blob: 429c945e7120bd2833b1acdb5161afb2c503c68b [file] [log] [blame]
Bill Wendlinge28d50a2012-06-28 08:43:12 +00001.. role:: raw-html(raw)
2 :format: html
3
4========================
5LLVM Bitcode File Format
6========================
7
8.. contents::
9 :local:
10
11Abstract
12========
13
14This document describes the LLVM bitstream file format and the encoding of the
15LLVM IR into it.
16
17Overview
18========
19
20What is commonly known as the LLVM bitcode file format (also, sometimes
21anachronistically known as bytecode) is actually two things: a `bitstream
22container format`_ and an `encoding of LLVM IR`_ into the container format.
23
24The bitstream format is an abstract encoding of structured data, very similar to
25XML in some ways. Like XML, bitstream files contain tags, and nested
26structures, and you can parse the file without having to understand the tags.
27Unlike XML, the bitstream format is a binary encoding, and unlike XML it
28provides a mechanism for the file to self-describe "abbreviations", which are
29effectively size optimizations for the content.
30
Peter Collingbourne10039c02014-09-18 21:28:49 +000031LLVM IR files may be optionally embedded into a `wrapper`_ structure, or in a
32`native object file`_. Both of these mechanisms make it easy to embed extra
33data along with LLVM IR files.
Bill Wendlinge28d50a2012-06-28 08:43:12 +000034
35This document first describes the LLVM bitstream format, describes the wrapper
36format, then describes the record structure used by LLVM IR files.
37
38.. _bitstream container format:
39
40Bitstream Format
41================
42
43The bitstream format is literally a stream of bits, with a very simple
44structure. This structure consists of the following concepts:
45
46* A "`magic number`_" that identifies the contents of the stream.
47
48* Encoding `primitives`_ like variable bit-rate integers.
49
50* `Blocks`_, which define nested content.
51
52* `Data Records`_, which describe entities within the file.
53
54* Abbreviations, which specify compression optimizations for the file.
55
Joe Abbey159fac42012-11-20 18:14:15 +000056Note that the :doc:`llvm-bcanalyzer <CommandGuide/llvm-bcanalyzer>` tool can be
57used to dump and inspect arbitrary bitstreams, which is very useful for
58understanding the encoding.
Bill Wendlinge28d50a2012-06-28 08:43:12 +000059
60.. _magic number:
61
62Magic Numbers
63-------------
64
65The first two bytes of a bitcode file are 'BC' (``0x42``, ``0x43``). The second
66two bytes are an application-specific magic number. Generic bitcode tools can
67look at only the first two bytes to verify the file is bitcode, while
68application-specific programs will want to look at all four.
69
70.. _primitives:
71
72Primitives
73----------
74
75A bitstream literally consists of a stream of bits, which are read in order
76starting with the least significant bit of each byte. The stream is made up of
77a number of primitive values that encode a stream of unsigned integer values.
78These integers are encoded in two ways: either as `Fixed Width Integers`_ or as
79`Variable Width Integers`_.
80
81.. _Fixed Width Integers:
82.. _fixed-width value:
83
84Fixed Width Integers
85^^^^^^^^^^^^^^^^^^^^
86
87Fixed-width integer values have their low bits emitted directly to the file.
88For example, a 3-bit integer value encodes 1 as 001. Fixed width integers are
89used when there are a well-known number of options for a field. For example,
90boolean values are usually encoded with a 1-bit wide integer.
91
92.. _Variable Width Integers:
93.. _Variable Width Integer:
94.. _variable-width value:
95
96Variable Width Integers
97^^^^^^^^^^^^^^^^^^^^^^^
98
99Variable-width integer (VBR) values encode values of arbitrary size, optimizing
100for the case where the values are small. Given a 4-bit VBR field, any 3-bit
101value (0 through 7) is encoded directly, with the high bit set to zero. Values
102larger than N-1 bits emit their bits in a series of N-1 bit chunks, where all
103but the last set the high bit.
104
105For example, the value 27 (0x1B) is encoded as 1011 0011 when emitted as a vbr4
106value. The first set of four bits indicates the value 3 (011) with a
107continuation piece (indicated by a high bit of 1). The next word indicates a
108value of 24 (011 << 3) with no continuation. The sum (3+24) yields the value
10927.
110
111.. _char6-encoded value:
112
1136-bit characters
114^^^^^^^^^^^^^^^^
115
1166-bit characters encode common characters into a fixed 6-bit field. They
117represent the following characters with the following 6-bit values:
118
119::
120
121 'a' .. 'z' --- 0 .. 25
122 'A' .. 'Z' --- 26 .. 51
123 '0' .. '9' --- 52 .. 61
124 '.' --- 62
125 '_' --- 63
126
127This encoding is only suitable for encoding characters and strings that consist
128only of the above characters. It is completely incapable of encoding characters
129not in the set.
130
131Word Alignment
132^^^^^^^^^^^^^^
133
134Occasionally, it is useful to emit zero bits until the bitstream is a multiple
135of 32 bits. This ensures that the bit position in the stream can be represented
136as a multiple of 32-bit words.
137
138Abbreviation IDs
139----------------
140
141A bitstream is a sequential series of `Blocks`_ and `Data Records`_. Both of
142these start with an abbreviation ID encoded as a fixed-bitwidth field. The
143width is specified by the current block, as described below. The value of the
144abbreviation ID specifies either a builtin ID (which have special meanings,
145defined below) or one of the abbreviation IDs defined for the current block by
146the stream itself.
147
148The set of builtin abbrev IDs is:
149
150* 0 - `END_BLOCK`_ --- This abbrev ID marks the end of the current block.
151
152* 1 - `ENTER_SUBBLOCK`_ --- This abbrev ID marks the beginning of a new
153 block.
154
155* 2 - `DEFINE_ABBREV`_ --- This defines a new abbreviation.
156
157* 3 - `UNABBREV_RECORD`_ --- This ID specifies the definition of an
158 unabbreviated record.
159
160Abbreviation IDs 4 and above are defined by the stream itself, and specify an
161`abbreviated record encoding`_.
162
163.. _Blocks:
164
165Blocks
166------
167
168Blocks in a bitstream denote nested regions of the stream, and are identified by
169a content-specific id number (for example, LLVM IR uses an ID of 12 to represent
170function bodies). Block IDs 0-7 are reserved for `standard blocks`_ whose
171meaning is defined by Bitcode; block IDs 8 and greater are application
172specific. Nested blocks capture the hierarchical structure of the data encoded
173in it, and various properties are associated with blocks as the file is parsed.
174Block definitions allow the reader to efficiently skip blocks in constant time
175if the reader wants a summary of blocks, or if it wants to efficiently skip data
176it does not understand. The LLVM IR reader uses this mechanism to skip function
177bodies, lazily reading them on demand.
178
179When reading and encoding the stream, several properties are maintained for the
180block. In particular, each block maintains:
181
182#. A current abbrev id width. This value starts at 2 at the beginning of the
183 stream, and is set every time a block record is entered. The block entry
184 specifies the abbrev id width for the body of the block.
185
186#. A set of abbreviations. Abbreviations may be defined within a block, in
187 which case they are only defined in that block (neither subblocks nor
188 enclosing blocks see the abbreviation). Abbreviations can also be defined
189 inside a `BLOCKINFO`_ block, in which case they are defined in all blocks
190 that match the ID that the ``BLOCKINFO`` block is describing.
