blob: 46810778ea08661f3b68222994d79279214924e2 [file] [log] [blame]
Todd Fialaaf245d12014-06-30 21:05:18 +00001//===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "lldb/lldb-python.h"
11
12#include "NativeProcessLinux.h"
13
14// C Includes
15#include <errno.h>
16#include <poll.h>
17#include <string.h>
18#include <stdint.h>
19#include <unistd.h>
20#include <linux/unistd.h>
21#include <sys/ptrace.h>
22#include <sys/socket.h>
23#include <sys/syscall.h>
24#include <sys/types.h>
25#include <sys/user.h>
26#include <sys/wait.h>
27
28// C++ Includes
29#include <fstream>
30#include <string>
31
32// Other libraries and framework includes
33#include "lldb/Core/Debugger.h"
34#include "lldb/Core/Error.h"
35#include "lldb/Core/Module.h"
36#include "lldb/Core/RegisterValue.h"
37#include "lldb/Core/Scalar.h"
38#include "lldb/Core/State.h"
39#include "lldb/Host/Host.h"
40#include "lldb/Symbol/ObjectFile.h"
41#include "lldb/Target/NativeRegisterContext.h"
42#include "lldb/Target/ProcessLaunchInfo.h"
43#include "lldb/Utility/PseudoTerminal.h"
44
45#include "Host/common/NativeBreakpoint.h"
46#include "Utility/StringExtractor.h"
47
48#include "Plugins/Process/Utility/LinuxSignals.h"
49#include "NativeThreadLinux.h"
50#include "ProcFileReader.h"
51#include "ProcessPOSIXLog.h"
52
53#define DEBUG_PTRACE_MAXBYTES 20
54
55// Support ptrace extensions even when compiled without required kernel support
Todd Fialadda61942014-07-02 21:34:04 +000056#ifndef PT_GETREGS
Todd Fialaaf245d12014-06-30 21:05:18 +000057#ifndef PTRACE_GETREGS
Todd Fialadda61942014-07-02 21:34:04 +000058 #define PTRACE_GETREGS 12
Todd Fialaaf245d12014-06-30 21:05:18 +000059#endif
Todd Fialadda61942014-07-02 21:34:04 +000060#endif
61#ifndef PT_SETREGS
Todd Fialaaf245d12014-06-30 21:05:18 +000062#ifndef PTRACE_SETREGS
63 #define PTRACE_SETREGS 13
64#endif
Todd Fialadda61942014-07-02 21:34:04 +000065#endif
66#ifndef PT_GETFPREGS
67#ifndef PTRACE_GETFPREGS
68 #define PTRACE_GETFPREGS 14
69#endif
70#endif
71#ifndef PT_SETFPREGS
72#ifndef PTRACE_SETFPREGS
73 #define PTRACE_SETFPREGS 15
74#endif
75#endif
Todd Fialaaf245d12014-06-30 21:05:18 +000076#ifndef PTRACE_GETREGSET
77 #define PTRACE_GETREGSET 0x4204
78#endif
79#ifndef PTRACE_SETREGSET
80 #define PTRACE_SETREGSET 0x4205
81#endif
82#ifndef PTRACE_GET_THREAD_AREA
83 #define PTRACE_GET_THREAD_AREA 25
84#endif
85#ifndef PTRACE_ARCH_PRCTL
86 #define PTRACE_ARCH_PRCTL 30
87#endif
88#ifndef ARCH_GET_FS
89 #define ARCH_SET_GS 0x1001
90 #define ARCH_SET_FS 0x1002
91 #define ARCH_GET_FS 0x1003
92 #define ARCH_GET_GS 0x1004
93#endif
94
95
96// Support hardware breakpoints in case it has not been defined
97#ifndef TRAP_HWBKPT
98 #define TRAP_HWBKPT 4
99#endif
100
101// Try to define a macro to encapsulate the tgkill syscall
102// fall back on kill() if tgkill isn't available
103#define tgkill(pid, tid, sig) syscall(SYS_tgkill, pid, tid, sig)
104
105// We disable the tracing of ptrace calls for integration builds to
106// avoid the additional indirection and checks.
107#ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION
108#define PTRACE(req, pid, addr, data, data_size) \
109 PtraceWrapper((req), (pid), (addr), (data), (data_size), #req, __FILE__, __LINE__)
110#else
111#define PTRACE(req, pid, addr, data, data_size) \
112 PtraceWrapper((req), (pid), (addr), (data), (data_size))
113#endif
114
115// Private bits we only need internally.
116namespace
117{
118 using namespace lldb;
119 using namespace lldb_private;
120
121 const UnixSignals&
122 GetUnixSignals ()
123 {
124 static process_linux::LinuxSignals signals;
125 return signals;
126 }
127
128 const char *
129 GetFilePath (const lldb_private::ProcessLaunchInfo::FileAction *file_action, const char *default_path)
130 {
131 const char *pts_name = "/dev/pts/";
132 const char *path = NULL;
133
134 if (file_action)
135 {
136 if (file_action->GetAction () == ProcessLaunchInfo::FileAction::eFileActionOpen)
137 {
138 path = file_action->GetPath ();
139 // By default the stdio paths passed in will be pseudo-terminal
140 // (/dev/pts). If so, convert to using a different default path
141 // instead to redirect I/O to the debugger console. This should
142 // also handle user overrides to /dev/null or a different file.
143 if (!path || ::strncmp (path, pts_name, ::strlen (pts_name)) == 0)
144 path = default_path;
145 }
146 }
147
148 return path;
149 }
150
151 Error
152 ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
153 {
154 // Grab process info for the running process.
155 ProcessInstanceInfo process_info;
156 if (!platform.GetProcessInfo (pid, process_info))
157 return lldb_private::Error("failed to get process info");
158
159 // Resolve the executable module.
160 ModuleSP exe_module_sp;
161 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
162 Error error = platform.ResolveExecutable(
163 process_info.GetExecutableFile (),
164 platform.GetSystemArchitecture (),
165 exe_module_sp,
166 executable_search_paths.GetSize () ? &executable_search_paths : NULL);
167
168 if (!error.Success ())
169 return error;
170
171 // Check if we've got our architecture from the exe_module.
172 arch = exe_module_sp->GetArchitecture ();
173 if (arch.IsValid ())
174 return Error();
175 else
176 return Error("failed to retrieve a valid architecture from the exe module");
177 }
178
179 void
180 DisplayBytes (lldb_private::StreamString &s, void *bytes, uint32_t count)
181 {
182 uint8_t *ptr = (uint8_t *)bytes;
183 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
184 for(uint32_t i=0; i<loop_count; i++)
185 {
186 s.Printf ("[%x]", *ptr);
187 ptr++;
188 }
189 }
190
191 void
192 PtraceDisplayBytes(int &req, void *data, size_t data_size)
193 {
194 StreamString buf;
195 Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
196 POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
197
198 if (verbose_log)
199 {
200 switch(req)
201 {
202 case PTRACE_POKETEXT:
203 {
204 DisplayBytes(buf, &data, 8);
205 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
206 break;
207 }
208 case PTRACE_POKEDATA:
209 {
210 DisplayBytes(buf, &data, 8);
211 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
212 break;
213 }
214 case PTRACE_POKEUSER:
215 {
216 DisplayBytes(buf, &data, 8);
217 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
218 break;
219 }
220 case PTRACE_SETREGS:
221 {
222 DisplayBytes(buf, data, data_size);
223 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
224 break;
225 }
226 case PTRACE_SETFPREGS:
227 {
228 DisplayBytes(buf, data, data_size);
229 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
230 break;
231 }
232 case PTRACE_SETSIGINFO:
233 {
234 DisplayBytes(buf, data, sizeof(siginfo_t));
235 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
236 break;
237 }
238 case PTRACE_SETREGSET:
239 {
240 // Extract iov_base from data, which is a pointer to the struct IOVEC
241 DisplayBytes(buf, *(void **)data, data_size);
242 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
243 break;
244 }
245 default:
246 {
247 }
248 }
249 }
250 }
251
252 // Wrapper for ptrace to catch errors and log calls.
253 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
254 long
255 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size,
256 const char* reqName, const char* file, int line)
257 {
258 long int result;
259
260 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
261
262 PtraceDisplayBytes(req, data, data_size);
263
264 errno = 0;
265 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
266 result = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), *(unsigned int *)addr, data);
267 else
268 result = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), addr, data);
269
270 if (log)
271 log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d",
272 reqName, pid, addr, data, data_size, result, file, line);
273
274 PtraceDisplayBytes(req, data, data_size);
275
276 if (log && errno != 0)
277 {
278 const char* str;
279 switch (errno)
280 {
281 case ESRCH: str = "ESRCH"; break;
282 case EINVAL: str = "EINVAL"; break;
283 case EBUSY: str = "EBUSY"; break;
284 case EPERM: str = "EPERM"; break;
285 default: str = "<unknown>";
286 }
287 log->Printf("ptrace() failed; errno=%d (%s)", errno, str);
288 }
289
290 return result;
291 }
292
293#ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION
294 // Wrapper for ptrace when logging is not required.
295 // Sets errno to 0 prior to calling ptrace.
296 long
297 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size)
298 {
299 long result = 0;
300 errno = 0;
301 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
302 result = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), *(unsigned int *)addr, data);
303 else
304 result = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), addr, data);
305 return result;
306 }
307#endif
308
309 //------------------------------------------------------------------------------
310 // Static implementations of NativeProcessLinux::ReadMemory and
311 // NativeProcessLinux::WriteMemory. This enables mutual recursion between these
312 // functions without needed to go thru the thread funnel.
313
314 static lldb::addr_t
315 DoReadMemory (
316 lldb::pid_t pid,
317 lldb::addr_t vm_addr,
318 void *buf,
319 lldb::addr_t size,
320 Error &error)
321 {
322 // ptrace word size is determined by the host, not the child
323 static const unsigned word_size = sizeof(void*);
324 unsigned char *dst = static_cast<unsigned char*>(buf);
325 lldb::addr_t bytes_read;
326 lldb::addr_t remainder;
327 long data;
328
329 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
330 if (log)
331 ProcessPOSIXLog::IncNestLevel();
332 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
333 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
334 pid, word_size, (void*)vm_addr, buf, size);
335
336 assert(sizeof(data) >= word_size);
337 for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
338 {
339 errno = 0;
340 data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, NULL, 0);
341 if (errno)
342 {
343 error.SetErrorToErrno();
344 if (log)
345 ProcessPOSIXLog::DecNestLevel();
346 return bytes_read;
347 }
348
349 remainder = size - bytes_read;
350 remainder = remainder > word_size ? word_size : remainder;
351
352 // Copy the data into our buffer
353 for (unsigned i = 0; i < remainder; ++i)
354 dst[i] = ((data >> i*8) & 0xFF);
355
356 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
357 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
358 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
359 size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
360 {
361 uintptr_t print_dst = 0;
362 // Format bytes from data by moving into print_dst for log output
363 for (unsigned i = 0; i < remainder; ++i)
364 print_dst |= (((data >> i*8) & 0xFF) << i*8);
365 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
366 (void*)vm_addr, print_dst, (unsigned long)data);
367 }
368
369 vm_addr += word_size;
370 dst += word_size;
371 }
372
373 if (log)
374 ProcessPOSIXLog::DecNestLevel();
375 return bytes_read;
376 }
377
378 static lldb::addr_t
379 DoWriteMemory(
380 lldb::pid_t pid,
381 lldb::addr_t vm_addr,
382 const void *buf,
383 lldb::addr_t size,
384 Error &error)
385 {
386 // ptrace word size is determined by the host, not the child
387 static const unsigned word_size = sizeof(void*);
388 const unsigned char *src = static_cast<const unsigned char*>(buf);
389 lldb::addr_t bytes_written = 0;
390 lldb::addr_t remainder;
391
392 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
393 if (log)
394 ProcessPOSIXLog::IncNestLevel();
395 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
396 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
397 pid, word_size, (void*)vm_addr, buf, size);
398
399 for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
400 {
401 remainder = size - bytes_written;
402 remainder = remainder > word_size ? word_size : remainder;
403
404 if (remainder == word_size)
405 {
406 unsigned long data = 0;
407 assert(sizeof(data) >= word_size);
408 for (unsigned i = 0; i < word_size; ++i)
409 data |= (unsigned long)src[i] << i*8;
410
411 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
412 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
413 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
414 size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
415 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
416 (void*)vm_addr, *(unsigned long*)src, data);
417
418 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0))
419 {
420 error.SetErrorToErrno();
421 if (log)
422 ProcessPOSIXLog::DecNestLevel();
423 return bytes_written;
424 }
425 }
426 else
427 {
428 unsigned char buff[8];
429 if (DoReadMemory(pid, vm_addr,
430 buff, word_size, error) != word_size)
431 {
432 if (log)
433 ProcessPOSIXLog::DecNestLevel();
434 return bytes_written;
435 }
436
437 memcpy(buff, src, remainder);
438
439 if (DoWriteMemory(pid, vm_addr,
440 buff, word_size, error) != word_size)
441 {
442 if (log)
443 ProcessPOSIXLog::DecNestLevel();
444 return bytes_written;
445 }
446
447 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
448 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
449 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
450 size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
451 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
452 (void*)vm_addr, *(unsigned long*)src, *(unsigned long*)buff);
453 }
454
455 vm_addr += word_size;
456 src += word_size;
457 }
458 if (log)
459 ProcessPOSIXLog::DecNestLevel();
460 return bytes_written;
461 }
462
463 //------------------------------------------------------------------------------
464 /// @class Operation
465 /// @brief Represents a NativeProcessLinux operation.
466 ///
467 /// Under Linux, it is not possible to ptrace() from any other thread but the
468 /// one that spawned or attached to the process from the start. Therefore, when
469 /// a NativeProcessLinux is asked to deliver or change the state of an inferior
470 /// process the operation must be "funneled" to a specific thread to perform the
471 /// task. The Operation class provides an abstract base for all services the
472 /// NativeProcessLinux must perform via the single virtual function Execute, thus
473 /// encapsulating the code that needs to run in the privileged context.
474 class Operation
475 {
476 public:
477 Operation () : m_error() { }
478
479 virtual
480 ~Operation() {}
481
482 virtual void
483 Execute (NativeProcessLinux *process) = 0;
484
485 const Error &
486 GetError () const { return m_error; }
487
488 protected:
489 Error m_error;
490 };
491
492 //------------------------------------------------------------------------------
493 /// @class ReadOperation
494 /// @brief Implements NativeProcessLinux::ReadMemory.
495 class ReadOperation : public Operation
496 {
497 public:
498 ReadOperation (
499 lldb::addr_t addr,
500 void *buff,
501 lldb::addr_t size,
502 size_t &result) :
503 Operation (),
504 m_addr (addr),
505 m_buff (buff),
506 m_size (size),
507 m_result (result)
508 {
509 }
510
511 void Execute (NativeProcessLinux *process) override;
512
513 private:
514 lldb::addr_t m_addr;
515 void *m_buff;
516 lldb::addr_t m_size;
517 lldb::addr_t &m_result;
518 };
519
520 void
521 ReadOperation::Execute (NativeProcessLinux *process)
522 {
523 m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
524 }
525
526 //------------------------------------------------------------------------------
527 /// @class WriteOperation
528 /// @brief Implements NativeProcessLinux::WriteMemory.
529 class WriteOperation : public Operation
530 {
531 public:
532 WriteOperation (
533 lldb::addr_t addr,
534 const void *buff,
535 lldb::addr_t size,
536 lldb::addr_t &result) :
537 Operation (),
538 m_addr (addr),
539 m_buff (buff),
540 m_size (size),
541 m_result (result)
542 {
543 }
544
545 void Execute (NativeProcessLinux *process) override;
546
547 private:
548 lldb::addr_t m_addr;
549 const void *m_buff;
550 lldb::addr_t m_size;
551 lldb::addr_t &m_result;
552 };
553
554 void
555 WriteOperation::Execute(NativeProcessLinux *process)
556 {
557 m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error);
558 }
559
560 //------------------------------------------------------------------------------
561 /// @class ReadRegOperation
562 /// @brief Implements NativeProcessLinux::ReadRegisterValue.
563 class ReadRegOperation : public Operation
564 {
565 public:
566 ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name,
567 RegisterValue &value, bool &result)
568 : m_tid(tid), m_offset(static_cast<uintptr_t> (offset)), m_reg_name(reg_name),
569 m_value(value), m_result(result)
570 { }
571
572 void Execute(NativeProcessLinux *monitor);
573
574 private:
575 lldb::tid_t m_tid;
576 uintptr_t m_offset;
577 const char *m_reg_name;
578 RegisterValue &m_value;
579 bool &m_result;
580 };
581
582 void
583 ReadRegOperation::Execute(NativeProcessLinux *monitor)
584 {
585 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
586
587 // Set errno to zero so that we can detect a failed peek.
588 errno = 0;
589 lldb::addr_t data = PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, NULL, 0);
590 if (errno)
591 m_result = false;
592 else
593 {
594 m_value = data;
595 m_result = true;
596 }
597 if (log)
598 log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__,
599 m_reg_name, data);
600 }
601
602 //------------------------------------------------------------------------------
603 /// @class WriteRegOperation
604 /// @brief Implements NativeProcessLinux::WriteRegisterValue.
605 class WriteRegOperation : public Operation
606 {
607 public:
608 WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name,
609 const RegisterValue &value, bool &result)
610 : m_tid(tid), m_offset(offset), m_reg_name(reg_name),
611 m_value(value), m_result(result)
612 { }
613
614 void Execute(NativeProcessLinux *monitor);
615
616 private:
617 lldb::tid_t m_tid;
618 uintptr_t m_offset;
619 const char *m_reg_name;
620 const RegisterValue &m_value;
621 bool &m_result;
622 };
623
624 void
625 WriteRegOperation::Execute(NativeProcessLinux *monitor)
626 {
627 void* buf;
628 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS));
629
630 buf = (void*) m_value.GetAsUInt64();
631
632 if (log)
633 log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf);
634 if (PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0))
635 m_result = false;
636 else
637 m_result = true;
638 }
639
640 //------------------------------------------------------------------------------
641 /// @class ReadGPROperation
642 /// @brief Implements NativeProcessLinux::ReadGPR.
643 class ReadGPROperation : public Operation
644 {
645 public:
646 ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result)
647 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result)
648 { }
649
650 void Execute(NativeProcessLinux *monitor);
651
652 private:
653 lldb::tid_t m_tid;
654 void *m_buf;
655 size_t m_buf_size;
656 bool &m_result;
657 };
658
659 void
660 ReadGPROperation::Execute(NativeProcessLinux *monitor)
661 {
662 if (PTRACE(PTRACE_GETREGS, m_tid, NULL, m_buf, m_buf_size) < 0)
663 m_result = false;
664 else
665 m_result = true;
666 }
667
668 //------------------------------------------------------------------------------
669 /// @class ReadFPROperation
670 /// @brief Implements NativeProcessLinux::ReadFPR.
671 class ReadFPROperation : public Operation
672 {
673 public:
674 ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result)
675 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result)
676 { }
677
678 void Execute(NativeProcessLinux *monitor);
679
680 private:
681 lldb::tid_t m_tid;
682 void *m_buf;
683 size_t m_buf_size;
684 bool &m_result;
685 };
686
687 void
688 ReadFPROperation::Execute(NativeProcessLinux *monitor)
689 {
690 if (PTRACE(PTRACE_GETFPREGS, m_tid, NULL, m_buf, m_buf_size) < 0)
691 m_result = false;
692 else
693 m_result = true;
694 }
695
696 //------------------------------------------------------------------------------
697 /// @class ReadRegisterSetOperation
698 /// @brief Implements NativeProcessLinux::ReadRegisterSet.
699 class ReadRegisterSetOperation : public Operation
700 {
701 public:
702 ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset, bool &result)
703 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset), m_result(result)
704 { }
705
706 void Execute(NativeProcessLinux *monitor);
707
708 private:
709 lldb::tid_t m_tid;
710 void *m_buf;
711 size_t m_buf_size;
712 const unsigned int m_regset;
713 bool &m_result;
714 };
715
716 void
717 ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor)
718 {
719 if (PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size) < 0)
720 m_result = false;
721 else
722 m_result = true;
723 }
724
725 //------------------------------------------------------------------------------
726 /// @class WriteGPROperation
727 /// @brief Implements NativeProcessLinux::WriteGPR.
728 class WriteGPROperation : public Operation
729 {
730 public:
731 WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result)
732 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result)
733 { }
734
735 void Execute(NativeProcessLinux *monitor);
736
737 private:
738 lldb::tid_t m_tid;
739 void *m_buf;
740 size_t m_buf_size;
741 bool &m_result;
742 };
743
744 void
745 WriteGPROperation::Execute(NativeProcessLinux *monitor)
746 {
747 if (PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size) < 0)
748 m_result = false;
749 else
750 m_result = true;
751 }
752
753 //------------------------------------------------------------------------------
754 /// @class WriteFPROperation
755 /// @brief Implements NativeProcessLinux::WriteFPR.
756 class WriteFPROperation : public Operation
757 {
758 public:
759 WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result)
760 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result)
761 { }
762
763 void Execute(NativeProcessLinux *monitor);
764
765 private:
766 lldb::tid_t m_tid;
767 void *m_buf;
768 size_t m_buf_size;
769 bool &m_result;
770 };
771
772 void
773 WriteFPROperation::Execute(NativeProcessLinux *monitor)
774 {
775 if (PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size) < 0)
776 m_result = false;
777 else
778 m_result = true;
779 }
780
781 //------------------------------------------------------------------------------
782 /// @class WriteRegisterSetOperation
783 /// @brief Implements NativeProcessLinux::WriteRegisterSet.
784 class WriteRegisterSetOperation : public Operation
785 {
786 public:
787 WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset, bool &result)
788 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset), m_result(result)
789 { }
790
791 void Execute(NativeProcessLinux *monitor);
792
793 private:
794 lldb::tid_t m_tid;
795 void *m_buf;
796 size_t m_buf_size;
797 const unsigned int m_regset;
798 bool &m_result;
799 };
800
801 void
802 WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor)
803 {
804 if (PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size) < 0)
805 m_result = false;
806 else
807 m_result = true;
808 }
809
810 //------------------------------------------------------------------------------
811 /// @class ResumeOperation
812 /// @brief Implements NativeProcessLinux::Resume.
813 class ResumeOperation : public Operation
814 {
815 public:
816 ResumeOperation(lldb::tid_t tid, uint32_t signo, bool &result) :
817 m_tid(tid), m_signo(signo), m_result(result) { }
818
819 void Execute(NativeProcessLinux *monitor);
820
821 private:
822 lldb::tid_t m_tid;
823 uint32_t m_signo;
824 bool &m_result;
825 };
826
827 void
828 ResumeOperation::Execute(NativeProcessLinux *monitor)
829 {
830 intptr_t data = 0;
831
832 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
833 data = m_signo;
834
835 if (PTRACE(PTRACE_CONT, m_tid, NULL, (void*)data, 0))
836 {
837 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
838
839 if (log)
840 log->Printf ("ResumeOperation (%" PRIu64 ") failed: %s", m_tid, strerror(errno));
841 m_result = false;
842 }
843 else
844 m_result = true;
845 }
846
847 //------------------------------------------------------------------------------
848 /// @class SingleStepOperation
849 /// @brief Implements NativeProcessLinux::SingleStep.
850 class SingleStepOperation : public Operation
851 {
852 public:
853 SingleStepOperation(lldb::tid_t tid, uint32_t signo, bool &result)
854 : m_tid(tid), m_signo(signo), m_result(result) { }
855
856 void Execute(NativeProcessLinux *monitor);
857
858 private:
859 lldb::tid_t m_tid;
860 uint32_t m_signo;
861 bool &m_result;
862 };
863
864 void
865 SingleStepOperation::Execute(NativeProcessLinux *monitor)
866 {
867 intptr_t data = 0;
868
869 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER)
870 data = m_signo;
871
872 if (PTRACE(PTRACE_SINGLESTEP, m_tid, NULL, (void*)data, 0))
873 m_result = false;
874 else
875 m_result = true;
876 }
877
878 //------------------------------------------------------------------------------
879 /// @class SiginfoOperation
880 /// @brief Implements NativeProcessLinux::GetSignalInfo.
881 class SiginfoOperation : public Operation
882 {
883 public:
884 SiginfoOperation(lldb::tid_t tid, void *info, bool &result, int &ptrace_err)
885 : m_tid(tid), m_info(info), m_result(result), m_err(ptrace_err) { }
886
887 void Execute(NativeProcessLinux *monitor);
888
889 private:
890 lldb::tid_t m_tid;
891 void *m_info;
892 bool &m_result;
893 int &m_err;
894 };
895
896 void
897 SiginfoOperation::Execute(NativeProcessLinux *monitor)
898 {
899 if (PTRACE(PTRACE_GETSIGINFO, m_tid, NULL, m_info, 0)) {
900 m_result = false;
901 m_err = errno;
902 }
903 else
904 m_result = true;
905 }
906
907 //------------------------------------------------------------------------------
908 /// @class EventMessageOperation
909 /// @brief Implements NativeProcessLinux::GetEventMessage.
