blob: 5b72fea34ca9f3b0cdd69b96b76610a063e66019 [file] [log] [blame]
Krzysztof Parzyszek7c9c0582017-10-13 19:02:59 +00001//===- HexagonConstExtenders.cpp ------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "HexagonInstrInfo.h"
11#include "HexagonRegisterInfo.h"
12#include "HexagonSubtarget.h"
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/CodeGen/MachineDominators.h"
15#include "llvm/CodeGen/MachineFunctionPass.h"
16#include "llvm/CodeGen/MachineInstrBuilder.h"
17#include "llvm/CodeGen/MachineRegisterInfo.h"
18#include "llvm/Support/CommandLine.h"
19#include "llvm/Support/raw_ostream.h"
20#include "llvm/Pass.h"
21#include <map>
22#include <set>
23#include <utility>
24#include <vector>
25
26#define DEBUG_TYPE "hexagon-cext-opt"
27
28using namespace llvm;
29
30static cl::opt<unsigned> CountThreshold("hexagon-cext-threshold",
31 cl::init(3), cl::Hidden, cl::ZeroOrMore,
32 cl::desc("Minimum number of extenders to trigger replacement"));
33
34static cl::opt<unsigned> ReplaceLimit("hexagon-cext-limit", cl::init(0),
35 cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum number of replacements"));
36
37namespace llvm {
38 void initializeHexagonConstExtendersPass(PassRegistry&);
39 FunctionPass *createHexagonConstExtenders();
40}
41
42namespace {
43 struct OffsetRange {
44 int32_t Min = INT_MIN, Max = INT_MAX;
45 uint8_t Align = 1;
46
47 OffsetRange() = default;
48 OffsetRange(int32_t L, int32_t H, uint8_t A)
49 : Min(L), Max(H), Align(A) {}
50 OffsetRange &intersect(OffsetRange A) {
51 Align = std::max(Align, A.Align);
52 Min = std::max(Min, A.Min);
53 Max = std::min(Max, A.Max);
54 // Canonicalize empty ranges.
55 if (Min > Max)
56 std::tie(Min, Max, Align) = std::make_tuple(0, -1, 1);
57 return *this;
58 }
59 OffsetRange &shift(int32_t S) {
60 assert(alignTo(std::abs(S), Align) == uint64_t(std::abs(S)));
61 Min += S;
62 Max += S;
63 return *this;
64 }
65 OffsetRange &extendBy(int32_t D) {
66 // If D < 0, extend Min, otherwise extend Max.
67 if (D < 0)
68 Min = (INT_MIN-D < Min) ? Min+D : INT_MIN;
69 else
70 Max = (INT_MAX-D > Max) ? Max+D : INT_MAX;
71 return *this;
72 }
73 bool empty() const {
74 return Min > Max;
75 }
76 bool contains(int32_t V) const {
77 return Min <= V && V <= Max && (V % Align) == 0;
78 }
79 bool operator==(const OffsetRange &R) const {
80 return Min == R.Min && Max == R.Max && Align == R.Align;
81 }
82 bool operator!=(const OffsetRange &R) const {
83 return !operator==(R);
84 }
85 bool operator<(const OffsetRange &R) const {
86 if (Min != R.Min)
87 return Min < R.Min;
88 if (Max != R.Max)
89 return Max < R.Max;
90 return Align < R.Align;
91 }
92 static OffsetRange zero() { return {0, 0, 1}; }
93 };
94
95 struct RangeTree {
96 struct Node {
97 Node(const OffsetRange &R) : MaxEnd(R.Max), Range(R) {}
98 unsigned Height = 1;
99 unsigned Count = 1;
100 int32_t MaxEnd;
101 const OffsetRange &Range;
102 Node *Left = nullptr, *Right = nullptr;
103 };
104
105 Node *Root = nullptr;
106
107 void add(const OffsetRange &R) {
108 Root = add(Root, R);
109 }
110 void erase(const Node *N) {
111 Root = remove(Root, N);
112 delete N;
113 }
114 void order(SmallVectorImpl<Node*> &Seq) const {
115 order(Root, Seq);
116 }
117 SmallVector<Node*,8> nodesWith(int32_t P, bool CheckAlign = true) {
118 SmallVector<Node*,8> Nodes;
119 nodesWith(Root, P, CheckAlign, Nodes);
120 return Nodes;
121 }
122 void dump() const;
123 ~RangeTree() {
124 SmallVector<Node*,8> Nodes;
125 order(Nodes);
126 for (Node *N : Nodes)
127 delete N;
128 }
129
130 private:
131 void dump(const Node *N) const;
132 void order(Node *N, SmallVectorImpl<Node*> &Seq) const;
133 void nodesWith(Node *N, int32_t P, bool CheckA,
134 SmallVectorImpl<Node*> &Seq) const;
135
136 Node *add(Node *N, const OffsetRange &R);
137 Node *remove(Node *N, const Node *D);
138 Node *rotateLeft(Node *Lower, Node *Higher);
139 Node *rotateRight(Node *Lower, Node *Higher);
140 unsigned height(Node *N) {
141 return N != nullptr ? N->Height : 0;
142 }
143 Node *update(Node *N) {
144 assert(N != nullptr);
145 N->Height = 1 + std::max(height(N->Left), height(N->Right));
146 if (N->Left)
147 N->MaxEnd = std::max(N->MaxEnd, N->Left->MaxEnd);
148 if (N->Right)
149 N->MaxEnd = std::max(N->MaxEnd, N->Right->MaxEnd);
150 return N;
151 }
152 Node *rebalance(Node *N) {
153 assert(N != nullptr);
154 int32_t Balance = height(N->Right) - height(N->Left);
155 if (Balance < -1)
156 return rotateRight(N->Left, N);
157 if (Balance > 1)
158 return rotateLeft(N->Right, N);
159 return N;
160 }
161 };
162
163 struct Loc {
164 MachineBasicBlock *Block = nullptr;
165 MachineBasicBlock::iterator At;
166
167 Loc(MachineBasicBlock *B, MachineBasicBlock::iterator It)
168 : Block(B), At(It) {
169 if (B->end() == It) {
170 Pos = -1;
171 } else {
172 assert(It->getParent() == B);
173 Pos = std::distance(B->begin(), It);
174 }
175 }
176 bool operator<(Loc A) const {
177 if (Block != A.Block)
178 return Block->getNumber() < A.Block->getNumber();
179 if (A.Pos == -1)
180 return Pos != A.Pos;
181 return Pos != -1 && Pos < A.Pos;
182 }
183 private:
184 int Pos = 0;
185 };
186
187 struct HexagonConstExtenders : public MachineFunctionPass {
188 static char ID;
189 HexagonConstExtenders() : MachineFunctionPass(ID) {}
190
191 void getAnalysisUsage(AnalysisUsage &AU) const override {
192 AU.addRequired<MachineDominatorTree>();
193 AU.addPreserved<MachineDominatorTree>();
194 MachineFunctionPass::getAnalysisUsage(AU);
195 }
196
197 StringRef getPassName() const override {
198 return "Hexagon constant-extender optimization";
199 }
200 bool runOnMachineFunction(MachineFunction &MF) override;
201
202 private:
203 struct Register {
204 Register() = default;
205 Register(unsigned R, unsigned S) : Reg(R), Sub(S) {}
206 Register(const MachineOperand &Op)
207 : Reg(Op.getReg()), Sub(Op.getSubReg()) {}
208 Register &operator=(const MachineOperand &Op) {
209 if (Op.isReg()) {
210 Reg = Op.getReg();
211 Sub = Op.getSubReg();
212 } else if (Op.isFI()) {
213 Reg = TargetRegisterInfo::index2StackSlot(Op.getIndex());
214 }
215 return *this;
216 }
217 bool isVReg() const {
218 return Reg != 0 && !TargetRegisterInfo::isStackSlot(Reg) &&
219 TargetRegisterInfo::isVirtualRegister(Reg);
220 }
221 bool isSlot() const {
222 return Reg != 0 && TargetRegisterInfo::isStackSlot(Reg);
223 }
224 operator MachineOperand() const {
225 if (isVReg())
226 return MachineOperand::CreateReg(Reg, /*Def*/false, /*Imp*/false,
227 /*Kill*/false, /*Dead*/false, /*Undef*/false,
228 /*EarlyClobber*/false, Sub);
229 if (TargetRegisterInfo::isStackSlot(Reg)) {
230 int FI = TargetRegisterInfo::stackSlot2Index(Reg);
231 return MachineOperand::CreateFI(FI);
232 }
233 llvm_unreachable("Cannot create MachineOperand");
234 }
235 bool operator==(Register R) const { return Reg == R.Reg && Sub == R.Sub; }
236 bool operator!=(Register R) const { return !operator==(R); }
237 bool operator<(Register R) const {
238 // For std::map.
239 return Reg < R.Reg || (Reg == R.Reg && Sub < R.Sub);
240 }
241 unsigned Reg = 0, Sub = 0;
242 };
243
244 struct ExtExpr {
245 // A subexpression in which the extender is used. In general, this
246 // represents an expression where adding D to the extender will be
247 // equivalent to adding D to the expression as a whole. In other
248 // words, expr(add(##V,D) = add(expr(##V),D).
249
250 // The original motivation for this are the io/ur addressing modes,
251 // where the offset is extended. Consider the io example:
252 // In memw(Rs+##V), the ##V could be replaced by a register Rt to
253 // form the rr mode: memw(Rt+Rs<<0). In such case, however, the
254 // register Rt must have exactly the value of ##V. If there was
255 // another instruction memw(Rs+##V+4), it would need a different Rt.
256 // Now, if Rt was initialized as "##V+Rs<<0", both of these
257 // instructions could use the same Rt, just with different offsets.
258 // Here it's clear that "initializer+4" should be the same as if
259 // the offset 4 was added to the ##V in the initializer.
260
261 // The only kinds of expressions that support the requirement of
262 // commuting with addition are addition and subtraction from ##V.
263 // Include shifting the Rs to account for the ur addressing mode:
264 // ##Val + Rs << S
265 // ##Val - Rs
266 Register Rs;
267 unsigned S = 0;
268 bool Neg = false;
269
270 ExtExpr() = default;
271 ExtExpr(Register RS, bool NG, unsigned SH) : Rs(RS), S(SH), Neg(NG) {}
272 // Expression is trivial if it does not modify the extender.
273 bool trivial() const {
274 return Rs.Reg == 0;
275 }
276 bool operator==(const ExtExpr &Ex) const {
277 return Rs == Ex.Rs && S == Ex.S && Neg == Ex.Neg;
278 }
279 bool operator!=(const ExtExpr &Ex) const {
280 return !operator==(Ex);
281 }
282 bool operator<(const ExtExpr &Ex) const {
283 if (Rs != Ex.Rs)
284 return Rs < Ex.Rs;
285 if (S != Ex.S)
286 return S < Ex.S;
287 return !Neg && Ex.Neg;
288 }
289 };
290
291 struct ExtDesc {
292 MachineInstr *UseMI = nullptr;
293 unsigned OpNum = -1u;
294 // The subexpression in which the extender is used (e.g. address
295 // computation).
296 ExtExpr Expr;
297 // Optional register that is assigned the value of Expr.
298 Register Rd;
299 // Def means that the output of the instruction may differ from the
300 // original by a constant c, and that the difference can be corrected
301 // by adding/subtracting c in all users of the defined register.
302 bool IsDef = false;
303
304 MachineOperand &getOp() {
305 return UseMI->getOperand(OpNum);
306 }
307 const MachineOperand &getOp() const {
308 return UseMI->getOperand(OpNum);
309 }
310 };
311
312 struct ExtRoot {
313 union {
314 const ConstantFP *CFP; // MO_FPImmediate
315 const char *SymbolName; // MO_ExternalSymbol
316 const GlobalValue *GV; // MO_GlobalAddress
317 const BlockAddress *BA; // MO_BlockAddress
318 int64_t ImmVal; // MO_Immediate, MO_TargetIndex,
319 // and MO_ConstantPoolIndex
320 } V;
321 unsigned Kind; // Same as in MachineOperand.
322 unsigned char TF; // TargetFlags.
323
324 ExtRoot(const MachineOperand &Op);
325 bool operator==(const ExtRoot &ER) const {
326 return Kind == ER.Kind && V.ImmVal == ER.V.ImmVal;
327 }
328 bool operator!=(const ExtRoot &ER) const {
329 return !operator==(ER);
330 }
331 bool operator<(const ExtRoot &ER) const;
332 };
333
334 struct ExtValue : public ExtRoot {
335 int32_t Offset;
336
337 ExtValue(const MachineOperand &Op);
338 ExtValue(const ExtDesc &ED) : ExtValue(ED.getOp()) {}
339 ExtValue(const ExtRoot &ER, int32_t Off) : ExtRoot(ER), Offset(Off) {}
340 bool operator<(const ExtValue &EV) const;
341 bool operator==(const ExtValue &EV) const {
342 return ExtRoot(*this) == ExtRoot(EV) && Offset == EV.Offset;
343 }
344 bool operator!=(const ExtValue &EV) const {
345 return !operator==(EV);
346 }
347 explicit operator MachineOperand() const;
348 };
349
350 using IndexList = SetVector<unsigned>;
351 using ExtenderInit = std::pair<ExtValue, ExtExpr>;
352 using AssignmentMap = std::map<ExtenderInit, IndexList>;
353 using LocDefMap = std::map<Loc, IndexList>;
354
355 const HexagonInstrInfo *HII = nullptr;
356 const HexagonRegisterInfo *HRI = nullptr;
357 MachineDominatorTree *MDT = nullptr;
358 MachineRegisterInfo *MRI = nullptr;
359 std::vector<ExtDesc> Extenders;
360 std::vector<unsigned> NewRegs;
361
362 bool isStoreImmediate(unsigned Opc) const;
363 bool isRegOffOpcode(unsigned ExtOpc) const ;
364 unsigned getRegOffOpcode(unsigned ExtOpc) const;
365 unsigned getDirectRegReplacement(unsigned ExtOpc) const;
366 OffsetRange getOffsetRange(Register R, const MachineInstr &MI) const;
367 OffsetRange getOffsetRange(const ExtDesc &ED) const;
368 OffsetRange getOffsetRange(Register Rd) const;
369
370 void recordExtender(MachineInstr &MI, unsigned OpNum);
371 void collectInstr(MachineInstr &MI);
372 void collect(MachineFunction &MF);
373 void assignInits(const ExtRoot &ER, unsigned Begin, unsigned End,
374 AssignmentMap &IMap);
375 void calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs,
376 LocDefMap &Defs);
377 Register insertInitializer(Loc DefL, const ExtenderInit &ExtI);
378 bool replaceInstrExact(const ExtDesc &ED, Register ExtR);
379 bool replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI,
380 Register ExtR, int32_t &Diff);
381 bool replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI);
382 bool replaceExtenders(const AssignmentMap &IMap);
383
384 unsigned getOperandIndex(const MachineInstr &MI,
385 const MachineOperand &Op) const;
386 const MachineOperand &getPredicateOp(const MachineInstr &MI) const;
387 const MachineOperand &getLoadResultOp(const MachineInstr &MI) const;
388 const MachineOperand &getStoredValueOp(const MachineInstr &MI) const;
389
390 friend struct PrintRegister;
391 friend struct PrintExpr;
392 friend struct PrintInit;
393 friend struct PrintIMap;
394 friend raw_ostream &operator<< (raw_ostream &OS,
395 const struct PrintRegister &P);
396 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintExpr &P);
397 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintInit &P);
398 friend raw_ostream &operator<< (raw_ostream &OS, const ExtDesc &ED);
399 friend raw_ostream &operator<< (raw_ostream &OS, const ExtRoot &ER);
400 friend raw_ostream &operator<< (raw_ostream &OS, const ExtValue &EV);
401 friend raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR);
402 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintIMap &P);
403 };
404
405 using HCE = HexagonConstExtenders;
406
Krzysztof Parzyszek74671192017-10-16 00:29:47 +0000407 LLVM_ATTRIBUTE_UNUSED
Krzysztof Parzyszek7c9c0582017-10-13 19:02:59 +0000408 raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR) {
409 if (OR.Min > OR.Max)
410 OS << '!';
411 OS << '[' << OR.Min << ',' << OR.Max << "]a" << unsigned(OR.Align);
412 return OS;
413 }
414
415 struct PrintRegister {
416 PrintRegister(HCE::Register R, const HexagonRegisterInfo &I)
417 : Rs(R), HRI(I) {}
418 HCE::Register Rs;
419 const HexagonRegisterInfo &HRI;
420 };
421
Krzysztof Parzyszek74671192017-10-16 00:29:47 +0000422 LLVM_ATTRIBUTE_UNUSED
Krzysztof Parzyszek7c9c0582017-10-13 19:02:59 +0000423 raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &P) {
424 if (P.Rs.Reg != 0)
425 OS << PrintReg(P.Rs.Reg, &P.HRI, P.Rs.Sub);
426 else
427 OS << "noreg";
428 return OS;
429 }
430
431 struct PrintExpr {
432 PrintExpr(const HCE::ExtExpr &E, const HexagonRegisterInfo &I)
433 : Ex(E), HRI(I) {}
434 const HCE::ExtExpr &Ex;
435 const HexagonRegisterInfo &HRI;
436 };
437
Krzysztof Parzyszek74671192017-10-16 00:29:47 +0000438 LLVM_ATTRIBUTE_UNUSED
Krzysztof Parzyszek7c9c0582017-10-13 19:02:59 +0000439 raw_ostream &operator<< (raw_ostream &OS, const PrintExpr &P) {
440 OS << "## " << (P.Ex.Neg ? "- " : "+ ");
441 if (P.Ex.Rs.Reg != 0)
442 OS << PrintReg(P.Ex.Rs.Reg, &P.HRI, P.Ex.Rs.Sub);
443 else
444 OS << "__";
445 OS << " << " << P.Ex.S;
446 return OS;
447 }
448
449 struct PrintInit {
450 PrintInit(const HCE::ExtenderInit &EI, const HexagonRegisterInfo &I)
451 : ExtI(EI), HRI(I) {}
452 const HCE::ExtenderInit &ExtI;
453 const HexagonRegisterInfo &HRI;
454 };
455
Krzysztof Parzyszek74671192017-10-16 00:29:47 +0000456 LLVM_ATTRIBUTE_UNUSED
Krzysztof Parzyszek7c9c0582017-10-13 19:02:59 +0000457 raw_ostream &operator<< (raw_ostream &OS, const PrintInit &P) {
458 OS << '[' << P.ExtI.first << ", "
459 << PrintExpr(P.ExtI.second, P.HRI) << ']';
460 return OS;
461 }
462
Krzysztof Parzyszek74671192017-10-16 00:29:47 +0000463 LLVM_ATTRIBUTE_UNUSED
Krzysztof Parzyszek7c9c0582017-10-13 19:02:59 +0000464 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtDesc &ED) {
465 assert(ED.OpNum != -1u);
466 const MachineBasicBlock &MBB = *ED.getOp().getParent()->getParent();
467 const MachineFunction &MF = *MBB.getParent();
468 const auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
469 OS << "bb#" << MBB.getNumber() << ": ";
470 if (ED.Rd.Reg != 0)
471 OS << PrintReg(ED.Rd.Reg, &HRI, ED.Rd.Sub);
472 else
473 OS << "__";
474 OS << " = " << PrintExpr(ED.Expr, HRI);
475 if (ED.IsDef)
476 OS << ", def";
477 return OS;
478 }
479
Krzysztof Parzyszek74671192017-10-16 00:29:47 +0000480 LLVM_ATTRIBUTE_UNUSED
Krzysztof Parzyszek7c9c0582017-10-13 19:02:59 +0000481 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtRoot &ER) {
482 switch (ER.Kind) {
483 case MachineOperand::MO_Immediate:
484 OS << "imm:" << ER.V.ImmVal;
485 break;
486 case MachineOperand::MO_FPImmediate:
487 OS << "fpi:" << *ER.V.CFP;
488 break;
489 case MachineOperand::MO_ExternalSymbol:
490 OS << "sym:" << *ER.V.SymbolName;
491 break;
492 case MachineOperand::MO_GlobalAddress:
493 OS << "gad:" << ER.V.GV->getName();
494 break;
495 case MachineOperand::MO_BlockAddress:
496 OS << "blk:" << *ER.V.BA;
497 break;
498 case MachineOperand::MO_TargetIndex:
499 OS << "tgi:" << ER.V.ImmVal;
500 break;
501 case MachineOperand::MO_ConstantPoolIndex:
502 OS << "cpi:" << ER.V.ImmVal;
503 break;
504 case MachineOperand::MO_JumpTableIndex:
505 OS << "jti:" << ER.V.ImmVal;
506 break;
507 default:
508 OS << "???:" << ER.V.ImmVal;
509 break;
510 }
511 return OS;
512 }
513
Krzysztof Parzyszek74671192017-10-16 00:29:47 +0000514 LLVM_ATTRIBUTE_UNUSED
Krzysztof Parzyszek7c9c0582017-10-13 19:02:59 +0000515 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtValue &EV) {
516 OS << HCE::ExtRoot(EV) << " off:" << EV.Offset;
517 return OS;
518 }
519
520 struct PrintIMap {
521 PrintIMap(const HCE::AssignmentMap &M, const HexagonRegisterInfo &I)
522 : IMap(M), HRI(I) {}
523 const HCE::AssignmentMap &IMap;
524 const HexagonRegisterInfo &HRI;
525 };
526
Krzysztof Parzyszek74671192017-10-16 00:29:47 +0000527 LLVM_ATTRIBUTE_UNUSED
Krzysztof Parzyszek7c9c0582017-10-13 19:02:59 +0000528 raw_ostream &operator<< (raw_ostream &OS, const PrintIMap &P) {
529 OS << "{\n";
530 for (const std::pair<HCE::ExtenderInit,HCE::IndexList> &Q : P.IMap) {
531 OS << " " << PrintInit(Q.first, P.HRI) << " -> {";
532 for (unsigned I : Q.second)
533 OS << ' ' << I;
534 OS << " }\n";
535 }
536 OS << "}\n";
537 return OS;
538 }
539}
540
541INITIALIZE_PASS_BEGIN(HexagonConstExtenders, "hexagon-cext-opt",
542 "Hexagon constant-extender optimization", false, false)
543INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
544INITIALIZE_PASS_END(HexagonConstExtenders, "hexagon-cext-opt",
545 "Hexagon constant-extender optimization", false, false)
546
547static unsigned ReplaceCounter = 0;
548
549char HCE::ID = 0;
550
Davide Italiano76067582017-10-14 23:46:01 +0000551LLVM_DUMP_METHOD void RangeTree::dump() const {
Krzysztof Parzyszek7c9c0582017-10-13 19:02:59 +0000552 dbgs() << "Root: " << Root << '\n';
553 if (Root)
554 dump(Root);
555}
556
557void RangeTree::dump(const Node *N) const {
558 dbgs() << "Node: " << N << '\n';
559 dbgs() << " Height: " << N->Height << '\n';
560 dbgs() << " Count: " << N->Count << '\n';
561 dbgs() << " MaxEnd: " << N->MaxEnd << '\n';
562 dbgs() << " Range: " << N->Range << '\n';
563 dbgs() << " Left: " << N->Left << '\n';
564 dbgs() << " Right: " << N->Right << "\n\n";
565
566 if (N->Left)
567 dump(N->Left);
568 if (N->Right)
569 dump(N->Right);
570}
571
572void RangeTree::order(Node *N, SmallVectorImpl<Node*> &Seq) const {
573 if (N == nullptr)
574 return;
575 order(N->Left, Seq);
576 Seq.push_back(N);
577 order(N->Right, Seq);
578}
579
580void RangeTree::nodesWith(Node *N, int32_t P, bool CheckA,
581 SmallVectorImpl<Node*> &Seq) const {
582 if (N == nullptr || N->MaxEnd < P)
583 return;
584 nodesWith(N->Left, P, CheckA, Seq);
585 if (N->Range.Min <= P) {
586 if ((CheckA && N->Range.contains(P)) || (!CheckA && P <= N->Range.Max))
587 Seq.push_back(N);
588 nodesWith(N->Right, P, CheckA, Seq);
589 }
590}
591
592RangeTree::Node *RangeTree::add(Node *N, const OffsetRange &R) {
593 if (N == nullptr)
594 return new Node(R);
595
596 if (N->Range == R) {
597 N->Count++;
598 return N;
599 }
600
601 if (R < N->Range)
602 N->Left = add(N->Left, R);
603 else
604 N->Right = add(N->Right, R);
605 return rebalance(update(N));
606}
607
608RangeTree::Node *RangeTree::remove(Node *N, const Node *D) {
609 assert(N != nullptr);
610
611 if (N != D) {
612 assert(N->Range != D->Range && "N and D should not be equal");
613 if (D->Range < N->Range)
614 N->Left = remove(N->Left, D);
615 else
616 N->Right = remove(N->Right, D);
617 return rebalance(update(N));
618 }
619
620 // We got to the node we need to remove. If any of its children are
621 // missing, simply replace it with the other child.
622 if (N->Left == nullptr || N->Right == nullptr)
623 return (N->Left == nullptr) ? N->Right : N->Left;
624
625 // Find the rightmost child of N->Left, remove it and plug it in place
626 // of N.
627 Node *M = N->Left;
628 while (M->Right)
629 M = M->Right;
630 M->Left = remove(N->Left, M);
631 M->Right = N->Right;
632 return rebalance(update(M));
633}
634
635RangeTree::Node *RangeTree::rotateLeft(Node *Lower, Node *Higher) {
636 assert(Higher->Right == Lower);
637 // The Lower node is on the right from Higher. Make sure that Lower's
638 // balance is greater to the right. Otherwise the rotation will create
639 // an unbalanced tree again.
640 if (height(Lower->Left) > height(Lower->Right))
641 Lower = rotateRight(Lower->Left, Lower);
642 assert(height(Lower->Left) <= height(Lower->Right));
643 Higher->Right = Lower->Left;
644 update(Higher);
645 Lower->Left = Higher;
646 update(Lower);
647 return Lower;
648}
649
650RangeTree::Node *RangeTree::rotateRight(Node *Lower, Node *Higher) {
651 assert(Higher->Left == Lower);
652 // The Lower node is on the left from Higher. Make sure that Lower's
653 // balance is greater to the left. Otherwise the rotation will create
654 // an unbalanced tree again.
655 if (height(Lower->Left) < height(Lower->Right))
656 Lower = rotateLeft(Lower->Right, Lower);
657 assert(height(Lower->Left) >= height(Lower->Right));
658 Higher->Left = Lower->Right;
659 update(Higher);
660 Lower->Right = Higher;
661 update(Lower);
662 return Lower;
663}
664
665
666HCE::ExtRoot::ExtRoot(const MachineOperand &Op) {
667 // Always store ImmVal, since it's the field used for comparisons.
668 V.ImmVal = 0;
669 if (Op.isImm())
670 ; // Keep 0. Do not use Op.getImm() for value here (treat 0 as the root).
671 else if (Op.isFPImm())
672 V.CFP = Op.getFPImm();
673 else if (Op.isSymbol())
674 V.SymbolName = Op.getSymbolName();
675 else if (Op.isGlobal())
676 V.GV = Op.getGlobal();
677 else if (Op.isBlockAddress())
678 V.BA = Op.getBlockAddress();
679 else if (Op.isCPI() || Op.isTargetIndex() || Op.isJTI())
680 V.ImmVal = Op.getIndex();
681 else
682 llvm_unreachable("Unexpected operand type");
683
684 Kind = Op.getType();
685 TF = Op.getTargetFlags();
686}
687
688bool HCE::ExtRoot::operator< (const HCE::ExtRoot &ER) const {
689 if (Kind != ER.Kind)
690 return Kind < ER.Kind;
691 switch (Kind) {
692 case MachineOperand::MO_Immediate:
693 case MachineOperand::MO_TargetIndex:
694 case MachineOperand::MO_ConstantPoolIndex:
695 case MachineOperand::MO_JumpTableIndex:
696 return V.ImmVal < ER.V.ImmVal;
697 case MachineOperand::MO_FPImmediate: {
698 const APFloat &ThisF = V.CFP->getValueAPF();
699 const APFloat &OtherF = ER.V.CFP->getValueAPF();
700 return ThisF.bitcastToAPInt().ult(OtherF.bitcastToAPInt());
701 }
702 case MachineOperand::MO_ExternalSymbol:
703 return StringRef(V.SymbolName) < StringRef(ER.V.SymbolName);
704 case MachineOperand::MO_GlobalAddress:
705 assert(V.GV->hasName() && ER.V.GV->hasName());
706 return V.GV->getName() < ER.V.GV->getName();
707 case MachineOperand::MO_BlockAddress: {
708 const BasicBlock *ThisB = V.BA->getBasicBlock();
709 const BasicBlock *OtherB = ER.V.BA->getBasicBlock();
710 assert(ThisB->getParent() == OtherB->getParent());
711 const Function &F = *ThisB->getParent();
712 return std::distance(F.begin(), ThisB->getIterator()) <
713 std::distance(F.begin(), OtherB->getIterator());
714 }
715 }
716 return V.ImmVal < ER.V.ImmVal;
717}
718
719HCE::ExtValue::ExtValue(const MachineOperand &Op) : ExtRoot(Op) {
720 if (Op.isImm())
721 Offset = Op.getImm();
722 else if (Op.isFPImm() || Op.isJTI())
723 Offset = 0;
724 else if (Op.isSymbol() || Op.isGlobal() || Op.isBlockAddress() ||
725 Op.isCPI() || Op.isTargetIndex())
726 Offset = Op.getOffset();
727 else
728 llvm_unreachable("Unexpected operand type");
729}
730
731bool HCE::ExtValue::operator< (const HCE::ExtValue &EV) const {
732 const ExtRoot &ER = *this;
733 if (!(ER == ExtRoot(EV)))
734 return ER < EV;
735 return Offset < EV.Offset;
736}
737
738HCE::ExtValue::operator MachineOperand() const {
739 switch (Kind) {
740 case MachineOperand::MO_Immediate:
741 return MachineOperand::CreateImm(V.ImmVal + Offset);
742 case MachineOperand::MO_FPImmediate:
743 assert(Offset == 0);
744 return MachineOperand::CreateFPImm(V.CFP);
745 case MachineOperand::MO_ExternalSymbol:
746 assert(Offset == 0);
747 return MachineOperand::CreateES(V.SymbolName, TF);
748 case MachineOperand::MO_GlobalAddress:
749 return MachineOperand::CreateGA(V.GV, Offset, TF);
750 case MachineOperand::MO_BlockAddress:
751 return MachineOperand::CreateBA(V.BA, Offset, TF);
752 case MachineOperand::MO_TargetIndex:
753 return MachineOperand::CreateTargetIndex(V.ImmVal, Offset, TF);
754 case MachineOperand::MO_ConstantPoolIndex:
755 return MachineOperand::CreateCPI(V.ImmVal, Offset, TF);
756 case MachineOperand::MO_JumpTableIndex:
757 assert(Offset == 0);
758 default:
759 llvm_unreachable("Unhandled kind");
760 }
761}
762
763bool HCE::isStoreImmediate(unsigned Opc) const {
764 switch (Opc) {
765 case Hexagon::S4_storeirbt_io:
766 case Hexagon::S4_storeirbf_io:
767 case Hexagon::S4_storeirht_io:
768 case Hexagon::S4_storeirhf_io:
769 case Hexagon::S4_storeirit_io:
770 case Hexagon::S4_storeirif_io:
771 case Hexagon::S4_storeirb_io:
772 case Hexagon::S4_storeirh_io:
773 case Hexagon::S4_storeiri_io:
774 return true;
775 default:
776 break;
777 }
778 return false;
779}
780
781bool HCE::isRegOffOpcode(unsigned Opc) const {
782 switch (Opc) {
783 case Hexagon::L2_loadrub_io:
784 case Hexagon::L2_loadrb_io:
785 case Hexagon::L2_loadruh_io:
786 case Hexagon::L2_loadrh_io:
787 case Hexagon::L2_loadri_io:
788 case Hexagon::L2_loadrd_io:
789 case Hexagon::L2_loadbzw2_io:
790 case Hexagon::L2_loadbzw4_io:
791 case Hexagon::L2_loadbsw2_io:
792 case Hexagon::L2_loadbsw4_io:
793 case Hexagon::L2_loadalignh_io:
794 case Hexagon::L2_loadalignb_io:
795 case Hexagon::L2_ploadrubt_io:
796 case Hexagon::L2_ploadrubf_io:
797 case Hexagon::L2_ploadrbt_io:
798 case Hexagon::L2_ploadrbf_io:
799 case Hexagon::L2_ploadruht_io:
800 case Hexagon::L2_ploadruhf_io:
801 case Hexagon::L2_ploadrht_io:
802 case Hexagon::L2_ploadrhf_io:
803 case Hexagon::L2_ploadrit_io:
804 case Hexagon::L2_ploadrif_io:
805 case Hexagon::L2_ploadrdt_io:
806 case Hexagon::L2_ploadrdf_io:
807 case Hexagon::S2_storerb_io:
808 case Hexagon::S2_storerh_io:
809 case Hexagon::S2_storerf_io:
810 case Hexagon::S2_storeri_io:
811 case Hexagon::S2_storerd_io:
812 case Hexagon::S2_pstorerbt_io:
813 case Hexagon::S2_pstorerbf_io:
814 case Hexagon::S2_pstorerht_io:
815 case Hexagon::S2_pstorerhf_io:
816 case Hexagon::S2_pstorerft_io:
817 case Hexagon::S2_pstorerff_io:
818 case Hexagon::S2_pstorerit_io:
819 case Hexagon::S2_pstorerif_io:
820 case Hexagon::S2_pstorerdt_io:
821 case Hexagon::S2_pstorerdf_io:
822 case Hexagon::A2_addi:
823 return true;
824 default:
825 break;
826 }
827 return false;
828}
829
830unsigned HCE::getRegOffOpcode(unsigned ExtOpc) const {
831 // If there exists an instruction that takes a register and offset,
832 // that corresponds to the ExtOpc, return it, otherwise return 0.
833 using namespace Hexagon;
834 switch (ExtOpc) {
835 case A2_tfrsi: return A2_addi;
836 default:
837 break;
838 }
839 const MCInstrDesc &D = HII->get(ExtOpc);
840 if (D.mayLoad() || D.mayStore()) {
841 uint64_t F = D.TSFlags;
842 unsigned AM = (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
843 switch (AM) {
844 case HexagonII::Absolute:
845 case HexagonII::AbsoluteSet:
846 case HexagonII::BaseLongOffset:
847 switch (ExtOpc) {
848 case PS_loadrubabs:
849 case L4_loadrub_ap:
850 case L4_loadrub_ur: return L2_loadrub_io;
851 case PS_loadrbabs:
852 case L4_loadrb_ap:
853 case L4_loadrb_ur: return L2_loadrb_io;
854 case PS_loadruhabs:
855 case L4_loadruh_ap:
856 case L4_loadruh_ur: return L2_loadruh_io;
857 case PS_loadrhabs:
858 case L4_loadrh_ap:
859 case L4_loadrh_ur: return L2_loadrh_io;
860 case PS_loadriabs:
861 case L4_loadri_ap:
862 case L4_loadri_ur: return L2_loadri_io;
863 case PS_loadrdabs:
864 case L4_loadrd_ap:
865 case L4_loadrd_ur: return L2_loadrd_io;
866 case L4_loadbzw2_ap:
867 case L4_loadbzw2_ur: return L2_loadbzw2_io;
868 case L4_loadbzw4_ap:
869 case L4_loadbzw4_ur: return L2_loadbzw4_io;
870 case L4_loadbsw2_ap:
871 case L4_loadbsw2_ur: return L2_loadbsw2_io;
872 case L4_loadbsw4_ap:
873 case L4_loadbsw4_ur: return L2_loadbsw4_io;
874 case L4_loadalignh_ap:
875 case L4_loadalignh_ur: return L2_loadalignh_io;
876 case L4_loadalignb_ap:
877 case L4_loadalignb_ur: return L2_loadalignb_io;
878 case L4_ploadrubt_abs: return L2_ploadrubt_io;
879 case L4_ploadrubf_abs: return L2_ploadrubf_io;
880 case L4_ploadrbt_abs: return L2_ploadrbt_io;
881 case L4_ploadrbf_abs: return L2_ploadrbf_io;
882 case L4_ploadruht_abs: return L2_ploadruht_io;
883 case L4_ploadruhf_abs: return L2_ploadruhf_io;
884 case L4_ploadrht_abs: return L2_ploadrht_io;
885 case L4_ploadrhf_abs: return L2_ploadrhf_io;
886 case L4_ploadrit_abs: return L2_ploadrit_io;
887 case L4_ploadrif_abs: return L2_ploadrif_io;
888 case L4_ploadrdt_abs: return L2_ploadrdt_io;
889 case L4_ploadrdf_abs: return L2_ploadrdf_io;
890 case PS_storerbabs:
891 case S4_storerb_ap:
892 case S4_storerb_ur: return S2_storerb_io;
893 case PS_storerhabs:
894 case S4_storerh_ap:
895 case S4_storerh_ur: return S2_storerh_io;
896 case PS_storerfabs:
897 case S4_storerf_ap:
898 case S4_storerf_ur: return S2_storerf_io;
899 case PS_storeriabs:
900 case S4_storeri_ap:
901 case S4_storeri_ur: return S2_storeri_io;
902 case PS_storerdabs:
903 case S4_storerd_ap:
904 case S4_storerd_ur: return S2_storerd_io;
905 case S4_pstorerbt_abs: return S2_pstorerbt_io;
906 case S4_pstorerbf_abs: return S2_pstorerbf_io;
907 case S4_pstorerht_abs: return S2_pstorerht_io;
908 case S4_pstorerhf_abs: return S2_pstorerhf_io;
909 case S4_pstorerft_abs: return S2_pstorerft_io;
910 case S4_pstorerff_abs: return S2_pstorerff_io;
911 case S4_pstorerit_abs: return S2_pstorerit_io;
912 case S4_pstorerif_abs: return S2_pstorerif_io;
913 case S4_pstorerdt_abs: return S2_pstorerdt_io;
914 case S4_pstorerdf_abs: return S2_pstorerdf_io;
915 default:
916 break;
917 }
918 break;
919 case HexagonII::BaseImmOffset:
920 if (!isStoreImmediate(ExtOpc))
921 return ExtOpc;
922 break;
923 default:
924 break;
925 }
926 }
927 return 0;
928}
929
930unsigned HCE::getDirectRegReplacement(unsigned ExtOpc) const {
931 switch (ExtOpc) {
932 case Hexagon::A2_addi: return Hexagon::A2_add;
933 case Hexagon::A2_andir: return Hexagon::A2_and;
934 case Hexagon::A2_combineii: return Hexagon::A4_combineri;
935 case Hexagon::A2_orir: return Hexagon::A2_or;
936 case Hexagon::A2_paddif: return Hexagon::A2_paddf;
937 case Hexagon::A2_paddit: return Hexagon::A2_paddt;
938 case Hexagon::A2_subri: return Hexagon::A2_sub;
939 case Hexagon::A2_tfrsi: return TargetOpcode::COPY;
940 case Hexagon::A4_cmpbeqi: return Hexagon::A4_cmpbeq;
941 case Hexagon::A4_cmpbgti: return Hexagon::A4_cmpbgt;
942 case Hexagon::A4_cmpbgtui: return Hexagon::A4_cmpbgtu;
943 case Hexagon::A4_cmpheqi: return Hexagon::A4_cmpheq;
944 case Hexagon::A4_cmphgti: return Hexagon::A4_cmphgt;
945 case Hexagon::A4_cmphgtui: return Hexagon::A4_cmphgtu;
946 case Hexagon::A4_combineii: return Hexagon::A4_combineir;
947 case Hexagon::A4_combineir: return TargetOpcode::REG_SEQUENCE;
948 case Hexagon::A4_combineri: return TargetOpcode::REG_SEQUENCE;
949 case Hexagon::A4_rcmpeqi: return Hexagon::A4_rcmpeq;
950 case Hexagon::A4_rcmpneqi: return Hexagon::A4_rcmpneq;
951 case Hexagon::C2_cmoveif: return Hexagon::A2_tfrpf;
952 case Hexagon::C2_cmoveit: return Hexagon::A2_tfrpt;
953 case Hexagon::C2_cmpeqi: return Hexagon::C2_cmpeq;
954 case Hexagon::C2_cmpgti: return Hexagon::C2_cmpgt;
955 case Hexagon::C2_cmpgtui: return Hexagon::C2_cmpgtu;
956 case Hexagon::C2_muxii: return Hexagon::C2_muxir;
957 case Hexagon::C2_muxir: return Hexagon::C2_mux;
958 case Hexagon::C2_muxri: return Hexagon::C2_mux;
959 case Hexagon::C4_cmpltei: return Hexagon::C4_cmplte;
960 case Hexagon::C4_cmplteui: return Hexagon::C4_cmplteu;
961 case Hexagon::C4_cmpneqi: return Hexagon::C4_cmpneq;
962 case Hexagon::M2_accii: return Hexagon::M2_acci; // T -> T
963 /* No M2_macsin */
964 case Hexagon::M2_macsip: return Hexagon::M2_maci; // T -> T
965 case Hexagon::M2_mpysin: return Hexagon::M2_mpyi;
966 case Hexagon::M2_mpysip: return Hexagon::M2_mpyi;
967 case Hexagon::M2_mpysmi: return Hexagon::M2_mpyi;
968 case Hexagon::M2_naccii: return Hexagon::M2_nacci; // T -> T
969 case Hexagon::M4_mpyri_addi: return Hexagon::M4_mpyri_addr;
970 case Hexagon::M4_mpyri_addr: return Hexagon::M4_mpyrr_addr; // _ -> T
971 case Hexagon::M4_mpyrr_addi: return Hexagon::M4_mpyrr_addr; // _ -> T
972 case Hexagon::S4_addaddi: return Hexagon::M2_acci; // _ -> T
973 case Hexagon::S4_addi_asl_ri: return Hexagon::S2_asl_i_r_acc; // T -> T
974 case Hexagon::S4_addi_lsr_ri: return Hexagon::S2_lsr_i_r_acc; // T -> T
975 case Hexagon::S4_andi_asl_ri: return Hexagon::S2_asl_i_r_and; // T -> T
976 case Hexagon::S4_andi_lsr_ri: return Hexagon::S2_lsr_i_r_and; // T -> T
977 case Hexagon::S4_ori_asl_ri: return Hexagon::S2_asl_i_r_or; // T -> T
978 case Hexagon::S4_ori_lsr_ri: return Hexagon::S2_lsr_i_r_or; // T -> T
979 case Hexagon::S4_subaddi: return Hexagon::M2_subacc; // _ -> T
980 case Hexagon::S4_subi_asl_ri: return Hexagon::S2_asl_i_r_nac; // T -> T
981 case Hexagon::S4_subi_lsr_ri: return Hexagon::S2_lsr_i_r_nac; // T -> T
982
983 // Store-immediates:
984 case Hexagon::S4_storeirbf_io: return Hexagon::S2_pstorerbf_io;
985 case Hexagon::S4_storeirb_io: return Hexagon::S2_storerb_io;
986 case Hexagon::S4_storeirbt_io: return Hexagon::S2_pstorerbt_io;
987 case Hexagon::S4_storeirhf_io: return Hexagon::S2_pstorerhf_io;
988 case Hexagon::S4_storeirh_io: return Hexagon::S2_storerh_io;
989 case Hexagon::S4_storeirht_io: return Hexagon::S2_pstorerht_io;
990 case Hexagon::S4_storeirif_io: return Hexagon::S2_pstorerif_io;
991 case Hexagon::S4_storeiri_io: return Hexagon::S2_storeri_io;
992 case Hexagon::S4_storeirit_io: return Hexagon::S2_pstorerit_io;
993
994 default:
995 break;
996 }
997 return 0;
998}
999
1000// Return the allowable deviation from the current value of Rb which the
1001// instruction MI can accommodate.
1002// The instruction MI is a user of register Rb, which is defined via an
1003// extender. It may be possible for MI to be tweaked to work for a register
1004// defined with a slightly different value. For example
1005// ... = L2_loadrub_io Rb, 0
1006// can be modifed to be
1007// ... = L2_loadrub_io Rb', 1
1008// if Rb' = Rb-1.
1009OffsetRange HCE::getOffsetRange(Register Rb, const MachineInstr &MI) const {
1010 unsigned Opc = MI.getOpcode();
1011 // Instructions that are constant-extended may be replaced with something
1012 // else that no longer offers the same range as the original.
1013 if (!isRegOffOpcode(Opc) || HII->isConstExtended(MI))
1014 return OffsetRange::zero();
1015
1016 if (Opc == Hexagon::A2_addi) {
1017 const MachineOperand &Op1 = MI.getOperand(1), &Op2 = MI.getOperand(2);
1018 if (Rb != Register(Op1) || !Op2.isImm())
1019 return OffsetRange::zero();
1020 OffsetRange R = { -(1<<15)+1, (1<<15)-1, 1 };
1021 return R.shift(Op2.getImm());
1022 }
1023
1024 // HII::getBaseAndOffsetPosition returns the increment position as "offset".
1025 if (HII->isPostIncrement(MI))
1026 return OffsetRange::zero();
1027
1028 const MCInstrDesc &D = HII->get(Opc);
1029 assert(D.mayLoad() || D.mayStore());
1030
1031 unsigned BaseP, OffP;
1032 if (!HII->getBaseAndOffsetPosition(MI, BaseP, OffP) ||
1033 Rb != Register(MI.getOperand(BaseP)) ||
1034 !MI.getOperand(OffP).isImm())
1035 return OffsetRange::zero();
1036
1037 uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) &
1038 HexagonII::MemAccesSizeMask;
1039 uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F));
1040 unsigned L = Log2_32(A);
1041 unsigned S = 10+L; // sint11_L
1042 int32_t Min = -alignDown((1<<S)-1, A);
1043 int32_t Max = 0; // Force non-negative offsets.
1044
1045 OffsetRange R = { Min, Max, A };
1046 int32_t Off = MI.getOperand(OffP).getImm();
1047 return R.shift(Off);
1048}
1049
1050// Return the allowable deviation from the current value of the extender ED,
1051// for which the instruction corresponding to ED can be modified without
1052// using an extender.
1053// The instruction uses the extender directly. It will be replaced with
1054// another instruction, say MJ, where the extender will be replaced with a
1055// register. MJ can allow some variability with respect to the value of
1056// that register, as is the case with indexed memory instructions.
1057OffsetRange HCE::getOffsetRange(const ExtDesc &ED) const {
1058 // The only way that there can be a non-zero range available is if
1059 // the instruction using ED will be converted to an indexed memory
1060 // instruction.
1061 unsigned IdxOpc = getRegOffOpcode(ED.UseMI->getOpcode());
1062 switch (IdxOpc) {
1063 case 0:
1064 return OffsetRange::zero();
1065 case Hexagon::A2_addi: // s16
1066 return { -32767, 32767, 1 };
1067 case Hexagon::A2_subri: // s10
1068 return { -511, 511, 1 };
1069 }
1070
1071 if (!ED.UseMI->mayLoad() && !ED.UseMI->mayStore())
1072 return OffsetRange::zero();
1073 const MCInstrDesc &D = HII->get(IdxOpc);
1074 uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) &
1075 HexagonII::MemAccesSizeMask;
1076 uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F));
1077 unsigned L = Log2_32(A);
1078 unsigned S = 10+L; // sint11_L
1079 int32_t Min = -alignDown((1<<S)-1, A);
1080 int32_t Max = 0; // Force non-negative offsets.
1081 return { Min, Max, A };
1082}
1083
1084// Get the allowable deviation from the current value of Rd by checking
1085// all uses of Rd.
1086OffsetRange HCE::getOffsetRange(Register Rd) const {
1087 OffsetRange Range;
1088 for (const MachineOperand &Op : MRI->use_operands(Rd.Reg)) {
1089 // Make sure that the register being used by this operand is identical
1090 // to the register that was defined: using a different subregister
1091 // precludes any non-trivial range.
1092 if (Rd != Register(Op))
1093 return OffsetRange::zero();
1094 Range.intersect(getOffsetRange(Rd, *Op.getParent()));
1095 }
1096 return Range;
1097}
1098
1099void HCE::recordExtender(MachineInstr &MI, unsigned OpNum) {
1100 unsigned Opc = MI.getOpcode();
1101 ExtDesc ED;
1102 ED.OpNum = OpNum;
1103
1104 bool IsLoad = MI.mayLoad();
1105 bool IsStore = MI.mayStore();
1106
1107 if (IsLoad || IsStore) {
1108 unsigned AM = HII->getAddrMode(MI);
1109 switch (AM) {
1110 // (Re: ##Off + Rb<<S) = Rd: ##Val
1111 case HexagonII::Absolute: // (__: ## + __<<_)
1112 break;
1113 case HexagonII::AbsoluteSet: // (Rd: ## + __<<_)
1114 ED.Rd = MI.getOperand(OpNum-1);
1115 ED.IsDef = true;
1116 break;
1117 case HexagonII::BaseImmOffset: // (__: ## + Rs<<0)
1118 // Store-immediates are treated as non-memory operations, since
1119 // it's the value being stored that is extended (as opposed to
1120 // a part of the address).
1121 if (!isStoreImmediate(Opc))
1122 ED.Expr.Rs = MI.getOperand(OpNum-1);
1123 break;
1124 case HexagonII::BaseLongOffset: // (__: ## + Rs<<S)
1125 ED.Expr.Rs = MI.getOperand(OpNum-2);
1126 ED.Expr.S = MI.getOperand(OpNum-1).getImm();
1127 break;
1128 default:
1129 llvm_unreachable("Unhandled memory instruction");
1130 }
1131 } else {
1132 switch (Opc) {
1133 case Hexagon::A2_tfrsi: // (Rd: ## + __<<_)
1134 ED.Rd = MI.getOperand(0);
1135 ED.IsDef = true;
1136 break;
1137 case Hexagon::A2_combineii: // (Rd: ## + __<<_)
1138 case Hexagon::A4_combineir:
1139 ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_hi };
1140 ED.IsDef = true;
1141 break;
1142 case Hexagon::A4_combineri: // (Rd: ## + __<<_)
1143 ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_lo };
1144 ED.IsDef = true;
1145 break;
1146 case Hexagon::A2_addi: // (Rd: ## + Rs<<0)
1147 ED.Rd = MI.getOperand(0);
1148 ED.Expr.Rs = MI.getOperand(OpNum-1);
1149 break;
1150 case Hexagon::M2_accii: // (__: ## + Rs<<0)
1151 case Hexagon::M2_naccii:
1152 case Hexagon::S4_addaddi:
1153 ED.Expr.Rs = MI.getOperand(OpNum-1);
1154 break;
1155 case Hexagon::A2_subri: // (Rd: ## - Rs<<0)
1156 ED.Rd = MI.getOperand(0);
1157 ED.Expr.Rs = MI.getOperand(OpNum+1);
1158 ED.Expr.Neg = true;
1159 break;
1160 case Hexagon::S4_subaddi: // (__: ## - Rs<<0)
1161 ED.Expr.Rs = MI.getOperand(OpNum+1);
1162 ED.Expr.Neg = true;
1163 default: // (__: ## + __<<_)
1164 break;
1165 }
1166 }
1167
1168 ED.UseMI = &MI;
1169 Extenders.push_back(ED);
1170}
1171
1172void HCE::collectInstr(MachineInstr &MI) {
1173 if (!HII->isConstExtended(MI))
1174 return;
1175
1176 // Skip some non-convertible instructions.
1177 unsigned Opc = MI.getOpcode();
1178 switch (Opc) {
1179 case Hexagon::M2_macsin: // There is no Rx -= mpyi(Rs,Rt).
1180 case Hexagon::C4_addipc:
1181 case Hexagon::S4_or_andi:
1182 case Hexagon::S4_or_andix:
1183 case Hexagon::S4_or_ori:
1184 return;
1185 }
1186 recordExtender(MI, HII->getCExtOpNum(MI));
1187}
1188
1189void HCE::collect(MachineFunction &MF) {
1190 Extenders.clear();
1191 for (MachineBasicBlock &MBB : MF)
1192 for (MachineInstr &MI : MBB)
1193 collectInstr(MI);
1194}
1195
1196void HCE::assignInits(const ExtRoot &ER, unsigned Begin, unsigned End,
1197 AssignmentMap &IMap) {
1198 // Sanity check: make sure that all extenders in the range [Begin..End)
1199 // share the same root ER.
1200 for (unsigned I = Begin; I != End; ++I)
1201 assert(ER == ExtRoot(Extenders[I].getOp()));
1202
1203 // Construct the list of ranges, such that for each P in Ranges[I],
1204 // a register Reg = ER+P can be used in place of Extender[I]. If the
1205 // instruction allows, uses in the form of Reg+Off are considered
1206 // (here, Off = required_value - P).
1207 std::vector<OffsetRange> Ranges(End-Begin);
1208
1209 // For each extender that is a def, visit all uses of the defined register,
1210 // and produce an offset range that works for all uses. The def doesn't
1211 // have to be checked, because it can become dead if all uses can be updated
1212 // to use a different reg/offset.
1213 for (unsigned I = Begin; I != End; ++I) {
1214 const ExtDesc &ED = Extenders[I];
1215 if (!ED.IsDef)
1216 continue;
1217 ExtValue EV(ED);
1218 DEBUG(dbgs() << " =" << I << ". " << EV << " " << ED << '\n');
1219 assert(ED.Rd.Reg != 0);
1220 Ranges[I-Begin] = getOffsetRange(ED.Rd).shift(EV.Offset);
1221 // A2_tfrsi is a special case: it will be replaced with A2_addi, which
1222 // has a 16-bit signed offset. This means that A2_tfrsi not only has a
1223 // range coming from its uses, but also from the fact that its replacement
1224 // has a range as well.
1225 if (ED.UseMI->getOpcode() == Hexagon::A2_tfrsi) {
1226 int32_t D = alignDown(32767, Ranges[I-Begin].Align); // XXX hardcoded
1227 Ranges[I-Begin].extendBy(-D).extendBy(D);
1228 }
1229 }
1230
1231 // Visit all non-def extenders. For each one, determine the offset range
1232 // available for it.
1233 for (unsigned I = Begin; I != End; ++I) {
1234 const ExtDesc &ED = Extenders[I];
1235 if (ED.IsDef)
1236 continue;
1237 ExtValue EV(ED);
1238 DEBUG(dbgs() << " " << I << ". " << EV << " " << ED << '\n');
1239 OffsetRange Dev = getOffsetRange(ED);
1240 Ranges[I-Begin].intersect(Dev.shift(EV.Offset));
1241 }
1242
1243 // Here for each I there is a corresponding Range[I]. Construct the
1244 // inverse map, that to each range will assign the set of indexes in
1245 // [Begin..End) that this range corresponds to.
1246 std::map<OffsetRange, IndexList> RangeMap;
1247 for (unsigned I = Begin; I != End; ++I)
1248 RangeMap[Ranges[I-Begin]].insert(I);
1249
1250 DEBUG({
1251 dbgs() << "Ranges\n";
1252 for (unsigned I = Begin; I != End; ++I)
1253 dbgs() << " " << I << ". " << Ranges[I-Begin] << '\n';
1254 dbgs() << "RangeMap\n";
1255 for (auto &P : RangeMap) {
1256 dbgs() << " " << P.first << " ->";
1257 for (unsigned I : P.second)
1258 dbgs() << ' ' << I;
1259 dbgs() << '\n';
1260 }
1261 });
1262
1263 // Select the definition points, and generate the assignment between
1264 // these points and the uses.
1265
1266 // For each candidate offset, keep a pair CandData consisting of
1267 // the total number of ranges containing that candidate, and the
1268 // vector of corresponding RangeTree nodes.
1269 using CandData = std::pair<unsigned, SmallVector<RangeTree::Node*,8>>;
1270 std::map<int32_t, CandData> CandMap;
1271
1272 RangeTree Tree;
1273 for (const OffsetRange &R : Ranges)
1274 Tree.add(R);
1275 SmallVector<RangeTree::Node*,8> Nodes;
1276 Tree.order(Nodes);
1277
1278 auto MaxAlign = [](const SmallVectorImpl<RangeTree::Node*> &Nodes) {
1279 uint8_t Align = 1;
1280 for (RangeTree::Node *N : Nodes)
1281 Align = std::max(Align, N->Range.Align);
1282 return Align;
1283 };
1284
1285 // Construct the set of all potential definition points from the endpoints
1286 // of the ranges. If a given endpoint also belongs to a different range,
1287 // but with a higher alignment, also consider the more-highly-aligned
1288 // value of this endpoint.
1289 std::set<int32_t> CandSet;
1290 for (RangeTree::Node *N : Nodes) {
1291 const OffsetRange &R = N->Range;
1292 uint8_t A0 = MaxAlign(Tree.nodesWith(R.Min, false));
1293 CandSet.insert(R.Min);
1294 if (R.Align < A0)
1295 CandSet.insert(R.Min < 0 ? -alignDown(-R.Min, A0) : alignTo(R.Min, A0));
1296 uint8_t A1 = MaxAlign(Tree.nodesWith(R.Max, false));
1297 CandSet.insert(R.Max);
1298 if (R.Align < A1)
1299 CandSet.insert(R.Max < 0 ? -alignTo(-R.Max, A1) : alignDown(R.Max, A1));
1300 }
1301
1302 // Build the assignment map: candidate C -> { list of extender indexes }.
1303 // This has to be done iteratively:
1304 // - pick the candidate that covers the maximum number of extenders,
1305 // - add the candidate to the map,
1306 // - remove the extenders from the pool.
1307 while (true) {
1308 using CMap = std::map<int32_t,unsigned>;
1309 CMap Counts;
1310 for (auto It = CandSet.begin(), Et = CandSet.end(); It != Et; ) {
1311 auto &&V = Tree.nodesWith(*It);
1312 unsigned N = std::accumulate(V.begin(), V.end(), 0u,
1313 [](unsigned Acc, const RangeTree::Node *N) {
1314 return Acc + N->Count;
1315 });
1316 if (N != 0)
1317 Counts.insert({*It, N});
1318 It = (N != 0) ? std::next(It) : CandSet.erase(It);
1319 }
1320 if (Counts.empty())
1321 break;
1322
1323 // Find the best candidate with respect to the number of extenders covered.
1324 auto BestIt = std::max_element(Counts.begin(), Counts.end(),
1325 [](const CMap::value_type &A, const CMap::value_type &B) {
1326 return A.second < B.second ||
1327 (A.second == B.second && A < B);
1328 });
1329 int32_t Best = BestIt->first;
1330 ExtValue BestV(ER, Best);
1331 for (RangeTree::Node *N : Tree.nodesWith(Best)) {
1332 for (unsigned I : RangeMap[N->Range])
1333 IMap[{BestV,Extenders[I].Expr}].insert(I);
1334 Tree.erase(N);
1335 }
1336 }
1337
1338 DEBUG(dbgs() << "IMap (before fixup) = " << PrintIMap(IMap, *HRI));
1339
1340 // There is some ambiguity in what initializer should be used, if the
1341 // descriptor's subexpression is non-trivial: it can be the entire
1342 // subexpression (which is what has been done so far), or it can be
1343 // the extender's value itself, if all corresponding extenders have the
1344 // exact value of the initializer (i.e. require offset of 0).
1345
1346 // To reduce the number of initializers, merge such special cases.
1347 for (std::pair<const ExtenderInit,IndexList> &P : IMap) {
1348 // Skip trivial initializers.
1349 if (P.first.second.trivial())
1350 continue;
1351 // If the corresponding trivial initializer does not exist, skip this
1352 // entry.
1353 const ExtValue &EV = P.first.first;
1354 AssignmentMap::iterator F = IMap.find({EV, ExtExpr()});
1355 if (F == IMap.end())
1356 continue;
1357 // Finally, check if all extenders have the same value as the initializer.
1358 auto SameValue = [&EV,this](unsigned I) {
1359 const ExtDesc &ED = Extenders[I];
1360 return ExtValue(ED).Offset == EV.Offset;
1361 };
1362 if (all_of(P.second, SameValue)) {
1363 F->second.insert(P.second.begin(), P.second.end());
1364 P.second.clear();
1365 }
1366 }
1367
1368 DEBUG(dbgs() << "IMap (after fixup) = " << PrintIMap(IMap, *HRI));
1369}
1370
1371void HCE::calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs,
1372 LocDefMap &Defs) {
1373 if (Refs.empty())
1374 return;
1375
1376 // The placement calculation is somewhat simple right now: it finds a
1377 // single location for the def that dominates all refs. Since this may
1378 // place the def far from the uses, producing several locations for
1379 // defs that collectively dominate all refs could be better.
1380 // For now only do the single one.
1381 DenseSet<MachineBasicBlock*> Blocks;
1382 DenseSet<MachineInstr*> RefMIs;
1383 const ExtDesc &ED0 = Extenders[Refs[0]];
1384 MachineBasicBlock *DomB = ED0.UseMI->getParent();
1385 RefMIs.insert(ED0.UseMI);
1386 Blocks.insert(DomB);
1387 for (unsigned i = 1, e = Refs.size(); i != e; ++i) {
1388 const ExtDesc &ED = Extenders[Refs[i]];
1389 MachineBasicBlock *MBB = ED.UseMI->getParent();
1390 RefMIs.insert(ED.UseMI);
1391 DomB = MDT->findNearestCommonDominator(DomB, MBB);
1392 Blocks.insert(MBB);
1393 }
1394
1395#ifndef NDEBUG
1396 // The block DomB should be dominated by the def of each register used
1397 // in the initializer.
1398 Register Rs = ExtI.second.Rs; // