05 20:27:40 +000079 return dyn_cast<RecordDecl>(D);
Eli Friedman92821742013-07-02 02:01:18 +000080 D = cast<Decl>(DC);
81 DC = getEffectiveDeclContext(D);
Guy Benyei11169dd2012-12-18 14:30:41 +000082 }
83 return 0;
84}
85
86static const FunctionDecl *getStructor(const FunctionDecl *fn) {
87 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
88 return ftd->getTemplatedDecl();
89
90 return fn;
91}
92
93static const NamedDecl *getStructor(const NamedDecl *decl) {
94 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
95 return (fn ? getStructor(fn) : decl);
96}
97
98static const unsigned UnknownArity = ~0U;
99
100class ItaniumMangleContext : public MangleContext {
101 llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000102 typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
103 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
Guy Benyei11169dd2012-12-18 14:30:41 +0000104 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
105
106public:
107 explicit ItaniumMangleContext(ASTContext &Context,
108 DiagnosticsEngine &Diags)
109 : MangleContext(Context, Diags) { }
110
111 uint64_t getAnonymousStructId(const TagDecl *TD) {
112 std::pair<llvm::DenseMap<const TagDecl *,
113 uint64_t>::iterator, bool> Result =
114 AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
115 return Result.first->second;
116 }
117
Guy Benyei11169dd2012-12-18 14:30:41 +0000118 /// @name Mangler Entry Points
119 /// @{
120
121 bool shouldMangleDeclName(const NamedDecl *D);
122 void mangleName(const NamedDecl *D, raw_ostream &);
123 void mangleThunk(const CXXMethodDecl *MD,
124 const ThunkInfo &Thunk,
125 raw_ostream &);
126 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
127 const ThisAdjustment &ThisAdjustment,
128 raw_ostream &);
129 void mangleReferenceTemporary(const VarDecl *D,
130 raw_ostream &);
131 void mangleCXXVTable(const CXXRecordDecl *RD,
132 raw_ostream &);
133 void mangleCXXVTT(const CXXRecordDecl *RD,
134 raw_ostream &);
Reid Kleckner7810af02013-06-19 15:20:38 +0000135 void mangleCXXVBTable(const CXXRecordDecl *Derived,
136 ArrayRef<const CXXRecordDecl *> BasePath,
137 raw_ostream &Out);
Guy Benyei11169dd2012-12-18 14:30:41 +0000138 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
139 const CXXRecordDecl *Type,
140 raw_ostream &);
141 void mangleCXXRTTI(QualType T, raw_ostream &);
142 void mangleCXXRTTIName(QualType T, raw_ostream &);
143 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
144 raw_ostream &);
145 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
146 raw_ostream &);
147
148 void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
Richard Smith2fd1d7a2013-04-19 16:42:07 +0000149 void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &);
150 void mangleItaniumThreadLocalWrapper(const VarDecl *D, raw_ostream &);
Guy Benyei11169dd2012-12-18 14:30:41 +0000151
Guy Benyei11169dd2012-12-18 14:30:41 +0000152 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000153 // Lambda closure types are already numbered.
Guy Benyei11169dd2012-12-18 14:30:41 +0000154 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000155 if (RD->isLambda())
Guy Benyei11169dd2012-12-18 14:30:41 +0000156 return false;
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000157
158 // Anonymous tags are already numbered.
159 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
160 if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
161 return false;
162 }
163
164 // Use the canonical number for externally visible decls.
165 if (ND->isExternallyVisible()) {
166 unsigned discriminator = getASTContext().getManglingNumber(ND);
167 if (discriminator == 1)
168 return false;
169 disc = discriminator - 2;
170 return true;
171 }
172
173 // Make up a reasonable number for internal decls.
Guy Benyei11169dd2012-12-18 14:30:41 +0000174 unsigned &discriminator = Uniquifier[ND];
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000175 if (!discriminator) {
176 const DeclContext *DC = getEffectiveDeclContext(ND);
177 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
178 }
Guy Benyei11169dd2012-12-18 14:30:41 +0000179 if (discriminator == 1)
180 return false;
181 disc = discriminator-2;
182 return true;
183 }
184 /// @}
185};
186
187/// CXXNameMangler - Manage the mangling of a single name.
188class CXXNameMangler {
189 ItaniumMangleContext &Context;
190 raw_ostream &Out;
191
192 /// The "structor" is the top-level declaration being mangled, if
193 /// that's not a template specialization; otherwise it's the pattern
194 /// for that specialization.
195 const NamedDecl *Structor;
196 unsigned StructorType;
197
198 /// SeqID - The next subsitution sequence number.
199 unsigned SeqID;
200
201 class FunctionTypeDepthState {
202 unsigned Bits;
203
204 enum { InResultTypeMask = 1 };
205
206 public:
207 FunctionTypeDepthState() : Bits(0) {}
208
209 /// The number of function types we're inside.
210 unsigned getDepth() const {
211 return Bits >> 1;
212 }
213
214 /// True if we're in the return type of the innermost function type.
215 bool isInResultType() const {
216 return Bits & InResultTypeMask;
217 }
218
219 FunctionTypeDepthState push() {
220 FunctionTypeDepthState tmp = *this;
221 Bits = (Bits & ~InResultTypeMask) + 2;
222 return tmp;
223 }
224
225 void enterResultType() {
226 Bits |= InResultTypeMask;
227 }
228
229 void leaveResultType() {
230 Bits &= ~InResultTypeMask;
231 }
232
233 void pop(FunctionTypeDepthState saved) {
234 assert(getDepth() == saved.getDepth() + 1);
235 Bits = saved.Bits;
236 }
237
238 } FunctionTypeDepth;
239
240 llvm::DenseMap<uintptr_t, unsigned> Substitutions;
241
242 ASTContext &getASTContext() const { return Context.getASTContext(); }
243
244public:
245 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
246 const NamedDecl *D = 0)
247 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
248 SeqID(0) {
249 // These can't be mangled without a ctor type or dtor type.
250 assert(!D || (!isa<CXXDestructorDecl>(D) &&
251 !isa<CXXConstructorDecl>(D)));
252 }
253 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
254 const CXXConstructorDecl *D, CXXCtorType Type)
255 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
256 SeqID(0) { }
257 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
258 const CXXDestructorDecl *D, CXXDtorType Type)
259 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
260 SeqID(0) { }
261
262#if MANGLE_CHECKER
263 ~CXXNameMangler() {
264 if (Out.str()[0] == '\01')
265 return;
266
267 int status = 0;
268 char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
269 assert(status == 0 && "Could not demangle mangled name!");
270 free(result);
271 }
272#endif
273 raw_ostream &getStream() { return Out; }
274
275 void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
276 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
277 void mangleNumber(const llvm::APSInt &I);
278 void mangleNumber(int64_t Number);
279 void mangleFloat(const llvm::APFloat &F);
280 void mangleFunctionEncoding(const FunctionDecl *FD);
281 void mangleName(const NamedDecl *ND);
282 void mangleType(QualType T);
283 void mangleNameOrStandardSubstitution(const NamedDecl *ND);
284
285private:
286 bool mangleSubstitution(const NamedDecl *ND);
287 bool mangleSubstitution(QualType T);
288 bool mangleSubstitution(TemplateName Template);
289 bool mangleSubstitution(uintptr_t Ptr);
290
291 void mangleExistingSubstitution(QualType type);
292 void mangleExistingSubstitution(TemplateName name);
293
294 bool mangleStandardSubstitution(const NamedDecl *ND);
295
296 void addSubstitution(const NamedDecl *ND) {
297 ND = cast<NamedDecl>(ND->getCanonicalDecl());
298
299 addSubstitution(reinterpret_cast<uintptr_t>(ND));
300 }
301 void addSubstitution(QualType T);
302 void addSubstitution(TemplateName Template);
303 void addSubstitution(uintptr_t Ptr);
304
305 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
306 NamedDecl *firstQualifierLookup,
307 bool recursive = false);
308 void mangleUnresolvedName(NestedNameSpecifier *qualifier,
309 NamedDecl *firstQualifierLookup,
310 DeclarationName name,
311 unsigned KnownArity = UnknownArity);
312
313 void mangleName(const TemplateDecl *TD,
314 const TemplateArgument *TemplateArgs,
315 unsigned NumTemplateArgs);
316 void mangleUnqualifiedName(const NamedDecl *ND) {
317 mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
318 }
319 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
320 unsigned KnownArity);
321 void mangleUnscopedName(const NamedDecl *ND);
322 void mangleUnscopedTemplateName(const TemplateDecl *ND);
323 void mangleUnscopedTemplateName(TemplateName);
324 void mangleSourceName(const IdentifierInfo *II);
Eli Friedman95f50122013-07-02 17:52:28 +0000325 void mangleLocalName(const Decl *D);
326 void mangleBlockForPrefix(const BlockDecl *Block);
327 void mangleUnqualifiedBlock(const BlockDecl *Block);
Guy Benyei11169dd2012-12-18 14:30:41 +0000328 void mangleLambda(const CXXRecordDecl *Lambda);
329 void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
330 bool NoFunction=false);
331 void mangleNestedName(const TemplateDecl *TD,
332 const TemplateArgument *TemplateArgs,
333 unsigned NumTemplateArgs);
334 void manglePrefix(NestedNameSpecifier *qualifier);
335 void manglePrefix(const DeclContext *DC, bool NoFunction=false);
336 void manglePrefix(QualType type);
Eli Friedman86af13f02013-07-05 18:41:30 +0000337 void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
Guy Benyei11169dd2012-12-18 14:30:41 +0000338 void mangleTemplatePrefix(TemplateName Template);
339 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
340 void mangleQualifiers(Qualifiers Quals);
341 void mangleRefQualifier(RefQualifierKind RefQualifier);
342
343 void mangleObjCMethodName(const ObjCMethodDecl *MD);
344
345 // Declare manglers for every type class.
346#define ABSTRACT_TYPE(CLASS, PARENT)
347#define NON_CANONICAL_TYPE(CLASS, PARENT)
348#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
349#include "clang/AST/TypeNodes.def"
350
351 void mangleType(const TagType*);
352 void mangleType(TemplateName);
353 void mangleBareFunctionType(const FunctionType *T,
354 bool MangleReturnType);
355 void mangleNeonVectorType(const VectorType *T);
356
357 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
358 void mangleMemberExpr(const Expr *base, bool isArrow,
359 NestedNameSpecifier *qualifier,
360 NamedDecl *firstQualifierLookup,
361 DeclarationName name,
362 unsigned knownArity);
363 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
364 void mangleCXXCtorType(CXXCtorType T);
365 void mangleCXXDtorType(CXXDtorType T);
366
367 void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
368 void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
369 unsigned NumTemplateArgs);
370 void mangleTemplateArgs(const TemplateArgumentList &AL);
371 void mangleTemplateArg(TemplateArgument A);
372
373 void mangleTemplateParameter(unsigned Index);
374
375 void mangleFunctionParam(const ParmVarDecl *parm);
376};
377
378}
379
Guy Benyei11169dd2012-12-18 14:30:41 +0000380bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
381 // In C, functions with no attributes never need to be mangled. Fastpath them.
382 if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
383 return false;
384
385 // Any decl can be declared with __asm("foo") on it, and this takes precedence
386 // over all other naming in the .o file.
387 if (D->hasAttr<AsmLabelAttr>())
388 return true;
389
Guy Benyei11169dd2012-12-18 14:30:41 +0000390 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000391 if (FD) {
392 LanguageLinkage L = FD->getLanguageLinkage();
393 // Overloadable functions need mangling.
394 if (FD->hasAttr<OverloadableAttr>())
395 return true;
396
Rafael Espindola3e0e33d2013-02-14 15:38:59 +0000397 // "main" is not mangled.
398 if (FD->isMain())
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000399 return false;
400
401 // C++ functions and those whose names are not a simple identifier need
402 // mangling.
403 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
404 return true;
Rafael Espindola46d2b6b2013-02-14 03:31:26 +0000405
Rafael Espindola3e0e33d2013-02-14 15:38:59 +0000406 // C functions are not mangled.
407 if (L == CLanguageLinkage)
408 return false;
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000409 }
Guy Benyei11169dd2012-12-18 14:30:41 +0000410
411 // Otherwise, no mangling is done outside C++ mode.
412 if (!getASTContext().getLangOpts().CPlusPlus)
413 return false;
414
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000415 const VarDecl *VD = dyn_cast<VarDecl>(D);
416 if (VD) {
417 // C variables are not mangled.
418 if (VD->isExternC())
419 return false;
420
421 // Variables at global scope with non-internal linkage are not mangled
Guy Benyei11169dd2012-12-18 14:30:41 +0000422 const DeclContext *DC = getEffectiveDeclContext(D);
423 // Check for extern variable declared locally.
424 if (DC->isFunctionOrMethod() && D->hasLinkage())
425 while (!DC->isNamespace() && !DC->isTranslationUnit())
426 DC = getEffectiveParentContext(DC);
Rafael Espindola3ae00052013-05-13 00:12:11 +0000427 if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage)
Guy Benyei11169dd2012-12-18 14:30:41 +0000428 return false;
429 }
430
Guy Benyei11169dd2012-12-18 14:30:41 +0000431 return true;
432}
433
434void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
435 // Any decl can be declared with __asm("foo") on it, and this takes precedence
436 // over all other naming in the .o file.
437 if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
438 // If we have an asm name, then we use it as the mangling.
439
440 // Adding the prefix can cause problems when one file has a "foo" and
441 // another has a "\01foo". That is known to happen on ELF with the
442 // tricks normally used for producing aliases (PR9177). Fortunately the
443 // llvm mangler on ELF is a nop, so we can just avoid adding the \01
444 // marker. We also avoid adding the marker if this is an alias for an
445 // LLVM intrinsic.
446 StringRef UserLabelPrefix =
447 getASTContext().getTargetInfo().getUserLabelPrefix();
448 if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
449 Out << '\01'; // LLVM IR Marker for __asm("foo")
450
451 Out << ALA->getLabel();
452 return;
453 }
454
455 // <mangled-name> ::= _Z <encoding>
456 // ::= <data name>
457 // ::= <special-name>
458 Out << Prefix;
459 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
460 mangleFunctionEncoding(FD);
461 else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
462 mangleName(VD);
463 else
464 mangleName(cast<FieldDecl>(D));
465}
466
467void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
468 // <encoding> ::= <function name> <bare-function-type>
469 mangleName(FD);
470
471 // Don't mangle in the type if this isn't a decl we should typically mangle.
472 if (!Context.shouldMangleDeclName(FD))
473 return;
474
475 // Whether the mangling of a function type includes the return type depends on
476 // the context and the nature of the function. The rules for deciding whether
477 // the return type is included are:
478 //
479 // 1. Template functions (names or types) have return types encoded, with
480 // the exceptions listed below.
481 // 2. Function types not appearing as part of a function name mangling,
482 // e.g. parameters, pointer types, etc., have return type encoded, with the
483 // exceptions listed below.
484 // 3. Non-template function names do not have return types encoded.
485 //
486 // The exceptions mentioned in (1) and (2) above, for which the return type is
487 // never included, are
488 // 1. Constructors.
489 // 2. Destructors.
490 // 3. Conversion operator functions, e.g. operator int.
491 bool MangleReturnType = false;
492 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
493 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
494 isa<CXXConversionDecl>(FD)))
495 MangleReturnType = true;
496
497 // Mangle the type of the primary template.