910 class EventMessageOperation : public Operation
911 {
912 public:
913 EventMessageOperation(lldb::tid_t tid, unsigned long *message, bool &result)
914 : m_tid(tid), m_message(message), m_result(result) { }
915
916 void Execute(NativeProcessLinux *monitor);
917
918 private:
919 lldb::tid_t m_tid;
920 unsigned long *m_message;
921 bool &m_result;
922 };
923
924 void
925 EventMessageOperation::Execute(NativeProcessLinux *monitor)
926 {
927 if (PTRACE(PTRACE_GETEVENTMSG, m_tid, NULL, m_message, 0))
928 m_result = false;
929 else
930 m_result = true;
931 }
932
933 class DetachOperation : public Operation
934 {
935 public:
936 DetachOperation(lldb::tid_t tid, Error &result) : m_tid(tid), m_error(result) { }
937
938 void Execute(NativeProcessLinux *monitor);
939
940 private:
941 lldb::tid_t m_tid;
942 Error &m_error;
943 };
944
945 void
946 DetachOperation::Execute(NativeProcessLinux *monitor)
947 {
948 if (ptrace(PT_DETACH, m_tid, NULL, 0) < 0)
949 m_error.SetErrorToErrno();
950 }
951
952}
953
954using namespace lldb_private;
955
956// Simple helper function to ensure flags are enabled on the given file
957// descriptor.
958static bool
959EnsureFDFlags(int fd, int flags, Error &error)
960{
961 int status;
962
963 if ((status = fcntl(fd, F_GETFL)) == -1)
964 {
965 error.SetErrorToErrno();
966 return false;
967 }
968
969 if (fcntl(fd, F_SETFL, status | flags) == -1)
970 {
971 error.SetErrorToErrno();
972 return false;
973 }
974
975 return true;
976}
977
978NativeProcessLinux::OperationArgs::OperationArgs(NativeProcessLinux *monitor)
979 : m_monitor(monitor)
980{
981 sem_init(&m_semaphore, 0, 0);
982}
983
984NativeProcessLinux::OperationArgs::~OperationArgs()
985{
986 sem_destroy(&m_semaphore);
987}
988
989NativeProcessLinux::LaunchArgs::LaunchArgs(NativeProcessLinux *monitor,
990 lldb_private::Module *module,
991 char const **argv,
992 char const **envp,
993 const char *stdin_path,
994 const char *stdout_path,
995 const char *stderr_path,
996 const char *working_dir)
997 : OperationArgs(monitor),
998 m_module(module),
999 m_argv(argv),
1000 m_envp(envp),
1001 m_stdin_path(stdin_path),
1002 m_stdout_path(stdout_path),
1003 m_stderr_path(stderr_path),
1004 m_working_dir(working_dir) { }
1005
1006NativeProcessLinux::LaunchArgs::~LaunchArgs()
1007{ }
1008
1009NativeProcessLinux::AttachArgs::AttachArgs(NativeProcessLinux *monitor,
1010 lldb::pid_t pid)
1011 : OperationArgs(monitor), m_pid(pid) { }
1012
1013NativeProcessLinux::AttachArgs::~AttachArgs()
1014{ }
1015
1016// -----------------------------------------------------------------------------
1017// Public Static Methods
1018// -----------------------------------------------------------------------------
1019
1020lldb_private::Error
1021NativeProcessLinux::LaunchProcess (
1022 lldb_private::Module *exe_module,
1023 lldb_private::ProcessLaunchInfo &launch_info,
1024 lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate,
1025 NativeProcessProtocolSP &native_process_sp)
1026{
1027 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1028
1029 Error error;
1030
1031 // Verify the working directory is valid if one was specified.
1032 const char* working_dir = launch_info.GetWorkingDirectory ();
1033 if (working_dir)
1034 {
1035 FileSpec working_dir_fs (working_dir, true);
1036 if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory)
1037 {
1038 error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir);
1039 return error;
1040 }
1041 }
1042
1043 const lldb_private::ProcessLaunchInfo::FileAction *file_action;
1044
1045 // Default of NULL will mean to use existing open file descriptors.
1046 const char *stdin_path = NULL;
1047 const char *stdout_path = NULL;
1048 const char *stderr_path = NULL;
1049
1050 file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
1051 stdin_path = GetFilePath (file_action, stdin_path);
1052
1053 file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
1054 stdout_path = GetFilePath (file_action, stdout_path);
1055
1056 file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
1057 stderr_path = GetFilePath (file_action, stderr_path);
1058
1059 // Create the NativeProcessLinux in launch mode.
1060 native_process_sp.reset (new NativeProcessLinux ());
1061
1062 if (log)
1063 {
1064 int i = 0;
1065 for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
1066 {
1067 log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
1068 ++i;
1069 }
1070 }
1071
1072 if (!native_process_sp->RegisterNativeDelegate (native_delegate))
1073 {
1074 native_process_sp.reset ();
1075 error.SetErrorStringWithFormat ("failed to register the native delegate");
1076 return error;
1077 }
1078
1079 reinterpret_cast<NativeProcessLinux*> (native_process_sp.get ())->LaunchInferior (
1080 exe_module,
1081 launch_info.GetArguments ().GetConstArgumentVector (),
1082 launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
1083 stdin_path,
1084 stdout_path,
1085 stderr_path,
1086 working_dir,
1087 error);
1088
1089 if (error.Fail ())
1090 {
1091 native_process_sp.reset ();
1092 if (log)
1093 log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
1094 return error;
1095 }
1096
1097 launch_info.SetProcessID (native_process_sp->GetID ());
1098
1099 return error;
1100}
1101
1102lldb_private::Error
1103NativeProcessLinux::AttachToProcess (
1104 lldb::pid_t pid,
1105 lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate,
1106 NativeProcessProtocolSP &native_process_sp)
1107{
1108 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1109 if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
1110 log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
1111
1112 // Grab the current platform architecture. This should be Linux,
1113 // since this code is only intended to run on a Linux host.
1114 PlatformSP platform_sp (Platform::GetDefaultPlatform ());
1115 if (!platform_sp)
1116 return Error("failed to get a valid default platform");
1117
1118 // Retrieve the architecture for the running process.
1119 ArchSpec process_arch;
1120 Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
1121 if (!error.Success ())
1122 return error;
1123
1124 native_process_sp.reset (new NativeProcessLinux ());
1125
1126 if (!native_process_sp->RegisterNativeDelegate (native_delegate))
1127 {
1128 native_process_sp.reset (new NativeProcessLinux ());
1129 error.SetErrorStringWithFormat ("failed to register the native delegate");
1130 return error;
1131 }
1132
1133 reinterpret_cast<NativeProcessLinux*> (native_process_sp.get ())->AttachToInferior (pid, error);
1134 if (!error.Success ())
1135 {
1136 native_process_sp.reset ();
1137 return error;
1138 }
1139
1140 return error;
1141}
1142
1143// -----------------------------------------------------------------------------
1144// Public Instance Methods
1145// -----------------------------------------------------------------------------
1146
1147NativeProcessLinux::NativeProcessLinux () :
1148 NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
1149 m_arch (),
1150 m_operation_thread (LLDB_INVALID_HOST_THREAD),
1151 m_monitor_thread (LLDB_INVALID_HOST_THREAD),
1152 m_operation (nullptr),
1153 m_operation_mutex (),
1154 m_operation_pending (),
1155 m_operation_done (),
1156 m_wait_for_stop_tids (),
1157 m_wait_for_stop_tids_mutex (),
1158 m_supports_mem_region (eLazyBoolCalculate),
1159 m_mem_region_cache (),
1160 m_mem_region_cache_mutex ()
1161{
1162}
1163
1164//------------------------------------------------------------------------------
1165/// The basic design of the NativeProcessLinux is built around two threads.
1166///
1167/// One thread (@see SignalThread) simply blocks on a call to waitpid() looking
1168/// for changes in the debugee state. When a change is detected a
1169/// ProcessMessage is sent to the associated ProcessLinux instance. This thread
1170/// "drives" state changes in the debugger.
1171///
1172/// The second thread (@see OperationThread) is responsible for two things 1)
1173/// launching or attaching to the inferior process, and then 2) servicing
1174/// operations such as register reads/writes, stepping, etc. See the comments
1175/// on the Operation class for more info as to why this is needed.
1176void
1177NativeProcessLinux::LaunchInferior (
1178 Module *module,
1179 const char *argv[],
1180 const char *envp[],
1181 const char *stdin_path,
1182 const char *stdout_path,
1183 const char *stderr_path,
1184 const char *working_dir,
1185 lldb_private::Error &error)
1186{
1187 if (module)
1188 m_arch = module->GetArchitecture ();
1189
1190 SetState(eStateLaunching);
1191
1192 std::unique_ptr<LaunchArgs> args(
1193 new LaunchArgs(
1194 this, module, argv, envp,
1195 stdin_path, stdout_path, stderr_path,
1196 working_dir));
1197
1198 sem_init(&m_operation_pending, 0, 0);
1199 sem_init(&m_operation_done, 0, 0);
1200
1201 StartLaunchOpThread(args.get(), error);
1202 if (!error.Success())
1203 return;
1204
1205WAIT_AGAIN:
1206 // Wait for the operation thread to initialize.
1207 if (sem_wait(&args->m_semaphore))
1208 {
1209 if (errno == EINTR)
1210 goto WAIT_AGAIN;
1211 else
1212 {
1213 error.SetErrorToErrno();
1214 return;
1215 }
1216 }
1217
1218 // Check that the launch was a success.
1219 if (!args->m_error.Success())
1220 {
1221 StopOpThread();
1222 error = args->m_error;
1223 return;
1224 }
1225
1226 // Finally, start monitoring the child process for change in state.
1227 m_monitor_thread = Host::StartMonitoringChildProcess(
1228 NativeProcessLinux::MonitorCallback, this, GetID(), true);
1229 if (!IS_VALID_LLDB_HOST_THREAD(m_monitor_thread))
1230 {
1231 error.SetErrorToGenericError();
1232 error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback.");
1233 return;
1234 }
1235}
1236
1237void
1238NativeProcessLinux::AttachToInferior (lldb::pid_t pid, lldb_private::Error &error)
1239{
1240 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1241 if (log)
1242 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
1243
1244 // We can use the Host for everything except the ResolveExecutable portion.
1245 PlatformSP platform_sp = Platform::GetDefaultPlatform ();
1246 if (!platform_sp)
1247 {
1248 if (log)
1249 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
1250 error.SetErrorString ("no default platform available");
1251 }
1252
1253 // Gather info about the process.
1254 ProcessInstanceInfo process_info;
1255 platform_sp->GetProcessInfo (pid, process_info);
1256
1257 // Resolve the executable module
1258 ModuleSP exe_module_sp;
1259 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
1260
1261 error = platform_sp->ResolveExecutable(process_info.GetExecutableFile(),
1262 Host::GetArchitecture(),
1263 exe_module_sp,
1264 executable_search_paths.GetSize() ? &executable_search_paths : NULL);
1265 if (!error.Success())
1266 return;
1267
1268 // Set the architecture to the exe architecture.
1269 m_arch = exe_module_sp->GetArchitecture();
1270 if (log)
1271 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
1272
1273 m_pid = pid;
1274 SetState(eStateAttaching);
1275
1276 sem_init (&m_operation_pending, 0, 0);
1277 sem_init (&m_operation_done, 0, 0);
1278
1279 std::unique_ptr<AttachArgs> args (new AttachArgs (this, pid));
1280
1281 StartAttachOpThread(args.get (), error);
1282 if (!error.Success ())
1283 return;
1284
1285WAIT_AGAIN:
1286 // Wait for the operation thread to initialize.
1287 if (sem_wait (&args->m_semaphore))
1288 {
1289 if (errno == EINTR)
1290 goto WAIT_AGAIN;
1291 else
1292 {
1293 error.SetErrorToErrno ();
1294 return;
1295 }
1296 }
1297
1298 // Check that the attach was a success.
1299 if (!args->m_error.Success ())
1300 {
1301 StopOpThread ();
1302 error = args->m_error;
1303 return;
1304 }
1305
1306 // Finally, start monitoring the child process for change in state.
1307 m_monitor_thread = Host::StartMonitoringChildProcess (
1308 NativeProcessLinux::MonitorCallback, this, GetID (), true);
1309 if (!IS_VALID_LLDB_HOST_THREAD (m_monitor_thread))
1310 {
1311 error.SetErrorToGenericError ();
1312 error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback.");
1313 return;
1314 }
1315}
1316
1317NativeProcessLinux::~NativeProcessLinux()
1318{
1319 StopMonitor();
1320}
1321
1322//------------------------------------------------------------------------------
1323// Thread setup and tear down.
