blob: a27d62bcf4f9924aa58c676d35f1c51bda3a6175 [file] [log] [blame]
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Stack allocation
12//===----------------------------------------------------------------------===//
13
14def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
15 [(callseq_start timm:$amt)]>;
16def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
17 [(callseq_end timm:$amt1, timm:$amt2)]>;
18
19let neverHasSideEffects = 1 in {
20 // Takes as input the value of the stack pointer after a dynamic allocation
21 // has been made. Sets the output to the address of the dynamically-
22 // allocated area itself, skipping the outgoing arguments.
23 //
24 // This expands to an LA or LAY instruction. We restrict the offset
25 // to the range of LA and keep the LAY range in reserve for when
26 // the size of the outgoing arguments is added.
27 def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
28 [(set GR64:$dst, dynalloc12only:$src)]>;
29}
30
31//===----------------------------------------------------------------------===//
32// Control flow instructions
33//===----------------------------------------------------------------------===//
34
35// A return instruction. R1 is the condition-code mask (all 1s)
36// and R2 is the target address, which is always stored in %r14.
37let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1,
38 R1 = 15, R2 = 14, isCodeGenOnly = 1 in {
39 def RET : InstRR<0x07, (outs), (ins), "br\t%r14", [(z_retflag)]>;
40}
41
42// Unconditional branches. R1 is the condition-code mask (all 1s).
43let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
44 let isIndirectBranch = 1 in
Richard Sandifordd454ec02013-05-14 09:28:21 +000045 def BR : InstRR<0x07, (outs), (ins ADDR64:$R2),
46 "br\t$R2", [(brind ADDR64:$R2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000047
Richard Sandiford312425f2013-05-20 14:23:08 +000048 // An assembler extended mnemonic for BRC.
49 def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2",
50 [(br bb:$I2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000051
52 // An assembler extended mnemonic for BRCL. (The extension is "G"
53 // rather than "L" because "JL" is "Jump if Less".)
Richard Sandiford312425f2013-05-20 14:23:08 +000054 def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000055}
56
57// Conditional branches. It's easier for LLVM to handle these branches
58// in their raw BRC/BRCL form, with the 4-bit condition-code mask being
59// the first operand. It seems friendlier to use mnemonic forms like
60// JE and JLH when writing out the assembly though.
61multiclass CondBranches<Operand imm, string short, string long> {
Richard Sandiford14a44492013-05-22 13:38:45 +000062 let isBranch = 1, isTerminator = 1, Uses = [CC] in {
Richard Sandifordd454ec02013-05-14 09:28:21 +000063 def "" : InstRI<0xA74, (outs), (ins imm:$R1, brtarget16:$I2), short, []>;
64 def L : InstRIL<0xC04, (outs), (ins imm:$R1, brtarget32:$I2), long, []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000065 }
66}
67let isCodeGenOnly = 1 in
Richard Sandifordd454ec02013-05-14 09:28:21 +000068 defm BRC : CondBranches<cond4, "j$R1\t$I2", "jg$R1\t$I2">;
Richard Sandiford6a808f92013-05-14 09:38:07 +000069defm AsmBRC : CondBranches<uimm8zx4, "brc\t$R1, $I2", "brcl\t$R1, $I2">;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000070
Richard Sandiford312425f2013-05-20 14:23:08 +000071def : Pat<(z_br_ccmask cond4:$cond, bb:$dst), (BRC cond4:$cond, bb:$dst)>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000072
73// Define AsmParser mnemonics for each condition code.
74multiclass CondExtendedMnemonic<bits<4> Cond, string name> {
75 let R1 = Cond in {
Richard Sandifordd454ec02013-05-14 09:28:21 +000076 def "" : InstRI<0xA74, (outs), (ins brtarget16:$I2),
77 "j"##name##"\t$I2", []>;
78 def L : InstRIL<0xC04, (outs), (ins brtarget32:$I2),
79 "jg"##name##"\t$I2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000080 }
81}
Richard Sandiford6a808f92013-05-14 09:38:07 +000082defm AsmJO : CondExtendedMnemonic<1, "o">;
83defm AsmJH : CondExtendedMnemonic<2, "h">;
84defm AsmJNLE : CondExtendedMnemonic<3, "nle">;
85defm AsmJL : CondExtendedMnemonic<4, "l">;
86defm AsmJNHE : CondExtendedMnemonic<5, "nhe">;
87defm AsmJLH : CondExtendedMnemonic<6, "lh">;
88defm AsmJNE : CondExtendedMnemonic<7, "ne">;
89defm AsmJE : CondExtendedMnemonic<8, "e">;
90defm AsmJNLH : CondExtendedMnemonic<9, "nlh">;
91defm AsmJHE : CondExtendedMnemonic<10, "he">;
92defm AsmJNL : CondExtendedMnemonic<11, "nl">;
93defm AsmJLE : CondExtendedMnemonic<12, "le">;
94defm AsmJNH : CondExtendedMnemonic<13, "nh">;
95defm AsmJNO : CondExtendedMnemonic<14, "no">;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000096
97def Select32 : SelectWrapper<GR32>;
98def Select64 : SelectWrapper<GR64>;
99
100//===----------------------------------------------------------------------===//
101// Call instructions
102//===----------------------------------------------------------------------===//
103
104// The definitions here are for the call-clobbered registers.
105let isCall = 1, Defs = [R0D, R1D, R2D, R3D, R4D, R5D, R14D,
106 F0D, F1D, F2D, F3D, F4D, F5D, F6D, F7D],
107 R1 = 14, isCodeGenOnly = 1 in {
Richard Sandifordd454ec02013-05-14 09:28:21 +0000108 def BRAS : InstRI<0xA75, (outs), (ins pcrel16call:$I2, variable_ops),
109 "bras\t%r14, $I2", []>;
110 def BRASL : InstRIL<0xC05, (outs), (ins pcrel32call:$I2, variable_ops),
111 "brasl\t%r14, $I2", [(z_call pcrel32call:$I2)]>;
112 def BASR : InstRR<0x0D, (outs), (ins ADDR64:$R2, variable_ops),
113 "basr\t%r14, $R2", [(z_call ADDR64:$R2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000114}
115
116// Define the general form of the call instructions for the asm parser.
117// These instructions don't hard-code %r14 as the return address register.
Richard Sandiford6a808f92013-05-14 09:38:07 +0000118def AsmBRAS : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16:$I2),
119 "bras\t$R1, $I2", []>;
120def AsmBRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32:$I2),
121 "brasl\t$R1, $I2", []>;
122def AsmBASR : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
123 "basr\t$R1, $R2", []>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000124
125//===----------------------------------------------------------------------===//
126// Move instructions
127//===----------------------------------------------------------------------===//
128
129// Register moves.
130let neverHasSideEffects = 1 in {
131 def LR : UnaryRR <"lr", 0x18, null_frag, GR32, GR32>;
132 def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;
133}
134
135// Immediate moves.
136let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
137 // 16-bit sign-extended immediates.
138 def LHI : UnaryRI<"lhi", 0xA78, bitconvert, GR32, imm32sx16>;
139 def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
140
141 // Other 16-bit immediates.
142 def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
143 def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
144 def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
145 def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
146
147 // 32-bit immediates.
148 def LGFI : UnaryRIL<"lgfi", 0xC01, bitconvert, GR64, imm64sx32>;
149 def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
150 def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
151}
152
153// Register loads.
154let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
155 defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32>;
156 def LRL : UnaryRILPC<"lrl", 0xC4D, aligned_load, GR32>;
157
158 def LG : UnaryRXY<"lg", 0xE304, load, GR64>;
159 def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
160
161 // These instructions are split after register allocation, so we don't
162 // want a custom inserter.
163 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
164 def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
165 [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
166 }
167}
168
169// Register stores.
170let SimpleBDXStore = 1 in {
171 let isCodeGenOnly = 1 in {
172 defm ST32 : StoreRXPair<"st", 0x50, 0xE350, store, GR32>;
173 def STRL32 : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
174 }
175
176 def STG : StoreRXY<"stg", 0xE324, store, GR64>;
177 def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
178
179 // These instructions are split after register allocation, so we don't
180 // want a custom inserter.
181 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
182 def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
183 [(store GR128:$src, bdxaddr20only128:$dst)]>;
184 }
185}
186
187// 8-bit immediate stores to 8-bit fields.
188defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
189
190// 16-bit immediate stores to 16-, 32- or 64-bit fields.
191def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
192def MVHI : StoreSIL<"mvhi", 0xE54C, store, imm32sx16>;
193def MVGHI : StoreSIL<"mvghi", 0xE548, store, imm64sx16>;
194
195//===----------------------------------------------------------------------===//
196// Sign extensions
197//===----------------------------------------------------------------------===//
198
199// 32-bit extensions from registers.
200let neverHasSideEffects = 1 in {
201 def LBR : UnaryRRE<"lbr", 0xB926, sext8, GR32, GR32>;
202 def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;
203}
204
205// 64-bit extensions from registers.
206let neverHasSideEffects = 1 in {
207 def LGBR : UnaryRRE<"lgbr", 0xB906, sext8, GR64, GR64>;
208 def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
209 def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;
210}
211
212// Match 32-to-64-bit sign extensions in which the source is already
213// in a 64-bit register.
214def : Pat<(sext_inreg GR64:$src, i32),
215 (LGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
216
217// 32-bit extensions from memory.
218def LB : UnaryRXY<"lb", 0xE376, sextloadi8, GR32>;
219defm LH : UnaryRXPair<"lh", 0x48, 0xE378, sextloadi16, GR32>;
220def LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_sextloadi16, GR32>;
221
222// 64-bit extensions from memory.
223def LGB : UnaryRXY<"lgb", 0xE377, sextloadi8, GR64>;
224def LGH : UnaryRXY<"lgh", 0xE315, sextloadi16, GR64>;
225def LGF : UnaryRXY<"lgf", 0xE314, sextloadi32, GR64>;
226def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_sextloadi16, GR64>;
227def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_sextloadi32, GR64>;
228
229// If the sign of a load-extend operation doesn't matter, use the signed ones.
230// There's not really much to choose between the sign and zero extensions,
231// but LH is more compact than LLH for small offsets.
232def : Pat<(i32 (extloadi8 bdxaddr20only:$src)), (LB bdxaddr20only:$src)>;
233def : Pat<(i32 (extloadi16 bdxaddr12pair:$src)), (LH bdxaddr12pair:$src)>;
234def : Pat<(i32 (extloadi16 bdxaddr20pair:$src)), (LHY bdxaddr20pair:$src)>;
235
236def : Pat<(i64 (extloadi8 bdxaddr20only:$src)), (LGB bdxaddr20only:$src)>;
237def : Pat<(i64 (extloadi16 bdxaddr20only:$src)), (LGH bdxaddr20only:$src)>;
238def : Pat<(i64 (extloadi32 bdxaddr20only:$src)), (LGF bdxaddr20only:$src)>;
239
240//===----------------------------------------------------------------------===//
241// Zero extensions
242//===----------------------------------------------------------------------===//
243
244// 32-bit extensions from registers.