498 FD = PrimaryTemplate->getTemplatedDecl();
499 }
500
501 mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
502 MangleReturnType);
503}
504
505static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
506 while (isa<LinkageSpecDecl>(DC)) {
507 DC = getEffectiveParentContext(DC);
508 }
509
510 return DC;
511}
512
513/// isStd - Return whether a given namespace is the 'std' namespace.
514static bool isStd(const NamespaceDecl *NS) {
515 if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
516 ->isTranslationUnit())
517 return false;
518
519 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
520 return II && II->isStr("std");
521}
522
523// isStdNamespace - Return whether a given decl context is a toplevel 'std'
524// namespace.
525static bool isStdNamespace(const DeclContext *DC) {
526 if (!DC->isNamespace())
527 return false;
528
529 return isStd(cast<NamespaceDecl>(DC));
530}
531
532static const TemplateDecl *
533isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
534 // Check if we have a function template.
535 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
536 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
537 TemplateArgs = FD->getTemplateSpecializationArgs();
538 return TD;
539 }
540 }
541
542 // Check if we have a class template.
543 if (const ClassTemplateSpecializationDecl *Spec =
544 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
545 TemplateArgs = &Spec->getTemplateArgs();
546 return Spec->getSpecializedTemplate();
547 }
548
549 return 0;
550}
551
552static bool isLambda(const NamedDecl *ND) {
553 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
554 if (!Record)
555 return false;
556
557 return Record->isLambda();
558}
559
560void CXXNameMangler::mangleName(const NamedDecl *ND) {
561 // <name> ::= <nested-name>
562 // ::= <unscoped-name>
563 // ::= <unscoped-template-name> <template-args>
564 // ::= <local-name>
565 //
566 const DeclContext *DC = getEffectiveDeclContext(ND);
567
568 // If this is an extern variable declared locally, the relevant DeclContext
569 // is that of the containing namespace, or the translation unit.
570 // FIXME: This is a hack; extern variables declared locally should have
571 // a proper semantic declaration context!
Eli Friedman95f50122013-07-02 17:52:28 +0000572 if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
Guy Benyei11169dd2012-12-18 14:30:41 +0000573 while (!DC->isNamespace() && !DC->isTranslationUnit())
574 DC = getEffectiveParentContext(DC);
575 else if (GetLocalClassDecl(ND)) {
576 mangleLocalName(ND);
577 return;
578 }
579
580 DC = IgnoreLinkageSpecDecls(DC);
581
582 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
583 // Check if we have a template.
584 const TemplateArgumentList *TemplateArgs = 0;
585 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
586 mangleUnscopedTemplateName(TD);
587 mangleTemplateArgs(*TemplateArgs);
588 return;
589 }
590
591 mangleUnscopedName(ND);
592 return;
593 }
594
Eli Friedman95f50122013-07-02 17:52:28 +0000595 if (isLocalContainerContext(DC)) {
Guy Benyei11169dd2012-12-18 14:30:41 +0000596 mangleLocalName(ND);
597 return;
598 }
599
600 mangleNestedName(ND, DC);
601}
602void CXXNameMangler::mangleName(const TemplateDecl *TD,
603 const TemplateArgument *TemplateArgs,
604 unsigned NumTemplateArgs) {
605 const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
606
607 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
608 mangleUnscopedTemplateName(TD);
609 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
610 } else {
611 mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
612 }
613}
614
615void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
616 // <unscoped-name> ::= <unqualified-name>
617 // ::= St <unqualified-name> # ::std::
618
619 if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
620 Out << "St";
621
622 mangleUnqualifiedName(ND);
623}
624
625void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
626 // <unscoped-template-name> ::= <unscoped-name>
627 // ::= <substitution>
628 if (mangleSubstitution(ND))
629 return;
630
631 // <template-template-param> ::= <template-param>
632 if (const TemplateTemplateParmDecl *TTP
633 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
634 mangleTemplateParameter(TTP->getIndex());
635 return;
636 }
637
638 mangleUnscopedName(ND->getTemplatedDecl());
639 addSubstitution(ND);
640}
641
642void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
643 // <unscoped-template-name> ::= <unscoped-name>
644 // ::= <substitution>
645 if (TemplateDecl *TD = Template.getAsTemplateDecl())
646 return mangleUnscopedTemplateName(TD);
647
648 if (mangleSubstitution(Template))
649 return;
650
651 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
652 assert(Dependent && "Not a dependent template name?");
653 if (const IdentifierInfo *Id = Dependent->getIdentifier())
654 mangleSourceName(Id);
655 else
656 mangleOperatorName(Dependent->getOperator(), UnknownArity);
657
658 addSubstitution(Template);
659}
660
661void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
662 // ABI:
663 // Floating-point literals are encoded using a fixed-length
664 // lowercase hexadecimal string corresponding to the internal
665 // representation (IEEE on Itanium), high-order bytes first,
666 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
667 // on Itanium.
668 // The 'without leading zeroes' thing seems to be an editorial
669 // mistake; see the discussion on cxx-abi-dev beginning on
670 // 2012-01-16.
671
672 // Our requirements here are just barely weird enough to justify
673 // using a custom algorithm instead of post-processing APInt::toString().
674
675 llvm::APInt valueBits = f.bitcastToAPInt();
676 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
677 assert(numCharacters != 0);
678
679 // Allocate a buffer of the right number of characters.
Dmitri Gribenkof8579502013-01-12 19:30:44 +0000680 SmallVector<char, 20> buffer;
Guy Benyei11169dd2012-12-18 14:30:41 +0000681 buffer.set_size(numCharacters);
682
683 // Fill the buffer left-to-right.
684 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
685 // The bit-index of the next hex digit.
686 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
687
688 // Project out 4 bits starting at 'digitIndex'.
689 llvm::integerPart hexDigit
690 = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
691 hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
692 hexDigit &= 0xF;
693
694 // Map that over to a lowercase hex digit.
695 static const char charForHex[16] = {
696 '0', '1', '2', '3', '4', '5', '6', '7',
697 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
698 };
699 buffer[stringIndex] = charForHex[hexDigit];
700 }
701
702 Out.write(buffer.data(), numCharacters);
703}
704
705void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
706 if (Value.isSigned() && Value.isNegative()) {
707 Out << 'n';
708 Value.abs().print(Out, /*signed*/ false);
709 } else {
710 Value.print(Out, /*signed*/ false);
711 }
712}
713
714void CXXNameMangler::mangleNumber(int64_t Number) {
715 // <number> ::= [n] <non-negative decimal integer>
716 if (Number < 0) {
717 Out << 'n';
718 Number = -Number;
719 }
720
721 Out << Number;
722}
723
724void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
725 // <call-offset> ::= h <nv-offset> _
726 // ::= v <v-offset> _
727 // <nv-offset> ::= <offset number> # non-virtual base override
728 // <v-offset> ::= <offset number> _ <virtual offset number>
729 // # virtual base override, with vcall offset
730 if (!Virtual) {
731 Out << 'h';
732 mangleNumber(NonVirtual);
733 Out << '_';
734 return;
735 }
736
737 Out << 'v';
738 mangleNumber(NonVirtual);
739 Out << '_';
740 mangleNumber(Virtual);
741 Out << '_';
742}
743
744void CXXNameMangler::manglePrefix(QualType type) {
745 if (const TemplateSpecializationType *TST =
746 type->getAs<TemplateSpecializationType>()) {
747 if (!mangleSubstitution(QualType(TST, 0))) {
748 mangleTemplatePrefix(TST->getTemplateName());
749
750 // FIXME: GCC does not appear to mangle the template arguments when
751 // the template in question is a dependent template name. Should we
752 // emulate that badness?
753 mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
754 addSubstitution(QualType(TST, 0));
755 }
756 } else if (const DependentTemplateSpecializationType *DTST
757 = type->getAs<DependentTemplateSpecializationType>()) {
758 TemplateName Template
759 = getASTContext().getDependentTemplateName(DTST->getQualifier(),
760 DTST->getIdentifier());
761 mangleTemplatePrefix(Template);
762
763 // FIXME: GCC does not appear to mangle the template arguments when
764 // the template in question is a dependent template name. Should we
765 // emulate that badness?
766 mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
767 } else {
768 // We use the QualType mangle type variant here because it handles
769 // substitutions.
770 mangleType(type);
771 }
772}
773
774/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
775///
776/// \param firstQualifierLookup - the entity found by unqualified lookup
777/// for the first name in the qualifier, if this is for a member expression
778/// \param recursive - true if this is being called recursively,
779/// i.e. if there is more prefix "to the right".
780void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
781 NamedDecl *firstQualifierLookup,
782 bool recursive) {
783
784 // x, ::x
785 // <unresolved-name> ::= [gs] <base-unresolved-name>
786
787 // T::x / decltype(p)::x
788 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
789
790 // T::N::x /decltype(p)::N::x
791 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
792 // <base-unresolved-name>
793
794 // A::x, N::y, A<T>::z; "gs" means leading "::"
795 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
796 // <base-unresolved-name>
797
798 switch (qualifier->getKind()) {
799 case NestedNameSpecifier::Global:
800 Out << "gs";
801
802 // We want an 'sr' unless this is the entire NNS.
803 if (recursive)
804 Out << "sr";
805
806 // We never want an 'E' here.
807 return;
808
809 case NestedNameSpecifier::Namespace:
810 if (qualifier->getPrefix())
811 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
812 /*recursive*/ true);
813 else
814 Out << "sr";
815 mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
816 break;
817 case NestedNameSpecifier::NamespaceAlias:
818 if (qualifier->getPrefix())
819 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
820 /*recursive*/ true);
821 else
822 Out << "sr";
823 mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
824 break;
825
826 case NestedNameSpecifier::TypeSpec:
827 case NestedNameSpecifier::TypeSpecWithTemplate: {
828 const Type *type = qualifier->getAsType();
829
830 // We only want to use an unresolved-type encoding if this is one of:
831 // - a decltype
832 // - a template type parameter
833 // - a template template parameter with arguments
834 // In all of these cases, we should have no prefix.
835 if (qualifier->getPrefix()) {
836 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
837 /*recursive*/ true);
838 } else {
839 // Otherwise, all the cases want this.
840 Out << "sr";
841 }
842
843 // Only certain other types are valid as prefixes; enumerate them.
844 switch (type->getTypeClass()) {
845 case Type::Builtin:
846 case Type::Complex:
Reid Kleckner8a365022013-06-24 17:51:48 +0000847 case Type::Decayed:
Guy Benyei11169dd2012-12-18 14:30:41 +0000848 case Type::Pointer:
849 case Type::BlockPointer:
850 case Type::LValueReference:
851 case Type::RValueReference:
852 case Type::MemberPointer:
853 case Type::ConstantArray:
854 case Type::IncompleteArray:
855 case Type::VariableArray:
856 case Type::DependentSizedArray:
857 case Type::DependentSizedExtVector:
858 case Type::Vector:
859 case Type::ExtVector:
860 case Type::FunctionProto:
861 case Type::FunctionNoProto:
862 case Type::Enum:
863 case Type::Paren:
864 case Type::Elaborated:
865 case Type::Attributed:
866 case Type::Auto:
867 case Type::PackExpansion:
868 case Type::ObjCObject:
869 case Type::ObjCInterface:
870 case Type::ObjCObjectPointer:
871 case Type::Atomic:
872 llvm_unreachable("type is illegal as a nested name specifier");
873
874 case Type::SubstTemplateTypeParmPack:
875 // FIXME: not clear how to mangle this!
876 // template <class T...> class A {
877 // template <class U...> void foo(decltype(T::foo(U())) x...);
878 // };
879 Out << "_SUBSTPACK_";
880 break;
881
882 // <unresolved-type> ::= <template-param>
883 // ::= <decltype>
884 // ::= <template-template-param> <template-args>
885 // (this last is not official yet)
886 case Type::TypeOfExpr:
887 case Type::TypeOf:
888 case Type::Decltype:
889 case Type::TemplateTypeParm:
890 case Type::UnaryTransform:
891 case Type::SubstTemplateTypeParm:
892 unresolvedType:
893 assert(!qualifier->getPrefix());
894
895 // We only get here recursively if we're followed by identifiers.
896 if (recursive) Out << 'N';
897
898 // This seems to do everything we want. It's not really
899 // sanctioned for a substituted template parameter, though.
900 mangleType(QualType(type, 0));
901
902 // We never want to print 'E' directly after an unresolved-type,
903 // so we return directly.
904 return;
905
906 case Type::Typedef:
907 mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
908 break;
909
910 case Type::UnresolvedUsing:
911 mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
912 ->getIdentifier());
913 break;
914
915 case Type::Record:
916 mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
917 break;
918
919 case Type::TemplateSpecialization: {
920 const TemplateSpecializationType *tst
921 = cast<TemplateSpecializationType>(type);
922 TemplateName name = tst->getTemplateName();
923 switch (name.getKind()) {
924 case TemplateName::Template:
925 case TemplateName::QualifiedTemplate: {
926 TemplateDecl *temp = name.getAsTemplateDecl();
927
928 // If the base is a template template parameter, this is an
929 // unresolved type.
930 assert(temp && "no template for template specialization type");
931 if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
932
933 mangleSourceName(temp->getIdentifier());
934 break;
935 }
936
937 case TemplateName::OverloadedTemplate:
938 case TemplateName::DependentTemplate:
939 llvm_unreachable("invalid base for a template specialization type");
940
941 case TemplateName::SubstTemplateTemplateParm: {
942 SubstTemplateTemplateParmStorage *subst
943 = name.getAsSubstTemplateTemplateParm();
944 mangleExistingSubstitution(subst->getReplacement());
945 break;
946 }
947
948 case TemplateName::SubstTemplateTemplateParmPack: {
949 // FIXME: not clear how to mangle this!
950 // template <template <class U> class T...> class A {
951 // template <class U...> void foo(decltype(T<U>::foo) x...);
952 // };
953 Out << "_SUBSTPACK_";
954 break;
955 }
956 }
957
958 mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
959 break;
960 }
961
962 case Type::InjectedClassName:
963 mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
964 ->getIdentifier());
965 break;
966
967 case Type::DependentName:
968 mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
969 break;
970
971 case Type::DependentTemplateSpecialization: {
972 const DependentTemplateSpecializationType *tst
973 = cast<DependentTemplateSpecializationType>(type);
974 mangleSourceName(tst->getIdentifier());
975 mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
976 break;
977 }
978 }
979 break;
980 }
981
982 case NestedNameSpecifier::Identifier:
983 // Member expressions can have these without prefixes.
984 if (qualifier->getPrefix()) {
985 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
986 /*recursive*/ true);
987 } else if (firstQualifierLookup) {
988
989 // Try to make a proper qualifier out of the lookup result, and
990 // then just recurse on that.
991 NestedNameSpecifier *newQualifier;
992 if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
993 QualType type = getASTContext().getTypeDeclType(typeDecl);
994
995 // Pretend we had a different nested name specifier.
996 newQualifier = NestedNameSpecifier::Create(getASTContext(),
997 /*prefix*/ 0,
998 /*template*/ false,
999 type.getTypePtr());
1000 } else if (NamespaceDecl *nspace =
1001 dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
1002 newQualifier = NestedNameSpecifier::Create(getASTContext(),
1003 /*prefix*/ 0,
1004 nspace);
1005 } else if (NamespaceAliasDecl *alias =
1006 dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
1007 newQualifier = NestedNameSpecifier::Create(getASTContext(),
1008 /*prefix*/ 0,
1009 alias);
1010 } else {
1011 // No sensible mangling to do here.
1012 newQualifier = 0;
1013 }
1014
1015 if (newQualifier)
1016 return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
1017
1018 } else {
1019 Out << "sr";
1020 }
1021
1022 mangleSourceName(qualifier->getAsIdentifier());
1023 break;
1024 }
1025
1026 // If this was the innermost part of the NNS, and we fell out to
1027 // here, append an 'E'.
1028 if (!recursive)
1029 Out << 'E';
1030}
1031
1032/// Mangle an unresolved-name, which is generally used for names which
1033/// weren't resolved to specific entities.
1034void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1035 NamedDecl *firstQualifierLookup,
1036 DeclarationName name,
1037 unsigned knownArity) {
1038 if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1039 mangleUnqualifiedName(0, name, knownArity);
1040}
1041
1042static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1043 assert(RD->isAnonymousStructOrUnion() &&
1044 "Expected anonymous struct or union!");
1045
1046 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1047 I != E; ++I) {
1048 if (I->getIdentifier())
1049 return *I;
1050
1051 if (const RecordType *RT = I->getType()->getAs<RecordType>())
1052 if (const FieldDecl *NamedDataMember =
1053 FindFirstNamedDataMember(RT->getDecl()))
1054 return NamedDataMember;
1055 }
1056
1057 // We didn't find a named data member.
1058 return 0;
1059}
1060
1061void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1062 DeclarationName Name,
1063 unsigned KnownArity) {
1064 // <unqualified-name> ::= <operator-name>
1065 // ::= <ctor-dtor-name>
1066 // ::= <source-name>
1067 switch (Name.getNameKind()) {
1068 case DeclarationName::Identifier: {
1069 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1070 // We must avoid conflicts between internally- and externally-
1071 // linked variable and function declaration names in the same TU:
1072 // void test() { extern void foo(); }
1073 // static void foo();
1074 // This naming convention is the same as that followed by GCC,
1075 // though it shouldn't actually matter.
Rafael Espindola3ae00052013-05-13 00:12:11 +00001076 if (ND && ND->getFormalLinkage() == InternalLinkage &&
Guy Benyei11169dd2012-12-18 14:30:41 +00001077 getEffectiveDeclContext(ND)->isFileContext())
1078 Out << 'L';
1079
1080 mangleSourceName(II);
1081 break;
1082 }
1083
1084 // Otherwise, an anonymous entity. We must have a declaration.
1085 assert(ND && "mangling empty name without declaration");
1086
1087 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1088 if (NS->isAnonymousNamespace()) {
1089 // This is how gcc mangles these names.
1090 Out << "12_GLOBAL__N_1";
1091 break;
1092 }
1093 }
1094
1095 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1096 // We must have an anonymous union or struct declaration.
1097 const RecordDecl *RD =
1098 cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1099
1100 // Itanium C++ ABI 5.1.2:
1101 //
1102 // For the purposes of mangling, the name of an anonymous union is
1103 // considered to be the name of the first named data member found by a
1104 // pre-order, depth-first, declaration-order walk of the data members of
1105 // the anonymous union. If there is no such data member (i.e., if all of
1106 // the data members in the union are unnamed), then there is no way for
1107 // a program to refer to the anonymous union, and there is therefore no
1108 // need to mangle its name.
1109 const FieldDecl *FD = FindFirstNamedDataMember(RD);
1110
1111 // It's actually possible for various reasons for us to get here
1112 // with an empty anonymous struct / union. Fortunately, it
1113 // doesn't really matter what name we generate.
1114 if (!FD) break;
1115 assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1116
1117 mangleSourceName(FD->getIdentifier());
1118 break;
1119 }
John McCall924046f2013-04-10 06:08:21 +00001120
1121 // Class extensions have no name as a category, and it's possible
1122 // for them to be the semantic parent of certain declarations
1123 // (primarily, tag decls defined within declarations). Such
1124 // declarations will always have internal linkage, so the name
1125 // doesn't really matter, but we shouldn't crash on them. For
1126 // safety, just handle all ObjC containers here.
1127 if (isa<ObjCContainerDecl>(ND))
1128 break;
Guy Benyei11169dd2012-12-18 14:30:41 +00001129
1130 // We must have an anonymous struct.
1131 const TagDecl *TD = cast<TagDecl>(ND);
1132 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1133 assert(TD->getDeclContext() == D->getDeclContext() &&
1134 "Typedef should not be in another decl context!");
1135 assert(D->getDeclName().getAsIdentifierInfo() &&
1136 "Typedef was not named!");
1137 mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1138 break;
1139 }
1140
1141 // <unnamed-type-name> ::= <closure-type-name>
1142 //
1143 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1144 // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
1145 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1146 if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1147 mangleLambda(Record);
1148 break;
1149 }
1150 }
1151
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001152 if (TD->isExternallyVisible()) {
1153 unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
Guy Benyei11169dd2012-12-18 14:30:41 +00001154 Out << "Ut";
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001155 if (UnnamedMangle > 1)
1156 Out << llvm::utostr(UnnamedMangle - 2);
Guy Benyei11169dd2012-12-18 14:30:41 +00001157 Out << '_';
1158 break;
1159 }
1160
1161 // Get a unique id for the anonymous struct.
1162 uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1163
1164 // Mangle it as a source name in the form
1165 // [n] $_<id>
1166 // where n is the length of the string.
1167 SmallString<8> Str;
1168 Str += "$_";
1169 Str += llvm::utostr(AnonStructId);
1170
1171 Out << Str.size();
1172 Out << Str.str();
1173 break;
1174 }
1175
1176 case DeclarationName::ObjCZeroArgSelector:
1177 case DeclarationName::ObjCOneArgSelector:
1178 case DeclarationName::ObjCMultiArgSelector:
1179 llvm_unreachable("Can't mangle Objective-C selector names here!");
1180
1181 case DeclarationName::CXXConstructorName:
1182 if (ND == Structor)
1183 // If the named decl is the C++ constructor we're mangling, use the type
1184 // we were given.
1185 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1186 else
1187 // Otherwise, use the complete constructor name. This is relevant if a
1188 // class with a constructor is declared within a constructor.
1189 mangleCXXCtorType(Ctor_Complete);
1190 break;
1191
1192 case DeclarationName::CXXDestructorName:
1193 if (ND == Structor)
1194 // If the named decl is the C++ destructor we're mangling, use the type we
1195 // were given.
1196 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1197 else
1198 // Otherwise, use the complete destructor name. This is relevant if a
1199 // class with a destructor is declared within a destructor.
1200 mangleCXXDtorType(Dtor_Complete);
1201 break;
1202
1203 case DeclarationName::CXXConversionFunctionName:
1204 // <operator-name> ::= cv <type> # (cast)
1205 Out << "cv";
1206 mangleType(Name.getCXXNameType());
1207 break;
1208
1209 case DeclarationName::CXXOperatorName: {
1210 unsigned Arity;
1211 if (ND) {
1212 Arity = cast<FunctionDecl>(ND)->getNumParams();
1213
1214 // If we have a C++ member function, we need to include the 'this' pointer.
1215 // FIXME: This does not make sense for operators that are static, but their
1216 // names stay the same regardless of the arity (operator new for instance).
1217 if (isa<CXXMethodDecl>(ND))
1218 Arity++;
1219 } else
1220 Arity = KnownArity;
1221
1222 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1223 break;
1224 }
1225
1226 case DeclarationName::CXXLiteralOperatorName:
1227 // FIXME: This mangling is not yet official.
1228 Out << "li";
1229 mangleSourceName(Name.getCXXLiteralIdentifier());
1230 break;
1231
1232 case DeclarationName::CXXUsingDirective:
1233 llvm_unreachable("Can't mangle a using directive name!");
1234 }
1235}
1236
1237void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1238 // <source-name> ::= <positive length number> <identifier>
1239 // <number> ::= [n] <non-negative decimal integer>
1240 // <identifier> ::= <unqualified source code identifier>
1241 Out << II->getLength() << II->getName();
1242}
1243
1244void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1245 const DeclContext *DC,
1246 bool NoFunction) {
1247 // <nested-name>
1248 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1249 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1250 // <template-args> E
1251
1252 Out << 'N';
1253 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1254 mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
1255 mangleRefQualifier(Method->getRefQualifier());
1256 }
1257
1258 // Check if we have a template.
1259 const TemplateArgumentList *TemplateArgs = 0;
1260 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
Eli Friedman86af13f02013-07-05 18:41:30 +00001261 mangleTemplatePrefix(TD, NoFunction);
Guy Benyei11169dd2012-12-18 14:30:41 +00001262 mangleTemplateArgs(*TemplateArgs);
1263 }
1264 else {
1265 manglePrefix(DC, NoFunction);
1266 mangleUnqualifiedName(ND);
1267 }
1268
1269 Out << 'E';
1270}
1271void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1272 const TemplateArgument *TemplateArgs,
1273 unsigned NumTemplateArgs) {
1274 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1275
1276 Out << 'N';
1277
1278 mangleTemplatePrefix(TD);
1279 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1280
1281 Out << 'E';
1282}
1283
Eli Friedman95f50122013-07-02 17:52:28 +00001284void CXXNameMangler::mangleLocalName(const Decl *D) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001285 // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1286 // := Z <function encoding> E s [<discriminator>]
1287 // <local-name> := Z <function encoding> E d [ <parameter number> ]
1288 // _ <entity name>
1289 // <discriminator> := _ <non-negative number>
Eli Friedman95f50122013-07-02 17:52:28 +00001290 assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
Eli Friedmaneecc09a2013-07-05 20:27:40 +00001291 const RecordDecl *RD = GetLocalClassDecl(D);
Eli Friedman95f50122013-07-02 17:52:28 +00001292 const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
Guy Benyei11169dd2012-12-18 14:30:41 +00001293
1294 Out << 'Z';
1295
Eli Friedman92821742013-07-02 02:01:18 +00001296 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1297 mangleObjCMethodName(MD);
1298 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
Eli Friedman95f50122013-07-02 17:52:28 +00001299 mangleBlockForPrefix(BD);
Eli Friedman92821742013-07-02 02:01:18 +00001300 else
1301 mangleFunctionEncoding(cast<FunctionDecl>(DC));
Guy Benyei11169dd2012-12-18 14:30:41 +00001302
Eli Friedman92821742013-07-02 02:01:18 +00001303 Out << 'E';
1304
1305 if (RD) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001306 // The parameter number is omitted for the last parameter, 0 for the
1307 // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1308 // <entity name> will of course contain a <closure-type-name>: Its
1309 // numbering will be local to the particular argument in which it appears
1310 // -- other default arguments do not affect its encoding.
Eli Friedmaneecc09a2013-07-05 20:27:40 +00001311 const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1312 if (CXXRD->isLambda()) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001313 if (const ParmVarDecl *Parm
Eli Friedmaneecc09a2013-07-05 20:27:40 +00001314 = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001315 if (const FunctionDecl *Func
1316 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1317 Out << 'd';
1318 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1319 if (Num > 1)
1320 mangleNumber(Num - 2);
1321 Out << '_';
Guy Benyei11169dd2012-12-18 14:30:41 +00001322 }
1323 }
1324 }
1325
1326 // Mangle the name relative to the closest enclosing function.
Eli Friedman95f50122013-07-02 17:52:28 +00001327 // equality ok because RD derived from ND above
1328 if (D == RD) {
1329 mangleUnqualifiedName(RD);
1330 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1331 manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1332 mangleUnqualifiedBlock(BD);
1333 } else {
1334 const NamedDecl *ND = cast<NamedDecl>(D);
Eli Friedman92821742013-07-02 02:01:18 +00001335 mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
Eli Friedman95f50122013-07-02 17:52:28 +00001336 }
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001337 } else {
1338 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
1339 mangleUnqualifiedBlock(BD);
1340 else
1341 mangleUnqualifiedName(cast<NamedDecl>(D));
Guy Benyei11169dd2012-12-18 14:30:41 +00001342 }
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001343 if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1344 unsigned disc;
1345 if (Context.getNextDiscriminator(ND, disc)) {
1346 if (disc < 10)
1347 Out << '_' << disc;
1348 else
1349 Out << "__" << disc << '_';
1350 }
1351 }
Eli Friedman95f50122013-07-02 17:52:28 +00001352}
1353
1354void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1355 if (GetLocalClassDecl(Block)) {
1356 mangleLocalName(Block);
1357 return;
1358 }
1359 const DeclContext *DC = getEffectiveDeclContext(Block);
1360 if (isLocalContainerContext(DC)) {
1361 mangleLocalName(Block);
1362 return;
1363 }
1364 manglePrefix(getEffectiveDeclContext(Block));
1365 mangleUnqualifiedBlock(Block);
1366}
1367
1368void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1369 if (Decl *Context = Block->getBlockManglingContextDecl()) {
1370 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1371 Context->getDeclContext()->isRecord()) {
1372 if (const IdentifierInfo *Name
1373 = cast<NamedDecl>(Context)->getIdentifier()) {
1374 mangleSourceName(Name);
1375 Out << 'M';
1376 }
1377 }
1378 }
1379
1380 // If we have a block mangling number, use it.
1381 unsigned Number = Block->getBlockManglingNumber();
1382 // Otherwise, just make up a number. It doesn't matter what it is because
1383 // the symbol in question isn't externally visible.
1384 if (!Number)
1385 Number = Context.getBlockId(Block, false);
1386 Out << "Ub";
1387 if (Number > 1)
1388 Out << Number - 2;
1389 Out << '_';
Guy Benyei11169dd2012-12-18 14:30:41 +00001390}
1391
1392void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1393 // If the context of a closure type is an initializer for a class member
1394 // (static or nonstatic), it is encoded in a qualified name with a final
1395 // <prefix> of the form:
1396 //
1397 // <data-member-prefix> := <member source-name> M
1398 //
1399 // Technically, the data-member-prefix is part of the <prefix>. However,
1400 // since a closure type will always be mangled with a prefix, it's easier
1401 // to emit that last part of the prefix here.
1402 if (Decl *Context = Lambda->getLambdaContextDecl()) {
1403 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1404 Context->getDeclContext()->isRecord()) {
1405 if (const IdentifierInfo *Name
1406 = cast<NamedDecl>(Context)->getIdentifier()) {
1407 mangleSourceName(Name);
1408 Out << 'M';
1409 }
1410 }
1411 }
1412
1413 Out << "Ul";
1414 const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1415 getAs<FunctionProtoType>();
1416 mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1417 Out << "E";
1418
1419 // The number is omitted for the first closure type with a given
1420 // <lambda-sig> in a given context; it is n-2 for the nth closure type
1421 // (in lexical order) with that same <lambda-sig> and context.
1422 //
1423 // The AST keeps track of the number for us.
1424 unsigned Number = Lambda->getLambdaManglingNumber();
1425 assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1426 if (Number > 1)
1427 mangleNumber(Number - 2);
1428 Out << '_';
1429}
1430
1431void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1432 switch (qualifier->getKind()) {
1433 case NestedNameSpecifier::Global:
1434 // nothing
1435 return;
1436
1437 case NestedNameSpecifier::Namespace:
1438 mangleName(qualifier->getAsNamespace());
1439 return;
1440
1441 case NestedNameSpecifier::NamespaceAlias:
1442 mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1443 return;
1444
1445 case NestedNameSpecifier::TypeSpec:
1446 case NestedNameSpecifier::TypeSpecWithTemplate:
1447 manglePrefix(QualType(qualifier->getAsType(), 0));
1448 return;
1449
1450 case NestedNameSpecifier::Identifier:
1451 // Member expressions can have these without prefixes, but that
1452 // should end up in mangleUnresolvedPrefix instead.