191
192As sub blocks are entered, these properties are saved and the new sub-block has
193its own set of abbreviations, and its own abbrev id width. When a sub-block is
194popped, the saved values are restored.
195
196.. _ENTER_SUBBLOCK:
197
198ENTER_SUBBLOCK Encoding
199^^^^^^^^^^^^^^^^^^^^^^^
200
201:raw-html:`<tt>`
202[ENTER_SUBBLOCK, blockid\ :sub:`vbr8`, newabbrevlen\ :sub:`vbr4`, <align32bits>, blocklen_32]
203:raw-html:`</tt>`
204
205The ``ENTER_SUBBLOCK`` abbreviation ID specifies the start of a new block
206record. The ``blockid`` value is encoded as an 8-bit VBR identifier, and
207indicates the type of block being entered, which can be a `standard block`_ or
208an application-specific block. The ``newabbrevlen`` value is a 4-bit VBR, which
209specifies the abbrev id width for the sub-block. The ``blocklen`` value is a
21032-bit aligned value that specifies the size of the subblock in 32-bit
211words. This value allows the reader to skip over the entire block in one jump.
212
213.. _END_BLOCK:
214
215END_BLOCK Encoding
216^^^^^^^^^^^^^^^^^^
217
218``[END_BLOCK, <align32bits>]``
219
220The ``END_BLOCK`` abbreviation ID specifies the end of the current block record.
221Its end is aligned to 32-bits to ensure that the size of the block is an even
222multiple of 32-bits.
223
224.. _Data Records:
225
226Data Records
227------------
228
229Data records consist of a record code and a number of (up to) 64-bit integer
230values. The interpretation of the code and values is application specific and
231may vary between different block types. Records can be encoded either using an
232unabbrev record, or with an abbreviation. In the LLVM IR format, for example,
233there is a record which encodes the target triple of a module. The code is
234``MODULE_CODE_TRIPLE``, and the values of the record are the ASCII codes for the
235characters in the string.
236
237.. _UNABBREV_RECORD:
238
239UNABBREV_RECORD Encoding
240^^^^^^^^^^^^^^^^^^^^^^^^
241
242:raw-html:`<tt>`
243[UNABBREV_RECORD, code\ :sub:`vbr6`, numops\ :sub:`vbr6`, op0\ :sub:`vbr6`, op1\ :sub:`vbr6`, ...]
244:raw-html:`</tt>`
245
246An ``UNABBREV_RECORD`` provides a default fallback encoding, which is both
247completely general and extremely inefficient. It can describe an arbitrary
248record by emitting the code and operands as VBRs.
249
250For example, emitting an LLVM IR target triple as an unabbreviated record
251requires emitting the ``UNABBREV_RECORD`` abbrevid, a vbr6 for the
252``MODULE_CODE_TRIPLE`` code, a vbr6 for the length of the string, which is equal
253to the number of operands, and a vbr6 for each character. Because there are no
254letters with values less than 32, each letter would need to be emitted as at
255least a two-part VBR, which means that each letter would require at least 12
256bits. This is not an efficient encoding, but it is fully general.
257
258.. _abbreviated record encoding:
259
260Abbreviated Record Encoding
261^^^^^^^^^^^^^^^^^^^^^^^^^^^
262
263``[<abbrevid>, fields...]``
264
265An abbreviated record is a abbreviation id followed by a set of fields that are
266encoded according to the `abbreviation definition`_. This allows records to be
267encoded significantly more densely than records encoded with the
268`UNABBREV_RECORD`_ type, and allows the abbreviation types to be specified in
269the stream itself, which allows the files to be completely self describing. The
270actual encoding of abbreviations is defined below.
271
272The record code, which is the first field of an abbreviated record, may be
273encoded in the abbreviation definition (as a literal operand) or supplied in the
274abbreviated record (as a Fixed or VBR operand value).
275
276.. _abbreviation definition:
277
278Abbreviations
279-------------
280
281Abbreviations are an important form of compression for bitstreams. The idea is
282to specify a dense encoding for a class of records once, then use that encoding
283to emit many records. It takes space to emit the encoding into the file, but
284the space is recouped (hopefully plus some) when the records that use it are
285emitted.
286
287Abbreviations can be determined dynamically per client, per file. Because the
288abbreviations are stored in the bitstream itself, different streams of the same
289format can contain different sets of abbreviations according to the needs of the
290specific stream. As a concrete example, LLVM IR files usually emit an
291abbreviation for binary operators. If a specific LLVM module contained no or
292few binary operators, the abbreviation does not need to be emitted.
293
294.. _DEFINE_ABBREV:
295
296DEFINE_ABBREV Encoding
297^^^^^^^^^^^^^^^^^^^^^^
298
299:raw-html:`<tt>`
300[DEFINE_ABBREV, numabbrevops\ :sub:`vbr5`, abbrevop0, abbrevop1, ...]
301:raw-html:`</tt>`
302
303A ``DEFINE_ABBREV`` record adds an abbreviation to the list of currently defined
304abbreviations in the scope of this block. This definition only exists inside
305this immediate block --- it is not visible in subblocks or enclosing blocks.
306Abbreviations are implicitly assigned IDs sequentially starting from 4 (the
307first application-defined abbreviation ID). Any abbreviations defined in a
308``BLOCKINFO`` record for the particular block type receive IDs first, in order,
309followed by any abbreviations defined within the block itself. Abbreviated data
310records reference this ID to indicate what abbreviation they are invoking.
311
312An abbreviation definition consists of the ``DEFINE_ABBREV`` abbrevid followed
313by a VBR that specifies the number of abbrev operands, then the abbrev operands
314themselves. Abbreviation operands come in three forms. They all start with a
315single bit that indicates whether the abbrev operand is a literal operand (when
316the bit is 1) or an encoding operand (when the bit is 0).
317
318#. Literal operands --- :raw-html:`<tt>` [1\ :sub:`1`, litvalue\
319 :sub:`vbr8`] :raw-html:`</tt>` --- Literal operands specify that the value in
320 the result is always a single specific value. This specific value is emitted
321 as a vbr8 after the bit indicating that it is a literal operand.
322
323#. Encoding info without data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\
324 :sub:`3`] :raw-html:`</tt>` --- Operand encodings that do not have extra data
325 are just emitted as their code.
326
327#. Encoding info with data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\
328 :sub:`3`, value\ :sub:`vbr5`] :raw-html:`</tt>` --- Operand encodings that do
329 have extra data are emitted as their code, followed by the extra data.
330
331The possible operand encodings are:
332
333* Fixed (code 1): The field should be emitted as a `fixed-width value`_, whose
334 width is specified by the operand's extra data.
335
336* VBR (code 2): The field should be emitted as a `variable-width value`_, whose
337 width is specified by the operand's extra data.
338
339* Array (code 3): This field is an array of values. The array operand has no
340 extra data, but expects another operand to follow it, indicating the element
341 type of the array. When reading an array in an abbreviated record, the first
342 integer is a vbr6 that indicates the array length, followed by the encoded
343 elements of the array. An array may only occur as the last operand of an
344 abbreviation (except for the one final operand that gives the array's
345 type).
346
347* Char6 (code 4): This field should be emitted as a `char6-encoded value`_.
348 This operand type takes no extra data. Char6 encoding is normally used as an
349 array element type.
350
351* Blob (code 5): This field is emitted as a vbr6, followed by padding to a
352 32-bit boundary (for alignment) and an array of 8-bit objects. The array of
353 bytes is further followed by tail padding to ensure that its total length is a
354 multiple of 4 bytes. This makes it very efficient for the reader to decode
355 the data without having to make a copy of it: it can use a pointer to the data
356 in the mapped in file and poke directly at it. A blob may only occur as the
357 last operand of an abbreviation.
358
359For example, target triples in LLVM modules are encoded as a record of the form
360``[TRIPLE, 'a', 'b', 'c', 'd']``. Consider if the bitstream emitted the
361following abbrev entry:
362
363::
364
365 [0, Fixed, 4]
366 [0, Array]
367 [0, Char6]
368
369When emitting a record with this abbreviation, the above entry would be emitted
370as:
371
372:raw-html:`<tt><blockquote>`
373[4\ :sub:`abbrevwidth`, 2\ :sub:`4`, 4\ :sub:`vbr6`, 0\ :sub:`6`, 1\ :sub:`6`, 2\ :sub:`6`, 3\ :sub:`6`]
374:raw-html:`</blockquote></tt>`
375
376These values are:
377
378#. The first value, 4, is the abbreviation ID for this abbreviation.
379
380#. The second value, 2, is the record code for ``TRIPLE`` records within LLVM IR
381 file ``MODULE_BLOCK`` blocks.
382
383#. The third value, 4, is the length of the array.
384
385#. The rest of the values are the char6 encoded values for ``"abcd"``.
386
387With this abbreviation, the triple is emitted with only 37 bits (assuming a
388abbrev id width of 3). Without the abbreviation, significantly more space would
389be required to emit the target triple. Also, because the ``TRIPLE`` value is
390not emitted as a literal in the abbreviation, the abbreviation can also be used
391for any other string value.
392
393.. _standard blocks:
394.. _standard block:
395
396Standard Blocks
397---------------
398
399In addition to the basic block structure and record encodings, the bitstream
400also defines specific built-in block types. These block types specify how the
401stream is to be decoded or other metadata. In the future, new standard blocks
402may be added. Block IDs 0-7 are reserved for standard blocks.
403
404.. _BLOCKINFO:
405
406#0 - BLOCKINFO Block
407^^^^^^^^^^^^^^^^^^^^
408
409The ``BLOCKINFO`` block allows the description of metadata for other blocks.
410The currently specified records are:
411
412::
413
414 [SETBID (#1), blockid]
415 [DEFINE_ABBREV, ...]
416 [BLOCKNAME, ...name...]
417 [SETRECORDNAME, RecordID, ...name...]
418
419The ``SETBID`` record (code 1) indicates which block ID is being described.
420``SETBID`` records can occur multiple times throughout the block to change which
421block ID is being described. There must be a ``SETBID`` record prior to any
422other records.
423
424Standard ``DEFINE_ABBREV`` records can occur inside ``BLOCKINFO`` blocks, but
425unlike their occurrence in normal blocks, the abbreviation is defined for blocks
426matching the block ID we are describing, *not* the ``BLOCKINFO`` block
427itself. The abbreviations defined in ``BLOCKINFO`` blocks receive abbreviation
428IDs as described in `DEFINE_ABBREV`_.
429
430The ``BLOCKNAME`` record (code 2) can optionally occur in this block. The
431elements of the record are the bytes of the string name of the block.
432llvm-bcanalyzer can use this to dump out bitcode files symbolically.
433
434The ``SETRECORDNAME`` record (code 3) can also optionally occur in this block.
435The first operand value is a record ID number, and the rest of the elements of
436the record are the bytes for the string name of the record. llvm-bcanalyzer can
437use this to dump out bitcode files symbolically.
438
439Note that although the data in ``BLOCKINFO`` blocks is described as "metadata,"
440the abbreviations they contain are essential for parsing records from the
441corresponding blocks. It is not safe to skip them.
442
443.. _wrapper:
444
445Bitcode Wrapper Format
446======================
447
448Bitcode files for LLVM IR may optionally be wrapped in a simple wrapper
449structure. This structure contains a simple header that indicates the offset
450and size of the embedded BC file. This allows additional information to be
451stored alongside the BC file. The structure of this file header is:
452
453:raw-html:`<tt><blockquote>`
454[Magic\ :sub:`32`, Version\ :sub:`32`, Offset\ :sub:`32`, Size\ :sub:`32`, CPUType\ :sub:`32`]
455:raw-html:`</blockquote></tt>`
456
457Each of the fields are 32-bit fields stored in little endian form (as with the
458rest of the bitcode file fields). The Magic number is always ``0x0B17C0DE`` and
459the version is currently always ``0``. The Offset field is the offset in bytes
460to the start of the bitcode stream in the file, and the Size field is the size
461in bytes of the stream. CPUType is a target-specific value that can be used to
462encode the CPU of the target.
463
Peter Collingbourne10039c02014-09-18 21:28:49 +0000464.. _native object file:
465
466Native Object File Wrapper Format
467=================================
468
469Bitcode files for LLVM IR may also be wrapped in a native object file
Steven Wuf2fe0142016-02-29 19:40:10 +0000470(i.e. ELF, COFF, Mach-O). The bitcode must be stored in a section of the object
471file named ``__LLVM,__bitcode`` for MachO and ``.llvmbc`` for the other object
472formats. This wrapper format is useful for accommodating LTO in compilation
473pipelines where intermediate objects must be native object files which contain
474metadata in other sections.
Peter Collingbourne10039c02014-09-18 21:28:49 +0000475
476Not all tools support this format.
477
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000478.. _encoding of LLVM IR:
479
480LLVM IR Encoding
481================
482
483LLVM IR is encoded into a bitstream by defining blocks and records. It uses
484blocks for things like constant pools, functions, symbol tables, etc. It uses
485records for things like instructions, global variable descriptors, type
486descriptions, etc. This document does not describe the set of abbreviations
487that the writer uses, as these are fully self-described in the file, and the
488reader is not allowed to build in any knowledge of this.
489
490Basics
491------
492
493LLVM IR Magic Number
494^^^^^^^^^^^^^^^^^^^^
495
496The magic number for LLVM IR files is:
497
498:raw-html:`<tt><blockquote>`
499[0x0\ :sub:`4`, 0xC\ :sub:`4`, 0xE\ :sub:`4`, 0xD\ :sub:`4`]
500:raw-html:`</blockquote></tt>`
501
502When combined with the bitcode magic number and viewed as bytes, this is
503``"BC 0xC0DE"``.
504
Jan Wen Voung77c6c852012-10-12 18:13:17 +0000505.. _Signed VBRs:
506
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000507Signed VBRs
508^^^^^^^^^^^
509
510`Variable Width Integer`_ encoding is an efficient way to encode arbitrary sized
511unsigned values, but is an extremely inefficient for encoding signed values, as
512signed values are otherwise treated as maximally large unsigned values.
513
514As such, signed VBR values of a specific width are emitted as follows:
515
516* Positive values are emitted as VBRs of the specified width, but with their
517 value shifted left by one.
518
519* Negative values are emitted as VBRs of the specified width, but the negated
520 value is shifted left by one, and the low bit is set.
521
522With this encoding, small positive and small negative values can both be emitted
523efficiently. Signed VBR encoding is used in ``CST_CODE_INTEGER`` and
524``CST_CODE_WIDE_INTEGER`` records within ``CONSTANTS_BLOCK`` blocks.
Jan Wen Voung77c6c852012-10-12 18:13:17 +0000525It is also used for phi instruction operands in `MODULE_CODE_VERSION`_ 1.
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000526
527LLVM IR Blocks
528^^^^^^^^^^^^^^
529
530LLVM IR is defined with the following blocks:
531
532* 8 --- `MODULE_BLOCK`_ --- This is the top-level block that contains the entire
533 module, and describes a variety of per-module information.
534
535* 9 --- `PARAMATTR_BLOCK`_ --- This enumerates the parameter attributes.
536
Mehdi Amini472a1412016-10-14 16:23:09 +0000537* 10 --- `PARAMATTR_GROUP_BLOCK`_ --- This describes the attribute group table.
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000538
539* 11 --- `CONSTANTS_BLOCK`_ --- This describes constants for a module or
540 function.
541
542* 12 --- `FUNCTION_BLOCK`_ --- This describes a function body.
543
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000544* 14 --- `VALUE_SYMTAB_BLOCK`_ --- This describes a value symbol table.
545
546* 15 --- `METADATA_BLOCK`_ --- This describes metadata items.
547
548* 16 --- `METADATA_ATTACHMENT`_ --- This contains records associating metadata
549 with function instruction values.
550
Mehdi Amini472a1412016-10-14 16:23:09 +0000551* 17 --- `TYPE_BLOCK`_ --- This describes all of the types in the module.
552
Peter Collingbournea0f371a2017-04-17 17:51:36 +0000553* 23 --- `STRTAB_BLOCK`_ --- The bitcode file's string table.
554
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000555.. _MODULE_BLOCK:
556
557MODULE_BLOCK Contents
558---------------------
559
560The ``MODULE_BLOCK`` block (id 8) is the top-level block for LLVM bitcode files,
561and each bitcode file must contain exactly one. In addition to records
562(described below) containing information about the module, a ``MODULE_BLOCK``
563block may contain the following sub-blocks:
564
565* `BLOCKINFO`_
566* `PARAMATTR_BLOCK`_
Mehdi Amini472a1412016-10-14 16:23:09 +0000567* `PARAMATTR_GROUP_BLOCK`_
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000568* `TYPE_BLOCK`_
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000569* `VALUE_SYMTAB_BLOCK`_
570* `CONSTANTS_BLOCK`_
571* `FUNCTION_BLOCK`_
572* `METADATA_BLOCK`_
573
Jan Wen Voung77c6c852012-10-12 18:13:17 +0000574.. _MODULE_CODE_VERSION:
575
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000576MODULE_CODE_VERSION Record
577^^^^^^^^^^^^^^^^^^^^^^^^^^
578
579``[VERSION, version#]``
580
581The ``VERSION`` record (code 1) contains a single value indicating the format
Peter Collingbournea0f371a2017-04-17 17:51:36 +0000582version. Versions 0, 1 and 2 are supported at this time. The difference between
Jan Wen Voung77c6c852012-10-12 18:13:17 +0000583version 0 and 1 is in the encoding of instruction operands in
584each `FUNCTION_BLOCK`_.
585
586In version 0, each value defined by an instruction is assigned an ID
587unique to the function. Function-level value IDs are assigned starting from
588``NumModuleValues`` since they share the same namespace as module-level
589values. The value enumerator resets after each function. When a value is
590an operand of an instruction, the value ID is used to represent the operand.
591For large functions or large modules, these operand values can be large.
592
593The encoding in version 1 attempts to avoid large operand values
594in common cases. Instead of using the value ID directly, operands are
595encoded as relative to the current instruction. Thus, if an operand
596is the value defined by the previous instruction, the operand
597will be encoded as 1.
598
599For example, instead of
600
Aaron Ballmana0c1f402016-07-19 20:20:03 +0000601.. code-block:: none
Jan Wen Voung77c6c852012-10-12 18:13:17 +0000602
603 #n = load #n-1
604 #n+1 = icmp eq #n, #const0
605 br #n+1, label #(bb1), label #(bb2)
606
607version 1 will encode the instructions as
608
Aaron Ballmana0c1f402016-07-19 20:20:03 +0000609.. code-block:: none
Jan Wen Voung77c6c852012-10-12 18:13:17 +0000610
611 #n = load #1
612 #n+1 = icmp eq #1, (#n+1)-#const0
613 br #1, label #(bb1), label #(bb2)
614
615Note in the example that operands which are constants also use
616the relative encoding, while operands like basic block labels
617do not use the relative encoding.
618
619Forward references will result in a negative value.
620This can be inefficient, as operands are normally encoded
621as unsigned VBRs. However, forward references are rare, except in the
622case of phi instructions. For phi instructions, operands are encoded as
623`Signed VBRs`_ to deal with forward references.
624
Peter Collingbournea0f371a2017-04-17 17:51:36 +0000625In version 2, the meaning of module records ``FUNCTION``, ``GLOBALVAR``,
626``ALIAS``, ``IFUNC`` and ``COMDAT`` change such that the first two operands
627specify an offset and size of a string in a string table (see `STRTAB_BLOCK
628Contents`_), the function name is removed from the ``FNENTRY`` record in the
629value symbol table, and the top-level ``VALUE_SYMTAB_BLOCK`` may only contain
630``FNENTRY`` records.
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000631
632MODULE_CODE_TRIPLE Record
633^^^^^^^^^^^^^^^^^^^^^^^^^
634
635``[TRIPLE, ...string...]``
636
637The ``TRIPLE`` record (code 2) contains a variable number of values representing
638the bytes of the ``target triple`` specification string.
639
640MODULE_CODE_DATALAYOUT Record
641^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
642
643``[DATALAYOUT, ...string...]``
644
645The ``DATALAYOUT`` record (code 3) contains a variable number of values
646representing the bytes of the ``target datalayout`` specification string.
647
648MODULE_CODE_ASM Record
649^^^^^^^^^^^^^^^^^^^^^^
650
651``[ASM, ...string...]``
652
653The ``ASM`` record (code 4) contains a variable number of values representing
654the bytes of ``module asm`` strings, with individual assembly blocks separated
655by newline (ASCII 10) characters.
656
657.. _MODULE_CODE_SECTIONNAME:
658
659MODULE_CODE_SECTIONNAME Record
660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
661
662``[SECTIONNAME, ...string...]``
663
664The ``SECTIONNAME`` record (code 5) contains a variable number of values
665representing the bytes of a single section name string. There should be one
666``SECTIONNAME`` record for each section name referenced (e.g., in global
667variable or function ``section`` attributes) within the module. These records
668can be referenced by the 1-based index in the *section* fields of ``GLOBALVAR``
669or ``FUNCTION`` records.
670
671MODULE_CODE_DEPLIB Record
672^^^^^^^^^^^^^^^^^^^^^^^^^
673
674``[DEPLIB, ...string...]``
675
676The ``DEPLIB`` record (code 6) contains a variable number of values representing
677the bytes of a single dependent library name string, one of the libraries
678mentioned in a ``deplibs`` declaration. There should be one ``DEPLIB`` record
679for each library name referenced.
