blob: b265124464074c9e3be6603967d2fa37858115fe [file] [log] [blame]
Adam Nemet04563272015-02-01 16:56:15 +00001//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The implementation for the loop memory dependence that was originally
11// developed for the loop vectorizer.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/LoopAccessAnalysis.h"
16#include "llvm/Analysis/LoopInfo.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000017#include "llvm/Analysis/ScalarEvolutionExpander.h"
Adam Nemet04563272015-02-01 16:56:15 +000018#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/IR/DiagnosticInfo.h"
20#include "llvm/IR/Dominators.h"
Adam Nemet7206d7a2015-02-06 18:31:04 +000021#include "llvm/IR/IRBuilder.h"
Adam Nemet04563272015-02-01 16:56:15 +000022#include "llvm/Support/Debug.h"
23#include "llvm/Transforms/Utils/VectorUtils.h"
24using namespace llvm;
25
Adam Nemet339f42b2015-02-19 19:15:07 +000026#define DEBUG_TYPE "loop-accesses"
Adam Nemet04563272015-02-01 16:56:15 +000027
Adam Nemetf219c642015-02-19 19:14:52 +000028static cl::opt<unsigned, true>
29VectorizationFactor("force-vector-width", cl::Hidden,
30 cl::desc("Sets the SIMD width. Zero is autoselect."),
31 cl::location(VectorizerParams::VectorizationFactor));
32unsigned VectorizerParams::VectorizationFactor = 0;
33
34static cl::opt<unsigned, true>
35VectorizationInterleave("force-vector-interleave", cl::Hidden,
36 cl::desc("Sets the vectorization interleave count. "
37 "Zero is autoselect."),
38 cl::location(
39 VectorizerParams::VectorizationInterleave));
40unsigned VectorizerParams::VectorizationInterleave = 0;
41
42/// When performing memory disambiguation checks at runtime do not make more
43/// than this number of comparisons.
44const unsigned VectorizerParams::RuntimeMemoryCheckThreshold = 8;
45
46/// Maximum SIMD width.
47const unsigned VectorizerParams::MaxVectorWidth = 64;
48
49bool VectorizerParams::isInterleaveForced() {
50 return ::VectorizationInterleave.getNumOccurrences() > 0;
51}
52
Adam Nemet2bd6e982015-02-19 19:15:15 +000053void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
54 const Function *TheFunction,
55 const Loop *TheLoop,
56 const char *PassName) {
Adam Nemet04563272015-02-01 16:56:15 +000057 DebugLoc DL = TheLoop->getStartLoc();
Adam Nemet3e876342015-02-19 19:15:13 +000058 if (const Instruction *I = Message.getInstr())
Adam Nemet04563272015-02-01 16:56:15 +000059 DL = I->getDebugLoc();
Adam Nemet339f42b2015-02-19 19:15:07 +000060 emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
Adam Nemet04563272015-02-01 16:56:15 +000061 *TheFunction, DL, Message.str());
62}
63
64Value *llvm::stripIntegerCast(Value *V) {
65 if (CastInst *CI = dyn_cast<CastInst>(V))
66 if (CI->getOperand(0)->getType()->isIntegerTy())
67 return CI->getOperand(0);
68 return V;
69}
70
71const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE,
Adam Nemet8bc61df2015-02-24 00:41:59 +000072 const ValueToValueMap &PtrToStride,
Adam Nemet04563272015-02-01 16:56:15 +000073 Value *Ptr, Value *OrigPtr) {
74
75 const SCEV *OrigSCEV = SE->getSCEV(Ptr);
76
77 // If there is an entry in the map return the SCEV of the pointer with the
78 // symbolic stride replaced by one.
Adam Nemet8bc61df2015-02-24 00:41:59 +000079 ValueToValueMap::const_iterator SI =
80 PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
Adam Nemet04563272015-02-01 16:56:15 +000081 if (SI != PtrToStride.end()) {
82 Value *StrideVal = SI->second;
83
84 // Strip casts.
85 StrideVal = stripIntegerCast(StrideVal);
86
87 // Replace symbolic stride by one.
88 Value *One = ConstantInt::get(StrideVal->getType(), 1);
89 ValueToValueMap RewriteMap;
90 RewriteMap[StrideVal] = One;
91
92 const SCEV *ByOne =
93 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
Adam Nemet339f42b2015-02-19 19:15:07 +000094 DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
Adam Nemet04563272015-02-01 16:56:15 +000095 << "\n");
96 return ByOne;
97 }
98
99 // Otherwise, just return the SCEV of the original pointer.
100 return SE->getSCEV(Ptr);
101}
102
Adam Nemet8bc61df2015-02-24 00:41:59 +0000103void LoopAccessInfo::RuntimePointerCheck::insert(
104 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
105 unsigned ASId, const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +0000106 // Get the stride replaced scev.
107 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
108 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
109 assert(AR && "Invalid addrec expression");
110 const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
111 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
112 Pointers.push_back(Ptr);
113 Starts.push_back(AR->getStart());
114 Ends.push_back(ScEnd);
115 IsWritePtr.push_back(WritePtr);
116 DependencySetId.push_back(DepSetId);
117 AliasSetId.push_back(ASId);
118}
119
Adam Nemeta8945b72015-02-18 03:43:58 +0000120bool LoopAccessInfo::RuntimePointerCheck::needsChecking(unsigned I,
121 unsigned J) const {
122 // No need to check if two readonly pointers intersect.
123 if (!IsWritePtr[I] && !IsWritePtr[J])
124 return false;
125
126 // Only need to check pointers between two different dependency sets.
127 if (DependencySetId[I] == DependencySetId[J])
128 return false;
129
130 // Only need to check pointers in the same alias set.
131 if (AliasSetId[I] != AliasSetId[J])
132 return false;
133
134 return true;
135}
136
Adam Nemete91cc6e2015-02-19 19:15:19 +0000137void LoopAccessInfo::RuntimePointerCheck::print(raw_ostream &OS,
138 unsigned Depth) const {
139 unsigned NumPointers = Pointers.size();
140 if (NumPointers == 0)
141 return;
142
143 OS.indent(Depth) << "Run-time memory checks:\n";
144 unsigned N = 0;
145 for (unsigned I = 0; I < NumPointers; ++I)
146 for (unsigned J = I + 1; J < NumPointers; ++J)
147 if (needsChecking(I, J)) {
148 OS.indent(Depth) << N++ << ":\n";
149 OS.indent(Depth + 2) << *Pointers[I] << "\n";
150 OS.indent(Depth + 2) << *Pointers[J] << "\n";
151 }
152}
153
Adam Nemet04563272015-02-01 16:56:15 +0000154namespace {
155/// \brief Analyses memory accesses in a loop.
156///
157/// Checks whether run time pointer checks are needed and builds sets for data
158/// dependence checking.
159class AccessAnalysis {
160public:
161 /// \brief Read or write access location.
162 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
163 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
164
165 /// \brief Set of potential dependent memory accesses.
166 typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
167
168 AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) :
169 DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {}
170
171 /// \brief Register a load and whether it is only read from.
172 void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) {
173 Value *Ptr = const_cast<Value*>(Loc.Ptr);
174 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags);
175 Accesses.insert(MemAccessInfo(Ptr, false));
176 if (IsReadOnly)
177 ReadOnlyPtr.insert(Ptr);
178 }
179
180 /// \brief Register a store.
181 void addStore(AliasAnalysis::Location &Loc) {
182 Value *Ptr = const_cast<Value*>(Loc.Ptr);
183 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags);
184 Accesses.insert(MemAccessInfo(Ptr, true));
185 }
186
187 /// \brief Check whether we can check the pointers at runtime for
188 /// non-intersection.
Adam Nemet30f16e12015-02-18 03:42:35 +0000189 bool canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck &RtCheck,
Adam Nemet8bc61df2015-02-24 00:41:59 +0000190 unsigned &NumComparisons, ScalarEvolution *SE,
191 Loop *TheLoop, const ValueToValueMap &Strides,
Adam Nemet04563272015-02-01 16:56:15 +0000192 bool ShouldCheckStride = false);
193
194 /// \brief Goes over all memory accesses, checks whether a RT check is needed
195 /// and builds sets of dependent accesses.
196 void buildDependenceSets() {
197 processMemAccesses();
198 }
199
200 bool isRTCheckNeeded() { return IsRTCheckNeeded; }
201
202 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
203 void resetDepChecks() { CheckDeps.clear(); }
204
205 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
206
207private:
208 typedef SetVector<MemAccessInfo> PtrAccessSet;
209
210 /// \brief Go over all memory access and check whether runtime pointer checks
211 /// are needed /// and build sets of dependency check candidates.
212 void processMemAccesses();
213
214 /// Set of all accesses.
215 PtrAccessSet Accesses;
216
217 /// Set of accesses that need a further dependence check.
218 MemAccessInfoSet CheckDeps;
219
220 /// Set of pointers that are read only.
221 SmallPtrSet<Value*, 16> ReadOnlyPtr;
222
223 const DataLayout *DL;
224
225 /// An alias set tracker to partition the access set by underlying object and
226 //intrinsic property (such as TBAA metadata).
227 AliasSetTracker AST;
228
229 /// Sets of potentially dependent accesses - members of one set share an
230 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
231 /// dependence check.
232 DepCandidates &DepCands;
233
234 bool IsRTCheckNeeded;
235};
236
237} // end anonymous namespace
238
239/// \brief Check whether a pointer can participate in a runtime bounds check.
Adam Nemet8bc61df2015-02-24 00:41:59 +0000240static bool hasComputableBounds(ScalarEvolution *SE,
241 const ValueToValueMap &Strides, Value *Ptr) {
Adam Nemet04563272015-02-01 16:56:15 +0000242 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
243 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
244 if (!AR)
245 return false;
246
247 return AR->isAffine();
248}
249
250/// \brief Check the stride of the pointer and ensure that it does not wrap in
251/// the address space.
252static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
Adam Nemet8bc61df2015-02-24 00:41:59 +0000253 const Loop *Lp, const ValueToValueMap &StridesMap);
Adam Nemet04563272015-02-01 16:56:15 +0000254
255bool AccessAnalysis::canCheckPtrAtRT(
Adam Nemet8bc61df2015-02-24 00:41:59 +0000256 LoopAccessInfo::RuntimePointerCheck &RtCheck, unsigned &NumComparisons,
257 ScalarEvolution *SE, Loop *TheLoop, const ValueToValueMap &StridesMap,
258 bool ShouldCheckStride) {
Adam Nemet04563272015-02-01 16:56:15 +0000259 // Find pointers with computable bounds. We are going to use this information
260 // to place a runtime bound check.
261 bool CanDoRT = true;
262
263 bool IsDepCheckNeeded = isDependencyCheckNeeded();
264 NumComparisons = 0;
265
266 // We assign a consecutive id to access from different alias sets.
267 // Accesses between different groups doesn't need to be checked.
268 unsigned ASId = 1;
269 for (auto &AS : AST) {
270 unsigned NumReadPtrChecks = 0;
271 unsigned NumWritePtrChecks = 0;
272
273 // We assign consecutive id to access from different dependence sets.
274 // Accesses within the same set don't need a runtime check.
275 unsigned RunningDepId = 1;
276 DenseMap<Value *, unsigned> DepSetId;
277
278 for (auto A : AS) {
279 Value *Ptr = A.getValue();
280 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
281 MemAccessInfo Access(Ptr, IsWrite);
282
283 if (IsWrite)
284 ++NumWritePtrChecks;
285 else
286 ++NumReadPtrChecks;
287
288 if (hasComputableBounds(SE, StridesMap, Ptr) &&
289 // When we run after a failing dependency check we have to make sure we
290 // don't have wrapping pointers.
291 (!ShouldCheckStride ||
292 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) {
293 // The id of the dependence set.
294 unsigned DepId;
295
296 if (IsDepCheckNeeded) {
297 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
298 unsigned &LeaderId = DepSetId[Leader];
299 if (!LeaderId)
300 LeaderId = RunningDepId++;
301 DepId = LeaderId;
302 } else
303 // Each access has its own dependence set.
304 DepId = RunningDepId++;
305
306 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap);
307
Adam Nemet339f42b2015-02-19 19:15:07 +0000308 DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000309 } else {
310 CanDoRT = false;
311 }
312 }
313
314 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
315 NumComparisons += 0; // Only one dependence set.
316 else {
317 NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks +
318 NumWritePtrChecks - 1));
319 }
320
321 ++ASId;
322 }
323
324 // If the pointers that we would use for the bounds comparison have different
325 // address spaces, assume the values aren't directly comparable, so we can't
326 // use them for the runtime check. We also have to assume they could
327 // overlap. In the future there should be metadata for whether address spaces
328 // are disjoint.
329 unsigned NumPointers = RtCheck.Pointers.size();
330 for (unsigned i = 0; i < NumPointers; ++i) {
331 for (unsigned j = i + 1; j < NumPointers; ++j) {
332 // Only need to check pointers between two different dependency sets.
333 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
334 continue;
335 // Only need to check pointers in the same alias set.
336 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j])
337 continue;
338
339 Value *PtrI = RtCheck.Pointers[i];
340 Value *PtrJ = RtCheck.Pointers[j];
341
342 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
343 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
344 if (ASi != ASj) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000345 DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
Adam Nemet04d41632015-02-19 19:14:34 +0000346 " different address spaces\n");
Adam Nemet04563272015-02-01 16:56:15 +0000347 return false;
348 }
349 }
350 }
351
352 return CanDoRT;
353}
354
355void AccessAnalysis::processMemAccesses() {
356 // We process the set twice: first we process read-write pointers, last we
357 // process read-only pointers. This allows us to skip dependence tests for
358 // read-only pointers.
359
Adam Nemet339f42b2015-02-19 19:15:07 +0000360 DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
Adam Nemet04563272015-02-01 16:56:15 +0000361 DEBUG(dbgs() << " AST: "; AST.dump());
Adam Nemet339f42b2015-02-19 19:15:07 +0000362 DEBUG(dbgs() << "LAA: Accesses:\n");
Adam Nemet04563272015-02-01 16:56:15 +0000363 DEBUG({
364 for (auto A : Accesses)
365 dbgs() << "\t" << *A.getPointer() << " (" <<
366 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
367 "read-only" : "read")) << ")\n";
368 });
369
370 // The AliasSetTracker has nicely partitioned our pointers by metadata
371 // compatibility and potential for underlying-object overlap. As a result, we
372 // only need to check for potential pointer dependencies within each alias
373 // set.
374 for (auto &AS : AST) {
375 // Note that both the alias-set tracker and the alias sets themselves used
376 // linked lists internally and so the iteration order here is deterministic
377 // (matching the original instruction order within each set).
378
379 bool SetHasWrite = false;
380
381 // Map of pointers to last access encountered.
382 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
383 UnderlyingObjToAccessMap ObjToLastAccess;
384
385 // Set of access to check after all writes have been processed.
386 PtrAccessSet DeferredAccesses;
387
388 // Iterate over each alias set twice, once to process read/write pointers,
389 // and then to process read-only pointers.
390 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
391 bool UseDeferred = SetIteration > 0;
392 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
393
394 for (auto AV : AS) {
395 Value *Ptr = AV.getValue();
396
397 // For a single memory access in AliasSetTracker, Accesses may contain
398 // both read and write, and they both need to be handled for CheckDeps.
399 for (auto AC : S) {
400 if (AC.getPointer() != Ptr)
401 continue;
402
403 bool IsWrite = AC.getInt();
404
405 // If we're using the deferred access set, then it contains only
406 // reads.
407 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
408 if (UseDeferred && !IsReadOnlyPtr)
409 continue;
410 // Otherwise, the pointer must be in the PtrAccessSet, either as a
411 // read or a write.
412 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
413 S.count(MemAccessInfo(Ptr, false))) &&
414 "Alias-set pointer not in the access set?");
415
416 MemAccessInfo Access(Ptr, IsWrite);
417 DepCands.insert(Access);
418
419 // Memorize read-only pointers for later processing and skip them in
420 // the first round (they need to be checked after we have seen all
421 // write pointers). Note: we also mark pointer that are not
422 // consecutive as "read-only" pointers (so that we check
423 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
424 if (!UseDeferred && IsReadOnlyPtr) {
425 DeferredAccesses.insert(Access);
426 continue;
427 }
428
429 // If this is a write - check other reads and writes for conflicts. If
430 // this is a read only check other writes for conflicts (but only if
431 // there is no other write to the ptr - this is an optimization to
432 // catch "a[i] = a[i] + " without having to do a dependence check).
433 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
434 CheckDeps.insert(Access);
435 IsRTCheckNeeded = true;
436 }
437
438 if (IsWrite)
439 SetHasWrite = true;
440
441 // Create sets of pointers connected by a shared alias set and
442 // underlying object.
443 typedef SmallVector<Value *, 16> ValueVector;
444 ValueVector TempObjects;
445 GetUnderlyingObjects(Ptr, TempObjects, DL);
446 for (Value *UnderlyingObj : TempObjects) {
447 UnderlyingObjToAccessMap::iterator Prev =
448 ObjToLastAccess.find(UnderlyingObj);
449 if (Prev != ObjToLastAccess.end())
450 DepCands.unionSets(Access, Prev->second);
451
452 ObjToLastAccess[UnderlyingObj] = Access;
453 }
454 }
455 }
456 }
457 }
458}
459
460namespace {
461/// \brief Checks memory dependences among accesses to the same underlying
462/// object to determine whether there vectorization is legal or not (and at
463/// which vectorization factor).
464///
465/// This class works under the assumption that we already checked that memory
466/// locations with different underlying pointers are "must-not alias".
467/// We use the ScalarEvolution framework to symbolically evalutate access
468/// functions pairs. Since we currently don't restructure the loop we can rely
469/// on the program order of memory accesses to determine their safety.
470/// At the moment we will only deem accesses as safe for:
471/// * A negative constant distance assuming program order.
472///
473/// Safe: tmp = a[i + 1]; OR a[i + 1] = x;
474/// a[i] = tmp; y = a[i];
475///
476/// The latter case is safe because later checks guarantuee that there can't
477/// be a cycle through a phi node (that is, we check that "x" and "y" is not
478/// the same variable: a header phi can only be an induction or a reduction, a
479/// reduction can't have a memory sink, an induction can't have a memory
480/// source). This is important and must not be violated (or we have to
481/// resort to checking for cycles through memory).
482///
483/// * A positive constant distance assuming program order that is bigger
484/// than the biggest memory access.
485///
486/// tmp = a[i] OR b[i] = x
487/// a[i+2] = tmp y = b[i+2];
488///
489/// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
490///
491/// * Zero distances and all accesses have the same size.
492///
493class MemoryDepChecker {
494public:
495 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
496 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
497
Adam Nemetf219c642015-02-19 19:14:52 +0000498 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L)
Adam Nemet04563272015-02-01 16:56:15 +0000499 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
Adam Nemetf219c642015-02-19 19:14:52 +0000500 ShouldRetryWithRuntimeCheck(false) {}
Adam Nemet04563272015-02-01 16:56:15 +0000501
502 /// \brief Register the location (instructions are given increasing numbers)
503 /// of a write access.
504 void addAccess(StoreInst *SI) {
505 Value *Ptr = SI->getPointerOperand();
506 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
507 InstMap.push_back(SI);
508 ++AccessIdx;
509 }
510
511 /// \brief Register the location (instructions are given increasing numbers)
512 /// of a write access.
513 void addAccess(LoadInst *LI) {
514 Value *Ptr = LI->getPointerOperand();
515 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
516 InstMap.push_back(LI);
517 ++AccessIdx;
518 }
519
520 /// \brief Check whether the dependencies between the accesses are safe.
521 ///
522 /// Only checks sets with elements in \p CheckDeps.
523 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
Adam Nemet8bc61df2015-02-24 00:41:59 +0000524 MemAccessInfoSet &CheckDeps, const ValueToValueMap &Strides);
Adam Nemet04563272015-02-01 16:56:15 +0000525
526 /// \brief The maximum number of bytes of a vector register we can vectorize
527 /// the accesses safely with.
528 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
529
530 /// \brief In same cases when the dependency check fails we can still
531 /// vectorize the loop with a dynamic array access check.
532 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
533
534private:
535 ScalarEvolution *SE;
536 const DataLayout *DL;
537 const Loop *InnermostLoop;
538
539 /// \brief Maps access locations (ptr, read/write) to program order.
540 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
541
542 /// \brief Memory access instructions in program order.
543 SmallVector<Instruction *, 16> InstMap;
544
545 /// \brief The program order index to be used for the next instruction.
546 unsigned AccessIdx;
547
548 // We can access this many bytes in parallel safely.
549 unsigned MaxSafeDepDistBytes;
550
551 /// \brief If we see a non-constant dependence distance we can still try to
552 /// vectorize this loop with runtime checks.