1453 assert(qualifier->getPrefix());
1454 manglePrefix(qualifier->getPrefix());
1455
1456 mangleSourceName(qualifier->getAsIdentifier());
1457 return;
1458 }
1459
1460 llvm_unreachable("unexpected nested name specifier");
1461}
1462
1463void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1464 // <prefix> ::= <prefix> <unqualified-name>
1465 // ::= <template-prefix> <template-args>
1466 // ::= <template-param>
1467 // ::= # empty
1468 // ::= <substitution>
1469
1470 DC = IgnoreLinkageSpecDecls(DC);
1471
1472 if (DC->isTranslationUnit())
1473 return;
1474
Eli Friedman95f50122013-07-02 17:52:28 +00001475 if (NoFunction && isLocalContainerContext(DC))
1476 return;
Eli Friedman7e346a82013-07-01 20:22:57 +00001477
Eli Friedman95f50122013-07-02 17:52:28 +00001478 assert(!isLocalContainerContext(DC));
1479
Guy Benyei11169dd2012-12-18 14:30:41 +00001480 const NamedDecl *ND = cast<NamedDecl>(DC);
1481 if (mangleSubstitution(ND))
1482 return;
1483
1484 // Check if we have a template.
1485 const TemplateArgumentList *TemplateArgs = 0;
1486 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1487 mangleTemplatePrefix(TD);
1488 mangleTemplateArgs(*TemplateArgs);
Eli Friedman95f50122013-07-02 17:52:28 +00001489 } else {
Guy Benyei11169dd2012-12-18 14:30:41 +00001490 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1491 mangleUnqualifiedName(ND);
1492 }
1493
1494 addSubstitution(ND);
1495}
1496
1497void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1498 // <template-prefix> ::= <prefix> <template unqualified-name>
1499 // ::= <template-param>
1500 // ::= <substitution>
1501 if (TemplateDecl *TD = Template.getAsTemplateDecl())
1502 return mangleTemplatePrefix(TD);
1503
1504 if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1505 manglePrefix(Qualified->getQualifier());
1506
1507 if (OverloadedTemplateStorage *Overloaded
1508 = Template.getAsOverloadedTemplate()) {
1509 mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1510 UnknownArity);
1511 return;
1512 }
1513
1514 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1515 assert(Dependent && "Unknown template name kind?");
1516 manglePrefix(Dependent->getQualifier());
1517 mangleUnscopedTemplateName(Template);
1518}
1519
Eli Friedman86af13f02013-07-05 18:41:30 +00001520void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1521 bool NoFunction) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001522 // <template-prefix> ::= <prefix> <template unqualified-name>
1523 // ::= <template-param>
1524 // ::= <substitution>
1525 // <template-template-param> ::= <template-param>
1526 // <substitution>
1527
1528 if (mangleSubstitution(ND))
1529 return;
1530
1531 // <template-template-param> ::= <template-param>
1532 if (const TemplateTemplateParmDecl *TTP
1533 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1534 mangleTemplateParameter(TTP->getIndex());
1535 return;
1536 }
1537
Eli Friedman86af13f02013-07-05 18:41:30 +00001538 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
Guy Benyei11169dd2012-12-18 14:30:41 +00001539 mangleUnqualifiedName(ND->getTemplatedDecl());
1540 addSubstitution(ND);
1541}
1542
1543/// Mangles a template name under the production <type>. Required for
1544/// template template arguments.
1545/// <type> ::= <class-enum-type>
1546/// ::= <template-param>
1547/// ::= <substitution>
1548void CXXNameMangler::mangleType(TemplateName TN) {
1549 if (mangleSubstitution(TN))
1550 return;
1551
1552 TemplateDecl *TD = 0;
1553
1554 switch (TN.getKind()) {
1555 case TemplateName::QualifiedTemplate:
1556 TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1557 goto HaveDecl;
1558
1559 case TemplateName::Template:
1560 TD = TN.getAsTemplateDecl();
1561 goto HaveDecl;
1562
1563 HaveDecl:
1564 if (isa<TemplateTemplateParmDecl>(TD))
1565 mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1566 else
1567 mangleName(TD);
1568 break;
1569
1570 case TemplateName::OverloadedTemplate:
1571 llvm_unreachable("can't mangle an overloaded template name as a <type>");
1572
1573 case TemplateName::DependentTemplate: {
1574 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1575 assert(Dependent->isIdentifier());
1576
1577 // <class-enum-type> ::= <name>
1578 // <name> ::= <nested-name>
1579 mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1580 mangleSourceName(Dependent->getIdentifier());
1581 break;
1582 }
1583
1584 case TemplateName::SubstTemplateTemplateParm: {
1585 // Substituted template parameters are mangled as the substituted
1586 // template. This will check for the substitution twice, which is
1587 // fine, but we have to return early so that we don't try to *add*
1588 // the substitution twice.
1589 SubstTemplateTemplateParmStorage *subst
1590 = TN.getAsSubstTemplateTemplateParm();
1591 mangleType(subst->getReplacement());
1592 return;
1593 }
1594
1595 case TemplateName::SubstTemplateTemplateParmPack: {
1596 // FIXME: not clear how to mangle this!
1597 // template <template <class> class T...> class A {
1598 // template <template <class> class U...> void foo(B<T,U> x...);
1599 // };
1600 Out << "_SUBSTPACK_";
1601 break;
1602 }
1603 }
1604
1605 addSubstitution(TN);
1606}
1607
1608void
1609CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1610 switch (OO) {
1611 // <operator-name> ::= nw # new
1612 case OO_New: Out << "nw"; break;
1613 // ::= na # new[]
1614 case OO_Array_New: Out << "na"; break;
1615 // ::= dl # delete
1616 case OO_Delete: Out << "dl"; break;
1617 // ::= da # delete[]
1618 case OO_Array_Delete: Out << "da"; break;
1619 // ::= ps # + (unary)
1620 // ::= pl # + (binary or unknown)
1621 case OO_Plus:
1622 Out << (Arity == 1? "ps" : "pl"); break;
1623 // ::= ng # - (unary)
1624 // ::= mi # - (binary or unknown)
1625 case OO_Minus:
1626 Out << (Arity == 1? "ng" : "mi"); break;
1627 // ::= ad # & (unary)
1628 // ::= an # & (binary or unknown)
1629 case OO_Amp:
1630 Out << (Arity == 1? "ad" : "an"); break;
1631 // ::= de # * (unary)
1632 // ::= ml # * (binary or unknown)
1633 case OO_Star:
1634 // Use binary when unknown.
1635 Out << (Arity == 1? "de" : "ml"); break;
1636 // ::= co # ~
1637 case OO_Tilde: Out << "co"; break;
1638 // ::= dv # /
1639 case OO_Slash: Out << "dv"; break;
1640 // ::= rm # %
1641 case OO_Percent: Out << "rm"; break;
1642 // ::= or # |
1643 case OO_Pipe: Out << "or"; break;
1644 // ::= eo # ^
1645 case OO_Caret: Out << "eo"; break;
1646 // ::= aS # =
1647 case OO_Equal: Out << "aS"; break;
1648 // ::= pL # +=
1649 case OO_PlusEqual: Out << "pL"; break;
1650 // ::= mI # -=
1651 case OO_MinusEqual: Out << "mI"; break;
1652 // ::= mL # *=
1653 case OO_StarEqual: Out << "mL"; break;
1654 // ::= dV # /=
1655 case OO_SlashEqual: Out << "dV"; break;
1656 // ::= rM # %=
1657 case OO_PercentEqual: Out << "rM"; break;
1658 // ::= aN # &=
1659 case OO_AmpEqual: Out << "aN"; break;
1660 // ::= oR # |=
1661 case OO_PipeEqual: Out << "oR"; break;
1662 // ::= eO # ^=
1663 case OO_CaretEqual: Out << "eO"; break;
1664 // ::= ls # <<
1665 case OO_LessLess: Out << "ls"; break;
1666 // ::= rs # >>
1667 case OO_GreaterGreater: Out << "rs"; break;
1668 // ::= lS # <<=
1669 case OO_LessLessEqual: Out << "lS"; break;
1670 // ::= rS # >>=
1671 case OO_GreaterGreaterEqual: Out << "rS"; break;
1672 // ::= eq # ==
1673 case OO_EqualEqual: Out << "eq"; break;
1674 // ::= ne # !=
1675 case OO_ExclaimEqual: Out << "ne"; break;
1676 // ::= lt # <
1677 case OO_Less: Out << "lt"; break;
1678 // ::= gt # >
1679 case OO_Greater: Out << "gt"; break;
1680 // ::= le # <=
1681 case OO_LessEqual: Out << "le"; break;
1682 // ::= ge # >=
1683 case OO_GreaterEqual: Out << "ge"; break;
1684 // ::= nt # !
1685 case OO_Exclaim: Out << "nt"; break;
1686 // ::= aa # &&
1687 case OO_AmpAmp: Out << "aa"; break;
1688 // ::= oo # ||
1689 case OO_PipePipe: Out << "oo"; break;
1690 // ::= pp # ++
1691 case OO_PlusPlus: Out << "pp"; break;
1692 // ::= mm # --
1693 case OO_MinusMinus: Out << "mm"; break;
1694 // ::= cm # ,
1695 case OO_Comma: Out << "cm"; break;
1696 // ::= pm # ->*
1697 case OO_ArrowStar: Out << "pm"; break;
1698 // ::= pt # ->
1699 case OO_Arrow: Out << "pt"; break;
1700 // ::= cl # ()
1701 case OO_Call: Out << "cl"; break;
1702 // ::= ix # []
1703 case OO_Subscript: Out << "ix"; break;
1704
1705 // ::= qu # ?
1706 // The conditional operator can't be overloaded, but we still handle it when
1707 // mangling expressions.
1708 case OO_Conditional: Out << "qu"; break;
1709
1710 case OO_None:
1711 case NUM_OVERLOADED_OPERATORS:
1712 llvm_unreachable("Not an overloaded operator");
1713 }
1714}
1715
1716void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1717 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
1718 if (Quals.hasRestrict())
1719 Out << 'r';
1720 if (Quals.hasVolatile())
1721 Out << 'V';
1722 if (Quals.hasConst())
1723 Out << 'K';
1724
1725 if (Quals.hasAddressSpace()) {
1726 // Extension:
1727 //
1728 // <type> ::= U <address-space-number>
1729 //
1730 // where <address-space-number> is a source name consisting of 'AS'
1731 // followed by the address space <number>.
1732 SmallString<64> ASString;
Tanya Lattner60e93a62013-02-08 01:07:32 +00001733 ASString = "AS" + llvm::utostr_32(
1734 Context.getASTContext().getTargetAddressSpace(Quals.getAddressSpace()));
Guy Benyei11169dd2012-12-18 14:30:41 +00001735 Out << 'U' << ASString.size() << ASString;
1736 }
1737
1738 StringRef LifetimeName;
1739 switch (Quals.getObjCLifetime()) {
1740 // Objective-C ARC Extension:
1741 //
1742 // <type> ::= U "__strong"
1743 // <type> ::= U "__weak"
1744 // <type> ::= U "__autoreleasing"
1745 case Qualifiers::OCL_None:
1746 break;
1747
1748 case Qualifiers::OCL_Weak:
1749 LifetimeName = "__weak";
1750 break;
1751
1752 case Qualifiers::OCL_Strong:
1753 LifetimeName = "__strong";
1754 break;
1755
1756 case Qualifiers::OCL_Autoreleasing:
1757 LifetimeName = "__autoreleasing";
1758 break;
1759
1760 case Qualifiers::OCL_ExplicitNone:
1761 // The __unsafe_unretained qualifier is *not* mangled, so that
1762 // __unsafe_unretained types in ARC produce the same manglings as the
1763 // equivalent (but, naturally, unqualified) types in non-ARC, providing
1764 // better ABI compatibility.
1765 //
1766 // It's safe to do this because unqualified 'id' won't show up
1767 // in any type signatures that need to be mangled.
1768 break;
1769 }
1770 if (!LifetimeName.empty())
1771 Out << 'U' << LifetimeName.size() << LifetimeName;
1772}
1773
1774void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1775 // <ref-qualifier> ::= R # lvalue reference
1776 // ::= O # rvalue-reference
1777 // Proposal to Itanium C++ ABI list on 1/26/11
1778 switch (RefQualifier) {
1779 case RQ_None:
1780 break;
1781
1782 case RQ_LValue:
1783 Out << 'R';
1784 break;
1785
1786 case RQ_RValue:
1787 Out << 'O';
1788 break;
1789 }
1790}
1791
1792void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1793 Context.mangleObjCMethodName(MD, Out);
1794}
1795
1796void CXXNameMangler::mangleType(QualType T) {
1797 // If our type is instantiation-dependent but not dependent, we mangle
1798 // it as it was written in the source, removing any top-level sugar.
1799 // Otherwise, use the canonical type.
1800 //
1801 // FIXME: This is an approximation of the instantiation-dependent name
1802 // mangling rules, since we should really be using the type as written and
1803 // augmented via semantic analysis (i.e., with implicit conversions and
1804 // default template arguments) for any instantiation-dependent type.
1805 // Unfortunately, that requires several changes to our AST:
1806 // - Instantiation-dependent TemplateSpecializationTypes will need to be
1807 // uniqued, so that we can handle substitutions properly
1808 // - Default template arguments will need to be represented in the
1809 // TemplateSpecializationType, since they need to be mangled even though
1810 // they aren't written.
1811 // - Conversions on non-type template arguments need to be expressed, since
1812 // they can affect the mangling of sizeof/alignof.
1813 if (!T->isInstantiationDependentType() || T->isDependentType())
1814 T = T.getCanonicalType();
1815 else {
1816 // Desugar any types that are purely sugar.
1817 do {
1818 // Don't desugar through template specialization types that aren't
1819 // type aliases. We need to mangle the template arguments as written.
1820 if (const TemplateSpecializationType *TST
1821 = dyn_cast<TemplateSpecializationType>(T))
1822 if (!TST->isTypeAlias())
1823 break;
1824
1825 QualType Desugared
1826 = T.getSingleStepDesugaredType(Context.getASTContext());
1827 if (Desugared == T)
1828 break;
1829
1830 T = Desugared;
1831 } while (true);
1832 }
1833 SplitQualType split = T.split();
1834 Qualifiers quals = split.Quals;
1835 const Type *ty = split.Ty;
1836
1837 bool isSubstitutable = quals || !isa<BuiltinType>(T);
1838 if (isSubstitutable && mangleSubstitution(T))
1839 return;
1840
1841 // If we're mangling a qualified array type, push the qualifiers to
1842 // the element type.
1843 if (quals && isa<ArrayType>(T)) {
1844 ty = Context.getASTContext().getAsArrayType(T);
1845 quals = Qualifiers();
1846
1847 // Note that we don't update T: we want to add the
1848 // substitution at the original type.
1849 }
1850
1851 if (quals) {
1852 mangleQualifiers(quals);
1853 // Recurse: even if the qualified type isn't yet substitutable,
1854 // the unqualified type might be.
1855 mangleType(QualType(ty, 0));
1856 } else {
1857 switch (ty->getTypeClass()) {
1858#define ABSTRACT_TYPE(CLASS, PARENT)
1859#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1860 case Type::CLASS: \
1861 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1862 return;
1863#define TYPE(CLASS, PARENT) \
1864 case Type::CLASS: \
1865 mangleType(static_cast<const CLASS##Type*>(ty)); \
1866 break;
1867#include "clang/AST/TypeNodes.def"
1868 }
1869 }
1870
1871 // Add the substitution.