680
681MODULE_CODE_GLOBALVAR Record
682^^^^^^^^^^^^^^^^^^^^^^^^^^^^
683
Sean Fertilec70d28b2017-10-26 15:00:26 +0000684``[GLOBALVAR, strtab offset, strtab size, pointer type, isconst, initid, linkage, alignment, section, visibility, threadlocal, unnamed_addr, externally_initialized, dllstorageclass, comdat, attributes, preemptionspecifier]``
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000685
686The ``GLOBALVAR`` record (code 7) marks the declaration or definition of a
687global variable. The operand fields are:
688
Peter Collingbournea0f371a2017-04-17 17:51:36 +0000689* *strtab offset*, *strtab size*: Specifies the name of the global variable.
690 See `STRTAB_BLOCK Contents`_.
691
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000692* *pointer type*: The type index of the pointer type used to point to this
693 global variable
694
695* *isconst*: Non-zero if the variable is treated as constant within the module,
696 or zero if it is not
697
698* *initid*: If non-zero, the value index of the initializer for this variable,
699 plus 1.
700
701.. _linkage type:
702
703* *linkage*: An encoding of the linkage type for this variable:
Peter Collingbourne62b5b732016-05-17 22:30:58 +0000704
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000705 * ``external``: code 0
706 * ``weak``: code 1
707 * ``appending``: code 2
708 * ``internal``: code 3
709 * ``linkonce``: code 4
710 * ``dllimport``: code 5
711 * ``dllexport``: code 6
712 * ``extern_weak``: code 7
713 * ``common``: code 8
714 * ``private``: code 9
715 * ``weak_odr``: code 10
716 * ``linkonce_odr``: code 11
717 * ``available_externally``: code 12
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000718 * deprecated : code 13
719 * deprecated : code 14
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000720
721* alignment*: The logarithm base 2 of the variable's requested alignment, plus 1
722
723* *section*: If non-zero, the 1-based section index in the table of
724 `MODULE_CODE_SECTIONNAME`_ entries.
725
726.. _visibility:
727
728* *visibility*: If present, an encoding of the visibility of this variable:
Peter Collingbourne62b5b732016-05-17 22:30:58 +0000729
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000730 * ``default``: code 0
731 * ``hidden``: code 1
732 * ``protected``: code 2
733
Peter Collingbourne62b5b732016-05-17 22:30:58 +0000734.. _bcthreadlocal:
735
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000736* *threadlocal*: If present, an encoding of the thread local storage mode of the
737 variable:
Peter Collingbourne62b5b732016-05-17 22:30:58 +0000738
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000739 * ``not thread local``: code 0
740 * ``thread local; default TLS model``: code 1
741 * ``localdynamic``: code 2
742 * ``initialexec``: code 3
743 * ``localexec``: code 4
744
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000745.. _bcunnamedaddr:
746
747* *unnamed_addr*: If present, an encoding of the ``unnamed_addr`` attribute of this
748 variable:
749
750 * not ``unnamed_addr``: code 0
751 * ``unnamed_addr``: code 1
752 * ``local_unnamed_addr``: code 2
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000753
Peter Collingbourne042b7ff2014-09-18 21:54:02 +0000754.. _bcdllstorageclass:
Nico Rieck7157bb72014-01-14 15:22:47 +0000755
756* *dllstorageclass*: If present, an encoding of the DLL storage class of this variable:
757
758 * ``default``: code 0
759 * ``dllimport``: code 1
760 * ``dllexport``: code 2
761
Peter Collingbourne62b5b732016-05-17 22:30:58 +0000762* *comdat*: An encoding of the COMDAT of this function
763
Sean Fertilec70d28b2017-10-26 15:00:26 +0000764* *attributes*: If nonzero, the 1-based index into the table of AttributeLists.
765
766.. _bcpreemptionspecifier:
767
768* *preemptionspecifier*: If present, an encoding of the runtime preemption specifier of this variable:
769
770 * ``dso_preemptable``: code 0
771 * ``dso_local``: code 1
772
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000773.. _FUNCTION:
774
775MODULE_CODE_FUNCTION Record
776^^^^^^^^^^^^^^^^^^^^^^^^^^^
777
Sean Fertilec70d28b2017-10-26 15:00:26 +0000778``[FUNCTION, strtab offset, strtab size, type, callingconv, isproto, linkage, paramattr, alignment, section, visibility, gc, prologuedata, dllstorageclass, comdat, prefixdata, personalityfn, preemptionspecifier]``
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000779
780The ``FUNCTION`` record (code 8) marks the declaration or definition of a
781function. The operand fields are:
782
Peter Collingbournea0f371a2017-04-17 17:51:36 +0000783* *strtab offset*, *strtab size*: Specifies the name of the function.
784 See `STRTAB_BLOCK Contents`_.
785
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000786* *type*: The type index of the function type describing this function
787
788* *callingconv*: The calling convention number:
789 * ``ccc``: code 0
790 * ``fastcc``: code 8
791 * ``coldcc``: code 9
Juergen Ributzka976d94b2014-01-11 01:00:27 +0000792 * ``webkit_jscc``: code 12
793 * ``anyregcc``: code 13
Juergen Ributzkae6250132014-01-17 19:47:03 +0000794 * ``preserve_mostcc``: code 14
795 * ``preserve_allcc``: code 15
Manman Renf8bdd882016-04-05 22:41:47 +0000796 * ``swiftcc`` : code 16
Manman Ren19c7bbe2015-12-04 17:40:13 +0000797 * ``cxx_fast_tlscc``: code 17
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000798 * ``x86_stdcallcc``: code 64
799 * ``x86_fastcallcc``: code 65
800 * ``arm_apcscc``: code 66
801 * ``arm_aapcscc``: code 67
802 * ``arm_aapcs_vfpcc``: code 68
803
804* isproto*: Non-zero if this entry represents a declaration rather than a
805 definition
806
807* *linkage*: An encoding of the `linkage type`_ for this function
808
809* *paramattr*: If nonzero, the 1-based parameter attribute index into the table
810 of `PARAMATTR_CODE_ENTRY`_ entries.
811
812* *alignment*: The logarithm base 2 of the function's requested alignment, plus
813 1
814
815* *section*: If non-zero, the 1-based section index in the table of
816 `MODULE_CODE_SECTIONNAME`_ entries.
817
818* *visibility*: An encoding of the `visibility`_ of this function
819
820* *gc*: If present and nonzero, the 1-based garbage collector index in the table
821 of `MODULE_CODE_GCNAME`_ entries.
822
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000823* *unnamed_addr*: If present, an encoding of the
824 :ref:`unnamed_addr<bcunnamedaddr>` attribute of this function
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000825
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000826* *prologuedata*: If non-zero, the value index of the prologue data for this function,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000827 plus 1.
828
Peter Collingbourne042b7ff2014-09-18 21:54:02 +0000829* *dllstorageclass*: An encoding of the
830 :ref:`dllstorageclass<bcdllstorageclass>` of this function
Nico Rieck7157bb72014-01-14 15:22:47 +0000831
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000832* *comdat*: An encoding of the COMDAT of this function
833
834* *prefixdata*: If non-zero, the value index of the prefix data for this function,
835 plus 1.
836
David Majnemer7fddecc2015-06-17 20:52:32 +0000837* *personalityfn*: If non-zero, the value index of the personality function for this function,
838 plus 1.
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000839
Sean Fertilec70d28b2017-10-26 15:00:26 +0000840* *preemptionspecifier*: If present, an encoding of the :ref:`runtime preemption specifier<bcpreemptionspecifier>` of this function.