1324
1325void
1326NativeProcessLinux::StartLaunchOpThread(LaunchArgs *args, Error &error)
1327{
1328 static const char *g_thread_name = "lldb.process.nativelinux.operation";
1329
1330 if (IS_VALID_LLDB_HOST_THREAD (m_operation_thread))
1331 return;
1332
1333 m_operation_thread =
1334 Host::ThreadCreate (g_thread_name, LaunchOpThread, args, &error);
1335}
1336
1337void *
1338NativeProcessLinux::LaunchOpThread(void *arg)
1339{
1340 LaunchArgs *args = static_cast<LaunchArgs*>(arg);
1341
1342 if (!Launch(args)) {
1343 sem_post(&args->m_semaphore);
1344 return NULL;
1345 }
1346
1347 ServeOperation(args);
1348 return NULL;
1349}
1350
1351bool
1352NativeProcessLinux::Launch(LaunchArgs *args)
1353{
1354 NativeProcessLinux *monitor = args->m_monitor;
1355 assert (monitor && "monitor is NULL");
1356 if (!monitor)
1357 return false;
1358
1359 const char **argv = args->m_argv;
1360 const char **envp = args->m_envp;
1361 const char *stdin_path = args->m_stdin_path;
1362 const char *stdout_path = args->m_stdout_path;
1363 const char *stderr_path = args->m_stderr_path;
1364 const char *working_dir = args->m_working_dir;
1365
1366 lldb_utility::PseudoTerminal terminal;
1367 const size_t err_len = 1024;
1368 char err_str[err_len];
1369 lldb::pid_t pid;
1370 NativeThreadProtocolSP thread_sp;
1371
1372 lldb::ThreadSP inferior;
1373 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1374
1375 // Propagate the environment if one is not supplied.
1376 if (envp == NULL || envp[0] == NULL)
1377 envp = const_cast<const char **>(environ);
1378
1379 if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
1380 {
1381 args->m_error.SetErrorToGenericError();
1382 args->m_error.SetErrorString("Process fork failed.");
1383 goto FINISH;
1384 }
1385
1386 // Recognized child exit status codes.
1387 enum {
1388 ePtraceFailed = 1,
1389 eDupStdinFailed,
1390 eDupStdoutFailed,
1391 eDupStderrFailed,
1392 eChdirFailed,
1393 eExecFailed,
1394 eSetGidFailed
1395 };
1396
1397 // Child process.
1398 if (pid == 0)
1399 {
1400 if (log)
1401 log->Printf ("NativeProcessLinux::%s inferior process preparing to fork", __FUNCTION__);
1402
1403 // Trace this process.
1404 if (log)
1405 log->Printf ("NativeProcessLinux::%s inferior process issuing PTRACE_TRACEME", __FUNCTION__);
1406
1407 if (PTRACE(PTRACE_TRACEME, 0, NULL, NULL, 0) < 0)
1408 {
1409 if (log)
1410 log->Printf ("NativeProcessLinux::%s inferior process PTRACE_TRACEME failed", __FUNCTION__);
1411 exit(ePtraceFailed);
1412 }
1413
1414 // Do not inherit setgid powers.
1415 if (log)
1416 log->Printf ("NativeProcessLinux::%s inferior process resetting gid", __FUNCTION__);
1417
1418 if (setgid(getgid()) != 0)
1419 {
1420 if (log)
1421 log->Printf ("NativeProcessLinux::%s inferior process setgid() failed", __FUNCTION__);
1422 exit(eSetGidFailed);
1423 }
1424
1425 // Attempt to have our own process group.
1426 // TODO verify if we really want this.
1427 if (log)
1428 log->Printf ("NativeProcessLinux::%s inferior process resetting process group", __FUNCTION__);
1429
1430 if (setpgid(0, 0) != 0)
1431 {
1432 if (log)
1433 {
1434 const int error_code = errno;
1435 log->Printf ("NativeProcessLinux::%s inferior setpgid() failed, errno=%d (%s), continuing with existing proccess group %" PRIu64,
1436 __FUNCTION__,
1437 error_code,
1438 strerror (error_code),
1439 static_cast<lldb::pid_t> (getpgid (0)));
1440 }
1441 // Don't allow this to prevent an inferior exec.
1442 }
1443
1444 // Dup file descriptors if needed.
1445 //
1446 // FIXME: If two or more of the paths are the same we needlessly open
1447 // the same file multiple times.
1448 if (stdin_path != NULL && stdin_path[0])
1449 if (!DupDescriptor(stdin_path, STDIN_FILENO, O_RDONLY))
1450 exit(eDupStdinFailed);
1451
1452 if (stdout_path != NULL && stdout_path[0])
1453 if (!DupDescriptor(stdout_path, STDOUT_FILENO, O_WRONLY | O_CREAT))
1454 exit(eDupStdoutFailed);
1455
1456 if (stderr_path != NULL && stderr_path[0])
1457 if (!DupDescriptor(stderr_path, STDERR_FILENO, O_WRONLY | O_CREAT))
1458 exit(eDupStderrFailed);
1459
1460 // Change working directory
1461 if (working_dir != NULL && working_dir[0])
1462 if (0 != ::chdir(working_dir))
1463 exit(eChdirFailed);
1464
1465 // Execute. We should never return.
1466 execve(argv[0],
1467 const_cast<char *const *>(argv),
1468 const_cast<char *const *>(envp));
1469 exit(eExecFailed);
1470 }
1471
1472 // Wait for the child process to trap on its call to execve.
1473 ::pid_t wpid;
1474 int status;
1475 if ((wpid = waitpid(pid, &status, 0)) < 0)
1476 {
1477 args->m_error.SetErrorToErrno();
1478
1479 if (log)
1480 log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", __FUNCTION__, args->m_error.AsCString ());
1481
1482 // Mark the inferior as invalid.
1483 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid.
1484 monitor->SetState (StateType::eStateInvalid);
1485
1486 goto FINISH;
1487 }
1488 else if (WIFEXITED(status))
1489 {
1490 // open, dup or execve likely failed for some reason.
1491 args->m_error.SetErrorToGenericError();
1492 switch (WEXITSTATUS(status))
1493 {
1494 case ePtraceFailed:
1495 args->m_error.SetErrorString("Child ptrace failed.");
1496 break;
1497 case eDupStdinFailed:
1498 args->m_error.SetErrorString("Child open stdin failed.");
1499 break;
1500 case eDupStdoutFailed:
1501 args->m_error.SetErrorString("Child open stdout failed.");
1502 break;
1503 case eDupStderrFailed:
1504 args->m_error.SetErrorString("Child open stderr failed.");
1505 break;
1506 case eChdirFailed:
1507 args->m_error.SetErrorString("Child failed to set working directory.");
1508 break;
1509 case eExecFailed:
1510 args->m_error.SetErrorString("Child exec failed.");
1511 break;
1512 case eSetGidFailed:
1513 args->m_error.SetErrorString("Child setgid failed.");
1514 break;
1515 default:
1516 args->m_error.SetErrorString("Child returned unknown exit status.");
1517 break;
1518 }
1519
1520 if (log)
1521 {
1522 log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
1523 __FUNCTION__,
1524 WEXITSTATUS(status));
1525 }
1526
1527 // Mark the inferior as invalid.
1528 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid.
1529 monitor->SetState (StateType::eStateInvalid);
1530
1531 goto FINISH;
1532 }
1533 assert(WIFSTOPPED(status) && (wpid == static_cast<::pid_t> (pid)) &&
1534 "Could not sync with inferior process.");
1535
1536 if (log)
1537 log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
1538
1539 if (!SetDefaultPtraceOpts(pid))
1540 {
1541 args->m_error.SetErrorToErrno();
1542 if (log)
1543 log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
1544 __FUNCTION__,
1545 args->m_error.AsCString ());
1546
1547 // Mark the inferior as invalid.
1548 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid.
1549 monitor->SetState (StateType::eStateInvalid);
1550
1551 goto FINISH;
1552 }
1553
1554 // Release the master terminal descriptor and pass it off to the
1555 // NativeProcessLinux instance. Similarly stash the inferior pid.
1556 monitor->m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
1557 monitor->m_pid = pid;
1558
1559 // Set the terminal fd to be in non blocking mode (it simplifies the
1560 // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
1561 // descriptor to read from).
1562 if (!EnsureFDFlags(monitor->m_terminal_fd, O_NONBLOCK, args->m_error))
1563 {
1564 if (log)
1565 log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
1566 __FUNCTION__,
1567 args->m_error.AsCString ());
1568
1569 // Mark the inferior as invalid.
1570 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid.
1571 monitor->SetState (StateType::eStateInvalid);
1572
1573 goto FINISH;
1574 }
1575
1576 if (log)
1577 log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
1578
1579 thread_sp = monitor->AddThread (static_cast<lldb::tid_t> (pid));
1580 assert (thread_sp && "AddThread() returned a nullptr thread");
1581 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP);
1582 monitor->SetCurrentThreadID (thread_sp->GetID ());
1583
1584 // Let our process instance know the thread has stopped.
1585 monitor->SetState (StateType::eStateStopped);
1586
1587FINISH:
1588 if (log)
1589 {
1590 if (args->m_error.Success ())
1591 {
1592 log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
1593 }
1594 else
1595 {
1596 log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
1597 __FUNCTION__,
1598 args->m_error.AsCString ());
1599 }
1600 }
1601 return args->m_error.Success();
1602}
1603
1604void
1605NativeProcessLinux::StartAttachOpThread(AttachArgs *args, lldb_private::Error &error)
1606{
1607 static const char *g_thread_name = "lldb.process.linux.operation";
1608
1609 if (IS_VALID_LLDB_HOST_THREAD(m_operation_thread))
1610 return;
1611
1612 m_operation_thread =
1613 Host::ThreadCreate(g_thread_name, AttachOpThread, args, &error);
1614}
1615
1616void *
1617NativeProcessLinux::AttachOpThread(void *arg)
1618{
1619 AttachArgs *args = static_cast<AttachArgs*>(arg);
1620
1621 if (!Attach(args)) {
1622 sem_post(&args->m_semaphore);
1623 return NULL;
1624 }
1625
1626 ServeOperation(args);
1627 return NULL;
1628}
1629
1630bool
1631NativeProcessLinux::Attach(AttachArgs *args)
1632{
1633 lldb::pid_t pid = args->m_pid;
1634
1635 NativeProcessLinux *monitor = args->m_monitor;
1636 lldb::ThreadSP inferior;
1637 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1638
1639 // Use a map to keep track of the threads which we have attached/need to attach.
1640 Host::TidMap tids_to_attach;
1641 if (pid <= 1)
1642 {
1643 args->m_error.SetErrorToGenericError();
1644 args->m_error.SetErrorString("Attaching to process 1 is not allowed.");
1645 goto FINISH;
1646 }
1647
1648 while (Host::FindProcessThreads(pid, tids_to_attach))
1649 {
1650 for (Host::TidMap::iterator it = tids_to_attach.begin();
1651 it != tids_to_attach.end();)
1652 {
1653 if (it->second == false)
1654 {
1655 lldb::tid_t tid = it->first;
1656
1657 // Attach to the requested process.
1658 // An attach will cause the thread to stop with a SIGSTOP.
1659 if (PTRACE(PTRACE_ATTACH, tid, NULL, NULL, 0) < 0)
1660 {
1661 // No such thread. The thread may have exited.
1662 // More error handling may be needed.
1663 if (errno == ESRCH)
1664 {
1665 it = tids_to_attach.erase(it);
1666 continue;
1667 }
1668 else
1669 {
1670 args->m_error.SetErrorToErrno();
1671 goto FINISH;
1672 }
1673 }
1674
1675 int status;
1676 // Need to use __WALL otherwise we receive an error with errno=ECHLD
1677 // At this point we should have a thread stopped if waitpid succeeds.
1678 if ((status = waitpid(tid, NULL, __WALL)) < 0)
1679 {
1680 // No such thread. The thread may have exited.
1681 // More error handling may be needed.
1682 if (errno == ESRCH)
1683 {
1684 it = tids_to_attach.erase(it);
1685 continue;
1686 }
1687 else
1688 {
1689 args->m_error.SetErrorToErrno();
1690 goto FINISH;
1691 }
1692 }
1693
1694 if (!SetDefaultPtraceOpts(tid))
1695 {
1696 args->m_error.SetErrorToErrno();
1697 goto FINISH;
1698 }
1699
1700
1701 if (log)
1702 log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
1703
1704 it->second = true;
1705
1706 // Create the thread, mark it as stopped.
1707 NativeThreadProtocolSP thread_sp (monitor->AddThread (static_cast<lldb::tid_t> (tid)));
1708 assert (thread_sp && "AddThread() returned a nullptr");
1709 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP);
1710 monitor->SetCurrentThreadID (thread_sp->GetID ());
1711 }
1712
1713 // move the loop forward
1714 ++it;
1715 }
1716 }
1717
1718 if (tids_to_attach.size() > 0)
1719 {
1720 monitor->m_pid = pid;
1721 // Let our process instance know the thread has stopped.
1722 monitor->SetState (StateType::eStateStopped);
1723 }
1724 else
1725 {
1726 args->m_error.SetErrorToGenericError();
1727 args->m_error.SetErrorString("No such process.");
1728 }
1729
1730 FINISH:
1731 return args->m_error.Success();
1732}
1733
1734bool
1735NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
1736{
1737 long ptrace_opts = 0;
1738
1739 // Have the child raise an event on exit. This is used to keep the child in
1740 // limbo until it is destroyed.
1741 ptrace_opts |= PTRACE_O_TRACEEXIT;
1742
1743 // Have the tracer trace threads which spawn in the inferior process.
1744 // TODO: if we want to support tracing the inferiors' child, add the
1745 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
1746 ptrace_opts |= PTRACE_O_TRACECLONE;
1747
1748 // Have the tracer notify us before execve returns
1749 // (needed to disable legacy SIGTRAP generation)
1750 ptrace_opts |= PTRACE_O_TRACEEXEC;
1751
1752 return PTRACE(PTRACE_SETOPTIONS, pid, NULL, (void*)ptrace_opts, 0) >= 0;
1753}
1754
1755static ExitType convert_pid_status_to_exit_type (int status)
1756{
1757 if (WIFEXITED (status))
1758 return ExitType::eExitTypeExit;
1759 else if (WIFSIGNALED (status))
1760 return ExitType::eExitTypeSignal;
1761 else if (WIFSTOPPED (status))
1762 return ExitType::eExitTypeStop;
1763 else
1764 {
1765 // We don't know what this is.
1766 return ExitType::eExitTypeInvalid;
1767 }
1768}
1769
1770static int convert_pid_status_to_return_code (int status)
1771{
1772 if (WIFEXITED (status))
1773 return WEXITSTATUS (status);
1774 else if (WIFSIGNALED (status))
1775 return WTERMSIG (status);
1776 else if (WIFSTOPPED (status))
1777 return WSTOPSIG (status);
1778 else
1779 {
1780 // We don't know what this is.
1781 return ExitType::eExitTypeInvalid;
1782 }
1783}
1784
1785// Main process monitoring waitpid-loop handler.
1786bool
1787NativeProcessLinux::MonitorCallback(void *callback_baton,
1788 lldb::pid_t pid,
1789 bool exited,
1790 int signal,
1791 int status)
1792{
1793 Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
1794
1795 NativeProcessLinux *const process = static_cast<NativeProcessLinux*>(callback_baton);
1796 assert (process && "process is null");
1797 if (!process)
1798 {
1799 if (log)
1800 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " callback_baton was null, can't determine process to use", __FUNCTION__, pid);
1801 return true;
1802 }
1803
1804 // Certain activities differ based on whether the pid is the tid of the main thread.
1805 const bool is_main_thread = (pid == process->GetID ());
1806
1807 // Assume we keep monitoring by default.
1808 bool stop_monitoring = false;
1809
1810 // Handle when the thread exits.
1811 if (exited)
1812 {
1813 if (log)
1814 log->Printf ("NativeProcessLinux::%s() got exit signal, tid = %" PRIu64 " (%s main thread)", __FUNCTION__, pid, is_main_thread ? "is" : "is not");
1815
1816 // This is a thread that exited. Ensure we're not tracking it anymore.
1817 const bool thread_found = process->StopTrackingThread (pid);
1818
1819 if (is_main_thread)
1820 {
1821 // We only set the exit status and notify the delegate if we haven't already set the process
1822 // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
1823 // for the main thread.
1824 const bool already_notified = (process->GetState() == StateType::eStateExited) | (process->GetState () == StateType::eStateCrashed);
1825 if (!already_notified)
1826 {
1827 if (log)
1828 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (process->GetState ()));
1829 // The main thread exited. We're done monitoring. Report to delegate.
1830 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1831
1832 // Notify delegate that our process has exited.
1833 process->SetState (StateType::eStateExited, true);
1834 }
1835 else
1836 {
1837 if (log)
1838 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1839 }
1840 return true;
1841 }
1842 else
1843 {
1844 // Do we want to report to the delegate in this case? I think not. If this was an orderly
1845 // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
1846 // and we would have done an all-stop then.
1847 if (log)
1848 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1849
1850 // Not the main thread, we keep going.
1851 return false;
1852 }
1853 }
1854
1855 // Get details on the signal raised.
1856 siginfo_t info;
1857 int ptrace_err = 0;
1858
1859 if (!process->GetSignalInfo (pid, &info, ptrace_err))
1860 {
1861 if (ptrace_err == EINVAL)
1862 {
1863 // This is the first part of the Linux ptrace group-stop mechanism.
1864 // The tracer (i.e. NativeProcessLinux) is expected to inject the signal
1865 // into the tracee (i.e. inferior) at this point.
1866 if (log)
1867 log->Printf ("NativeProcessLinux::%s() resuming from group-stop", __FUNCTION__);
1868
1869 // The inferior process is in 'group-stop', so deliver the stopping signal.
1870 const bool signal_delivered = process->Resume (pid, info.si_signo);
1871 if (log)
1872 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " group-stop signal delivery of signal 0x%x (%s) - %s", __FUNCTION__, pid, info.si_signo, GetUnixSignals ().GetSignalAsCString (info.si_signo), signal_delivered ? "success" : "failed");
1873
1874 assert(signal_delivered && "SIGSTOP delivery failed while in 'group-stop' state");
1875
1876 stop_monitoring = false;
1877 }
1878 else
1879 {
1880 // ptrace(GETSIGINFO) failed (but not due to group-stop).
1881
1882 // A return value of ESRCH means the thread/process is no longer on the system,
1883 // so it was killed somehow outside of our control. Either way, we can't do anything
1884 // with it anymore.
1885
1886 // We stop monitoring if it was the main thread.
1887 stop_monitoring = is_main_thread;
1888
1889 // Stop tracking the metadata for the thread since it's entirely off the system now.
1890 const bool thread_found = process->StopTrackingThread (pid);
1891
1892 if (log)
1893 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
1894 __FUNCTION__, strerror(ptrace_err), pid, signal, status, ptrace_err == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
1895
1896 if (is_main_thread)
1897 {
1898 // Notify the delegate - our process is not available but appears to have been killed outside
1899 // our control. Is eStateExited the right exit state in this case?
1900 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1901 process->SetState (StateType::eStateExited, true);
1902 }
1903 else
1904 {
1905 // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop?
1906 if (log)
1907 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, process->GetID (), pid);
1908 }
1909 }
1910 }
1911 else
1912 {
1913 // We have retrieved the signal info. Dispatch appropriately.
1914 if (info.si_signo == SIGTRAP)
1915 process->MonitorSIGTRAP(&info, pid);
1916 else
1917 process->MonitorSignal(&info, pid, exited);
1918
1919 stop_monitoring = false;
1920 }
1921
1922 return stop_monitoring;
1923}
1924
1925void
1926NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
1927{
1928 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1929 const bool is_main_thread = (pid == GetID ());
1930
1931 assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
1932 if (!info)
1933 return;
1934
1935 // See if we can find a thread for this signal.
1936 NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
1937 if (!thread_sp)
1938 {
1939 if (log)
1940 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
1941 }
1942
1943 switch (info->si_code)
1944 {
1945 // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor.
1946 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
1947 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
1948
1949 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
1950 {
1951 lldb::tid_t tid = LLDB_INVALID_THREAD_ID;
1952
1953 unsigned long event_message = 0;
1954 if (GetEventMessage(pid, &event_message))
1955 tid = static_cast<lldb::tid_t> (event_message);
1956
1957 if (log)
1958 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event for tid %" PRIu64, __FUNCTION__, pid, tid);
1959
1960 // If we don't track the thread yet: create it, mark as stopped.
1961 // If we do track it, this is the wait we needed. Now resume the new thread.
1962 // In all cases, resume the current (i.e. main process) thread.
1963 bool already_tracked = false;
1964 thread_sp = GetOrCreateThread (tid, already_tracked);
1965 assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread");
1966
1967 // If the thread was already tracked, it means the created thread already received its SI_USER notification of creation.
1968 if (already_tracked)
1969 {
1970 // FIXME loops like we want to stop all theads here.
1971 // StopAllThreads
1972
1973 // We can now resume the newly created thread since it is fully created.
1974 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
1975 Resume (tid, LLDB_INVALID_SIGNAL_NUMBER);
1976 }
1977 else
1978 {
1979 // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before
1980 // this thread is ready to go.
1981 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetLaunching ();
1982 }
1983
1984 // In all cases, we can resume the main thread here.
1985 Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
1986 break;
1987 }
1988
1989 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
1990 if (log)
1991 log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
1992 // FIXME stop all threads, mark thread stop reason as ThreadStopInfo.reason = eStopReasonExec;
1993 break;
1994
1995 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
1996 {
1997 // The inferior process or one of its threads is about to exit.
1998 // Maintain the process or thread in a state of "limbo" until we are
1999 // explicitly commanded to detach, destroy, resume, etc.
2000 unsigned long data = 0;
2001 if (!GetEventMessage(pid, &data))
2002 data = -1;
2003
2004 if (log)
2005 {
2006 log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
2007 __FUNCTION__,
2008 data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
2009 pid,
2010 is_main_thread ? "is main thread" : "not main thread");
2011 }
2012
2013 // Set the thread to exited.
2014 if (thread_sp)
2015 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetExited ();
2016 else
2017 {
2018 if (log)
2019 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " failed to retrieve thread for tid %" PRIu64", cannot set thread state", __FUNCTION__, GetID (), pid);
2020 }
2021
2022 if (is_main_thread)
2023 {
2024 SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
2025 // Resume the thread so it completely exits.
2026 Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2027 }
2028 else
2029 {
2030 // FIXME figure out the path where we plan to reap the metadata for the thread.
2031 }
2032
2033 break;
2034 }
2035
2036 case 0:
2037 case TRAP_TRACE:
2038 // We receive this on single stepping.
2039 if (log)
2040 log->Printf ("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", __FUNCTION__, pid);
2041
2042 if (thread_sp)
2043 {
2044 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP);
2045 SetCurrentThreadID (thread_sp->GetID ());
2046 }
2047 else
2048 {
2049 if (log)
2050 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 " single stepping received trace but thread not found", __FUNCTION__, GetID (), pid);
2051 }
2052
2053 // Tell the process we have a stop (from single stepping).
2054 SetState (StateType::eStateStopped, true);
2055 break;
2056
2057 case SI_KERNEL:
2058 case TRAP_BRKPT:
2059 if (log)
2060 log->Printf ("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, __FUNCTION__, pid);
2061
2062 // Mark the thread as stopped at breakpoint.
2063 if (thread_sp)
2064 {
2065 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP);
2066 Error error = FixupBreakpointPCAsNeeded (thread_sp);
2067 if (error.Fail ())
2068 {
2069 if (log)
2070 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", __FUNCTION__, pid, error.AsCString ());
2071 }
2072 }
2073 else
2074 {
2075 if (log)
2076 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": warning, cannot process software breakpoint since no thread metadata", __FUNCTION__, pid);
2077 }
2078
2079
2080 // Tell the process we have a stop from this thread.
2081 SetCurrentThreadID (pid);
2082 SetState (StateType::eStateStopped, true);
2083 break;
2084
2085 case TRAP_HWBKPT:
2086 if (log)
2087 log->Printf ("NativeProcessLinux::%s() received watchpoint event, pid = %" PRIu64, __FUNCTION__, pid);
2088
2089 // Mark the thread as stopped at watchpoint.
2090 // The address is at (lldb::addr_t)info->si_addr if we need it.
2091 if (thread_sp)
2092 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP);
2093 else
2094 {
2095 if (log)
2096 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ": warning, cannot process hardware breakpoint since no thread metadata", __FUNCTION__, GetID (), pid);
2097 }
2098
2099 // Tell the process we have a stop from this thread.
2100 SetCurrentThreadID (pid);
2101 SetState (StateType::eStateStopped, true);
2102 break;
2103
2104 case SIGTRAP:
2105 case (SIGTRAP | 0x80):
2106 if (log)
2107 log->Printf ("NativeProcessLinux::%s() received system call stop event, pid %" PRIu64 "tid %" PRIu64, __FUNCTION__, GetID (), pid);
2108 // Ignore these signals until we know more about them.
2109 Resume(pid, 0);
2110 break;
2111
2112 default:
2113 assert(false && "Unexpected SIGTRAP code!");
2114 if (log)
2115 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8)));
2116 break;
2117
2118 }
2119}
2120
2121void
2122NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
2123{
2124 int signo = info->si_signo;
2125
2126 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2127
2128 // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
2129 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
2130 // kill(2) or raise(3). Similarly for tgkill(2) on Linux.
2131 //
2132 // IOW, user generated signals never generate what we consider to be a
2133 // "crash".
2134 //
2135 // Similarly, ACK signals generated by this monitor.
2136
2137 // See if we can find a thread for this signal.