1872 if (isSubstitutable)
1873 addSubstitution(T);
1874}
1875
1876void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1877 if (!mangleStandardSubstitution(ND))
1878 mangleName(ND);
1879}
1880
1881void CXXNameMangler::mangleType(const BuiltinType *T) {
1882 // <type> ::= <builtin-type>
1883 // <builtin-type> ::= v # void
1884 // ::= w # wchar_t
1885 // ::= b # bool
1886 // ::= c # char
1887 // ::= a # signed char
1888 // ::= h # unsigned char
1889 // ::= s # short
1890 // ::= t # unsigned short
1891 // ::= i # int
1892 // ::= j # unsigned int
1893 // ::= l # long
1894 // ::= m # unsigned long
1895 // ::= x # long long, __int64
1896 // ::= y # unsigned long long, __int64
1897 // ::= n # __int128
1898 // UNSUPPORTED: ::= o # unsigned __int128
1899 // ::= f # float
1900 // ::= d # double
1901 // ::= e # long double, __float80
1902 // UNSUPPORTED: ::= g # __float128
1903 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
1904 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
1905 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
1906 // ::= Dh # IEEE 754r half-precision floating point (16 bits)
1907 // ::= Di # char32_t
1908 // ::= Ds # char16_t
1909 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1910 // ::= u <source-name> # vendor extended type
1911 switch (T->getKind()) {
1912 case BuiltinType::Void: Out << 'v'; break;
1913 case BuiltinType::Bool: Out << 'b'; break;
1914 case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1915 case BuiltinType::UChar: Out << 'h'; break;
1916 case BuiltinType::UShort: Out << 't'; break;
1917 case BuiltinType::UInt: Out << 'j'; break;
1918 case BuiltinType::ULong: Out << 'm'; break;
1919 case BuiltinType::ULongLong: Out << 'y'; break;
1920 case BuiltinType::UInt128: Out << 'o'; break;
1921 case BuiltinType::SChar: Out << 'a'; break;
1922 case BuiltinType::WChar_S:
1923 case BuiltinType::WChar_U: Out << 'w'; break;
1924 case BuiltinType::Char16: Out << "Ds"; break;
1925 case BuiltinType::Char32: Out << "Di"; break;
1926 case BuiltinType::Short: Out << 's'; break;
1927 case BuiltinType::Int: Out << 'i'; break;
1928 case BuiltinType::Long: Out << 'l'; break;
1929 case BuiltinType::LongLong: Out << 'x'; break;
1930 case BuiltinType::Int128: Out << 'n'; break;
1931 case BuiltinType::Half: Out << "Dh"; break;
1932 case BuiltinType::Float: Out << 'f'; break;
1933 case BuiltinType::Double: Out << 'd'; break;
1934 case BuiltinType::LongDouble: Out << 'e'; break;
1935 case BuiltinType::NullPtr: Out << "Dn"; break;
1936
1937#define BUILTIN_TYPE(Id, SingletonId)
1938#define PLACEHOLDER_TYPE(Id, SingletonId) \
1939 case BuiltinType::Id:
1940#include "clang/AST/BuiltinTypes.def"
1941 case BuiltinType::Dependent:
1942 llvm_unreachable("mangling a placeholder type");
1943 case BuiltinType::ObjCId: Out << "11objc_object"; break;
1944 case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1945 case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
Guy Benyeid8a08ea2012-12-18 14:38:23 +00001946 case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
1947 case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
1948 case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
1949 case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
1950 case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
1951 case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
Guy Benyei61054192013-02-07 10:55:47 +00001952 case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
Guy Benyei1b4fb3e2013-01-20 12:31:11 +00001953 case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
Guy Benyei11169dd2012-12-18 14:30:41 +00001954 }
1955}
1956
1957// <type> ::= <function-type>
1958// <function-type> ::= [<CV-qualifiers>] F [Y]
1959// <bare-function-type> [<ref-qualifier>] E
1960// (Proposal to cxx-abi-dev, 2012-05-11)
1961void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1962 // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
1963 // e.g. "const" in "int (A::*)() const".
1964 mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
1965
1966 Out << 'F';
1967
1968 // FIXME: We don't have enough information in the AST to produce the 'Y'
1969 // encoding for extern "C" function types.
1970 mangleBareFunctionType(T, /*MangleReturnType=*/true);
1971
1972 // Mangle the ref-qualifier, if present.
1973 mangleRefQualifier(T->getRefQualifier());
1974
1975 Out << 'E';
1976}
1977void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1978 llvm_unreachable("Can't mangle K&R function prototypes");
1979}
1980void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1981 bool MangleReturnType) {
1982 // We should never be mangling something without a prototype.
1983 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1984
1985 // Record that we're in a function type. See mangleFunctionParam
1986 // for details on what we're trying to achieve here.
1987 FunctionTypeDepthState saved = FunctionTypeDepth.push();
1988
1989 // <bare-function-type> ::= <signature type>+
1990 if (MangleReturnType) {
1991 FunctionTypeDepth.enterResultType();
1992 mangleType(Proto->getResultType());
1993 FunctionTypeDepth.leaveResultType();
1994 }
1995
1996 if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1997 // <builtin-type> ::= v # void
1998 Out << 'v';
1999
2000 FunctionTypeDepth.pop(saved);
2001 return;
2002 }
2003
2004 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
2005 ArgEnd = Proto->arg_type_end();
2006 Arg != ArgEnd; ++Arg)
2007 mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
2008
2009 FunctionTypeDepth.pop(saved);
2010
2011 // <builtin-type> ::= z # ellipsis
2012 if (Proto->isVariadic())
2013 Out << 'z';
2014}
2015
2016// <type> ::= <class-enum-type>
2017// <class-enum-type> ::= <name>
2018void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2019 mangleName(T->getDecl());
2020}
2021
2022// <type> ::= <class-enum-type>
2023// <class-enum-type> ::= <name>
2024void CXXNameMangler::mangleType(const EnumType *T) {
2025 mangleType(static_cast<const TagType*>(T));
2026}
2027void CXXNameMangler::mangleType(const RecordType *T) {
2028 mangleType(static_cast<const TagType*>(T));
2029}
2030void CXXNameMangler::mangleType(const TagType *T) {
2031 mangleName(T->getDecl());
2032}
2033
2034// <type> ::= <array-type>
2035// <array-type> ::= A <positive dimension number> _ <element type>
2036// ::= A [<dimension expression>] _ <element type>
2037void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2038 Out << 'A' << T->getSize() << '_';
2039 mangleType(T->getElementType());
2040}
2041void CXXNameMangler::mangleType(const VariableArrayType *T) {
2042 Out << 'A';
2043 // decayed vla types (size 0) will just be skipped.
2044 if (T->getSizeExpr())
2045 mangleExpression(T->getSizeExpr());
2046 Out << '_';
2047 mangleType(T->getElementType());
2048}
2049void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2050 Out << 'A';
2051 mangleExpression(T->getSizeExpr());
2052 Out << '_';
2053 mangleType(T->getElementType());
2054}
2055void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2056 Out << "A_";
2057 mangleType(T->getElementType());
2058}
2059
2060// <type> ::= <pointer-to-member-type>
2061// <pointer-to-member-type> ::= M <class type> <member type>
2062void CXXNameMangler::mangleType(const MemberPointerType *T) {
2063 Out << 'M';
2064 mangleType(QualType(T->getClass(), 0));
2065 QualType PointeeType = T->getPointeeType();
2066 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2067 mangleType(FPT);
2068
2069 // Itanium C++ ABI 5.1.8:
2070 //
2071 // The type of a non-static member function is considered to be different,
2072 // for the purposes of substitution, from the type of a namespace-scope or
2073 // static member function whose type appears similar. The types of two
2074 // non-static member functions are considered to be different, for the
2075 // purposes of substitution, if the functions are members of different
2076 // classes. In other words, for the purposes of substitution, the class of
2077 // which the function is a member is considered part of the type of
2078 // function.
2079
2080 // Given that we already substitute member function pointers as a
2081 // whole, the net effect of this rule is just to unconditionally
2082 // suppress substitution on the function type in a member pointer.
2083 // We increment the SeqID here to emulate adding an entry to the
2084 // substitution table.
2085 ++SeqID;
2086 } else
2087 mangleType(PointeeType);
2088}
2089
2090// <type> ::= <template-param>
2091void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2092 mangleTemplateParameter(T->getIndex());
2093}
2094
2095// <type> ::= <template-param>
2096void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2097 // FIXME: not clear how to mangle this!
2098 // template <class T...> class A {
2099 // template <class U...> void foo(T(*)(U) x...);
2100 // };
2101 Out << "_SUBSTPACK_";
2102}
2103
2104// <type> ::= P <type> # pointer-to
2105void CXXNameMangler::mangleType(const PointerType *T) {
2106 Out << 'P';
2107 mangleType(T->getPointeeType());
2108}
2109void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2110 Out << 'P';
2111 mangleType(T->getPointeeType());
2112}
2113
2114// <type> ::= R <type> # reference-to
2115void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2116 Out << 'R';
2117 mangleType(T->getPointeeType());
2118}
2119
2120// <type> ::= O <type> # rvalue reference-to (C++0x)
2121void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2122 Out << 'O';
2123 mangleType(T->getPointeeType());
2124}
2125
2126// <type> ::= C <type> # complex pair (C 2000)
2127void CXXNameMangler::mangleType(const ComplexType *T) {
2128 Out << 'C';
2129 mangleType(T->getElementType());
2130}
2131
2132// ARM's ABI for Neon vector types specifies that they should be mangled as
2133// if they are structs (to match ARM's initial implementation). The
2134// vector type must be one of the special types predefined by ARM.
2135void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2136 QualType EltType = T->getElementType();
2137 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2138 const char *EltName = 0;
2139 if (T->getVectorKind() == VectorType::NeonPolyVector) {
2140 switch (cast<BuiltinType>(EltType)->getKind()) {
2141 case BuiltinType::SChar: EltName = "poly8_t"; break;
2142 case BuiltinType::Short: EltName = "poly16_t"; break;
2143 default: llvm_unreachable("unexpected Neon polynomial vector element type");
2144 }
2145 } else {
2146 switch (cast<BuiltinType>(EltType)->getKind()) {
2147 case BuiltinType::SChar: EltName = "int8_t"; break;
2148 case BuiltinType::UChar: EltName = "uint8_t"; break;
2149 case BuiltinType::Short: EltName = "int16_t"; break;
2150 case BuiltinType::UShort: EltName = "uint16_t"; break;
2151 case BuiltinType::Int: EltName = "int32_t"; break;
2152 case BuiltinType::UInt: EltName = "uint32_t"; break;
2153 case BuiltinType::LongLong: EltName = "int64_t"; break;
2154 case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2155 case BuiltinType::Float: EltName = "float32_t"; break;
2156 default: llvm_unreachable("unexpected Neon vector element type");
2157 }
2158 }
2159 const char *BaseName = 0;
2160 unsigned BitSize = (T->getNumElements() *
2161 getASTContext().getTypeSize(EltType));
2162 if (BitSize == 64)
2163 BaseName = "__simd64_";
2164 else {
2165 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2166 BaseName = "__simd128_";
2167 }
2168 Out << strlen(BaseName) + strlen(EltName);
2169 Out << BaseName << EltName;
2170}
2171
2172// GNU extension: vector types
2173// <type> ::= <vector-type>
2174// <vector-type> ::= Dv <positive dimension number> _
2175// <extended element type>
2176// ::= Dv [<dimension expression>] _ <element type>
2177// <extended element type> ::= <element type>
2178// ::= p # AltiVec vector pixel
2179// ::= b # Altivec vector bool
2180void CXXNameMangler::mangleType(const VectorType *T) {
2181 if ((T->getVectorKind() == VectorType::NeonVector ||
2182 T->getVectorKind() == VectorType::NeonPolyVector)) {
2183 mangleNeonVectorType(T);
2184 return;
2185 }
2186 Out << "Dv" << T->getNumElements() << '_';
2187 if (T->getVectorKind() == VectorType::AltiVecPixel)
2188 Out << 'p';
2189 else if (T->getVectorKind() == VectorType::AltiVecBool)
2190 Out << 'b';
2191 else
2192 mangleType(T->getElementType());
2193}
2194void CXXNameMangler::mangleType(const ExtVectorType *T) {
2195 mangleType(static_cast<const VectorType*>(T));
2196}
2197void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2198 Out << "Dv";
2199 mangleExpression(T->getSizeExpr());
2200 Out << '_';
2201 mangleType(T->getElementType());
2202}
2203
2204void CXXNameMangler::mangleType(const PackExpansionType *T) {
2205 // <type> ::= Dp <type> # pack expansion (C++0x)
2206 Out << "Dp";
2207 mangleType(T->getPattern());
2208}
2209
2210void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2211 mangleSourceName(T->getDecl()->getIdentifier());
2212}
2213
2214void CXXNameMangler::mangleType(const ObjCObjectType *T) {
Eli Friedman5f508952013-06-18 22:41:37 +00002215 if (!T->qual_empty()) {
2216 // Mangle protocol qualifiers.
2217 SmallString<64> QualStr;
2218 llvm::raw_svector_ostream QualOS(QualStr);
2219 QualOS << "objcproto";
2220 ObjCObjectType::qual_iterator i = T->qual_begin(), e = T->qual_end();
2221 for ( ; i != e; ++i) {
2222 StringRef name = (*i)->getName();
2223 QualOS << name.size() << name;
2224 }
2225 QualOS.flush();
2226 Out << 'U' << QualStr.size() << QualStr;
2227 }
Guy Benyei11169dd2012-12-18 14:30:41 +00002228 mangleType(T->getBaseType());
2229}
2230
2231void CXXNameMangler::mangleType(const BlockPointerType *T) {
2232 Out << "U13block_pointer";
2233 mangleType(T->getPointeeType());
2234}
2235
2236void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2237 // Mangle injected class name types as if the user had written the
2238 // specialization out fully. It may not actually be possible to see
2239 // this mangling, though.
2240 mangleType(T->getInjectedSpecializationType());
2241}
2242
2243void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2244 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2245 mangleName(TD, T->getArgs(), T->getNumArgs());
2246 } else {
2247 if (mangleSubstitution(QualType(T, 0)))
2248 return;
2249
2250 mangleTemplatePrefix(T->getTemplateName());
2251
2252 // FIXME: GCC does not appear to mangle the template arguments when
2253 // the template in question is a dependent template name. Should we
2254 // emulate that badness?
2255 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2256 addSubstitution(QualType(T, 0));
2257 }
2258}
2259
2260void CXXNameMangler::mangleType(const DependentNameType *T) {
2261 // Typename types are always nested
2262 Out << 'N';
2263 manglePrefix(T->getQualifier());
2264 mangleSourceName(T->getIdentifier());
2265 Out << 'E';
2266}
2267
2268void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2269 // Dependently-scoped template types are nested if they have a prefix.
2270 Out << 'N';
2271
2272 // TODO: avoid making this TemplateName.
2273 TemplateName Prefix =
2274 getASTContext().getDependentTemplateName(T->getQualifier(),
2275 T->getIdentifier());
2276 mangleTemplatePrefix(Prefix);
2277
2278 // FIXME: GCC does not appear to mangle the template arguments when
2279 // the template in question is a dependent template name. Should we
2280 // emulate that badness?
2281 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2282 Out << 'E';
2283}
2284
2285void CXXNameMangler::mangleType(const TypeOfType *T) {
2286 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2287 // "extension with parameters" mangling.
2288 Out << "u6typeof";
2289}
2290
2291void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2292 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2293 // "extension with parameters" mangling.