841
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000842MODULE_CODE_ALIAS Record
843^^^^^^^^^^^^^^^^^^^^^^^^
844
Sean Fertilec70d28b2017-10-26 15:00:26 +0000845``[ALIAS, strtab offset, strtab size, alias type, aliasee val#, linkage, visibility, dllstorageclass, threadlocal, unnamed_addr, preemptionspecifier]``
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000846
847The ``ALIAS`` record (code 9) marks the definition of an alias. The operand
848fields are
849
Peter Collingbournea0f371a2017-04-17 17:51:36 +0000850* *strtab offset*, *strtab size*: Specifies the name of the alias.
851 See `STRTAB_BLOCK Contents`_.
852
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000853* *alias type*: The type index of the alias
854
855* *aliasee val#*: The value index of the aliased value
856
857* *linkage*: An encoding of the `linkage type`_ for this alias
858
859* *visibility*: If present, an encoding of the `visibility`_ of the alias
860
Peter Collingbourne042b7ff2014-09-18 21:54:02 +0000861* *dllstorageclass*: If present, an encoding of the
862 :ref:`dllstorageclass<bcdllstorageclass>` of the alias
Nico Rieck7157bb72014-01-14 15:22:47 +0000863
Peter Collingbourne62b5b732016-05-17 22:30:58 +0000864* *threadlocal*: If present, an encoding of the
865 :ref:`thread local property<bcthreadlocal>` of the alias
866
Peter Collingbourne96efdd62016-06-14 21:01:22 +0000867* *unnamed_addr*: If present, an encoding of the
868 :ref:`unnamed_addr<bcunnamedaddr>` attribute of this alias
Peter Collingbourne62b5b732016-05-17 22:30:58 +0000869
Sean Fertilec70d28b2017-10-26 15:00:26 +0000870* *preemptionspecifier*: If present, an encoding of the :ref:`runtime preemption specifier<bcpreemptionspecifier>` of this alias.
871
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000872.. _MODULE_CODE_GCNAME:
873
874MODULE_CODE_GCNAME Record
875^^^^^^^^^^^^^^^^^^^^^^^^^
876
877``[GCNAME, ...string...]``
878
879The ``GCNAME`` record (code 11) contains a variable number of values
880representing the bytes of a single garbage collector name string. There should
881be one ``GCNAME`` record for each garbage collector name referenced in function
882``gc`` attributes within the module. These records can be referenced by 1-based
883index in the *gc* fields of ``FUNCTION`` records.
884
885.. _PARAMATTR_BLOCK:
886
887PARAMATTR_BLOCK Contents
888------------------------
889
890The ``PARAMATTR_BLOCK`` block (id 9) contains a table of entries describing the
891attributes of function parameters. These entries are referenced by 1-based index
892in the *paramattr* field of module block `FUNCTION`_ records, or within the
893*attr* field of function block ``INST_INVOKE`` and ``INST_CALL`` records.
894
895Entries within ``PARAMATTR_BLOCK`` are constructed to ensure that each is unique
Bruce Mitchenere9ffb452015-09-12 01:17:08 +0000896(i.e., no two indices represent equivalent attribute lists).
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000897
898.. _PARAMATTR_CODE_ENTRY:
899
900PARAMATTR_CODE_ENTRY Record
901^^^^^^^^^^^^^^^^^^^^^^^^^^^
902
Mehdi Amini472a1412016-10-14 16:23:09 +0000903``[ENTRY, attrgrp0, attrgrp1, ...]``
904
905The ``ENTRY`` record (code 2) contains a variable number of values describing a
906unique set of function parameter attributes. Each *attrgrp* value is used as a
907key with which to look up an entry in the the attribute group table described
908in the ``PARAMATTR_GROUP_BLOCK`` block.
909
910.. _PARAMATTR_CODE_ENTRY_OLD:
911
912PARAMATTR_CODE_ENTRY_OLD Record
913^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
914
915.. note::
916 This is a legacy encoding for attributes, produced by LLVM versions 3.2 and
917 earlier. It is guaranteed to be understood by the current LLVM version, as
918 specified in the :ref:`IR backwards compatibility` policy.
919
Bill Wendlinge28d50a2012-06-28 08:43:12 +0000920``[ENTRY, paramidx0, attr0, paramidx1, attr1...]``
921
922The ``ENTRY`` record (code 1) contains an even number of values describing a
923unique set of function parameter attributes. Each *paramidx* value indicates
924which set of attributes is represented, with 0 representing the return value
925attributes, 0xFFFFFFFF representing function attributes, and other values
926representing 1-based function parameters. Each *attr* value is a bitmap with the
927following interpretation:
928
929* bit 0: ``zeroext``
930* bit 1: ``signext``
931* bit 2: ``noreturn``
932* bit 3: ``inreg``
933* bit 4: ``sret``
934* bit 5: ``nounwind``
935* bit 6: ``noalias``
936* bit 7: ``byval``
937* bit 8: ``nest``
938* bit 9: ``readnone``
939* bit 10: ``readonly``
940* bit 11: ``noinline``
941* bit 12: ``alwaysinline``
942* bit 13: ``optsize``
943* bit 14: ``ssp``
944* bit 15: ``sspreq``
945* bits 16-31: ``align n``
946* bit 32: ``nocapture``
947* bit 33: ``noredzone``
948* bit 34: ``noimplicitfloat``
949* bit 35: ``naked``
950* bit 36: ``inlinehint``
951* bits 37-39: ``alignstack n``, represented as the logarithm
952 base 2 of the requested alignment, plus 1
953
Mehdi Amini472a1412016-10-14 16:23:09 +0000954.. _PARAMATTR_GROUP_BLOCK:
955
956PARAMATTR_GROUP_BLOCK Contents
957------------------------------
958
959The ``PARAMATTR_GROUP_BLOCK`` block (id 10) contains a table of entries
960describing the attribute groups present in the module. These entries can be
961referenced within ``PARAMATTR_CODE_ENTRY`` entries.
962
963.. _PARAMATTR_GRP_CODE_ENTRY:
964
965PARAMATTR_GRP_CODE_ENTRY Record
966^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
967
968``[ENTRY, grpid, paramidx, attr0, attr1, ...]``
969
970The ``ENTRY`` record (code 3) contains *grpid* and *paramidx* values, followed
971by a variable number of values describing a unique group of attributes. The
972*grpid* value is a unique key for the attribute group, which can be referenced
973within ``PARAMATTR_CODE_ENTRY`` entries. The *paramidx* value indicates which
974set of attributes is represented, with 0 representing the return value
975attributes, 0xFFFFFFFF representing function attributes, and other values
976representing 1-based function parameters.
977
978Each *attr* is itself represented as a variable number of values:
979
980``kind, key [, ...], [value [, ...]]``
981
982Each attribute is either a well-known LLVM attribute (possibly with an integer
983value associated with it), or an arbitrary string (possibly with an arbitrary
984string value associated with it). The *kind* value is an integer code
985distinguishing between these possibilities:
986
987* code 0: well-known attribute
988* code 1: well-known attribute with an integer value
989* code 3: string attribute
990* code 4: string attribute with a string value
991
992For well-known attributes (code 0 or 1), the *key* value is an integer code
993identifying the attribute. For attributes with an integer argument (code 1),
994the *value* value indicates the argument.
995
996For string attributes (code 3 or 4), the *key* value is actually a variable
997number of values representing the bytes of a null-terminated string. For
998attributes with a string argument (code 4), the *value* value is similarly a
999variable number of values representing the bytes of a null-terminated string.
1000
1001The integer codes are mapped to well-known attributes as follows.
1002
1003* code 1: ``align(<n>)``
1004* code 2: ``alwaysinline``
1005* code 3: ``byval``
1006* code 4: ``inlinehint``
1007* code 5: ``inreg``
1008* code 6: ``minsize``
1009* code 7: ``naked``
1010* code 8: ``nest``
1011* code 9: ``noalias``
1012* code 10: ``nobuiltin``
1013* code 11: ``nocapture``
1014* code 12: ``noduplicates``
1015* code 13: ``noimplicitfloat``
1016* code 14: ``noinline``
1017* code 15: ``nonlazybind``
1018* code 16: ``noredzone``
1019* code 17: ``noreturn``
1020* code 18: ``nounwind``
1021* code 19: ``optsize``
1022* code 20: ``readnone``
1023* code 21: ``readonly``
1024* code 22: ``returned``
1025* code 23: ``returns_twice``
1026* code 24: ``signext``
1027* code 25: ``alignstack(<n>)``
1028* code 26: ``ssp``
1029* code 27: ``sspreq``
1030* code 28: ``sspstrong``
1031* code 29: ``sret``
1032* code 30: ``sanitize_address``
1033* code 31: ``sanitize_thread``
1034* code 32: ``sanitize_memory``
1035* code 33: ``uwtable``
1036* code 34: ``zeroext``
1037* code 35: ``builtin``
1038* code 36: ``cold``
1039* code 37: ``optnone``
1040* code 38: ``inalloca``
1041* code 39: ``nonnull``
1042* code 40: ``jumptable``
1043* code 41: ``dereferenceable(<n>)``
1044* code 42: ``dereferenceable_or_null(<n>)``
1045* code 43: ``convergent``
1046* code 44: ``safestack``
1047* code 45: ``argmemonly``
1048* code 46: ``swiftself``
1049* code 47: ``swifterror``
1050* code 48: ``norecurse``
1051* code 49: ``inaccessiblememonly``
1052* code 50: ``inaccessiblememonly_or_argmemonly``
1053* code 51: ``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1054* code 52: ``writeonly``
Evgeniy Stepanovcdf1abc2017-12-07 01:38:20 +00001055* code 53: ``speculatable``
1056* code 54: ``strictfp``
Evgeniy Stepanovc667c1f2017-12-09 00:21:41 +00001057* code 55: ``sanitize_hwaddress``
Mehdi Amini472a1412016-10-14 16:23:09 +00001058
1059.. note::
1060 The ``allocsize`` attribute has a special encoding for its arguments. Its two
1061 arguments, which are 32-bit integers, are packed into one 64-bit integer value
1062 (i.e. ``(EltSizeParam << 32) | NumEltsParam``), with ``NumEltsParam`` taking on
1063 the sentinel value -1 if it is not specified.
1064
Bill Wendlinge28d50a2012-06-28 08:43:12 +00001065.. _TYPE_BLOCK:
1066
1067TYPE_BLOCK Contents
1068-------------------
1069
Mehdi Amini472a1412016-10-14 16:23:09 +00001070The ``TYPE_BLOCK`` block (id 17) contains records which constitute a table of
Bill Wendlinge28d50a2012-06-28 08:43:12 +00001071type operator entries used to represent types referenced within an LLVM
1072module. Each record (with the exception of `NUMENTRY`_) generates a single type
1073table entry, which may be referenced by 0-based index from instructions,
1074constants, metadata, type symbol table entries, or other type operator records.
1075
1076Entries within ``TYPE_BLOCK`` are constructed to ensure that each entry is
Bruce Mitchenere9ffb452015-09-12 01:17:08 +00001077unique (i.e., no two indices represent structurally equivalent types).
Bill Wendlinge28d50a2012-06-28 08:43:12 +00001078
1079.. _TYPE_CODE_NUMENTRY:
1080.. _NUMENTRY:
1081
1082TYPE_CODE_NUMENTRY Record
1083^^^^^^^^^^^^^^^^^^^^^^^^^
1084
1085``[NUMENTRY, numentries]``
1086
1087The ``NUMENTRY`` record (code 1) contains a single value which indicates the
1088total number of type code entries in the type table of the module. If present,
1089``NUMENTRY`` should be the first record in the block.
1090
1091TYPE_CODE_VOID Record
1092^^^^^^^^^^^^^^^^^^^^^
1093
1094``[VOID]``
1095
1096The ``VOID`` record (code 2) adds a ``void`` type to the type table.
1097
1098TYPE_CODE_HALF Record
1099^^^^^^^^^^^^^^^^^^^^^
1100
1101``[HALF]``
1102
1103The ``HALF`` record (code 10) adds a ``half`` (16-bit floating point) type to
1104the type table.
1105
1106TYPE_CODE_FLOAT Record
1107^^^^^^^^^^^^^^^^^^^^^^
1108
1109``[FLOAT]``
1110
1111The ``FLOAT`` record (code 3) adds a ``float`` (32-bit floating point) type to
1112the type table.
1113
1114TYPE_CODE_DOUBLE Record
1115^^^^^^^^^^^^^^^^^^^^^^^
1116
1117``[DOUBLE]``
1118
1119The ``DOUBLE`` record (code 4) adds a ``double`` (64-bit floating point) type to
1120the type table.
1121
1122TYPE_CODE_LABEL Record
1123^^^^^^^^^^^^^^^^^^^^^^
1124
1125``[LABEL]``
1126
1127The ``LABEL`` record (code 5) adds a ``label`` type to the type table.
1128
1129TYPE_CODE_OPAQUE Record
1130^^^^^^^^^^^^^^^^^^^^^^^
1131
1132``[OPAQUE]``
1133
Mehdi Amini472a1412016-10-14 16:23:09 +00001134The ``OPAQUE`` record (code 6) adds an ``opaque`` type to the type table, with
1135a name defined by a previously encountered ``STRUCT_NAME`` record. Note that
1136distinct ``opaque`` types are not unified.
Bill Wendlinge28d50a2012-06-28 08:43:12 +00001137
1138TYPE_CODE_INTEGER Record
1139^^^^^^^^^^^^^^^^^^^^^^^^
1140
1141``[INTEGER, width]``
1142
1143The ``INTEGER`` record (code 7) adds an integer type to the type table. The
1144single *width* field indicates the width of the integer type.
1145
1146TYPE_CODE_POINTER Record
1147^^^^^^^^^^^^^^^^^^^^^^^^
1148
1149``[POINTER, pointee type, address space]``
1150
1151The ``POINTER`` record (code 8) adds a pointer type to the type table. The
1152operand fields are
1153
1154* *pointee type*: The type index of the pointed-to type
1155
1156* *address space*: If supplied, the target-specific numbered address space where
1157 the pointed-to object resides. Otherwise, the default address space is zero.
1158
Mehdi Amini472a1412016-10-14 16:23:09 +00001159TYPE_CODE_FUNCTION_OLD Record
1160^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Bill Wendlinge28d50a2012-06-28 08:43:12 +00001161
Mehdi Amini472a1412016-10-14 16:23:09 +00001162.. note::
1163 This is a legacy encoding for functions, produced by LLVM versions 3.0 and
1164 earlier. It is guaranteed to be understood by the current LLVM version, as
1165 specified in the :ref:`IR backwards compatibility` policy.