2138 NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
2139 if (!thread_sp)
2140 {
2141 if (log)
2142 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
2143 }
2144
2145 // Handle the signal.
2146 if (info->si_code == SI_TKILL || info->si_code == SI_USER)
2147 {
2148 if (log)
2149 log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
2150 __FUNCTION__,
2151 GetUnixSignals ().GetSignalAsCString (signo),
2152 signo,
2153 (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
2154 info->si_pid,
2155 (info->si_pid == getpid ()) ? "is monitor" : "is not monitor",
2156 pid);
2157
2158 if ((info->si_pid == 0) && info->si_code == SI_USER)
2159 {
2160 // A new thread creation is being signaled. This is one of two parts that come in
2161 // a non-deterministic order. pid is the thread id.
2162 if (log)
2163 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
2164 __FUNCTION__, GetID (), pid);
2165
2166 // Did we already create the thread?
2167 bool already_tracked = false;
2168 thread_sp = GetOrCreateThread (pid, already_tracked);
2169 assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread");
2170
2171 // If the thread was already tracked, it means the main thread already received its SIGTRAP for the create.
2172 if (already_tracked)
2173 {
2174 // We can now resume this thread up since it is fully created.
2175 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning ();
2176 Resume (thread_sp->GetID (), LLDB_INVALID_SIGNAL_NUMBER);
2177 }
2178 else
2179 {
2180 // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before
2181 // this thread is ready to go.
2182 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetLaunching ();
2183 }
2184 }
2185 else if (info->si_pid == getpid () && (signo == SIGSTOP))
2186 {
2187 // This is a tgkill()-based stop.
2188 if (thread_sp)
2189 {
2190 // An inferior thread just stopped. Mark it as such.
2191 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (signo);
2192 SetCurrentThreadID (thread_sp->GetID ());
2193
2194 // Remove this tid from the wait-for-stop set.
2195 Mutex::Locker locker (m_wait_for_stop_tids_mutex);
2196
2197 auto removed_count = m_wait_for_stop_tids.erase (thread_sp->GetID ());
2198 if (removed_count < 1)
2199 {
2200 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": tgkill()-stopped thread not in m_wait_for_stop_tids",
2201 __FUNCTION__, GetID (), thread_sp->GetID ());
2202
2203 }
2204
2205 // If this is the last thread in the m_wait_for_stop_tids, we need to notify
2206 // the delegate that a stop has occurred now that every thread that was supposed
2207 // to stop has stopped.
2208 if (m_wait_for_stop_tids.empty ())
2209 {
2210 if (log)
2211 {
2212 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", setting process state to stopped now that all tids marked for stop have completed",
2213 __FUNCTION__,
2214 GetID (),
2215 pid);
2216 }
2217 SetState (StateType::eStateStopped, true);
2218 }
2219 }
2220 }
2221 else
2222 {
2223 // Hmm, not sure what to do with this.
2224 if (log)
2225 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " unsure how to handle SI_KILL or SI_USER signal", __FUNCTION__, GetID ());
2226 }
2227
2228 return;
2229 }
2230
2231 if (log)
2232 log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo));
2233
2234 switch (signo)
2235 {
2236 case SIGSEGV:
2237 {
2238 lldb::addr_t fault_addr = reinterpret_cast<lldb::addr_t>(info->si_addr);
2239
2240 // FIXME figure out how to propagate this properly. Seems like it
2241 // should go in ThreadStopInfo.
2242 // We can get more details on the exact nature of the crash here.
2243 // ProcessMessage::CrashReason reason = GetCrashReasonForSIGSEGV(info);
2244 if (!exited)
2245 {
2246 // This is just a pre-signal-delivery notification of the incoming signal.
2247 // Send a stop to the debugger.
2248 if (thread_sp)
2249 {
2250 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (signo);
2251 SetCurrentThreadID (thread_sp->GetID ());
2252 }
2253 SetState (StateType::eStateStopped, true);
2254 }
2255 else
2256 {
2257 if (thread_sp)
2258 {
2259 // FIXME figure out what type this is.
2260 const uint64_t exception_type = static_cast<uint64_t> (SIGSEGV);
2261 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetCrashedWithException (exception_type, fault_addr);
2262 }
2263 SetState (StateType::eStateCrashed, true);
2264 }
2265 }
2266 break;
2267
2268 case SIGILL:
2269 {
2270 // lldb::addr_t fault_addr = reinterpret_cast<lldb::addr_t>(info->si_addr);
2271 // Can get the reason from here.
2272 // ProcessMessage::CrashReason reason = GetCrashReasonForSIGILL(info);
2273 // FIXME save the crash reason
2274 SetState (StateType::eStateCrashed, true);
2275 }
2276 break;
2277
2278 case SIGFPE:
2279 {
2280 // lldb::addr_t fault_addr = reinterpret_cast<lldb::addr_t>(info->si_addr);
2281 // Can get the crash reason from below.
2282 // ProcessMessage::CrashReason reason = GetCrashReasonForSIGFPE(info);
2283 // FIXME save the crash reason
2284 SetState (StateType::eStateCrashed, true);
2285 }
2286 break;
2287
2288 case SIGBUS:
2289 {
2290 // lldb::addr_t fault_addr = reinterpret_cast<lldb::addr_t>(info->si_addr);
2291 // Can get the crash reason from below.
2292 // ProcessMessage::CrashReason reason = GetCrashReasonForSIGBUS(info);
2293 // FIXME save the crash reason
2294 SetState (StateType::eStateCrashed);
2295 }
2296 break;
2297
2298 default:
2299 // FIXME Stop all threads here.
2300 break;
2301 }
2302}
2303
2304Error
2305NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
2306{
2307 Error error;
2308
2309 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
2310 if (log)
2311 log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
2312
2313 int run_thread_count = 0;
2314 int stop_thread_count = 0;
2315 int step_thread_count = 0;
2316
2317 std::vector<NativeThreadProtocolSP> new_stop_threads;
2318
2319 Mutex::Locker locker (m_threads_mutex);
2320 for (auto thread_sp : m_threads)
2321 {
2322 assert (thread_sp && "thread list should not contain NULL threads");
2323 NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get ());
2324
2325 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2326 assert (action && "NULL ResumeAction returned for thread during Resume ()");
2327
2328 if (log)
2329 {
2330 log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
2331 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2332 }
2333
2334 switch (action->state)
2335 {
2336 case eStateRunning:
2337 // Run the thread, possibly feeding it the signal.
2338 linux_thread_p->SetRunning ();
2339 if (action->signal > 0)
2340 {
2341 // Resume the thread and deliver the given signal,
2342 // then mark as delivered.
2343 Resume (thread_sp->GetID (), action->signal);
2344 resume_actions.SetSignalHandledForThread (thread_sp->GetID ());
2345 }
2346 else
2347 {
2348 // Just resume the thread with no signal.
2349 Resume (thread_sp->GetID (), LLDB_INVALID_SIGNAL_NUMBER);
2350 }
2351 ++run_thread_count;
2352 break;
2353
2354 case eStateStepping:
2355 // Note: if we have multiple threads, we may need to stop
2356 // the other threads first, then step this one.
2357 linux_thread_p->SetStepping ();
2358 if (SingleStep (thread_sp->GetID (), 0))
2359 {
2360 if (log)
2361 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " single step succeeded",
2362 __FUNCTION__, GetID (), thread_sp->GetID ());
2363 }
2364 else
2365 {
2366 if (log)
2367 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " single step failed",
2368 __FUNCTION__, GetID (), thread_sp->GetID ());
2369 }
2370 ++step_thread_count;
2371 break;
2372
2373 case eStateSuspended:
2374 case eStateStopped:
2375 if (!StateIsStoppedState (linux_thread_p->GetState (), false))
2376 new_stop_threads.push_back (thread_sp);
2377 else
2378 {
2379 if (log)
2380 log->Printf ("NativeProcessLinux::%s no need to stop pid %" PRIu64 " tid %" PRIu64 ", thread state already %s",
2381 __FUNCTION__, GetID (), thread_sp->GetID (), StateAsCString (linux_thread_p->GetState ()));
2382 }
2383
2384 ++stop_thread_count;
2385 break;
2386
2387 default:
2388 return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
2389 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2390 }
2391 }
2392
2393 // If any thread was set to run, notify the process state as running.
2394 if (run_thread_count > 0)
2395 SetState (StateType::eStateRunning, true);
2396
2397 // Now do a tgkill SIGSTOP on each thread we want to stop.
2398 if (!new_stop_threads.empty ())
2399 {
2400 // Lock the m_wait_for_stop_tids set so we can fill it with every thread we expect to have stopped.
2401 Mutex::Locker stop_thread_id_locker (m_wait_for_stop_tids_mutex);
2402 for (auto thread_sp : new_stop_threads)
2403 {
2404 // Send a stop signal to the thread.
2405 const int result = tgkill (GetID (), thread_sp->GetID (), SIGSTOP);
2406 if (result != 0)
2407 {
2408 // tgkill failed.
2409 if (log)
2410 log->Printf ("NativeProcessLinux::%s error: tgkill SIGSTOP for pid %" PRIu64 " tid %" PRIu64 "failed, retval %d",
2411 __FUNCTION__, GetID (), thread_sp->GetID (), result);
2412 }
2413 else
2414 {
2415 // tgkill succeeded. Don't mark the thread state, though. Let the signal
2416 // handling mark it.
2417 if (log)
2418 log->Printf ("NativeProcessLinux::%s tgkill SIGSTOP for pid %" PRIu64 " tid %" PRIu64 " succeeded",
2419 __FUNCTION__, GetID (), thread_sp->GetID ());
2420
2421 // Add it to the set of threads we expect to signal a stop.
2422 // We won't tell the delegate about it until this list drains to empty.
2423 m_wait_for_stop_tids.insert (thread_sp->GetID ());
2424 }
2425 }
2426 }
2427
2428 return error;
2429}
2430
2431Error
2432NativeProcessLinux::Halt ()
2433{
2434 Error error;
2435
2436 // FIXME check if we're already stopped
2437 const bool is_stopped = false;
2438 if (is_stopped)
2439 return error;
2440
2441 if (kill (GetID (), SIGSTOP) != 0)
2442 error.SetErrorToErrno ();
2443
2444 return error;
2445}
2446
2447Error
2448NativeProcessLinux::Detach ()
2449{
2450 Error error;
2451
2452 // Tell ptrace to detach from the process.
2453 if (GetID () != LLDB_INVALID_PROCESS_ID)
2454 error = Detach (GetID ());
2455
2456 // Stop monitoring the inferior.
2457 StopMonitor ();
2458
2459 // No error.
2460 return error;
2461}
2462
2463Error
2464NativeProcessLinux::Signal (int signo)
2465{
2466 Error error;
2467
2468 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2469 if (log)
2470 log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
2471 __FUNCTION__, signo, GetUnixSignals ().GetSignalAsCString (signo), GetID ());
2472
2473 if (kill(GetID(), signo))
2474 error.SetErrorToErrno();
2475
2476 return error;
2477}
2478
2479Error
2480NativeProcessLinux::Kill ()
2481{
2482 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2483 if (log)
2484 log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
2485
2486 Error error;
2487
2488 switch (m_state)
2489 {
2490 case StateType::eStateInvalid:
2491 case StateType::eStateExited:
2492 case StateType::eStateCrashed:
2493 case StateType::eStateDetached:
2494 case StateType::eStateUnloaded:
2495 // Nothing to do - the process is already dead.
2496 if (log)
2497 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
2498 return error;
2499
2500 case StateType::eStateConnected:
2501 case StateType::eStateAttaching:
2502 case StateType::eStateLaunching:
2503 case StateType::eStateStopped:
2504 case StateType::eStateRunning:
2505 case StateType::eStateStepping:
2506 case StateType::eStateSuspended:
2507 // We can try to kill a process in these states.
2508 break;
2509 }
2510
2511 if (kill (GetID (), SIGKILL) != 0)
2512 {
2513 error.SetErrorToErrno ();
2514 return error;
2515 }
2516
2517 return error;
2518}
2519
2520static Error
2521ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
2522{
2523 memory_region_info.Clear();
2524
2525 StringExtractor line_extractor (maps_line.c_str ());
2526
2527 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname
2528 // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared).
2529
2530 // Parse out the starting address
2531 lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
2532
2533 // Parse out hyphen separating start and end address from range.
2534 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
2535 return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
2536
2537 // Parse out the ending address
2538 lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
2539
2540 // Parse out the space after the address.
2541 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
2542 return Error ("malformed /proc/{pid}/maps entry, missing space after range");
2543
2544 // Save the range.
2545 memory_region_info.GetRange ().SetRangeBase (start_address);
2546 memory_region_info.GetRange ().SetRangeEnd (end_address);
2547
2548 // Parse out each permission entry.