245let neverHasSideEffects = 1 in {
246 def LLCR : UnaryRRE<"llcr", 0xB994, zext8, GR32, GR32>;
247 def LLHR : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;
248}
249
250// 64-bit extensions from registers.
251let neverHasSideEffects = 1 in {
252 def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8, GR64, GR64>;
253 def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
254 def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;
255}
256
257// Match 32-to-64-bit zero extensions in which the source is already
258// in a 64-bit register.
259def : Pat<(and GR64:$src, 0xffffffff),
260 (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
261
262// 32-bit extensions from memory.
263def LLC : UnaryRXY<"llc", 0xE394, zextloadi8, GR32>;
264def LLH : UnaryRXY<"llh", 0xE395, zextloadi16, GR32>;
265def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_zextloadi16, GR32>;
266
267// 64-bit extensions from memory.
268def LLGC : UnaryRXY<"llgc", 0xE390, zextloadi8, GR64>;
269def LLGH : UnaryRXY<"llgh", 0xE391, zextloadi16, GR64>;
270def LLGF : UnaryRXY<"llgf", 0xE316, zextloadi32, GR64>;
271def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_zextloadi16, GR64>;
272def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_zextloadi32, GR64>;
273
274//===----------------------------------------------------------------------===//
275// Truncations
276//===----------------------------------------------------------------------===//
277
278// Truncations of 64-bit registers to 32-bit registers.
279def : Pat<(i32 (trunc GR64:$src)),
280 (EXTRACT_SUBREG GR64:$src, subreg_32bit)>;
281
282// Truncations of 32-bit registers to memory.
283let isCodeGenOnly = 1 in {
284 defm STC32 : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32>;
285 defm STH32 : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32>;
286 def STHRL32 : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
287}
288
289// Truncations of 64-bit registers to memory.
290defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR64>;
291defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR64>;
292def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR64>;
293defm ST : StoreRXPair<"st", 0x50, 0xE350, truncstorei32, GR64>;
294def STRL : StoreRILPC<"strl", 0xC4F, aligned_truncstorei32, GR64>;
295
296//===----------------------------------------------------------------------===//
297// Multi-register moves
298//===----------------------------------------------------------------------===//
299
300// Multi-register loads.
301def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
302
303// Multi-register stores.
304def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
305
306//===----------------------------------------------------------------------===//
307// Byte swaps
308//===----------------------------------------------------------------------===//
309
310// Byte-swapping register moves.
311let neverHasSideEffects = 1 in {
312 def LRVR : UnaryRRE<"lrvr", 0xB91F, bswap, GR32, GR32>;
313 def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;
314}
315
316// Byte-swapping loads.
317def LRV : UnaryRXY<"lrv", 0xE31E, loadu<bswap>, GR32>;
318def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap>, GR64>;
319
320// Byte-swapping stores.
321def STRV : StoreRXY<"strv", 0xE33E, storeu<bswap>, GR32>;
322def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap>, GR64>;
323
324//===----------------------------------------------------------------------===//
325// Load address instructions
326//===----------------------------------------------------------------------===//
327
328// Load BDX-style addresses.
329let neverHasSideEffects = 1, Function = "la" in {
330 let PairType = "12" in
Richard Sandifordd454ec02013-05-14 09:28:21 +0000331 def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2),
332 "la\t$R1, $XBD2",
333 [(set GR64:$R1, laaddr12pair:$XBD2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000334 let PairType = "20" in
Richard Sandifordd454ec02013-05-14 09:28:21 +0000335 def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2),
336 "lay\t$R1, $XBD2",
337 [(set GR64:$R1, laaddr20pair:$XBD2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000338}
339
340// Load a PC-relative address. There's no version of this instruction
341// with a 16-bit offset, so there's no relaxation.
342let neverHasSideEffects = 1 in {
Richard Sandifordd454ec02013-05-14 09:28:21 +0000343 def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2),
344 "larl\t$R1, $I2",
345 [(set GR64:$R1, pcrel32:$I2)]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000346}
347
348//===----------------------------------------------------------------------===//
349// Negation
350//===----------------------------------------------------------------------===//
351
Richard Sandiford14a44492013-05-22 13:38:45 +0000352let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000353 def LCR : UnaryRR <"lcr", 0x13, ineg, GR32, GR32>;
354 def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
355 def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
356}
357defm : SXU<ineg, LCGFR>;
358
359//===----------------------------------------------------------------------===//
360// Insertion
361//===----------------------------------------------------------------------===//
362
363let isCodeGenOnly = 1 in
364 defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, zextloadi8>;
365defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, zextloadi8>;
366
367defm : InsertMem<"inserti8", IC32, GR32, zextloadi8, bdxaddr12pair>;
368defm : InsertMem<"inserti8", IC32Y, GR32, zextloadi8, bdxaddr20pair>;
369
370defm : InsertMem<"inserti8", IC, GR64, zextloadi8, bdxaddr12pair>;
371defm : InsertMem<"inserti8", ICY, GR64, zextloadi8, bdxaddr20pair>;
372
373// Insertions of a 16-bit immediate, leaving other bits unaffected.
374// We don't have or_as_insert equivalents of these operations because
375// OI is available instead.
376let isCodeGenOnly = 1 in {
377 def IILL32 : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
378 def IILH32 : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
379}
380def IILL : BinaryRI<"iill", 0xA53, insertll, GR64, imm64ll16>;
381def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR64, imm64lh16>;
382def IIHL : BinaryRI<"iihl", 0xA51, inserthl, GR64, imm64hl16>;
383def IIHH : BinaryRI<"iihh", 0xA50, inserthh, GR64, imm64hh16>;
384
385// ...likewise for 32-bit immediates. For GR32s this is a general
386// full-width move. (We use IILF rather than something like LLILF
387// for 32-bit moves because IILF leaves the upper 32 bits of the
388// GR64 unchanged.)
389let isCodeGenOnly = 1 in {
390 def IILF32 : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
391}
392def IILF : BinaryRIL<"iilf", 0xC09, insertlf, GR64, imm64lf32>;
393def IIHF : BinaryRIL<"iihf", 0xC08, inserthf, GR64, imm64hf32>;
394
395// An alternative model of inserthf, with the first operand being
396// a zero-extended value.
397def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
398 (IIHF (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit),
399 imm64hf32:$imm)>;
400
401//===----------------------------------------------------------------------===//
402// Addition
403//===----------------------------------------------------------------------===//
404
405// Plain addition.
Richard Sandiford14a44492013-05-22 13:38:45 +0000406let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000407 // Addition of a register.
408 let isCommutable = 1 in {
409 def AR : BinaryRR <"ar", 0x1A, add, GR32, GR32>;
410 def AGR : BinaryRRE<"agr", 0xB908, add, GR64, GR64>;
411 }
412 def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;
413
414 // Addition of signed 16-bit immediates.
415 def AHI : BinaryRI<"ahi", 0xA7A, add, GR32, imm32sx16>;
416 def AGHI : BinaryRI<"aghi", 0xA7B, add, GR64, imm64sx16>;
417
418 // Addition of signed 32-bit immediates.
419 def AFI : BinaryRIL<"afi", 0xC29, add, GR32, simm32>;
420 def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;
421
422 // Addition of memory.
423 defm AH : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, sextloadi16>;
424 defm A : BinaryRXPair<"a", 0x5A, 0xE35A, add, GR32, load>;
425 def AGF : BinaryRXY<"agf", 0xE318, add, GR64, sextloadi32>;
426 def AG : BinaryRXY<"ag", 0xE308, add, GR64, load>;
427
428 // Addition to memory.
429 def ASI : BinarySIY<"asi", 0xEB6A, add, imm32sx8>;
430 def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
431}
432defm : SXB<add, GR64, AGFR>;
433
434// Addition producing a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000435let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000436 // Addition of a register.
437 let isCommutable = 1 in {
438 def ALR : BinaryRR <"alr", 0x1E, addc, GR32, GR32>;
439 def ALGR : BinaryRRE<"algr", 0xB90A, addc, GR64, GR64>;
440 }
441 def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;
442
443 // Addition of unsigned 32-bit immediates.
444 def ALFI : BinaryRIL<"alfi", 0xC2B, addc, GR32, uimm32>;
445 def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;
446
447 // Addition of memory.
448 defm AL : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load>;
449 def ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, zextloadi32>;
450 def ALG : BinaryRXY<"alg", 0xE30A, addc, GR64, load>;
451}
452defm : ZXB<addc, GR64, ALGFR>;
453
454// Addition producing and using a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000455let Defs = [CC], Uses = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000456 // Addition of a register.
457 def ALCR : BinaryRRE<"alcr", 0xB998, adde, GR32, GR32>;
458 def ALCGR : BinaryRRE<"alcgr", 0xB988, adde, GR64, GR64>;
459
460 // Addition of memory.
461 def ALC : BinaryRXY<"alc", 0xE398, adde, GR32, load>;
462 def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load>;
463}
464
465//===----------------------------------------------------------------------===//
466// Subtraction
467//===----------------------------------------------------------------------===//
468
469// Plain substraction. Although immediate forms exist, we use the
470// add-immediate instruction instead.
Richard Sandiford14a44492013-05-22 13:38:45 +0000471let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000472 // Subtraction of a register.
473 def SR : BinaryRR <"sr", 0x1B, sub, GR32, GR32>;
474 def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
475 def SGR : BinaryRRE<"sgr", 0xB909, sub, GR64, GR64>;
476
477 // Subtraction of memory.
Richard Sandifordffd14412013-05-15 15:05:29 +0000478 defm SH : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, sextloadi16>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000479 defm S : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load>;
480 def SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, sextloadi32>;
481 def SG : BinaryRXY<"sg", 0xE309, sub, GR64, load>;
482}
483defm : SXB<sub, GR64, SGFR>;
484
485// Subtraction producing a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000486let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000487 // Subtraction of a register.
488 def SLR : BinaryRR <"slr", 0x1F, subc, GR32, GR32>;
489 def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
490 def SLGR : BinaryRRE<"slgr", 0xB90B, subc, GR64, GR64>;
491
492 // Subtraction of unsigned 32-bit immediates. These don't match
493 // subc because we prefer addc for constants.
494 def SLFI : BinaryRIL<"slfi", 0xC25, null_frag, GR32, uimm32>;
495 def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;
496
497 // Subtraction of memory.
498 defm SL : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load>;
499 def SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, zextloadi32>;
500 def SLG : BinaryRXY<"slg", 0xE30B, subc, GR64, load>;
501}
502defm : ZXB<subc, GR64, SLGFR>;
503
504// Subtraction producing and using a carry.
Richard Sandiford14a44492013-05-22 13:38:45 +0000505let Defs = [CC], Uses = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000506 // Subtraction of a register.
507 def SLBR : BinaryRRE<"slbr", 0xB999, sube, GR32, GR32>;
508 def SLGBR : BinaryRRE<"slbgr", 0xB989, sube, GR64, GR64>;
509
510 // Subtraction of memory.
511 def SLB : BinaryRXY<"slb", 0xE399, sube, GR32, load>;
512 def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load>;
513}
514
515//===----------------------------------------------------------------------===//
516// AND
517//===----------------------------------------------------------------------===//
518
Richard Sandiford14a44492013-05-22 13:38:45 +0000519let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000520 // ANDs of a register.
521 let isCommutable = 1 in {
522 def NR : BinaryRR <"nr", 0x14, and, GR32, GR32>;
523 def NGR : BinaryRRE<"ngr", 0xB980, and, GR64, GR64>;
524 }
525
526 // ANDs of a 16-bit immediate, leaving other bits unaffected.
527 let isCodeGenOnly = 1 in {
528 def NILL32 : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
529 def NILH32 : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
530 }
531 def NILL : BinaryRI<"nill", 0xA57, and, GR64, imm64ll16c>;
532 def NILH : BinaryRI<"nilh", 0xA56, and, GR64, imm64lh16c>;
533 def NIHL : BinaryRI<"nihl", 0xA55, and, GR64, imm64hl16c>;
534 def NIHH : BinaryRI<"nihh", 0xA54, and, GR64, imm64hh16c>;
535
536 // ANDs of a 32-bit immediate, leaving other bits unaffected.
537 let isCodeGenOnly = 1 in
538 def NILF32 : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
539 def NILF : BinaryRIL<"nilf", 0xC0B, and, GR64, imm64lf32c>;
540 def NIHF : BinaryRIL<"nihf", 0xC0A, and, GR64, imm64hf32c>;
541
542 // ANDs of memory.
543 defm N : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load>;
544 def NG : BinaryRXY<"ng", 0xE380, and, GR64, load>;
545
546 // AND to memory
547 defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, uimm8>;
548}
549defm : RMWIByte<and, bdaddr12pair, NI>;
550defm : RMWIByte<and, bdaddr20pair, NIY>;
551
552//===----------------------------------------------------------------------===//
553// OR
554//===----------------------------------------------------------------------===//
555
Richard Sandiford14a44492013-05-22 13:38:45 +0000556let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000557 // ORs of a register.
558 let isCommutable = 1 in {
559 def OR : BinaryRR <"or", 0x16, or, GR32, GR32>;
560 def OGR : BinaryRRE<"ogr", 0xB981, or, GR64, GR64>;
561 }
562
563 // ORs of a 16-bit immediate, leaving other bits unaffected.
564 let isCodeGenOnly = 1 in {
565 def OILL32 : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
566 def OILH32 : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
567 }
568 def OILL : BinaryRI<"oill", 0xA5B, or, GR64, imm64ll16>;
569 def OILH : BinaryRI<"oilh", 0xA5A, or, GR64, imm64lh16>;
570 def OIHL : BinaryRI<"oihl", 0xA59, or, GR64, imm64hl16>;
571 def OIHH : BinaryRI<"oihh", 0xA58, or, GR64, imm64hh16>;
572
573 // ORs of a 32-bit immediate, leaving other bits unaffected.
574 let isCodeGenOnly = 1 in
575 def OILF32 : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
576 def OILF : BinaryRIL<"oilf", 0xC0D, or, GR64, imm64lf32>;
577 def OIHF : BinaryRIL<"oihf", 0xC0C, or, GR64, imm64hf32>;
578
579 // ORs of memory.
580 defm O : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load>;
581 def OG : BinaryRXY<"og", 0xE381, or, GR64, load>;
582
583 // OR to memory
584 defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, uimm8>;
585}
586defm : RMWIByte<or, bdaddr12pair, OI>;
587defm : RMWIByte<or, bdaddr20pair, OIY>;
588
589//===----------------------------------------------------------------------===//
590// XOR
591//===----------------------------------------------------------------------===//
592
Richard Sandiford14a44492013-05-22 13:38:45 +0000593let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000594 // XORs of a register.
595 let isCommutable = 1 in {
596 def XR : BinaryRR <"xr", 0x17, xor, GR32, GR32>;
597 def XGR : BinaryRRE<"xgr", 0xB982, xor, GR64, GR64>;
598 }
599
600 // XORs of a 32-bit immediate, leaving other bits unaffected.
601 let isCodeGenOnly = 1 in
602 def XILF32 : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
603 def XILF : BinaryRIL<"xilf", 0xC07, xor, GR64, imm64lf32>;
604 def XIHF : BinaryRIL<"xihf", 0xC06, xor, GR64, imm64hf32>;
605
606 // XORs of memory.
607 defm X : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load>;
608 def XG : BinaryRXY<"xg", 0xE382, xor, GR64, load>;
609
610 // XOR to memory
611 defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, uimm8>;
612}
613defm : RMWIByte<xor, bdaddr12pair, XI>;
614defm : RMWIByte<xor, bdaddr20pair, XIY>;
615
616//===----------------------------------------------------------------------===//
617// Multiplication
618//===----------------------------------------------------------------------===//
619
620// Multiplication of a register.