Bill Wendlinge28d50a2012-06-28 08:43:12 +00001166
Mehdi Amini472a1412016-10-14 16:23:09 +00001167``[FUNCTION_OLD, vararg, ignored, retty, ...paramty... ]``
1168
1169The ``FUNCTION_OLD`` record (code 9) adds a function type to the type table.
1170The operand fields are
Bill Wendlinge28d50a2012-06-28 08:43:12 +00001171
1172* *vararg*: Non-zero if the type represents a varargs function
1173
1174* *ignored*: This value field is present for backward compatibility only, and is
1175 ignored
1176
1177* *retty*: The type index of the function's return type
1178
1179* *paramty*: Zero or more type indices representing the parameter types of the
1180 function
1181
Bill Wendlinge28d50a2012-06-28 08:43:12 +00001182TYPE_CODE_ARRAY Record
1183^^^^^^^^^^^^^^^^^^^^^^
1184
1185``[ARRAY, numelts, eltty]``
1186
1187The ``ARRAY`` record (code 11) adds an array type to the type table. The
1188operand fields are
1189
1190* *numelts*: The number of elements in arrays of this type
1191
1192* *eltty*: The type index of the array element type
1193
1194TYPE_CODE_VECTOR Record
1195^^^^^^^^^^^^^^^^^^^^^^^
1196
1197``[VECTOR, numelts, eltty]``
1198
1199The ``VECTOR`` record (code 12) adds a vector type to the type table. The
1200operand fields are
1201
1202* *numelts*: The number of elements in vectors of this type
1203
1204* *eltty*: The type index of the vector element type
1205
1206TYPE_CODE_X86_FP80 Record
1207^^^^^^^^^^^^^^^^^^^^^^^^^
1208
1209``[X86_FP80]``
1210
1211The ``X86_FP80`` record (code 13) adds an ``x86_fp80`` (80-bit floating point)
1212type to the type table.
1213
1214TYPE_CODE_FP128 Record
1215^^^^^^^^^^^^^^^^^^^^^^
1216
1217``[FP128]``
1218
1219The ``FP128`` record (code 14) adds an ``fp128`` (128-bit floating point) type
1220to the type table.
1221
1222TYPE_CODE_PPC_FP128 Record
1223^^^^^^^^^^^^^^^^^^^^^^^^^^
1224
1225``[PPC_FP128]``
1226
1227The ``PPC_FP128`` record (code 15) adds a ``ppc_fp128`` (128-bit floating point)
1228type to the type table.
1229
1230TYPE_CODE_METADATA Record
1231^^^^^^^^^^^^^^^^^^^^^^^^^
1232
1233``[METADATA]``
1234
1235The ``METADATA`` record (code 16) adds a ``metadata`` type to the type table.
1236
Mehdi Amini472a1412016-10-14 16:23:09 +00001237TYPE_CODE_X86_MMX Record
1238^^^^^^^^^^^^^^^^^^^^^^^^
1239
1240``[X86_MMX]``
1241
1242The ``X86_MMX`` record (code 17) adds an ``x86_mmx`` type to the type table.
1243
1244TYPE_CODE_STRUCT_ANON Record
1245^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1246
1247``[STRUCT_ANON, ispacked, ...eltty...]``
1248
1249The ``STRUCT_ANON`` record (code 18) adds a literal struct type to the type
1250table. The operand fields are
1251
1252* *ispacked*: Non-zero if the type represents a packed structure
1253
1254* *eltty*: Zero or more type indices representing the element types of the
1255 structure
1256
1257TYPE_CODE_STRUCT_NAME Record
1258^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1259
1260``[STRUCT_NAME, ...string...]``
1261
1262The ``STRUCT_NAME`` record (code 19) contains a variable number of values
1263representing the bytes of a struct name. The next ``OPAQUE`` or
1264``STRUCT_NAMED`` record will use this name.
1265
1266TYPE_CODE_STRUCT_NAMED Record
1267^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1268
1269``[STRUCT_NAMED, ispacked, ...eltty...]``
1270
1271The ``STRUCT_NAMED`` record (code 20) adds an identified struct type to the
1272type table, with a name defined by a previously encountered ``STRUCT_NAME``
1273record. The operand fields are
1274
1275* *ispacked*: Non-zero if the type represents a packed structure
1276
1277* *eltty*: Zero or more type indices representing the element types of the
1278 structure
1279
1280TYPE_CODE_FUNCTION Record
1281^^^^^^^^^^^^^^^^^^^^^^^^^
1282
1283``[FUNCTION, vararg, retty, ...paramty... ]``
1284
1285The ``FUNCTION`` record (code 21) adds a function type to the type table. The
1286operand fields are
1287
1288* *vararg*: Non-zero if the type represents a varargs function
1289
1290* *retty*: The type index of the function's return type
1291
1292* *paramty*: Zero or more type indices representing the parameter types of the
1293 function
1294
Bill Wendlinge28d50a2012-06-28 08:43:12 +00001295.. _CONSTANTS_BLOCK:
1296
1297CONSTANTS_BLOCK Contents
1298------------------------
1299
1300The ``CONSTANTS_BLOCK`` block (id 11) ...
1301
1302.. _FUNCTION_BLOCK:
1303
1304FUNCTION_BLOCK Contents
1305-----------------------
1306
1307The ``FUNCTION_BLOCK`` block (id 12) ...
1308
1309In addition to the record types described below, a ``FUNCTION_BLOCK`` block may
1310contain the following sub-blocks:
1311
1312* `CONSTANTS_BLOCK`_
1313* `VALUE_SYMTAB_BLOCK`_
1314* `METADATA_ATTACHMENT`_
1315
Bill Wendlinge28d50a2012-06-28 08:43:12 +00001316.. _VALUE_SYMTAB_BLOCK:
1317
1318VALUE_SYMTAB_BLOCK Contents
1319---------------------------
1320
Stephan Tolksdorfe6493352014-03-13 19:07:39 +00001321The ``VALUE_SYMTAB_BLOCK`` block (id 14) ...
Bill Wendlinge28d50a2012-06-28 08:43:12 +00001322
1323.. _METADATA_BLOCK:
1324
1325METADATA_BLOCK Contents
1326-----------------------
1327
1328The ``METADATA_BLOCK`` block (id 15) ...
1329
1330.. _METADATA_ATTACHMENT:
1331
1332METADATA_ATTACHMENT Contents
1333----------------------------
1334
1335The ``METADATA_ATTACHMENT`` block (id 16) ...
Peter Collingbournea0f371a2017-04-17 17:51:36 +00001336
1337.. _STRTAB_BLOCK:
1338
1339STRTAB_BLOCK Contents
1340---------------------
1341
1342The ``STRTAB`` block (id 23) contains a single record (``STRTAB_BLOB``, id 1)
1343with a single blob operand containing the bitcode file's string table.
1344
1345Strings in the string table are not null terminated. A record's *strtab
1346offset* and *strtab size* operands specify the byte offset and size of a
1347string within the string table.
1348
1349The string table is used by all preceding blocks in the bitcode file that are
1350not succeeded by another intervening ``STRTAB`` block. Normally a bitcode
1351file will have a single string table, but it may have more than one if it
1352was created by binary concatenation of multiple bitcode files.