2549 if (line_extractor.GetBytesLeft () < 4)
2550 return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
2551
2552 // Handle read permission.
2553 const char read_perm_char = line_extractor.GetChar ();
2554 if (read_perm_char == 'r')
2555 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
2556 else
2557 {
2558 assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
2559 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2560 }
2561
2562 // Handle write permission.
2563 const char write_perm_char = line_extractor.GetChar ();
2564 if (write_perm_char == 'w')
2565 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
2566 else
2567 {
2568 assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
2569 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2570 }
2571
2572 // Handle execute permission.
2573 const char exec_perm_char = line_extractor.GetChar ();
2574 if (exec_perm_char == 'x')
2575 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
2576 else
2577 {
2578 assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
2579 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2580 }
2581
2582 return Error ();
2583}
2584
2585Error
2586NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
2587{
2588 // FIXME review that the final memory region returned extends to the end of the virtual address space,
2589 // with no perms if it is not mapped.
2590
2591 // Use an approach that reads memory regions from /proc/{pid}/maps.
2592 // Assume proc maps entries are in ascending order.
2593 // FIXME assert if we find differently.
2594 Mutex::Locker locker (m_mem_region_cache_mutex);
2595
2596 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2597 Error error;
2598
2599 if (m_supports_mem_region == LazyBool::eLazyBoolNo)
2600 {
2601 // We're done.
2602 error.SetErrorString ("unsupported");
2603 return error;
2604 }
2605
2606 // If our cache is empty, pull the latest. There should always be at least one memory region
2607 // if memory region handling is supported.
2608 if (m_mem_region_cache.empty ())
2609 {
2610 error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2611 [&] (const std::string &line) -> bool
2612 {
2613 MemoryRegionInfo info;
2614 const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
2615 if (parse_error.Success ())
2616 {
2617 m_mem_region_cache.push_back (info);
2618 return true;
2619 }
2620 else
2621 {
2622 if (log)
2623 log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
2624 return false;
2625 }
2626 });
2627
2628 // If we had an error, we'll mark unsupported.
2629 if (error.Fail ())
2630 {
2631 m_supports_mem_region = LazyBool::eLazyBoolNo;
2632 return error;
2633 }
2634 else if (m_mem_region_cache.empty ())
2635 {
2636 // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps
2637 // is supported. Assume we don't support map entries via procfs.
2638 if (log)
2639 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
2640 m_supports_mem_region = LazyBool::eLazyBoolNo;
2641 error.SetErrorString ("not supported");
2642 return error;
2643 }
2644
2645 if (log)
2646 log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
2647
2648 // We support memory retrieval, remember that.
2649 m_supports_mem_region = LazyBool::eLazyBoolYes;
2650 }
2651 else
2652 {
2653 if (log)
2654 log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2655 }
2656
2657 lldb::addr_t prev_base_address = 0;
2658
2659 // FIXME start by finding the last region that is <= target address using binary search. Data is sorted.
2660 // There can be a ton of regions on pthreads apps with lots of threads.
2661 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
2662 {
2663 MemoryRegionInfo &proc_entry_info = *it;
2664
2665 // Sanity check assumption that /proc/{pid}/maps entries are ascending.
2666 assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
2667 prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
2668
2669 // If the target address comes before this entry, indicate distance to next region.
2670 if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
2671 {
2672 range_info.GetRange ().SetRangeBase (load_addr);
2673 range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
2674 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2675 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2676 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2677
2678 return error;
2679 }
2680 else if (proc_entry_info.GetRange ().Contains (load_addr))
2681 {
2682 // The target address is within the memory region we're processing here.
2683 range_info = proc_entry_info;
2684 return error;
2685 }
2686
2687 // The target memory address comes somewhere after the region we just parsed.
2688 }
2689
2690 // If we made it here, we didn't find an entry that contained the given address.
2691 error.SetErrorString ("address comes after final region");
2692
2693 if (log)
2694 log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ());
2695
2696 return error;
2697}
2698
2699void
2700NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
2701{
2702 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2703 if (log)
2704 log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
2705
2706 {
2707 Mutex::Locker locker (m_mem_region_cache_mutex);
2708 if (log)
2709 log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2710 m_mem_region_cache.clear ();
2711 }
2712}
2713
2714Error
2715NativeProcessLinux::AllocateMemory (
2716 lldb::addr_t size,
2717 uint32_t permissions,
2718 lldb::addr_t &addr)
2719{
2720 // FIXME implementing this requires the equivalent of
2721 // InferiorCallPOSIX::InferiorCallMmap, which depends on
2722 // functional ThreadPlans working with Native*Protocol.
2723#if 1
2724 return Error ("not implemented yet");
2725#else
2726 addr = LLDB_INVALID_ADDRESS;
2727
2728 unsigned prot = 0;
2729 if (permissions & lldb::ePermissionsReadable)
2730 prot |= eMmapProtRead;
2731 if (permissions & lldb::ePermissionsWritable)
2732 prot |= eMmapProtWrite;
2733 if (permissions & lldb::ePermissionsExecutable)
2734 prot |= eMmapProtExec;
2735
2736 // TODO implement this directly in NativeProcessLinux
2737 // (and lift to NativeProcessPOSIX if/when that class is
2738 // refactored out).
2739 if (InferiorCallMmap(this, addr, 0, size, prot,
2740 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
2741 m_addr_to_mmap_size[addr] = size;
2742 return Error ();
2743 } else {
2744 addr = LLDB_INVALID_ADDRESS;
2745 return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
2746 }
2747#endif
2748}
2749
2750Error
2751NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
2752{
2753 // FIXME see comments in AllocateMemory - required lower-level
2754 // bits not in place yet (ThreadPlans)
2755 return Error ("not implemented");
2756}
2757
2758lldb::addr_t
2759NativeProcessLinux::GetSharedLibraryInfoAddress ()
2760{
2761#if 1
2762 // punt on this for now
2763 return LLDB_INVALID_ADDRESS;
2764#else
2765 // Return the image info address for the exe module
2766#if 1
2767 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2768
2769 ModuleSP module_sp;
2770 Error error = GetExeModuleSP (module_sp);
2771 if (error.Fail ())
2772 {
2773 if (log)
2774 log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
2775 return LLDB_INVALID_ADDRESS;
2776 }
2777
2778 if (module_sp == nullptr)
2779 {
2780 if (log)
2781 log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
2782 return LLDB_INVALID_ADDRESS;
2783 }
2784
2785 ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
2786 if (object_file_sp == nullptr)
2787 {
2788 if (log)
2789 log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
2790 return LLDB_INVALID_ADDRESS;
2791 }
2792
2793 return obj_file_sp->GetImageInfoAddress();
2794#else
2795 Target *target = &GetTarget();
2796 ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
2797 Address addr = obj_file->GetImageInfoAddress(target);
2798
2799 if (addr.IsValid())
2800 return addr.GetLoadAddress(target);
2801 return LLDB_INVALID_ADDRESS;
2802#endif
2803#endif // punt on this for now
2804}
2805
2806size_t
2807NativeProcessLinux::UpdateThreads ()
2808{
2809 // The NativeProcessLinux monitoring threads are always up to date
2810 // with respect to thread state and they keep the thread list
2811 // populated properly. All this method needs to do is return the
2812 // thread count.
2813 Mutex::Locker locker (m_threads_mutex);
2814 return m_threads.size ();
2815}
2816
2817bool
2818NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
2819{
2820 arch = m_arch;
2821 return true;
2822}
2823
2824Error
2825NativeProcessLinux::GetSoftwareBreakpointSize (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
2826{
2827 // FIXME put this behind a breakpoint protocol class that can be
2828 // set per architecture. Need ARM, MIPS support here.
2829 static const uint8_t g_i386_opcode [] = { 0xCC };
2830
2831 switch (m_arch.GetMachine ())
2832 {
2833 case llvm::Triple::x86:
2834 case llvm::Triple::x86_64:
2835 actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
2836 return Error ();
2837
2838 default:
2839 assert(false && "CPU type not supported!");
2840 return Error ("CPU type not supported");
2841 }
2842}
2843
2844Error
2845NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
2846{
2847 if (hardware)
2848 return Error ("NativeProcessLinux does not support hardware breakpoints");
2849 else
2850 return SetSoftwareBreakpoint (addr, size);
2851}
2852
2853Error
2854NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, size_t &actual_opcode_size, const uint8_t *&trap_opcode_bytes)
2855{
2856 // FIXME put this behind a breakpoint protocol class that can be
2857 // set per architecture. Need ARM, MIPS support here.
2858 static const uint8_t g_i386_opcode [] = { 0xCC };
2859
2860 switch (m_arch.GetMachine ())
2861 {
2862 case llvm::Triple::x86:
2863 case llvm::Triple::x86_64:
2864 trap_opcode_bytes = g_i386_opcode;
2865 actual_opcode_size = sizeof(g_i386_opcode);
2866 return Error ();
2867
2868 default:
2869 assert(false && "CPU type not supported!");
2870 return Error ("CPU type not supported");
2871 }
2872}
2873
2874#if 0
2875ProcessMessage::CrashReason
2876NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
2877{
2878 ProcessMessage::CrashReason reason;
2879 assert(info->si_signo == SIGSEGV);
2880
2881 reason = ProcessMessage::eInvalidCrashReason;
2882
2883 switch (info->si_code)
2884 {
2885 default:
2886 assert(false && "unexpected si_code for SIGSEGV");
2887 break;
2888 case SI_KERNEL:
2889 // Linux will occasionally send spurious SI_KERNEL codes.
2890 // (this is poorly documented in sigaction)
2891 // One way to get this is via unaligned SIMD loads.
2892 reason = ProcessMessage::eInvalidAddress; // for lack of anything better
2893 break;
2894 case SEGV_MAPERR:
2895 reason = ProcessMessage::eInvalidAddress;
2896 break;
2897 case SEGV_ACCERR:
2898 reason = ProcessMessage::ePrivilegedAddress;
2899 break;
2900 }
2901
2902 return reason;
2903}
2904#endif
2905
2906
2907#if 0
2908ProcessMessage::CrashReason
2909NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
2910{
2911 ProcessMessage::CrashReason reason;
2912 assert(info->si_signo == SIGILL);
2913
2914 reason = ProcessMessage::eInvalidCrashReason;
2915
2916 switch (info->si_code)
2917 {
2918 default:
2919 assert(false && "unexpected si_code for SIGILL");
2920 break;
2921 case ILL_ILLOPC:
2922 reason = ProcessMessage::eIllegalOpcode;
2923 break;
2924 case ILL_ILLOPN:
2925 reason = ProcessMessage::eIllegalOperand;
2926 break;
2927 case ILL_ILLADR:
2928 reason = ProcessMessage::eIllegalAddressingMode;
2929 break;
2930 case ILL_ILLTRP:
2931 reason = ProcessMessage::eIllegalTrap;
2932 break;
2933 case ILL_PRVOPC:
2934 reason = ProcessMessage::ePrivilegedOpcode;
2935 break;
2936 case ILL_PRVREG:
2937 reason = ProcessMessage::ePrivilegedRegister;
2938 break;
2939 case ILL_COPROC:
2940 reason = ProcessMessage::eCoprocessorError;
2941 break;
2942 case ILL_BADSTK:
2943 reason = ProcessMessage::eInternalStackError;
2944 break;
2945 }
2946
2947 return reason;
2948}
2949#endif
2950
2951#if 0
2952ProcessMessage::CrashReason
2953NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
2954{
2955 ProcessMessage::CrashReason reason;
2956 assert(info->si_signo == SIGFPE);
2957
2958 reason = ProcessMessage::eInvalidCrashReason;
2959
2960 switch (info->si_code)
2961 {
2962 default:
2963 assert(false && "unexpected si_code for SIGFPE");
2964 break;
2965 case FPE_INTDIV:
2966 reason = ProcessMessage::eIntegerDivideByZero;
2967 break;
2968 case FPE_INTOVF:
2969 reason = ProcessMessage::eIntegerOverflow;
2970 break;
2971 case FPE_FLTDIV:
2972 reason = ProcessMessage::eFloatDivideByZero;
2973 break;
2974 case FPE_FLTOVF:
2975 reason = ProcessMessage::eFloatOverflow;
2976 break;
2977 case FPE_FLTUND:
2978 reason = ProcessMessage::eFloatUnderflow;
2979 break;
2980 case FPE_FLTRES:
2981 reason = ProcessMessage::eFloatInexactResult;
2982 break;
2983 case FPE_FLTINV:
2984 reason = ProcessMessage::eFloatInvalidOperation;
2985 break;
2986 case FPE_FLTSUB:
2987 reason = ProcessMessage::eFloatSubscriptRange;
2988 break;
2989 }
2990
2991 return reason;
2992}
2993#endif
2994
2995#if 0
2996ProcessMessage::CrashReason
2997NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
2998{
2999 ProcessMessage::CrashReason reason;
3000 assert(info->si_signo == SIGBUS);
3001
3002 reason = ProcessMessage::eInvalidCrashReason;
3003
3004 switch (info->si_code)
3005 {
3006 default:
3007 assert(false && "unexpected si_code for SIGBUS");
3008 break;
3009 case BUS_ADRALN:
3010 reason = ProcessMessage::eIllegalAlignment;
3011 break;
3012 case BUS_ADRERR:
3013 reason = ProcessMessage::eIllegalAddress;
3014 break;
3015 case BUS_OBJERR:
3016 reason = ProcessMessage::eHardwareError;
3017 break;
3018 }
3019
3020 return reason;
3021}
3022#endif
3023
3024void
3025NativeProcessLinux::ServeOperation(OperationArgs *args)
3026{
3027 NativeProcessLinux *monitor = args->m_monitor;
3028
3029 // We are finised with the arguments and are ready to go. Sync with the
3030 // parent thread and start serving operations on the inferior.