553 bool ShouldRetryWithRuntimeCheck;
554
Adam Nemet04563272015-02-01 16:56:15 +0000555 /// \brief Check whether there is a plausible dependence between the two
556 /// accesses.
557 ///
558 /// Access \p A must happen before \p B in program order. The two indices
559 /// identify the index into the program order map.
560 ///
561 /// This function checks whether there is a plausible dependence (or the
562 /// absence of such can't be proved) between the two accesses. If there is a
563 /// plausible dependence but the dependence distance is bigger than one
564 /// element access it records this distance in \p MaxSafeDepDistBytes (if this
565 /// distance is smaller than any other distance encountered so far).
566 /// Otherwise, this function returns true signaling a possible dependence.
567 bool isDependent(const MemAccessInfo &A, unsigned AIdx,
568 const MemAccessInfo &B, unsigned BIdx,
Adam Nemet8bc61df2015-02-24 00:41:59 +0000569 const ValueToValueMap &Strides);
Adam Nemet04563272015-02-01 16:56:15 +0000570
571 /// \brief Check whether the data dependence could prevent store-load
572 /// forwarding.
573 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
574};
575
576} // end anonymous namespace
577
578static bool isInBoundsGep(Value *Ptr) {
579 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
580 return GEP->isInBounds();
581 return false;
582}
583
584/// \brief Check whether the access through \p Ptr has a constant stride.
585static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
Adam Nemet8bc61df2015-02-24 00:41:59 +0000586 const Loop *Lp, const ValueToValueMap &StridesMap) {
Adam Nemet04563272015-02-01 16:56:15 +0000587 const Type *Ty = Ptr->getType();
588 assert(Ty->isPointerTy() && "Unexpected non-ptr");
589
590 // Make sure that the pointer does not point to aggregate types.
591 const PointerType *PtrTy = cast<PointerType>(Ty);
592 if (PtrTy->getElementType()->isAggregateType()) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000593 DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
594 << *Ptr << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000595 return 0;
596 }
597
598 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
599
600 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
601 if (!AR) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000602 DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer "
Adam Nemet04d41632015-02-19 19:14:34 +0000603 << *Ptr << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000604 return 0;
605 }
606
607 // The accesss function must stride over the innermost loop.
608 if (Lp != AR->getLoop()) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000609 DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
Adam Nemet04d41632015-02-19 19:14:34 +0000610 *Ptr << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000611 }
612
613 // The address calculation must not wrap. Otherwise, a dependence could be
614 // inverted.
615 // An inbounds getelementptr that is a AddRec with a unit stride
616 // cannot wrap per definition. The unit stride requirement is checked later.
617 // An getelementptr without an inbounds attribute and unit stride would have
618 // to access the pointer value "0" which is undefined behavior in address
619 // space 0, therefore we can also vectorize this case.
620 bool IsInBoundsGEP = isInBoundsGep(Ptr);
621 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
622 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
623 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000624 DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
Adam Nemet04d41632015-02-19 19:14:34 +0000625 << *Ptr << " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000626 return 0;
627 }
628
629 // Check the step is constant.
630 const SCEV *Step = AR->getStepRecurrence(*SE);
631
632 // Calculate the pointer stride and check if it is consecutive.
633 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
634 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000635 DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
Adam Nemet04d41632015-02-19 19:14:34 +0000636 " SCEV: " << *PtrScev << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000637 return 0;
638 }
639
640 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
641 const APInt &APStepVal = C->getValue()->getValue();
642
643 // Huge step value - give up.
644 if (APStepVal.getBitWidth() > 64)
645 return 0;
646
647 int64_t StepVal = APStepVal.getSExtValue();
648
649 // Strided access.
650 int64_t Stride = StepVal / Size;
651 int64_t Rem = StepVal % Size;
652 if (Rem)
653 return 0;
654
655 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
656 // know we can't "wrap around the address space". In case of address space
657 // zero we know that this won't happen without triggering undefined behavior.
658 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
659 Stride != 1 && Stride != -1)
660 return 0;
661
662 return Stride;
663}
664
665bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
666 unsigned TypeByteSize) {
667 // If loads occur at a distance that is not a multiple of a feasible vector
668 // factor store-load forwarding does not take place.
669 // Positive dependences might cause troubles because vectorizing them might
670 // prevent store-load forwarding making vectorized code run a lot slower.
671 // a[i] = a[i-3] ^ a[i-8];
672 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
673 // hence on your typical architecture store-load forwarding does not take
674 // place. Vectorizing in such cases does not make sense.
675 // Store-load forwarding distance.
676 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
677 // Maximum vector factor.
Adam Nemetf219c642015-02-19 19:14:52 +0000678 unsigned MaxVFWithoutSLForwardIssues =
679 VectorizerParams::MaxVectorWidth * TypeByteSize;
Adam Nemet04d41632015-02-19 19:14:34 +0000680 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
Adam Nemet04563272015-02-01 16:56:15 +0000681 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
682
683 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
684 vf *= 2) {
685 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
686 MaxVFWithoutSLForwardIssues = (vf >>=1);
687 break;
688 }
689 }
690
Adam Nemet04d41632015-02-19 19:14:34 +0000691 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000692 DEBUG(dbgs() << "LAA: Distance " << Distance <<
Adam Nemet04d41632015-02-19 19:14:34 +0000693 " that could cause a store-load forwarding conflict\n");
Adam Nemet04563272015-02-01 16:56:15 +0000694 return true;
695 }
696
697 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
Adam Nemetf219c642015-02-19 19:14:52 +0000698 MaxVFWithoutSLForwardIssues !=
699 VectorizerParams::MaxVectorWidth * TypeByteSize)
Adam Nemet04563272015-02-01 16:56:15 +0000700 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
701 return false;
702}
703
704bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
705 const MemAccessInfo &B, unsigned BIdx,
Adam Nemet8bc61df2015-02-24 00:41:59 +0000706 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +0000707 assert (AIdx < BIdx && "Must pass arguments in program order");
708
709 Value *APtr = A.getPointer();
710 Value *BPtr = B.getPointer();
711 bool AIsWrite = A.getInt();
712 bool BIsWrite = B.getInt();
713
714 // Two reads are independent.
715 if (!AIsWrite && !BIsWrite)
716 return false;
717
718 // We cannot check pointers in different address spaces.
719 if (APtr->getType()->getPointerAddressSpace() !=
720 BPtr->getType()->getPointerAddressSpace())
721 return true;
722
723 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
724 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
725
726 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides);
727 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides);
728
729 const SCEV *Src = AScev;
730 const SCEV *Sink = BScev;
731
732 // If the induction step is negative we have to invert source and sink of the
733 // dependence.
734 if (StrideAPtr < 0) {
735 //Src = BScev;
736 //Sink = AScev;
737 std::swap(APtr, BPtr);
738 std::swap(Src, Sink);
739 std::swap(AIsWrite, BIsWrite);
740 std::swap(AIdx, BIdx);
741 std::swap(StrideAPtr, StrideBPtr);
742 }
743
744 const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
745
Adam Nemet339f42b2015-02-19 19:15:07 +0000746 DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
Adam Nemet04d41632015-02-19 19:14:34 +0000747 << "(Induction step: " << StrideAPtr << ")\n");
Adam Nemet339f42b2015-02-19 19:15:07 +0000748 DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
Adam Nemet04d41632015-02-19 19:14:34 +0000749 << *InstMap[BIdx] << ": " << *Dist << "\n");
Adam Nemet04563272015-02-01 16:56:15 +0000750
751 // Need consecutive accesses. We don't want to vectorize
752 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
753 // the address space.
754 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
755 DEBUG(dbgs() << "Non-consecutive pointer access\n");
756 return true;
757 }
758
759 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
760 if (!C) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000761 DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
Adam Nemet04563272015-02-01 16:56:15 +0000762 ShouldRetryWithRuntimeCheck = true;
763 return true;
764 }
765
766 Type *ATy = APtr->getType()->getPointerElementType();
767 Type *BTy = BPtr->getType()->getPointerElementType();
768 unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
769
770 // Negative distances are not plausible dependencies.
771 const APInt &Val = C->getValue()->getValue();
772 if (Val.isNegative()) {
773 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
774 if (IsTrueDataDependence &&
775 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
776 ATy != BTy))
777 return true;
778
Adam Nemet339f42b2015-02-19 19:15:07 +0000779 DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n");
Adam Nemet04563272015-02-01 16:56:15 +0000780 return false;
781 }
782
783 // Write to the same location with the same size.
784 // Could be improved to assert type sizes are the same (i32 == float, etc).
785 if (Val == 0) {
786 if (ATy == BTy)
787 return false;
Adam Nemet339f42b2015-02-19 19:15:07 +0000788 DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
Adam Nemet04563272015-02-01 16:56:15 +0000789 return true;
790 }
791
792 assert(Val.isStrictlyPositive() && "Expect a positive value");
793
794 // Positive distance bigger than max vectorization factor.
795 if (ATy != BTy) {
Adam Nemet04d41632015-02-19 19:14:34 +0000796 DEBUG(dbgs() <<
Adam Nemet339f42b2015-02-19 19:15:07 +0000797 "LAA: ReadWrite-Write positive dependency with different types\n");
Adam Nemet04563272015-02-01 16:56:15 +0000798 return false;
799 }
800
801 unsigned Distance = (unsigned) Val.getZExtValue();
802
803 // Bail out early if passed-in parameters make vectorization not feasible.
Adam Nemetf219c642015-02-19 19:14:52 +0000804 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
805 VectorizerParams::VectorizationFactor : 1);
806 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
807 VectorizerParams::VectorizationInterleave : 1);
Adam Nemet04563272015-02-01 16:56:15 +0000808
809 // The distance must be bigger than the size needed for a vectorized version
810 // of the operation and the size of the vectorized operation must not be
811 // bigger than the currrent maximum size.
812 if (Distance < 2*TypeByteSize ||
813 2*TypeByteSize > MaxSafeDepDistBytes ||
814 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
Adam Nemet339f42b2015-02-19 19:15:07 +0000815 DEBUG(dbgs() << "LAA: Failure because of Positive distance "
Adam Nemet04d41632015-02-19 19:14:34 +0000816 << Val.getSExtValue() << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000817 return true;
818 }
819
820 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
821 Distance : MaxSafeDepDistBytes;
822
823 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
824 if (IsTrueDataDependence &&
825 couldPreventStoreLoadForward(Distance, TypeByteSize))
826 return true;
827
Adam Nemet339f42b2015-02-19 19:15:07 +0000828 DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() <<
Adam Nemet04d41632015-02-19 19:14:34 +0000829 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
Adam Nemet04563272015-02-01 16:56:15 +0000830
831 return false;
832}
833
834bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
835 MemAccessInfoSet &CheckDeps,
Adam Nemet8bc61df2015-02-24 00:41:59 +0000836 const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +0000837
838 MaxSafeDepDistBytes = -1U;
839 while (!CheckDeps.empty()) {
840 MemAccessInfo CurAccess = *CheckDeps.begin();
841
842 // Get the relevant memory access set.
843 EquivalenceClasses<MemAccessInfo>::iterator I =
844 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
845
846 // Check accesses within this set.
847 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
848 AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
849
850 // Check every access pair.
851 while (AI != AE) {
852 CheckDeps.erase(*AI);
853 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
854 while (OI != AE) {
855 // Check every accessing instruction pair in program order.
856 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
857 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
858 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
859 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
860 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides))
861 return false;
862 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides))
863 return false;
864 }
865 ++OI;
866 }
867 AI++;
868 }
869 }
870 return true;
871}
872
Adam Nemet929c38e2015-02-19 19:15:10 +0000873bool LoopAccessInfo::canAnalyzeLoop() {
874 // We can only analyze innermost loops.
875 if (!TheLoop->empty()) {
Adam Nemet2bd6e982015-02-19 19:15:15 +0000876 emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
Adam Nemet929c38e2015-02-19 19:15:10 +0000877 return false;
878 }
879
880 // We must have a single backedge.
881 if (TheLoop->getNumBackEdges() != 1) {
882 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +0000883 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +0000884 "loop control flow is not understood by analyzer");
885 return false;
886 }
887
888 // We must have a single exiting block.
889 if (!TheLoop->getExitingBlock()) {
890 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +0000891 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +0000892 "loop control flow is not understood by analyzer");
893 return false;
894 }
895
896 // We only handle bottom-tested loops, i.e. loop in which the condition is
897 // checked at the end of each iteration. With that we can assume that all
898 // instructions in the loop are executed the same number of times.
899 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
900 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +0000901 LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +0000902 "loop control flow is not understood by analyzer");
903 return false;
904 }
905
906 // We need to have a loop header.
907 DEBUG(dbgs() << "LAA: Found a loop: " <<
908 TheLoop->getHeader()->getName() << '\n');
909
910 // ScalarEvolution needs to be able to find the exit count.
911 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
912 if (ExitCount == SE->getCouldNotCompute()) {
Adam Nemet2bd6e982015-02-19 19:15:15 +0000913 emitAnalysis(LoopAccessReport() <<
Adam Nemet929c38e2015-02-19 19:15:10 +0000914 "could not determine number of loop iterations");
915 DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
916 return false;
917 }
918
919 return true;
920}
921
Adam Nemet8bc61df2015-02-24 00:41:59 +0000922void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
Adam Nemet04563272015-02-01 16:56:15 +0000923
924 typedef SmallVector<Value*, 16> ValueVector;
925 typedef SmallPtrSet<Value*, 16> ValueSet;
926
927 // Holds the Load and Store *instructions*.
928 ValueVector Loads;
929 ValueVector Stores;
930
931 // Holds all the different accesses in the loop.
932 unsigned NumReads = 0;
933 unsigned NumReadWrites = 0;
934
935 PtrRtCheck.Pointers.clear();
936 PtrRtCheck.Need = false;
937
938 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
Adam Nemetf219c642015-02-19 19:14:52 +0000939 MemoryDepChecker DepChecker(SE, DL, TheLoop);
Adam Nemet04563272015-02-01 16:56:15 +0000940
941 // For each block.
942 for (Loop::block_iterator bb = TheLoop->block_begin(),
943 be = TheLoop->block_end(); bb != be; ++bb) {
944
945 // Scan the BB and collect legal loads and stores.
946 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
947 ++it) {
948
949 // If this is a load, save it. If this instruction can read from memory
950 // but is not a load, then we quit. Notice that we don't handle function
951 // calls that read or write.
952 if (it->mayReadFromMemory()) {
953 // Many math library functions read the rounding mode. We will only
954 // vectorize a loop if it contains known function calls that don't set
955 // the flag. Therefore, it is safe to ignore this read from memory.
956 CallInst *Call = dyn_cast<CallInst>(it);
957 if (Call && getIntrinsicIDForCall(Call, TLI))
958 continue;
959
960 LoadInst *Ld = dyn_cast<LoadInst>(it);
961 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
Adam Nemet2bd6e982015-02-19 19:15:15 +0000962 emitAnalysis(LoopAccessReport(Ld)
Adam Nemet04563272015-02-01 16:56:15 +0000963 << "read with atomic ordering or volatile read");
Adam Nemet339f42b2015-02-19 19:15:07 +0000964 DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
Adam Nemet436018c2015-02-19 19:15:00 +0000965 CanVecMem = false;
966 return;
Adam Nemet04563272015-02-01 16:56:15 +0000967 }
968 NumLoads++;
969 Loads.push_back(Ld);
970 DepChecker.addAccess(Ld);
971 continue;
972 }
973
974 // Save 'store' instructions. Abort if other instructions write to memory.
975 if (it->mayWriteToMemory()) {
976 StoreInst *St = dyn_cast<StoreInst>(it);
977 if (!St) {
Adam Nemet2bd6e982015-02-19 19:15:15 +0000978 emitAnalysis(LoopAccessReport(it) <<
Adam Nemet04d41632015-02-19 19:14:34 +0000979 "instruction cannot be vectorized");
Adam Nemet436018c2015-02-19 19:15:00 +0000980 CanVecMem = false;
981 return;
Adam Nemet04563272015-02-01 16:56:15 +0000982 }
983 if (!St->isSimple() && !IsAnnotatedParallel) {
Adam Nemet2bd6e982015-02-19 19:15:15 +0000984 emitAnalysis(LoopAccessReport(St)
Adam Nemet04563272015-02-01 16:56:15 +0000985 << "write with atomic ordering or volatile write");
Adam Nemet339f42b2015-02-19 19:15:07 +0000986 DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
Adam Nemet436018c2015-02-19 19:15:00 +0000987 CanVecMem = false;
988 return;
Adam Nemet04563272015-02-01 16:56:15 +0000989 }
990 NumStores++;
991 Stores.push_back(St);
992 DepChecker.addAccess(St);
993 }
994 } // Next instr.
995 } // Next block.
996
997 // Now we have two lists that hold the loads and the stores.
998 // Next, we find the pointers that they use.
999
1000 // Check if we see any stores. If there are no stores, then we don't
1001 // care if the pointers are *restrict*.
1002 if (!Stores.size()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001003 DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001004 CanVecMem = true;
1005 return;
Adam Nemet04563272015-02-01 16:56:15 +00001006 }
1007
1008 AccessAnalysis::DepCandidates DependentAccesses;
1009 AccessAnalysis Accesses(DL, AA, DependentAccesses);
1010
1011 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1012 // multiple times on the same object. If the ptr is accessed twice, once
1013 // for read and once for write, it will only appear once (on the write
1014 // list). This is okay, since we are going to check for conflicts between
1015 // writes and between reads and writes, but not between reads and reads.
1016 ValueSet Seen;
1017
1018 ValueVector::iterator I, IE;
1019 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
1020 StoreInst *ST = cast<StoreInst>(*I);
1021 Value* Ptr = ST->getPointerOperand();
1022
1023 if (isUniform(Ptr)) {
1024 emitAnalysis(
Adam Nemet2bd6e982015-02-19 19:15:15 +00001025 LoopAccessReport(ST)
Adam Nemet04563272015-02-01 16:56:15 +00001026 << "write to a loop invariant address could not be vectorized");
Adam Nemet339f42b2015-02-19 19:15:07 +00001027 DEBUG(dbgs() << "LAA: We don't allow storing to uniform addresses\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001028 CanVecMem = false;
1029 return;
Adam Nemet04563272015-02-01 16:56:15 +00001030 }
1031
1032 // If we did *not* see this pointer before, insert it to the read-write
1033 // list. At this phase it is only a 'write' list.
1034 if (Seen.insert(Ptr).second) {
1035 ++NumReadWrites;
1036
1037 AliasAnalysis::Location Loc = AA->getLocation(ST);
1038 // The TBAA metadata could have a control dependency on the predication
1039 // condition, so we cannot rely on it when determining whether or not we
1040 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001041 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001042 Loc.AATags.TBAA = nullptr;
1043
1044 Accesses.addStore(Loc);
1045 }
1046 }
1047
1048 if (IsAnnotatedParallel) {
Adam Nemet04d41632015-02-19 19:14:34 +00001049 DEBUG(dbgs()
Adam Nemet339f42b2015-02-19 19:15:07 +00001050 << "LAA: A loop annotated parallel, ignore memory dependency "
Adam Nemet04d41632015-02-19 19:14:34 +00001051 << "checks.\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001052 CanVecMem = true;
1053 return;
Adam Nemet04563272015-02-01 16:56:15 +00001054 }
1055
1056 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
1057 LoadInst *LD = cast<LoadInst>(*I);
1058 Value* Ptr = LD->getPointerOperand();
1059 // If we did *not* see this pointer before, insert it to the
1060 // read list. If we *did* see it before, then it is already in
1061 // the read-write list. This allows us to vectorize expressions
1062 // such as A[i] += x; Because the address of A[i] is a read-write
1063 // pointer. This only works if the index of A[i] is consecutive.
1064 // If the address of i is unknown (for example A[B[i]]) then we may
1065 // read a few words, modify, and write a few words, and some of the
1066 // words may be written to the same address.
1067 bool IsReadOnlyPtr = false;
1068 if (Seen.insert(Ptr).second ||
1069 !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) {
1070 ++NumReads;
1071 IsReadOnlyPtr = true;
1072 }
1073
1074 AliasAnalysis::Location Loc = AA->getLocation(LD);
1075 // The TBAA metadata could have a control dependency on the predication
1076 // condition, so we cannot rely on it when determining whether or not we
1077 // need runtime pointer checks.
Adam Nemet01abb2c2015-02-18 03:43:19 +00001078 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
Adam Nemet04563272015-02-01 16:56:15 +00001079 Loc.AATags.TBAA = nullptr;
1080
1081 Accesses.addLoad(Loc, IsReadOnlyPtr);
1082 }
1083
1084 // If we write (or read-write) to a single destination and there are no
1085 // other reads in this loop then is it safe to vectorize.
1086 if (NumReadWrites == 1 && NumReads == 0) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001087 DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
Adam Nemet436018c2015-02-19 19:15:00 +00001088 CanVecMem = true;
1089 return;
Adam Nemet04563272015-02-01 16:56:15 +00001090 }
1091
1092 // Build dependence sets and check whether we need a runtime pointer bounds
1093 // check.
1094 Accesses.buildDependenceSets();
1095 bool NeedRTCheck = Accesses.isRTCheckNeeded();
1096
1097 // Find pointers with computable bounds. We are going to use this information
1098 // to place a runtime bound check.
1099 unsigned NumComparisons = 0;
1100 bool CanDoRT = false;
1101 if (NeedRTCheck)
1102 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop,
1103 Strides);
1104
Adam Nemet339f42b2015-02-19 19:15:07 +00001105 DEBUG(dbgs() << "LAA: We need to do " << NumComparisons <<
Adam Nemet04d41632015-02-19 19:14:34 +00001106 " pointer comparisons.\n");
Adam Nemet04563272015-02-01 16:56:15 +00001107
1108 // If we only have one set of dependences to check pointers among we don't
1109 // need a runtime check.
1110 if (NumComparisons == 0 && NeedRTCheck)
1111 NeedRTCheck = false;
1112
1113 // Check that we did not collect too many pointers or found an unsizeable
1114 // pointer.
Adam Nemetf219c642015-02-19 19:14:52 +00001115 if (!CanDoRT ||
1116 NumComparisons > VectorizerParams::RuntimeMemoryCheckThreshold) {
Adam Nemet04563272015-02-01 16:56:15 +00001117 PtrRtCheck.reset();
1118 CanDoRT = false;
1119 }
1120
1121 if (CanDoRT) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001122 DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
Adam Nemet04563272015-02-01 16:56:15 +00001123 }
1124
1125 if (NeedRTCheck && !CanDoRT) {
Adam Nemet2bd6e982015-02-19 19:15:15 +00001126 emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
Adam Nemet339f42b2015-02-19 19:15:07 +00001127 DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " <<
Adam Nemet04d41632015-02-19 19:14:34 +00001128 "the array bounds.\n");
Adam Nemet04563272015-02-01 16:56:15 +00001129 PtrRtCheck.reset();
Adam Nemet436018c2015-02-19 19:15:00 +00001130 CanVecMem = false;
1131 return;
Adam Nemet04563272015-02-01 16:56:15 +00001132 }
1133
1134 PtrRtCheck.Need = NeedRTCheck;
1135
Adam Nemet436018c2015-02-19 19:15:00 +00001136 CanVecMem = true;
Adam Nemet04563272015-02-01 16:56:15 +00001137 if (Accesses.isDependencyCheckNeeded()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001138 DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
Adam Nemet04563272015-02-01 16:56:15 +00001139 CanVecMem = DepChecker.areDepsSafe(
1140 DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
1141 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
1142
1143 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001144 DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
Adam Nemet04563272015-02-01 16:56:15 +00001145 NeedRTCheck = true;
1146
1147 // Clear the dependency checks. We assume they are not needed.
1148 Accesses.resetDepChecks();
1149
1150 PtrRtCheck.reset();
1151 PtrRtCheck.Need = true;
1152
1153 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
1154 TheLoop, Strides, true);
1155 // Check that we did not collect too many pointers or found an unsizeable
1156 // pointer.
Adam Nemetf219c642015-02-19 19:14:52 +00001157 if (!CanDoRT ||
1158 NumComparisons > VectorizerParams::RuntimeMemoryCheckThreshold) {
Adam Nemet04563272015-02-01 16:56:15 +00001159 if (!CanDoRT && NumComparisons > 0)
Adam Nemet2bd6e982015-02-19 19:15:15 +00001160 emitAnalysis(LoopAccessReport()
Adam Nemet04563272015-02-01 16:56:15 +00001161 << "cannot check memory dependencies at runtime");
1162 else
Adam Nemet2bd6e982015-02-19 19:15:15 +00001163 emitAnalysis(LoopAccessReport()
Adam Nemet04563272015-02-01 16:56:15 +00001164 << NumComparisons << " exceeds limit of "
Adam Nemetf219c642015-02-19 19:14:52 +00001165 << VectorizerParams::RuntimeMemoryCheckThreshold
Adam Nemet04563272015-02-01 16:56:15 +00001166 << " dependent memory operations checked at runtime");
Adam Nemet339f42b2015-02-19 19:15:07 +00001167 DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
Adam Nemet04563272015-02-01 16:56:15 +00001168 PtrRtCheck.reset();
Adam Nemet436018c2015-02-19 19:15:00 +00001169 CanVecMem = false;
1170 return;
Adam Nemet04563272015-02-01 16:56:15 +00001171 }
1172
1173 CanVecMem = true;
1174 }
1175 }
1176
1177 if (!CanVecMem)
Adam Nemet2bd6e982015-02-19 19:15:15 +00001178 emitAnalysis(LoopAccessReport() <<
Adam Nemet04d41632015-02-19 19:14:34 +00001179 "unsafe dependent memory operations in loop");
Adam Nemet04563272015-02-01 16:56:15 +00001180
Adam Nemet339f42b2015-02-19 19:15:07 +00001181 DEBUG(dbgs() << "LAA: We" << (NeedRTCheck ? "" : " don't") <<
Adam Nemet04d41632015-02-19 19:14:34 +00001182 " need a runtime memory check.\n");
Adam Nemet04563272015-02-01 16:56:15 +00001183}
1184
Adam Nemet01abb2c2015-02-18 03:43:19 +00001185bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1186 DominatorTree *DT) {
Adam Nemet04563272015-02-01 16:56:15 +00001187 assert(TheLoop->contains(BB) && "Unknown block used");
1188
1189 // Blocks that do not dominate the latch need predication.
1190 BasicBlock* Latch = TheLoop->getLoopLatch();
1191 return !DT->dominates(BB, Latch);
1192}
1193
Adam Nemet2bd6e982015-02-19 19:15:15 +00001194void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
Adam Nemetc9228532015-02-19 19:14:56 +00001195 assert(!Report && "Multiple reports generated");
1196 Report = Message;
Adam Nemet04563272015-02-01 16:56:15 +00001197}
1198
Adam Nemet57ac7662015-02-19 19:15:21 +00001199bool LoopAccessInfo::isUniform(Value *V) const {
Adam Nemet04563272015-02-01 16:56:15 +00001200 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1201}
Adam Nemet7206d7a2015-02-06 18:31:04 +00001202
1203// FIXME: this function is currently a duplicate of the one in
1204// LoopVectorize.cpp.
1205static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1206 Instruction *Loc) {
1207 if (FirstInst)
1208 return FirstInst;
1209 if (Instruction *I = dyn_cast<Instruction>(V))
1210 return I->getParent() == Loc->getParent() ? I : nullptr;
1211 return nullptr;
1212}
1213
1214std::pair<Instruction *, Instruction *>
Adam Nemet57ac7662015-02-19 19:15:21 +00001215LoopAccessInfo::addRuntimeCheck(Instruction *Loc) const {
Adam Nemet7206d7a2015-02-06 18:31:04 +00001216 Instruction *tnullptr = nullptr;
1217 if (!PtrRtCheck.Need)
1218 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
1219
1220 unsigned NumPointers = PtrRtCheck.Pointers.size();
1221 SmallVector<TrackingVH<Value> , 2> Starts;
1222 SmallVector<TrackingVH<Value> , 2> Ends;
1223
1224 LLVMContext &Ctx = Loc->getContext();
1225 SCEVExpander Exp(*SE, "induction");
1226 Instruction *FirstInst = nullptr;
1227
1228 for (unsigned i = 0; i < NumPointers; ++i) {
1229 Value *Ptr = PtrRtCheck.Pointers[i];
1230 const SCEV *Sc = SE->getSCEV(Ptr);
1231
1232 if (SE->isLoopInvariant(Sc, TheLoop)) {
Adam Nemet339f42b2015-02-19 19:15:07 +00001233 DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" <<
Adam Nemet04d41632015-02-19 19:14:34 +00001234 *Ptr <<"\n");
Adam Nemet7206d7a2015-02-06 18:31:04 +00001235 Starts.push_back(Ptr);
1236 Ends.push_back(Ptr);
1237 } else {
Adam Nemet339f42b2015-02-19 19:15:07 +00001238 DEBUG(dbgs() << "LAA: Adding RT check for range:" << *Ptr << '\n');
Adam Nemet7206d7a2015-02-06 18:31:04 +00001239 unsigned AS = Ptr->getType()->getPointerAddressSpace();
1240
1241 // Use this type for pointer arithmetic.
1242 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1243
1244 Value *Start = Exp.expandCodeFor(PtrRtCheck.Starts[i], PtrArithTy, Loc);
1245 Value *End = Exp.expandCodeFor(PtrRtCheck.Ends[i], PtrArithTy, Loc);
1246 Starts.push_back(Start);
1247 Ends.push_back(End);
1248 }
1249 }
1250
1251 IRBuilder<> ChkBuilder(Loc);
1252 // Our instructions might fold to a constant.
1253 Value *MemoryRuntimeCheck = nullptr;
1254 for (unsigned i = 0; i < NumPointers; ++i) {
1255 for (unsigned j = i+1; j < NumPointers; ++j) {
Adam Nemeta8945b72015-02-18 03:43:58 +00001256 if (!PtrRtCheck.needsChecking(i, j))
Adam Nemet7206d7a2015-02-06 18:31:04 +00001257 continue;
1258
1259 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
1260 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
1261
1262 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
1263 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
1264 "Trying to bounds check pointers with different address spaces");
1265
1266 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1267 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1268
1269 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
1270 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
1271 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc");
1272 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc");
1273
1274 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1275 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1276 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1277 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1278 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1279 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1280 if (MemoryRuntimeCheck) {
1281 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1282 "conflict.rdx");
1283 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1284 }
1285 MemoryRuntimeCheck = IsConflict;
1286 }
1287 }
1288
1289 // We have to do this trickery because the IRBuilder might fold the check to a
1290 // constant expression in which case there is no Instruction anchored in a
1291 // the block.
1292 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1293 ConstantInt::getTrue(Ctx));
1294 ChkBuilder.Insert(Check, "memcheck.conflict");
1295 FirstInst = getFirstInst(FirstInst, Check, Loc);
1296 return std::make_pair(FirstInst, Check);
1297}
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001298
1299LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
1300 const DataLayout *DL,
1301 const TargetLibraryInfo *TLI, AliasAnalysis *AA,
Adam Nemet8bc61df2015-02-24 00:41:59 +00001302 DominatorTree *DT,
1303 const ValueToValueMap &Strides)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001304 : TheLoop(L), SE(SE), DL(DL), TLI(TLI), AA(AA), DT(DT), NumLoads(0),
1305 NumStores(0), MaxSafeDepDistBytes(-1U), CanVecMem(false) {
Adam Nemet929c38e2015-02-19 19:15:10 +00001306 if (canAnalyzeLoop())
1307 analyzeLoop(Strides);
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001308}
1309
Adam Nemete91cc6e2015-02-19 19:15:19 +00001310void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1311 if (CanVecMem) {
1312 if (PtrRtCheck.empty())
1313 OS.indent(Depth) << "Memory dependences are safe\n";
1314 else
1315 OS.indent(Depth) << "Memory dependences are safe with run-time checks\n";
1316 }
1317
1318 if (Report)
1319 OS.indent(Depth) << "Report: " << Report->str() << "\n";
1320
1321 // FIXME: Print unsafe dependences
1322
1323 // List the pair of accesses need run-time checks to prove independence.
1324 PtrRtCheck.print(OS, Depth);
1325 OS << "\n";
1326}
1327
Adam Nemet8bc61df2015-02-24 00:41:59 +00001328const LoopAccessInfo &
1329LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001330 auto &LAI = LoopAccessInfoMap[L];
1331
1332#ifndef NDEBUG
1333 assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
1334 "Symbolic strides changed for loop");
1335#endif
1336
1337 if (!LAI) {
1338 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, Strides);
1339#ifndef NDEBUG
1340 LAI->NumSymbolicStrides = Strides.size();
1341#endif
1342 }
1343 return *LAI.get();
1344}
1345
Adam Nemete91cc6e2015-02-19 19:15:19 +00001346void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
1347 LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
1348
1349 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1350 ValueToValueMap NoSymbolicStrides;
1351
1352 for (Loop *TopLevelLoop : *LI)
1353 for (Loop *L : depth_first(TopLevelLoop)) {
1354 OS.indent(2) << L->getHeader()->getName() << ":\n";
1355 auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
1356 LAI.print(OS, 4);
1357 }
1358}
1359
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001360bool LoopAccessAnalysis::runOnFunction(Function &F) {
1361 SE = &getAnalysis<ScalarEvolution>();
1362 DL = F.getParent()->getDataLayout();
1363 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1364 TLI = TLIP ? &TLIP->getTLI() : nullptr;
1365 AA = &getAnalysis<AliasAnalysis>();
1366 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1367
1368 return false;
1369}
1370
1371void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1372 AU.addRequired<ScalarEvolution>();
1373 AU.addRequired<AliasAnalysis>();
1374 AU.addRequired<DominatorTreeWrapperPass>();
Adam Nemete91cc6e2015-02-19 19:15:19 +00001375 AU.addRequired<LoopInfoWrapperPass>();
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001376
1377 AU.setPreservesAll();
1378}
1379
1380char LoopAccessAnalysis::ID = 0;
1381static const char laa_name[] = "Loop Access Analysis";
1382#define LAA_NAME "loop-accesses"
1383
1384INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1385INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
1386INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
1387INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Adam Nemete91cc6e2015-02-19 19:15:19 +00001388INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Adam Nemet3bfd93d2015-02-19 19:15:04 +00001389INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1390
1391namespace llvm {
1392 Pass *createLAAPass() {
1393 return new LoopAccessAnalysis();
1394 }
1395}