2294 Out << "u6typeof";
2295}
2296
2297void CXXNameMangler::mangleType(const DecltypeType *T) {
2298 Expr *E = T->getUnderlyingExpr();
2299
2300 // type ::= Dt <expression> E # decltype of an id-expression
2301 // # or class member access
2302 // ::= DT <expression> E # decltype of an expression
2303
2304 // This purports to be an exhaustive list of id-expressions and
2305 // class member accesses. Note that we do not ignore parentheses;
2306 // parentheses change the semantics of decltype for these
2307 // expressions (and cause the mangler to use the other form).
2308 if (isa<DeclRefExpr>(E) ||
2309 isa<MemberExpr>(E) ||
2310 isa<UnresolvedLookupExpr>(E) ||
2311 isa<DependentScopeDeclRefExpr>(E) ||
2312 isa<CXXDependentScopeMemberExpr>(E) ||
2313 isa<UnresolvedMemberExpr>(E))
2314 Out << "Dt";
2315 else
2316 Out << "DT";
2317 mangleExpression(E);
2318 Out << 'E';
2319}
2320
2321void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2322 // If this is dependent, we need to record that. If not, we simply
2323 // mangle it as the underlying type since they are equivalent.
2324 if (T->isDependentType()) {
2325 Out << 'U';
2326
2327 switch (T->getUTTKind()) {
2328 case UnaryTransformType::EnumUnderlyingType:
2329 Out << "3eut";
2330 break;
2331 }
2332 }
2333
2334 mangleType(T->getUnderlyingType());
2335}
2336
2337void CXXNameMangler::mangleType(const AutoType *T) {
2338 QualType D = T->getDeducedType();
2339 // <builtin-type> ::= Da # dependent auto
2340 if (D.isNull())
Richard Smith74aeef52013-04-26 16:15:35 +00002341 Out << (T->isDecltypeAuto() ? "Dc" : "Da");
Guy Benyei11169dd2012-12-18 14:30:41 +00002342 else
2343 mangleType(D);
2344}
2345
2346void CXXNameMangler::mangleType(const AtomicType *T) {
2347 // <type> ::= U <source-name> <type> # vendor extended type qualifier
2348 // (Until there's a standardized mangling...)
2349 Out << "U7_Atomic";
2350 mangleType(T->getValueType());
2351}
2352
2353void CXXNameMangler::mangleIntegerLiteral(QualType T,
2354 const llvm::APSInt &Value) {
2355 // <expr-primary> ::= L <type> <value number> E # integer literal
2356 Out << 'L';
2357
2358 mangleType(T);
2359 if (T->isBooleanType()) {
2360 // Boolean values are encoded as 0/1.
2361 Out << (Value.getBoolValue() ? '1' : '0');
2362 } else {
2363 mangleNumber(Value);
2364 }
2365 Out << 'E';
2366
2367}
2368
2369/// Mangles a member expression.
2370void CXXNameMangler::mangleMemberExpr(const Expr *base,
2371 bool isArrow,
2372 NestedNameSpecifier *qualifier,
2373 NamedDecl *firstQualifierLookup,
2374 DeclarationName member,
2375 unsigned arity) {
2376 // <expression> ::= dt <expression> <unresolved-name>
2377 // ::= pt <expression> <unresolved-name>
2378 if (base) {
2379 if (base->isImplicitCXXThis()) {
2380 // Note: GCC mangles member expressions to the implicit 'this' as
2381 // *this., whereas we represent them as this->. The Itanium C++ ABI
2382 // does not specify anything here, so we follow GCC.
2383 Out << "dtdefpT";
2384 } else {
2385 Out << (isArrow ? "pt" : "dt");
2386 mangleExpression(base);
2387 }
2388 }
2389 mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2390}
2391
2392/// Look at the callee of the given call expression and determine if
2393/// it's a parenthesized id-expression which would have triggered ADL
2394/// otherwise.
2395static bool isParenthesizedADLCallee(const CallExpr *call) {
2396 const Expr *callee = call->getCallee();
2397 const Expr *fn = callee->IgnoreParens();
2398
2399 // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
2400 // too, but for those to appear in the callee, it would have to be
2401 // parenthesized.
2402 if (callee == fn) return false;
2403
2404 // Must be an unresolved lookup.
2405 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2406 if (!lookup) return false;
2407
2408 assert(!lookup->requiresADL());
2409
2410 // Must be an unqualified lookup.
2411 if (lookup->getQualifier()) return false;
2412
2413 // Must not have found a class member. Note that if one is a class
2414 // member, they're all class members.
2415 if (lookup->getNumDecls() > 0 &&
2416 (*lookup->decls_begin())->isCXXClassMember())
2417 return false;
2418
2419 // Otherwise, ADL would have been triggered.
2420 return true;
2421}
2422
2423void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2424 // <expression> ::= <unary operator-name> <expression>
2425 // ::= <binary operator-name> <expression> <expression>
2426 // ::= <trinary operator-name> <expression> <expression> <expression>
2427 // ::= cv <type> expression # conversion with one argument
2428 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2429 // ::= st <type> # sizeof (a type)
2430 // ::= at <type> # alignof (a type)
2431 // ::= <template-param>
2432 // ::= <function-param>
2433 // ::= sr <type> <unqualified-name> # dependent name
2434 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
2435 // ::= ds <expression> <expression> # expr.*expr
2436 // ::= sZ <template-param> # size of a parameter pack
2437 // ::= sZ <function-param> # size of a function parameter pack
2438 // ::= <expr-primary>
2439 // <expr-primary> ::= L <type> <value number> E # integer literal
2440 // ::= L <type <value float> E # floating literal
2441 // ::= L <mangled-name> E # external name
2442 // ::= fpT # 'this' expression
2443 QualType ImplicitlyConvertedToType;
2444
2445recurse:
2446 switch (E->getStmtClass()) {
2447 case Expr::NoStmtClass:
2448#define ABSTRACT_STMT(Type)
2449#define EXPR(Type, Base)
2450#define STMT(Type, Base) \
2451 case Expr::Type##Class:
2452#include "clang/AST/StmtNodes.inc"
2453 // fallthrough
2454
2455 // These all can only appear in local or variable-initialization
2456 // contexts and so should never appear in a mangling.
2457 case Expr::AddrLabelExprClass:
2458 case Expr::DesignatedInitExprClass:
2459 case Expr::ImplicitValueInitExprClass:
2460 case Expr::ParenListExprClass:
2461 case Expr::LambdaExprClass:
John McCall5e77d762013-04-16 07:28:30 +00002462 case Expr::MSPropertyRefExprClass:
Guy Benyei11169dd2012-12-18 14:30:41 +00002463 llvm_unreachable("unexpected statement kind");
2464
2465 // FIXME: invent manglings for all these.
2466 case Expr::BlockExprClass:
2467 case Expr::CXXPseudoDestructorExprClass:
2468 case Expr::ChooseExprClass:
2469 case Expr::CompoundLiteralExprClass:
2470 case Expr::ExtVectorElementExprClass:
2471 case Expr::GenericSelectionExprClass:
2472 case Expr::ObjCEncodeExprClass:
2473 case Expr::ObjCIsaExprClass:
2474 case Expr::ObjCIvarRefExprClass:
2475 case Expr::ObjCMessageExprClass:
2476 case Expr::ObjCPropertyRefExprClass:
2477 case Expr::ObjCProtocolExprClass:
2478 case Expr::ObjCSelectorExprClass:
2479 case Expr::ObjCStringLiteralClass:
2480 case Expr::ObjCBoxedExprClass:
2481 case Expr::ObjCArrayLiteralClass:
2482 case Expr::ObjCDictionaryLiteralClass:
2483 case Expr::ObjCSubscriptRefExprClass:
2484 case Expr::ObjCIndirectCopyRestoreExprClass:
2485 case Expr::OffsetOfExprClass:
2486 case Expr::PredefinedExprClass:
2487 case Expr::ShuffleVectorExprClass:
2488 case Expr::StmtExprClass:
2489 case Expr::UnaryTypeTraitExprClass:
2490 case Expr::BinaryTypeTraitExprClass:
2491 case Expr::TypeTraitExprClass:
2492 case Expr::ArrayTypeTraitExprClass:
2493 case Expr::ExpressionTraitExprClass:
2494 case Expr::VAArgExprClass:
2495 case Expr::CXXUuidofExprClass:
2496 case Expr::CUDAKernelCallExprClass:
2497 case Expr::AsTypeExprClass:
2498 case Expr::PseudoObjectExprClass:
2499 case Expr::AtomicExprClass:
2500 {
2501 // As bad as this diagnostic is, it's better than crashing.
2502 DiagnosticsEngine &Diags = Context.getDiags();
2503 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2504 "cannot yet mangle expression type %0");
2505 Diags.Report(E->getExprLoc(), DiagID)
2506 << E->getStmtClassName() << E->getSourceRange();
2507 break;
2508 }
2509
2510 // Even gcc-4.5 doesn't mangle this.
2511 case Expr::BinaryConditionalOperatorClass: {
2512 DiagnosticsEngine &Diags = Context.getDiags();
2513 unsigned DiagID =
2514 Diags.getCustomDiagID(DiagnosticsEngine::Error,
2515 "?: operator with omitted middle operand cannot be mangled");
2516 Diags.Report(E->getExprLoc(), DiagID)
2517 << E->getStmtClassName() << E->getSourceRange();
2518 break;
2519 }
2520
2521 // These are used for internal purposes and cannot be meaningfully mangled.
2522 case Expr::OpaqueValueExprClass:
2523 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2524
2525 case Expr::InitListExprClass: {
2526 // Proposal by Jason Merrill, 2012-01-03
2527 Out << "il";
2528 const InitListExpr *InitList = cast<InitListExpr>(E);
2529 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2530 mangleExpression(InitList->getInit(i));
2531 Out << "E";
2532 break;
2533 }
2534
2535 case Expr::CXXDefaultArgExprClass:
2536 mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2537 break;
2538
Richard Smith852c9db2013-04-20 22:23:05 +00002539 case Expr::CXXDefaultInitExprClass:
2540 mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
2541 break;
2542
Richard Smithcc1b96d2013-06-12 22:31:48 +00002543 case Expr::CXXStdInitializerListExprClass:
2544 mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
2545 break;
2546
Guy Benyei11169dd2012-12-18 14:30:41 +00002547 case Expr::SubstNonTypeTemplateParmExprClass:
2548 mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2549 Arity);
2550 break;
2551
2552 case Expr::UserDefinedLiteralClass:
2553 // We follow g++'s approach of mangling a UDL as a call to the literal
2554 // operator.
2555 case Expr::CXXMemberCallExprClass: // fallthrough
2556 case Expr::CallExprClass: {
2557 const CallExpr *CE = cast<CallExpr>(E);
2558
2559 // <expression> ::= cp <simple-id> <expression>* E
2560 // We use this mangling only when the call would use ADL except
2561 // for being parenthesized. Per discussion with David
2562 // Vandervoorde, 2011.04.25.
2563 if (isParenthesizedADLCallee(CE)) {
2564 Out << "cp";
2565 // The callee here is a parenthesized UnresolvedLookupExpr with
2566 // no qualifier and should always get mangled as a <simple-id>
2567 // anyway.
2568
2569 // <expression> ::= cl <expression>* E
2570 } else {
2571 Out << "cl";
2572 }
2573
2574 mangleExpression(CE->getCallee(), CE->getNumArgs());
2575 for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2576 mangleExpression(CE->getArg(I));
2577 Out << 'E';
2578 break;
2579 }
2580
2581 case Expr::CXXNewExprClass: {
2582 const CXXNewExpr *New = cast<CXXNewExpr>(E);
2583 if (New->isGlobalNew()) Out << "gs";
2584 Out << (New->isArray() ? "na" : "nw");
2585 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2586 E = New->placement_arg_end(); I != E; ++I)
2587 mangleExpression(*I);
2588 Out << '_';
2589 mangleType(New->getAllocatedType());
2590 if (New->hasInitializer()) {
2591 // Proposal by Jason Merrill, 2012-01-03
2592 if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2593 Out << "il";
2594 else
2595 Out << "pi";
2596 const Expr *Init = New->getInitializer();
2597 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2598 // Directly inline the initializers.
2599 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2600 E = CCE->arg_end();
2601 I != E; ++I)
2602 mangleExpression(*I);
2603 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2604 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2605 mangleExpression(PLE->getExpr(i));
2606 } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2607 isa<InitListExpr>(Init)) {
2608 // Only take InitListExprs apart for list-initialization.
2609 const InitListExpr *InitList = cast<InitListExpr>(Init);
2610 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2611 mangleExpression(InitList->getInit(i));
2612 } else
2613 mangleExpression(Init);
2614 }
2615 Out << 'E';
2616 break;
2617 }
2618
2619 case Expr::MemberExprClass: {
2620 const MemberExpr *ME = cast<MemberExpr>(E);
2621 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2622 ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2623 Arity);
2624 break;
2625 }
2626
2627 case Expr::UnresolvedMemberExprClass: {
2628 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2629 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2630 ME->getQualifier(), 0, ME->getMemberName(),
2631 Arity);
2632 if (ME->hasExplicitTemplateArgs())
2633 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2634 break;
2635 }
2636
2637 case Expr::CXXDependentScopeMemberExprClass: {
2638 const CXXDependentScopeMemberExpr *ME
2639 = cast<CXXDependentScopeMemberExpr>(E);
2640 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2641 ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2642 ME->getMember(), Arity);
2643 if (ME->hasExplicitTemplateArgs())
2644 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2645 break;
2646 }
2647
2648 case Expr::UnresolvedLookupExprClass: {
2649 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2650 mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2651
2652 // All the <unresolved-name> productions end in a
2653 // base-unresolved-name, where <template-args> are just tacked
2654 // onto the end.
2655 if (ULE->hasExplicitTemplateArgs())
2656 mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2657 break;
2658 }
2659
2660 case Expr::CXXUnresolvedConstructExprClass: {
2661 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2662 unsigned N = CE->arg_size();
2663
2664 Out << "cv";
2665 mangleType(CE->getType());
2666 if (N != 1) Out << '_';
2667 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2668 if (N != 1) Out << 'E';
2669 break;
2670 }
2671
2672 case Expr::CXXTemporaryObjectExprClass:
2673 case Expr::CXXConstructExprClass: {
2674 const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2675 unsigned N = CE->getNumArgs();
2676
2677 // Proposal by Jason Merrill, 2012-01-03
2678 if (CE->isListInitialization())
2679 Out << "tl";
2680 else
2681 Out << "cv";
2682 mangleType(CE->getType());
2683 if (N != 1) Out << '_';
2684 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2685 if (N != 1) Out << 'E';
2686 break;
2687 }
2688
2689 case Expr::CXXScalarValueInitExprClass:
2690 Out <<"cv";
2691 mangleType(E->getType());
2692 Out <<"_E";
2693 break;
2694
2695 case Expr::CXXNoexceptExprClass:
2696 Out << "nx";
2697 mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
2698 break;
2699
2700 case Expr::UnaryExprOrTypeTraitExprClass: {
2701 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2702
2703 if (!SAE->isInstantiationDependent()) {
2704 // Itanium C++ ABI:
2705 // If the operand of a sizeof or alignof operator is not
2706 // instantiation-dependent it is encoded as an integer literal
2707 // reflecting the result of the operator.
2708 //
2709 // If the result of the operator is implicitly converted to a known
2710 // integer type, that type is used for the literal; otherwise, the type
2711 // of std::size_t or std::ptrdiff_t is used.
2712 QualType T = (ImplicitlyConvertedToType.isNull() ||
2713 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2714 : ImplicitlyConvertedToType;
2715 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2716 mangleIntegerLiteral(T, V);
2717 break;
2718 }
2719
2720 switch(SAE->getKind()) {
2721 case UETT_SizeOf:
2722 Out << 's';
2723 break;
2724 case UETT_AlignOf:
2725 Out << 'a';
2726 break;
2727 case UETT_VecStep:
2728 DiagnosticsEngine &Diags = Context.getDiags();
2729 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2730 "cannot yet mangle vec_step expression");
2731 Diags.Report(DiagID);
2732 return;
2733 }
2734 if (SAE->isArgumentType()) {
2735 Out << 't';
2736 mangleType(SAE->getArgumentType());
2737 } else {
2738 Out << 'z';
2739 mangleExpression(SAE->getArgumentExpr());
2740 }
2741 break;
2742 }
2743
2744 case Expr::CXXThrowExprClass: {
2745 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2746
2747 // Proposal from David Vandervoorde, 2010.06.30
2748 if (TE->getSubExpr()) {
2749 Out << "tw";
2750 mangleExpression(TE->getSubExpr());
2751 } else {
2752 Out << "tr";
2753 }
2754 break;
2755 }
2756
2757 case Expr::CXXTypeidExprClass: {
2758 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2759
2760 // Proposal from David Vandervoorde, 2010.06.30
2761 if (TIE->isTypeOperand()) {
2762 Out << "ti";
2763 mangleType(TIE->getTypeOperand());
2764 } else {
2765 Out << "te";
2766 mangleExpression(TIE->getExprOperand());
2767 }
2768 break;
2769 }
2770
2771 case Expr::CXXDeleteExprClass: {
2772 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2773
2774 // Proposal from David Vandervoorde, 2010.06.30
2775 if (DE->isGlobalDelete()) Out << "gs";
2776 Out << (DE->isArrayForm() ? "da" : "dl");
2777 mangleExpression(DE->getArgument());
2778 break;
2779 }
2780
2781 case Expr::UnaryOperatorClass: {
2782 const UnaryOperator *UO = cast<UnaryOperator>(E);
2783 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2784 /*Arity=*/1);
2785 mangleExpression(UO->getSubExpr());
2786 break;
2787 }
2788
2789 case Expr::ArraySubscriptExprClass: {
2790 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2791
2792 // Array subscript is treated as a syntactically weird form of
2793 // binary operator.
2794 Out << "ix";
2795 mangleExpression(AE->getLHS());
2796 mangleExpression(AE->getRHS());
2797 break;
2798 }
2799
2800 case Expr::CompoundAssignOperatorClass: // fallthrough
2801 case Expr::BinaryOperatorClass: {
2802 const BinaryOperator *BO = cast<BinaryOperator>(E);
2803 if (BO->getOpcode() == BO_PtrMemD)
2804 Out << "ds";
2805 else
2806 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2807 /*Arity=*/2);
2808 mangleExpression(BO->getLHS());
2809 mangleExpression(BO->getRHS());
2810 break;
2811 }
2812
2813 case Expr::ConditionalOperatorClass: {
2814 const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2815 mangleOperatorName(OO_Conditional, /*Arity=*/3);
2816 mangleExpression(CO->getCond());
2817 mangleExpression(CO->getLHS(), Arity);
2818 mangleExpression(CO->getRHS(), Arity);
2819 break;
2820 }
2821
2822 case Expr::ImplicitCastExprClass: {
2823 ImplicitlyConvertedToType = E->getType();
2824 E = cast<ImplicitCastExpr>(E)->getSubExpr();
2825 goto recurse;
2826 }
2827
2828 case Expr::ObjCBridgedCastExprClass: {
2829 // Mangle ownership casts as a vendor extended operator __bridge,
2830 // __bridge_transfer, or __bridge_retain.
2831 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2832 Out << "v1U" << Kind.size() << Kind;
2833 }
2834 // Fall through to mangle the cast itself.
2835
2836 case Expr::CStyleCastExprClass:
2837 case Expr::CXXStaticCastExprClass:
2838 case Expr::CXXDynamicCastExprClass:
2839 case Expr::CXXReinterpretCastExprClass:
2840 case Expr::CXXConstCastExprClass:
2841 case Expr::CXXFunctionalCastExprClass: {
2842 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2843 Out << "cv";
2844 mangleType(ECE->getType());
2845 mangleExpression(ECE->getSubExpr());
2846 break;
2847 }
2848
2849 case Expr::CXXOperatorCallExprClass: {
2850 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2851 unsigned NumArgs = CE->getNumArgs();
2852 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2853 // Mangle the arguments.
2854 for (unsigned i = 0; i != NumArgs; ++i)
2855 mangleExpression(CE->getArg(i));
2856 break;
2857 }
2858
2859 case Expr::ParenExprClass:
2860 mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2861 break;
2862
2863 case Expr::DeclRefExprClass: {
2864 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2865
2866 switch (D->getKind()) {
2867 default:
2868 // <expr-primary> ::= L <mangled-name> E # external name
2869 Out << 'L';
2870 mangle(D, "_Z");
2871 Out << 'E';
2872 break;
2873
2874 case Decl::ParmVar:
2875 mangleFunctionParam(cast<ParmVarDecl>(D));
2876 break;
2877
2878 case Decl::EnumConstant: {
2879 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2880 mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2881 break;
2882 }
2883
2884 case Decl::NonTypeTemplateParm: {
2885 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2886 mangleTemplateParameter(PD->getIndex());
2887 break;
2888 }
2889
2890 }
2891
2892 break;
2893 }
2894
2895 case Expr::SubstNonTypeTemplateParmPackExprClass:
2896 // FIXME: not clear how to mangle this!
2897 // template <unsigned N...> class A {
2898 // template <class U...> void foo(U (&x)[N]...);
2899 // };
2900 Out << "_SUBSTPACK_";
2901 break;
2902
2903 case Expr::FunctionParmPackExprClass: {
2904 // FIXME: not clear how to mangle this!
2905 const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
2906 Out << "v110_SUBSTPACK";
2907 mangleFunctionParam(FPPE->getParameterPack());
2908 break;
2909 }
2910
2911 case Expr::DependentScopeDeclRefExprClass: {
2912 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2913 mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
2914
2915 // All the <unresolved-name> productions end in a
2916 // base-unresolved-name, where <template-args> are just tacked
2917 // onto the end.
2918 if (DRE->hasExplicitTemplateArgs())
2919 mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2920 break;
2921 }
2922
2923 case Expr::CXXBindTemporaryExprClass:
2924 mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2925 break;
2926
2927 case Expr::ExprWithCleanupsClass:
2928 mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2929 break;
2930
2931 case Expr::FloatingLiteralClass: {
2932 const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2933 Out << 'L';
2934 mangleType(FL->getType());
2935 mangleFloat(FL->getValue());
2936 Out << 'E';
2937 break;
2938 }
2939
2940 case Expr::CharacterLiteralClass:
2941 Out << 'L';
2942 mangleType(E->getType());
2943 Out << cast<CharacterLiteral>(E)->getValue();
2944 Out << 'E';
2945 break;
2946
2947 // FIXME. __objc_yes/__objc_no are mangled same as true/false
2948 case Expr::ObjCBoolLiteralExprClass:
2949 Out << "Lb";
2950 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2951 Out << 'E';
2952 break;
2953
2954 case Expr::CXXBoolLiteralExprClass:
2955 Out << "Lb";
2956 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2957 Out << 'E';
2958 break;
2959
2960 case Expr::IntegerLiteralClass: {
2961 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2962 if (E->getType()->isSignedIntegerType())
2963 Value.setIsSigned(true);
2964 mangleIntegerLiteral(E->getType(), Value);
2965 break;
2966 }
2967
2968 case Expr::ImaginaryLiteralClass: {
2969 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2970 // Mangle as if a complex literal.
2971 // Proposal from David Vandevoorde, 2010.06.30.
2972 Out << 'L';
2973 mangleType(E->getType());
2974 if (const FloatingLiteral *Imag =
2975 dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2976 // Mangle a floating-point zero of the appropriate type.
2977 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2978 Out << '_';
2979 mangleFloat(Imag->getValue());
2980 } else {
2981 Out << "0_";
2982 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2983 if (IE->getSubExpr()->getType()->isSignedIntegerType())
2984 Value.setIsSigned(true);
2985 mangleNumber(Value);
2986 }
2987 Out << 'E';
2988 break;
2989 }
2990
2991 case Expr::StringLiteralClass: {
2992 // Revised proposal from David Vandervoorde, 2010.07.15.
2993 Out << 'L';
2994 assert(isa<ConstantArrayType>(E->getType()));
2995 mangleType(E->getType());
2996 Out << 'E';
2997 break;
2998 }
2999
3000 case Expr::GNUNullExprClass:
3001 // FIXME: should this really be mangled the same as nullptr?
3002 // fallthrough
3003
3004 case Expr::CXXNullPtrLiteralExprClass: {
3005 // Proposal from David Vandervoorde, 2010.06.30, as
3006 // modified by ABI list discussion.
3007 Out << "LDnE";
3008 break;
3009 }
3010
3011 case Expr::PackExpansionExprClass:
3012 Out << "sp";
3013 mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
3014 break;
3015
3016 case Expr::SizeOfPackExprClass: {
3017 Out << "sZ";
3018 const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
3019 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
3020 mangleTemplateParameter(TTP->getIndex());
3021 else if (const NonTypeTemplateParmDecl *NTTP
3022 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
3023 mangleTemplateParameter(NTTP->getIndex());
3024 else if (const TemplateTemplateParmDecl *TempTP
3025 = dyn_cast<TemplateTemplateParmDecl>(Pack))
3026 mangleTemplateParameter(TempTP->getIndex());
3027 else
3028 mangleFunctionParam(cast<ParmVarDecl>(Pack));
3029 break;
3030 }
3031
3032 case Expr::MaterializeTemporaryExprClass: {
3033 mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3034 break;
3035 }
3036
3037 case Expr::CXXThisExprClass:
3038 Out << "fpT";
3039 break;
3040 }
3041}
3042
3043/// Mangle an expression which refers to a parameter variable.
3044///
3045/// <expression> ::= <function-param>
3046/// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
3047/// <function-param> ::= fp <top-level CV-qualifiers>
3048/// <parameter-2 non-negative number> _ # L == 0, I > 0
3049/// <function-param> ::= fL <L-1 non-negative number>
3050/// p <top-level CV-qualifiers> _ # L > 0, I == 0
3051/// <function-param> ::= fL <L-1 non-negative number>
3052/// p <top-level CV-qualifiers>
3053/// <I-1 non-negative number> _ # L > 0, I > 0
3054///
3055/// L is the nesting depth of the parameter, defined as 1 if the
3056/// parameter comes from the innermost function prototype scope
3057/// enclosing the current context, 2 if from the next enclosing
3058/// function prototype scope, and so on, with one special case: if
3059/// we've processed the full parameter clause for the innermost
3060/// function type, then L is one less. This definition conveniently
3061/// makes it irrelevant whether a function's result type was written
3062/// trailing or leading, but is otherwise overly complicated; the
3063/// numbering was first designed without considering references to
3064/// parameter in locations other than return types, and then the
3065/// mangling had to be generalized without changing the existing
3066/// manglings.
3067///
3068/// I is the zero-based index of the parameter within its parameter
3069/// declaration clause. Note that the original ABI document describes
3070/// this using 1-based ordinals.
3071void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3072 unsigned parmDepth = parm->getFunctionScopeDepth();
3073 unsigned parmIndex = parm->getFunctionScopeIndex();
3074
3075 // Compute 'L'.
3076 // parmDepth does not include the declaring function prototype.
3077 // FunctionTypeDepth does account for that.
3078 assert(parmDepth < FunctionTypeDepth.getDepth());
3079 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3080 if (FunctionTypeDepth.isInResultType())
3081 nestingDepth--;
3082
3083 if (nestingDepth == 0) {
3084 Out << "fp";
3085 } else {
3086 Out << "fL" << (nestingDepth - 1) << 'p';
3087 }
3088
3089 // Top-level qualifiers. We don't have to worry about arrays here,
3090 // because parameters declared as arrays should already have been
3091 // transformed to have pointer type. FIXME: apparently these don't
3092 // get mangled if used as an rvalue of a known non-class type?
3093 assert(!parm->getType()->isArrayType()
3094 && "parameter's type is still an array type?");
3095 mangleQualifiers(parm->getType().getQualifiers());
3096
3097 // Parameter index.
3098 if (parmIndex != 0) {
3099 Out << (parmIndex - 1);
3100 }
3101 Out << '_';
3102}
3103
3104void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3105 // <ctor-dtor-name> ::= C1 # complete object constructor
3106 // ::= C2 # base object constructor
3107 // ::= C3 # complete object allocating constructor
3108 //
3109 switch (T) {
3110 case Ctor_Complete:
3111 Out << "C1";
3112 break;
3113 case Ctor_Base:
3114 Out << "C2";
3115 break;
3116 case Ctor_CompleteAllocating:
3117 Out << "C3";
3118 break;
3119 }
3120}
3121
3122void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3123 // <ctor-dtor-name> ::= D0 # deleting destructor
3124 // ::= D1 # complete object destructor
3125 // ::= D2 # base object destructor
3126 //
3127 switch (T) {
3128 case Dtor_Deleting:
3129 Out << "D0";
3130 break;
3131 case Dtor_Complete:
3132 Out << "D1";
3133 break;
3134 case Dtor_Base:
3135 Out << "D2";
3136 break;
3137 }
3138}
3139
3140void CXXNameMangler::mangleTemplateArgs(
3141 const ASTTemplateArgumentListInfo &TemplateArgs) {
3142 // <template-args> ::= I <template-arg>+ E
3143 Out << 'I';
3144 for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3145 mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3146 Out << 'E';
3147}
3148
3149void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3150 // <template-args> ::= I <template-arg>+ E
3151 Out << 'I';
3152 for (unsigned i = 0, e = AL.size(); i != e; ++i)
3153 mangleTemplateArg(AL[i]);
3154 Out << 'E';
3155}
3156
3157void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3158 unsigned NumTemplateArgs) {
3159 // <template-args> ::= I <template-arg>+ E
3160 Out << 'I';
3161 for (unsigned i = 0; i != NumTemplateArgs; ++i)
3162 mangleTemplateArg(TemplateArgs[i]);
3163 Out << 'E';
3164}
3165
3166void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3167 // <template-arg> ::= <type> # type or template
3168 // ::= X <expression> E # expression
3169 // ::= <expr-primary> # simple expressions
3170 // ::= J <template-arg>* E # argument pack
3171 // ::= sp <expression> # pack expansion of (C++0x)
3172 if (!A.isInstantiationDependent() || A.isDependent())
3173 A = Context.getASTContext().getCanonicalTemplateArgument(A);
3174
3175 switch (A.getKind()) {
3176 case TemplateArgument::Null:
3177 llvm_unreachable("Cannot mangle NULL template argument");
3178
3179 case TemplateArgument::Type:
3180 mangleType(A.getAsType());
3181 break;
3182 case TemplateArgument::Template:
3183 // This is mangled as <type>.
3184 mangleType(A.getAsTemplate());
3185 break;
3186 case TemplateArgument::TemplateExpansion:
3187 // <type> ::= Dp <type> # pack expansion (C++0x)
3188 Out << "Dp";
3189 mangleType(A.getAsTemplateOrTemplatePattern());
3190 break;
3191 case TemplateArgument::Expression: {
3192 // It's possible to end up with a DeclRefExpr here in certain
3193 // dependent cases, in which case we should mangle as a
3194 // declaration.
3195 const Expr *E = A.getAsExpr()->IgnoreParens();
3196 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3197 const ValueDecl *D = DRE->getDecl();
3198 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3199 Out << "L";
3200 mangle(D, "_Z");
3201 Out << 'E';
3202 break;
3203 }
3204 }
3205
3206 Out << 'X';
3207 mangleExpression(E);
3208 Out << 'E';
3209 break;
3210 }
3211 case TemplateArgument::Integral:
3212 mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3213 break;
3214 case TemplateArgument::Declaration: {
3215 // <expr-primary> ::= L <mangled-name> E # external name
3216 // Clang produces AST's where pointer-to-member-function expressions
3217 // and pointer-to-function expressions are represented as a declaration not
3218 // an expression. We compensate for it here to produce the correct mangling.
3219 ValueDecl *D = A.getAsDecl();
3220 bool compensateMangling = !A.isDeclForReferenceParam();
3221 if (compensateMangling) {
3222 Out << 'X';
3223 mangleOperatorName(OO_Amp, 1);
3224 }
3225
3226 Out << 'L';
3227 // References to external entities use the mangled name; if the name would
3228 // not normally be manged then mangle it as unqualified.
3229 //
3230 // FIXME: The ABI specifies that external names here should have _Z, but
3231 // gcc leaves this off.
3232 if (compensateMangling)
3233 mangle(D, "_Z");
3234 else
3235 mangle(D, "Z");
3236 Out << 'E';
3237
3238 if (compensateMangling)
3239 Out << 'E';
3240
3241 break;
3242 }
3243 case TemplateArgument::NullPtr: {
3244 // <expr-primary> ::= L <type> 0 E
3245 Out << 'L';
3246 mangleType(A.getNullPtrType());
3247 Out << "0E";
3248 break;
3249 }
3250 case TemplateArgument::Pack: {
3251 // Note: proposal by Mike Herrick on 12/20/10
3252 Out << 'J';
3253 for (TemplateArgument::pack_iterator PA = A.pack_begin(),
3254 PAEnd = A.pack_end();
3255 PA != PAEnd; ++PA)
3256 mangleTemplateArg(*PA);
3257 Out << 'E';
3258 }
3259 }
3260}
3261
3262void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3263 // <template-param> ::= T_ # first template parameter
3264 // ::= T <parameter-2 non-negative number> _
3265 if (Index == 0)
3266 Out << "T_";
3267 else
3268 Out << 'T' << (Index - 1) << '_';
3269}
3270
3271void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3272 bool result = mangleSubstitution(type);
3273 assert(result && "no existing substitution for type");
3274 (void) result;
3275}
3276
3277void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3278 bool result = mangleSubstitution(tname);
3279 assert(result && "no existing substitution for template name");
3280 (void) result;
3281}
3282
3283// <substitution> ::= S <seq-id> _
3284// ::= S_
3285bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3286 // Try one of the standard substitutions first.
3287 if (mangleStandardSubstitution(ND))
3288 return true;
3289
3290 ND = cast<NamedDecl>(ND->getCanonicalDecl());
3291 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3292}
3293
3294/// \brief Determine whether the given type has any qualifiers that are
3295/// relevant for substitutions.
3296static bool hasMangledSubstitutionQualifiers(QualType T) {
3297 Qualifiers Qs = T.getQualifiers();
3298 return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3299}
3300
3301bool CXXNameMangler::mangleSubstitution(QualType T) {
3302 if (!hasMangledSubstitutionQualifiers(T)) {
3303 if (const RecordType *RT = T->getAs<RecordType>())
3304 return mangleSubstitution(RT->getDecl());
3305 }
3306
3307 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3308
3309 return mangleSubstitution(TypePtr);
3310}
3311
3312bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3313 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3314 return mangleSubstitution(TD);
3315
3316 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3317 return mangleSubstitution(
3318 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3319}
3320
3321bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3322 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3323 if (I == Substitutions.end())
3324 return false;
3325
3326 unsigned SeqID = I->second;
3327 if (SeqID == 0)
3328 Out << "S_";
3329 else {
3330 SeqID--;
3331
3332 // <seq-id> is encoded in base-36, using digits and upper case letters.
3333 char Buffer[10];
3334 char *BufferPtr = llvm::array_endof(Buffer);
3335
3336 if (SeqID == 0) *--BufferPtr = '0';
3337
3338 while (SeqID) {
3339 assert(BufferPtr > Buffer && "Buffer overflow!");
3340
3341 char c = static_cast<char>(SeqID % 36);
3342
3343 *--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10);
3344 SeqID /= 36;
3345 }
3346
3347 Out << 'S'
3348 << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3349 << '_';
3350 }
3351
3352 return true;
3353}
3354
3355static bool isCharType(QualType T) {
3356 if (T.isNull())
3357 return false;
3358
3359 return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3360 T->isSpecificBuiltinType(BuiltinType::Char_U);
3361}
3362
3363/// isCharSpecialization - Returns whether a given type is a template
3364/// specialization of a given name with a single argument of type char.
3365static bool isCharSpecialization(QualType T, const char *Name) {
3366 if (T.isNull())
3367 return false;
3368
3369 const RecordType *RT = T->getAs<RecordType>();
3370 if (!RT)
3371 return false;
3372
3373 const ClassTemplateSpecializationDecl *SD =
3374 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3375 if (!SD)
3376 return false;
3377
3378 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3379 return false;
3380
3381 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3382 if (TemplateArgs.size() != 1)
3383 return false;
3384
3385 if (!isCharType(TemplateArgs[0].getAsType()))
3386 return false;
3387
3388 return SD->getIdentifier()->getName() == Name;
3389}
3390
3391template <std::size_t StrLen>
3392static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3393 const char (&Str)[StrLen]) {
3394 if (!SD->getIdentifier()->isStr(Str))
3395 return false;
3396
3397 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3398 if (TemplateArgs.size() != 2)
3399 return false;
3400
3401 if (!isCharType(TemplateArgs[0].getAsType()))
3402 return false;
3403
3404 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3405 return false;
3406
3407 return true;
3408}
3409
3410bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3411 // <substitution> ::= St # ::std::
3412 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3413 if (isStd(NS)) {
3414 Out << "St";
3415 return true;
3416 }
3417 }
3418
3419 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3420 if (!isStdNamespace(getEffectiveDeclContext(TD)))
3421 return false;
3422
3423 // <substitution> ::= Sa # ::std::allocator
3424 if (TD->getIdentifier()->isStr("allocator")) {
3425 Out << "Sa";
3426 return true;
3427 }
3428
3429 // <<substitution> ::= Sb # ::std::basic_string
3430 if (TD->getIdentifier()->isStr("basic_string")) {
3431 Out << "Sb";
3432 return true;
3433 }
3434 }
3435
3436 if (const ClassTemplateSpecializationDecl *SD =
3437 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3438 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3439 return false;
3440
3441 // <substitution> ::= Ss # ::std::basic_string<char,
3442 // ::std::char_traits<char>,
3443 // ::std::allocator<char> >
3444 if (SD->getIdentifier()->isStr("basic_string")) {
3445 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3446
3447 if (TemplateArgs.size() != 3)
3448 return false;
3449
3450 if (!isCharType(TemplateArgs[0].getAsType()))
3451 return false;
3452
3453 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3454 return false;
3455
3456 if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3457 return false;
3458
3459 Out << "Ss";
3460 return true;
3461 }
3462
3463 // <substitution> ::= Si # ::std::basic_istream<char,
3464 // ::std::char_traits<char> >
3465 if (isStreamCharSpecialization(SD, "basic_istream")) {
3466 Out << "Si";
3467 return true;
3468 }
3469
3470 // <substitution> ::= So # ::std::basic_ostream<char,
3471 // ::std::char_traits<char> >
3472 if (isStreamCharSpecialization(SD, "basic_ostream")) {
3473 Out << "So";
3474 return true;
3475 }
3476
3477 // <substitution> ::= Sd # ::std::basic_iostream<char,
3478 // ::std::char_traits<char> >
3479 if (isStreamCharSpecialization(SD, "basic_iostream")) {
3480 Out << "Sd";
3481 return true;
3482 }
3483 }
3484 return false;
3485}
3486
3487void CXXNameMangler::addSubstitution(QualType T) {
3488 if (!hasMangledSubstitutionQualifiers(T)) {
3489 if (const RecordType *RT = T->getAs<RecordType>()) {
3490 addSubstitution(RT->getDecl());
3491 return;
3492 }
3493 }
3494
3495 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3496 addSubstitution(TypePtr);
3497}
3498
3499void CXXNameMangler::addSubstitution(TemplateName Template) {
3500 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3501 return addSubstitution(TD);
3502
3503 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3504 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3505}
3506
3507void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3508 assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3509 Substitutions[Ptr] = SeqID++;
3510}
3511
3512//
3513
3514/// \brief Mangles the name of the declaration D and emits that name to the
3515/// given output stream.
3516///
3517/// If the declaration D requires a mangled name, this routine will emit that
3518/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3519/// and this routine will return false. In this case, the caller should just
3520/// emit the identifier of the declaration (\c D->getIdentifier()) as its
3521/// name.
3522void ItaniumMangleContext::mangleName(const NamedDecl *D,
3523 raw_ostream &Out) {
3524 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3525 "Invalid mangleName() call, argument is not a variable or function!");
3526 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3527 "Invalid mangleName() call on 'structor decl!");
3528
3529 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3530 getASTContext().getSourceManager(),
3531 "Mangling declaration");
3532
3533 CXXNameMangler Mangler(*this, Out, D);
3534 return Mangler.mangle(D);
3535}
3536
3537void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
3538 CXXCtorType Type,
3539 raw_ostream &Out) {
3540 CXXNameMangler Mangler(*this, Out, D, Type);
3541 Mangler.mangle(D);
3542}
3543
3544void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
3545 CXXDtorType Type,
3546 raw_ostream &Out) {
3547 CXXNameMangler Mangler(*this, Out, D, Type);
3548 Mangler.mangle(D);
3549}
3550
3551void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
3552 const ThunkInfo &Thunk,
3553 raw_ostream &Out) {
3554 // <special-name> ::= T <call-offset> <base encoding>
3555 // # base is the nominal target function of thunk
3556 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3557 // # base is the nominal target function of thunk
3558 // # first call-offset is 'this' adjustment
3559 // # second call-offset is result adjustment
3560
3561 assert(!isa<CXXDestructorDecl>(MD) &&
3562 "Use mangleCXXDtor for destructor decls!");
3563 CXXNameMangler Mangler(*this, Out);
3564 Mangler.getStream() << "_ZT";
3565 if (!Thunk.Return.isEmpty())
3566 Mangler.getStream() << 'c';
3567
3568 // Mangle the 'this' pointer adjustment.
3569 Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3570
3571 // Mangle the return pointer adjustment if there is one.
3572 if (!Thunk.Return.isEmpty())
3573 Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3574 Thunk.Return.VBaseOffsetOffset);
3575
3576 Mangler.mangleFunctionEncoding(MD);
3577}
3578
3579void
3580ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
3581 CXXDtorType Type,
3582 const ThisAdjustment &ThisAdjustment,
3583 raw_ostream &Out) {
3584 // <special-name> ::= T <call-offset> <base encoding>
3585 // # base is the nominal target function of thunk
3586 CXXNameMangler Mangler(*this, Out, DD, Type);
3587 Mangler.getStream() << "_ZT";
3588
3589 // Mangle the 'this' pointer adjustment.
3590 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3591 ThisAdjustment.VCallOffsetOffset);
3592
3593 Mangler.mangleFunctionEncoding(DD);
3594}
3595
3596/// mangleGuardVariable - Returns the mangled name for a guard variable
3597/// for the passed in VarDecl.
3598void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
3599 raw_ostream &Out) {
3600 // <special-name> ::= GV <object name> # Guard variable for one-time
3601 // # initialization
3602 CXXNameMangler Mangler(*this, Out);
3603 Mangler.getStream() << "_ZGV";
3604 Mangler.mangleName(D);
3605}
3606
Richard Smith2fd1d7a2013-04-19 16:42:07 +00003607void ItaniumMangleContext::mangleItaniumThreadLocalInit(const VarDecl *D,
3608 raw_ostream &Out) {
3609 // <special-name> ::= TH <object name>
3610 CXXNameMangler Mangler(*this, Out);
3611 Mangler.getStream() << "_ZTH";
3612 Mangler.mangleName(D);
3613}
3614
3615void ItaniumMangleContext::mangleItaniumThreadLocalWrapper(const VarDecl *D,
3616 raw_ostream &Out) {
3617 // <special-name> ::= TW <object name>
3618 CXXNameMangler Mangler(*this, Out);
3619 Mangler.getStream() << "_ZTW";
3620 Mangler.mangleName(D);
3621}
3622
Guy Benyei11169dd2012-12-18 14:30:41 +00003623void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
3624 raw_ostream &Out) {
3625 // We match the GCC mangling here.
3626 // <special-name> ::= GR <object name>
3627 CXXNameMangler Mangler(*this, Out);
3628 Mangler.getStream() << "_ZGR";
3629 Mangler.mangleName(D);
3630}
3631
3632void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
3633 raw_ostream &Out) {
3634 // <special-name> ::= TV <type> # virtual table
3635 CXXNameMangler Mangler(*this, Out);
3636 Mangler.getStream() << "_ZTV";
3637 Mangler.mangleNameOrStandardSubstitution(RD);
3638}
3639
3640void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
3641 raw_ostream &Out) {
3642 // <special-name> ::= TT <type> # VTT structure
3643 CXXNameMangler Mangler(*this, Out);
3644 Mangler.getStream() << "_ZTT";
3645 Mangler.mangleNameOrStandardSubstitution(RD);
3646}
3647
Reid Kleckner7810af02013-06-19 15:20:38 +00003648void
3649ItaniumMangleContext::mangleCXXVBTable(const CXXRecordDecl *Derived,
3650 ArrayRef<const CXXRecordDecl *> BasePath,
3651 raw_ostream &Out) {
3652 llvm_unreachable("The Itanium C++ ABI does not have virtual base tables!");
3653}
3654
Guy Benyei11169dd2012-12-18 14:30:41 +00003655void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3656 int64_t Offset,
3657 const CXXRecordDecl *Type,
3658 raw_ostream &Out) {
3659 // <special-name> ::= TC <type> <offset number> _ <base type>
3660 CXXNameMangler Mangler(*this, Out);
3661 Mangler.getStream() << "_ZTC";
3662 Mangler.mangleNameOrStandardSubstitution(RD);
3663 Mangler.getStream() << Offset;
3664 Mangler.getStream() << '_';
3665 Mangler.mangleNameOrStandardSubstitution(Type);
3666}
3667
3668void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
3669 raw_ostream &Out) {
3670 // <special-name> ::= TI <type> # typeinfo structure
3671 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3672 CXXNameMangler Mangler(*this, Out);
3673 Mangler.getStream() << "_ZTI";
3674 Mangler.mangleType(Ty);
3675}
3676
3677void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
3678 raw_ostream &Out) {
3679 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
3680 CXXNameMangler Mangler(*this, Out);
3681 Mangler.getStream() << "_ZTS";
3682 Mangler.mangleType(Ty);
3683}
3684
3685MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
3686 DiagnosticsEngine &Diags) {
3687 return new ItaniumMangleContext(Context, Diags);
3688}