621let isCommutable = 1 in {
622 def MSR : BinaryRRE<"msr", 0xB252, mul, GR32, GR32>;
623 def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
624}
625def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
626defm : SXB<mul, GR64, MSGFR>;
627
628// Multiplication of a signed 16-bit immediate.
629def MHI : BinaryRI<"mhi", 0xA7C, mul, GR32, imm32sx16>;
630def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
631
632// Multiplication of a signed 32-bit immediate.
633def MSFI : BinaryRIL<"msfi", 0xC21, mul, GR32, simm32>;
634def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
635
636// Multiplication of memory.
637defm MH : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, sextloadi16>;
638defm MS : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load>;
639def MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, sextloadi32>;
640def MSG : BinaryRXY<"msg", 0xE30C, mul, GR64, load>;
641
642// Multiplication of a register, producing two results.
643def MLGR : BinaryRRE<"mlgr", 0xB986, z_umul_lohi64, GR128, GR64>;
644
645// Multiplication of memory, producing two results.
646def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load>;
647
648//===----------------------------------------------------------------------===//
649// Division and remainder
650//===----------------------------------------------------------------------===//
651
652// Division and remainder, from registers.
653def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>;
654def DSGR : BinaryRRE<"dsgr", 0xB90D, z_sdivrem64, GR128, GR64>;
655def DLR : BinaryRRE<"dlr", 0xB997, z_udivrem32, GR128, GR32>;
656def DLGR : BinaryRRE<"dlgr", 0xB987, z_udivrem64, GR128, GR64>;
657defm : SXB<z_sdivrem64, GR128, DSGFR>;
658
659// Division and remainder, from memory.
660def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem64, GR128, sextloadi32>;
661def DSG : BinaryRXY<"dsg", 0xE30D, z_sdivrem64, GR128, load>;
662def DL : BinaryRXY<"dl", 0xE397, z_udivrem32, GR128, load>;
663def DLG : BinaryRXY<"dlg", 0xE387, z_udivrem64, GR128, load>;
664
665//===----------------------------------------------------------------------===//
666// Shifts
667//===----------------------------------------------------------------------===//
668
669// Shift left.
670let neverHasSideEffects = 1 in {
671 def SLL : ShiftRS <"sll", 0x89, shl, GR32, shift12only>;
672 def SLLG : ShiftRSY<"sllg", 0xEB0D, shl, GR64, shift20only>;
673}
674
675// Logical shift right.
676let neverHasSideEffects = 1 in {
677 def SRL : ShiftRS <"srl", 0x88, srl, GR32, shift12only>;
678 def SRLG : ShiftRSY<"srlg", 0xEB0C, srl, GR64, shift20only>;
679}
680
681// Arithmetic shift right.
Richard Sandiford14a44492013-05-22 13:38:45 +0000682let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000683 def SRA : ShiftRS <"sra", 0x8A, sra, GR32, shift12only>;
684 def SRAG : ShiftRSY<"srag", 0xEB0A, sra, GR64, shift20only>;
685}
686
687// Rotate left.
688let neverHasSideEffects = 1 in {
689 def RLL : ShiftRSY<"rll", 0xEB1D, rotl, GR32, shift20only>;
690 def RLLG : ShiftRSY<"rllg", 0xEB1C, rotl, GR64, shift20only>;
691}
692
693// Rotate second operand left and inserted selected bits into first operand.
694// These can act like 32-bit operands provided that the constant start and
695// end bits (operands 2 and 3) are in the range [32, 64)
Richard Sandiford14a44492013-05-22 13:38:45 +0000696let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000697 let isCodeGenOnly = 1 in
698 def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
699 def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
700}
701
702//===----------------------------------------------------------------------===//
703// Comparison
704//===----------------------------------------------------------------------===//
705
706// Signed comparisons.
Richard Sandiford14a44492013-05-22 13:38:45 +0000707let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000708 // Comparison with a register.
709 def CR : CompareRR <"cr", 0x19, z_cmp, GR32, GR32>;
710 def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
711 def CGR : CompareRRE<"cgr", 0xB920, z_cmp, GR64, GR64>;
712
713 // Comparison with a signed 16-bit immediate.
714 def CHI : CompareRI<"chi", 0xA7E, z_cmp, GR32, imm32sx16>;
715 def CGHI : CompareRI<"cghi", 0xA7F, z_cmp, GR64, imm64sx16>;
716
717 // Comparison with a signed 32-bit immediate.
718 def CFI : CompareRIL<"cfi", 0xC2D, z_cmp, GR32, simm32>;
719 def CGFI : CompareRIL<"cgfi", 0xC2C, z_cmp, GR64, imm64sx32>;
720
721 // Comparison with memory.
722 defm CH : CompareRXPair<"ch", 0x49, 0xE379, z_cmp, GR32, sextloadi16>;
723 defm C : CompareRXPair<"c", 0x59, 0xE359, z_cmp, GR32, load>;
724 def CGH : CompareRXY<"cgh", 0xE334, z_cmp, GR64, sextloadi16>;
725 def CGF : CompareRXY<"cgf", 0xE330, z_cmp, GR64, sextloadi32>;
726 def CG : CompareRXY<"cg", 0xE320, z_cmp, GR64, load>;
727 def CHRL : CompareRILPC<"chrl", 0xC65, z_cmp, GR32, aligned_sextloadi16>;
728 def CRL : CompareRILPC<"crl", 0xC6D, z_cmp, GR32, aligned_load>;
729 def CGHRL : CompareRILPC<"cghrl", 0xC64, z_cmp, GR64, aligned_sextloadi16>;
730 def CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_cmp, GR64, aligned_sextloadi32>;
731 def CGRL : CompareRILPC<"cgrl", 0xC68, z_cmp, GR64, aligned_load>;
732
733 // Comparison between memory and a signed 16-bit immediate.
734 def CHHSI : CompareSIL<"chhsi", 0xE554, z_cmp, sextloadi16, imm32sx16>;
735 def CHSI : CompareSIL<"chsi", 0xE55C, z_cmp, load, imm32sx16>;
736 def CGHSI : CompareSIL<"cghsi", 0xE558, z_cmp, load, imm64sx16>;
737}
738defm : SXB<z_cmp, GR64, CGFR>;
739
740// Unsigned comparisons.
Richard Sandiford14a44492013-05-22 13:38:45 +0000741let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000742 // Comparison with a register.
743 def CLR : CompareRR <"clr", 0x15, z_ucmp, GR32, GR32>;
744 def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
745 def CLGR : CompareRRE<"clgr", 0xB921, z_ucmp, GR64, GR64>;
746
747 // Comparison with a signed 32-bit immediate.
748 def CLFI : CompareRIL<"clfi", 0xC2F, z_ucmp, GR32, uimm32>;
749 def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
750
751 // Comparison with memory.
752 defm CL : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load>;
753 def CLGF : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, zextloadi32>;
754 def CLG : CompareRXY<"clg", 0xE321, z_ucmp, GR64, load>;
755 def CLHRL : CompareRILPC<"clhrl", 0xC67, z_ucmp, GR32,
756 aligned_zextloadi16>;
757 def CLRL : CompareRILPC<"clrl", 0xC6F, z_ucmp, GR32,
758 aligned_load>;
759 def CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
760 aligned_zextloadi16>;
761 def CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
762 aligned_zextloadi32>;
763 def CLGRL : CompareRILPC<"clgrl", 0xC6A, z_ucmp, GR64,
764 aligned_load>;
765
766 // Comparison between memory and an unsigned 8-bit immediate.
767 defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, zextloadi8, imm32zx8>;
768
769 // Comparison between memory and an unsigned 16-bit immediate.
770 def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, zextloadi16, imm32zx16>;
771 def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
772 def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
773}
774defm : ZXB<z_ucmp, GR64, CLGFR>;
775
776//===----------------------------------------------------------------------===//
777// Atomic operations
778//===----------------------------------------------------------------------===//
779
780def ATOMIC_SWAPW : AtomicLoadWBinaryReg<z_atomic_swapw>;
781def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
782def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
783
784def ATOMIC_LOADW_AR : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
785def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
786def ATOMIC_LOAD_AR : AtomicLoadBinaryReg32<atomic_load_add_32>;
787def ATOMIC_LOAD_AHI : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
788def ATOMIC_LOAD_AFI : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
789def ATOMIC_LOAD_AGR : AtomicLoadBinaryReg64<atomic_load_add_64>;
790def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
791def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
792
793def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
794def ATOMIC_LOAD_SR : AtomicLoadBinaryReg32<atomic_load_sub_32>;
795def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
796
797def ATOMIC_LOADW_NR : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
798def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
799def ATOMIC_LOAD_NR : AtomicLoadBinaryReg32<atomic_load_and_32>;
800def ATOMIC_LOAD_NILL32 : AtomicLoadBinaryImm32<atomic_load_and_32, imm32ll16c>;
801def ATOMIC_LOAD_NILH32 : AtomicLoadBinaryImm32<atomic_load_and_32, imm32lh16c>;
802def ATOMIC_LOAD_NILF32 : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
803def ATOMIC_LOAD_NGR : AtomicLoadBinaryReg64<atomic_load_and_64>;
804def ATOMIC_LOAD_NILL : AtomicLoadBinaryImm64<atomic_load_and_64, imm64ll16c>;
805def ATOMIC_LOAD_NILH : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lh16c>;
806def ATOMIC_LOAD_NIHL : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hl16c>;
807def ATOMIC_LOAD_NIHH : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hh16c>;
808def ATOMIC_LOAD_NILF : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lf32c>;
809def ATOMIC_LOAD_NIHF : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hf32c>;
810
811def ATOMIC_LOADW_OR : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
812def ATOMIC_LOADW_OILH : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
813def ATOMIC_LOAD_OR : AtomicLoadBinaryReg32<atomic_load_or_32>;
814def ATOMIC_LOAD_OILL32 : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
815def ATOMIC_LOAD_OILH32 : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
816def ATOMIC_LOAD_OILF32 : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
817def ATOMIC_LOAD_OGR : AtomicLoadBinaryReg64<atomic_load_or_64>;
818def ATOMIC_LOAD_OILL : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
819def ATOMIC_LOAD_OILH : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
820def ATOMIC_LOAD_OIHL : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
821def ATOMIC_LOAD_OIHH : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
822def ATOMIC_LOAD_OILF : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
823def ATOMIC_LOAD_OIHF : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
824
825def ATOMIC_LOADW_XR : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
826def ATOMIC_LOADW_XILF : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
827def ATOMIC_LOAD_XR : AtomicLoadBinaryReg32<atomic_load_xor_32>;
828def ATOMIC_LOAD_XILF32 : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
829def ATOMIC_LOAD_XGR : AtomicLoadBinaryReg64<atomic_load_xor_64>;
830def ATOMIC_LOAD_XILF : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
831def ATOMIC_LOAD_XIHF : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
832
833def ATOMIC_LOADW_NRi : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
834def ATOMIC_LOADW_NILHi : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
835 imm32lh16c>;
836def ATOMIC_LOAD_NRi : AtomicLoadBinaryReg32<atomic_load_nand_32>;
837def ATOMIC_LOAD_NILL32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
838 imm32ll16c>;
839def ATOMIC_LOAD_NILH32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
840 imm32lh16c>;
841def ATOMIC_LOAD_NILF32i : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
842def ATOMIC_LOAD_NGRi : AtomicLoadBinaryReg64<atomic_load_nand_64>;
843def ATOMIC_LOAD_NILLi : AtomicLoadBinaryImm64<atomic_load_nand_64,
844 imm64ll16c>;
845def ATOMIC_LOAD_NILHi : AtomicLoadBinaryImm64<atomic_load_nand_64,
846 imm64lh16c>;
847def ATOMIC_LOAD_NIHLi : AtomicLoadBinaryImm64<atomic_load_nand_64,
848 imm64hl16c>;
849def ATOMIC_LOAD_NIHHi : AtomicLoadBinaryImm64<atomic_load_nand_64,
850 imm64hh16c>;
851def ATOMIC_LOAD_NILFi : AtomicLoadBinaryImm64<atomic_load_nand_64,
852 imm64lf32c>;
853def ATOMIC_LOAD_NIHFi : AtomicLoadBinaryImm64<atomic_load_nand_64,
854 imm64hf32c>;
855
856def ATOMIC_LOADW_MIN : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
857def ATOMIC_LOAD_MIN_32 : AtomicLoadBinaryReg32<atomic_load_min_32>;
858def ATOMIC_LOAD_MIN_64 : AtomicLoadBinaryReg64<atomic_load_min_64>;
859
860def ATOMIC_LOADW_MAX : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
861def ATOMIC_LOAD_MAX_32 : AtomicLoadBinaryReg32<atomic_load_max_32>;
862def ATOMIC_LOAD_MAX_64 : AtomicLoadBinaryReg64<atomic_load_max_64>;
863
864def ATOMIC_LOADW_UMIN : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
865def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
866def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
867
868def ATOMIC_LOADW_UMAX : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
869def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
870def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
871
872def ATOMIC_CMP_SWAPW
873 : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
874 ADDR32:$bitshift, ADDR32:$negbitshift,
875 uimm32:$bitsize),
876 [(set GR32:$dst,
877 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
878 ADDR32:$bitshift, ADDR32:$negbitshift,
879 uimm32:$bitsize))]> {
Richard Sandiford14a44492013-05-22 13:38:45 +0000880 let Defs = [CC];
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000881 let mayLoad = 1;
882 let mayStore = 1;
883 let usesCustomInserter = 1;
884}
885
Richard Sandiford14a44492013-05-22 13:38:45 +0000886let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000887 defm CS : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
888 def CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
889}
890
891//===----------------------------------------------------------------------===//
892// Miscellaneous Instructions.
893//===----------------------------------------------------------------------===//
894
895// Read a 32-bit access register into a GR32. As with all GR32 operations,
896// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
897// when a 64-bit address is stored in a pair of access registers.
Richard Sandifordd454ec02013-05-14 09:28:21 +0000898def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2),
899 "ear\t$R1, $R2",
900 [(set GR32:$R1, (z_extract_access access_reg:$R2))]>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000901
902// Find leftmost one, AKA count leading zeros. The instruction actually
903// returns a pair of GR64s, the first giving the number of leading zeros
904// and the second giving a copy of the source with the leftmost one bit
905// cleared. We only use the first result here.
Richard Sandiford14a44492013-05-22 13:38:45 +0000906let Defs = [CC] in {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000907 def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
908}
909def : Pat<(ctlz GR64:$src),
910 (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_high)>;
911
912// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
913def : Pat<(i64 (anyext GR32:$src)),
914 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit)>;
915
916// There are no 32-bit equivalents of LLILL and LLILH, so use a full
917// 64-bit move followed by a subreg. This preserves the invariant that
918// all GR32 operations only modify the low 32 bits.
919def : Pat<(i32 imm32ll16:$src),
920 (EXTRACT_SUBREG (LLILL (LL16 imm:$src)), subreg_32bit)>;
921def : Pat<(i32 imm32lh16:$src),
922 (EXTRACT_SUBREG (LLILH (LH16 imm:$src)), subreg_32bit)>;
923
924// Extend GR32s and GR64s to GR128s.
925let usesCustomInserter = 1 in {
926 def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
927 def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
928 def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
929}
930
931//===----------------------------------------------------------------------===//
932// Peepholes.
933//===----------------------------------------------------------------------===//
934
935// Use AL* for GR64 additions of unsigned 32-bit values.
936defm : ZXB<add, GR64, ALGFR>;
937def : Pat<(add GR64:$src1, imm64zx32:$src2),
938 (ALGFI GR64:$src1, imm64zx32:$src2)>;
939def : Pat<(add GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
940 (ALGF GR64:$src1, bdxaddr20only:$addr)>;
941
942// Use SL* for GR64 subtractions of unsigned 32-bit values.
943defm : ZXB<sub, GR64, SLGFR>;
944def : Pat<(add GR64:$src1, imm64zx32n:$src2),
945 (SLGFI GR64:$src1, imm64zx32n:$src2)>;
946def : Pat<(sub GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
947 (SLGF GR64:$src1, bdxaddr20only:$addr)>;