3031 sem_post(&args->m_semaphore);
3032
3033 for(;;)
3034 {
3035 // wait for next pending operation
3036 if (sem_wait(&monitor->m_operation_pending))
3037 {
3038 if (errno == EINTR)
3039 continue;
3040 assert(false && "Unexpected errno from sem_wait");
3041 }
3042
3043 reinterpret_cast<Operation*>(monitor->m_operation)->Execute(monitor);
3044
3045 // notify calling thread that operation is complete
3046 sem_post(&monitor->m_operation_done);
3047 }
3048}
3049
3050void
3051NativeProcessLinux::DoOperation(void *op)
3052{
3053 Mutex::Locker lock(m_operation_mutex);
3054
3055 m_operation = op;
3056
3057 // notify operation thread that an operation is ready to be processed
3058 sem_post(&m_operation_pending);
3059
3060 // wait for operation to complete
3061 while (sem_wait(&m_operation_done))
3062 {
3063 if (errno == EINTR)
3064 continue;
3065 assert(false && "Unexpected errno from sem_wait");
3066 }
3067}
3068
3069Error
3070NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read)
3071{
3072 ReadOperation op(addr, buf, size, bytes_read);
3073 DoOperation(&op);
3074 return op.GetError ();
3075}
3076
3077Error
3078NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written)
3079{
3080 WriteOperation op(addr, buf, size, bytes_written);
3081 DoOperation(&op);
3082 return op.GetError ();
3083}
3084
3085bool
3086NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name,
3087 uint32_t size, RegisterValue &value)
3088{
3089 bool result;
3090 ReadRegOperation op(tid, offset, reg_name, value, result);
3091 DoOperation(&op);
3092 return result;
3093}
3094
3095bool
3096NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset,
3097 const char* reg_name, const RegisterValue &value)
3098{
3099 bool result;
3100 WriteRegOperation op(tid, offset, reg_name, value, result);
3101 DoOperation(&op);
3102 return result;
3103}
3104
3105bool
3106NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3107{
3108 bool result;
3109 ReadGPROperation op(tid, buf, buf_size, result);
3110 DoOperation(&op);
3111 return result;
3112}
3113
3114bool
3115NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3116{
3117 bool result;
3118 ReadFPROperation op(tid, buf, buf_size, result);
3119 DoOperation(&op);
3120 return result;
3121}
3122
3123bool
3124NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3125{
3126 bool result;
3127 ReadRegisterSetOperation op(tid, buf, buf_size, regset, result);
3128 DoOperation(&op);
3129 return result;
3130}
3131
3132bool
3133NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size)
3134{
3135 bool result;
3136 WriteGPROperation op(tid, buf, buf_size, result);
3137 DoOperation(&op);
3138 return result;
3139}
3140
3141bool
3142NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size)
3143{
3144 bool result;
3145 WriteFPROperation op(tid, buf, buf_size, result);
3146 DoOperation(&op);
3147 return result;
3148}
3149
3150bool
3151NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset)
3152{
3153 bool result;
3154 WriteRegisterSetOperation op(tid, buf, buf_size, regset, result);
3155 DoOperation(&op);
3156 return result;
3157}
3158
3159bool
3160NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
3161{
3162 bool result;
3163 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3164
3165 if (log)
3166 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid,
3167 GetUnixSignals().GetSignalAsCString (signo));
3168 ResumeOperation op (tid, signo, result);
3169 DoOperation (&op);
3170 if (log)
3171 log->Printf ("NativeProcessLinux::%s() resuming result = %s", __FUNCTION__, result ? "true" : "false");
3172 return result;
3173}
3174
3175bool
3176NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
3177{
3178 bool result;
3179 SingleStepOperation op(tid, signo, result);
3180 DoOperation(&op);
3181 return result;
3182}
3183
3184bool
3185NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo, int &ptrace_err)
3186{
3187 bool result;
3188 SiginfoOperation op(tid, siginfo, result, ptrace_err);
3189 DoOperation(&op);
3190 return result;
3191}
3192
3193bool
3194NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
3195{
3196 bool result;
3197 EventMessageOperation op(tid, message, result);
3198 DoOperation(&op);
3199 return result;
3200}
3201
3202lldb_private::Error
3203NativeProcessLinux::Detach(lldb::tid_t tid)
3204{
3205 lldb_private::Error error;
3206 if (tid != LLDB_INVALID_THREAD_ID)
3207 {
3208 DetachOperation op(tid, error);
3209 DoOperation(&op);
3210 }
3211 return error;
3212}
3213
3214bool
3215NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags)
3216{
3217 int target_fd = open(path, flags, 0666);
3218
3219 if (target_fd == -1)
3220 return false;
3221
3222 return (dup2(target_fd, fd) == -1) ? false : true;
3223}
3224
3225void
3226NativeProcessLinux::StopMonitoringChildProcess()
3227{
3228 lldb::thread_result_t thread_result;
3229
3230 if (IS_VALID_LLDB_HOST_THREAD(m_monitor_thread))
3231 {
3232 Host::ThreadCancel(m_monitor_thread, NULL);
3233 Host::ThreadJoin(m_monitor_thread, &thread_result, NULL);
3234 m_monitor_thread = LLDB_INVALID_HOST_THREAD;
3235 }
3236}
3237
3238void
3239NativeProcessLinux::StopMonitor()
3240{
3241 StopMonitoringChildProcess();
3242 StopOpThread();
3243 sem_destroy(&m_operation_pending);
3244 sem_destroy(&m_operation_done);
3245
3246 // TODO: validate whether this still holds, fix up comment.
3247 // Note: ProcessPOSIX passes the m_terminal_fd file descriptor to
3248 // Process::SetSTDIOFileDescriptor, which in turn transfers ownership of
3249 // the descriptor to a ConnectionFileDescriptor object. Consequently
3250 // even though still has the file descriptor, we shouldn't close it here.
3251}
3252
3253void
3254NativeProcessLinux::StopOpThread()
3255{
3256 lldb::thread_result_t result;
3257
3258 if (!IS_VALID_LLDB_HOST_THREAD(m_operation_thread))
3259 return;
3260
3261 Host::ThreadCancel(m_operation_thread, NULL);
3262 Host::ThreadJoin(m_operation_thread, &result, NULL);
3263 m_operation_thread = LLDB_INVALID_HOST_THREAD;
3264}
3265
3266bool
3267NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
3268{
3269 for (auto thread_sp : m_threads)
3270 {
3271 assert (thread_sp && "thread list should not contain NULL threads");
3272 if (thread_sp->GetID () == thread_id)
3273 {
3274 // We have this thread.
3275 return true;
3276 }
3277 }
3278
3279 // We don't have this thread.
3280 return false;
3281}
3282
3283NativeThreadProtocolSP
3284NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
3285{
3286 // CONSIDER organize threads by map - we can do better than linear.
3287 for (auto thread_sp : m_threads)
3288 {
3289 if (thread_sp->GetID () == thread_id)
3290 return thread_sp;
3291 }
3292
3293 // We don't have this thread.
3294 return NativeThreadProtocolSP ();
3295}
3296
3297bool
3298NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
3299{
3300 Mutex::Locker locker (m_threads_mutex);
3301 for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
3302 {
3303 if (*it && ((*it)->GetID () == thread_id))
3304 {
3305 m_threads.erase (it);
3306 return true;
3307 }
3308 }
3309
3310 // Didn't find it.
3311 return false;
3312}
3313
3314NativeThreadProtocolSP
3315NativeProcessLinux::AddThread (lldb::tid_t thread_id)
3316{
3317 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3318
3319 Mutex::Locker locker (m_threads_mutex);
3320
3321 if (log)
3322 {
3323 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
3324 __FUNCTION__,
3325 GetID (),
3326 thread_id);
3327 }
3328
3329 assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
3330
3331 // If this is the first thread, save it as the current thread
3332 if (m_threads.empty ())
3333 SetCurrentThreadID (thread_id);
3334
3335 NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
3336 m_threads.push_back (thread_sp);
3337
3338 return thread_sp;
3339}
3340
3341NativeThreadProtocolSP
3342NativeProcessLinux::GetOrCreateThread (lldb::tid_t thread_id, bool &created)
3343{
3344 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3345
3346 Mutex::Locker locker (m_threads_mutex);
3347 if (log)
3348 {
3349 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " get/create thread with tid %" PRIu64,
3350 __FUNCTION__,
3351 GetID (),
3352 thread_id);
3353 }
3354
3355 // Retrieve the thread if it is already getting tracked.
3356 NativeThreadProtocolSP thread_sp = MaybeGetThreadNoLock (thread_id);
3357 if (thread_sp)
3358 {
3359 if (log)
3360 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread already tracked, returning",
3361 __FUNCTION__,
3362 GetID (),
3363 thread_id);
3364 created = false;
3365 return thread_sp;
3366
3367 }
3368
3369 // Create the thread metadata since it isn't being tracked.
3370 if (log)
3371 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread didn't exist, tracking now",
3372 __FUNCTION__,
3373 GetID (),
3374 thread_id);
3375
3376 thread_sp.reset (new NativeThreadLinux (this, thread_id));
3377 m_threads.push_back (thread_sp);
3378 created = true;
3379
3380 return thread_sp;
3381}
3382
3383Error
3384NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
3385{
3386 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3387
3388 Error error;
3389
3390 // Get a linux thread pointer.
3391 if (!thread_sp)
3392 {
3393 error.SetErrorString ("null thread_sp");
3394 if (log)
3395 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3396 return error;
3397 }
3398 NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get());
3399
3400 // Find out the size of a breakpoint (might depend on where we are in the code).
3401 NativeRegisterContextSP context_sp = linux_thread_p->GetRegisterContext ();
3402 if (!context_sp)
3403 {
3404 error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
3405 if (log)
3406 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3407 return error;
3408 }
3409
3410 uint32_t breakpoint_size = 0;
3411 error = GetSoftwareBreakpointSize (context_sp, breakpoint_size);
3412 if (error.Fail ())
3413 {
3414 if (log)
3415 log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
3416 return error;
3417 }
3418 else
3419 {
3420 if (log)
3421 log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
3422 }
3423
3424 // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
3425 const lldb::addr_t initial_pc_addr = context_sp->GetPC ();
3426 lldb::addr_t breakpoint_addr = initial_pc_addr;
3427 if (breakpoint_size > static_cast<lldb::addr_t> (0))
3428 {
3429 // Do not allow breakpoint probe to wrap around.
3430 if (breakpoint_addr >= static_cast<lldb::addr_t> (breakpoint_size))
3431 breakpoint_addr -= static_cast<lldb::addr_t> (breakpoint_size);
3432 }
3433
3434 // Check if we stopped because of a breakpoint.
3435 NativeBreakpointSP breakpoint_sp;
3436 error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
3437 if (!error.Success () || !breakpoint_sp)
3438 {
3439 // We didn't find one at a software probe location. Nothing to do.
3440 if (log)
3441 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
3442 return Error ();
3443 }
3444
3445 // If the breakpoint is not a software breakpoint, nothing to do.
3446 if (!breakpoint_sp->IsSoftwareBreakpoint ())
3447 {
3448 if (log)
3449 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
3450 return Error ();
3451 }
3452
3453 //
3454 // We have a software breakpoint and need to adjust the PC.
3455 //
3456
3457 // Sanity check.
3458 if (breakpoint_size == 0)
3459 {
3460 // Nothing to do! How did we get here?
3461 if (log)
3462 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
3463 return Error ();
3464 }
3465
3466 // Change the program counter.
3467 if (log)
3468 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_p->GetID (), initial_pc_addr, breakpoint_addr);
3469
3470 error = context_sp->SetPC (breakpoint_addr);
3471 if (error.Fail ())
3472 {
3473 if (log)
3474 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_p->GetID (), error.AsCString ());
3475 return error;
3476 }
3477
3478 return error;
3479}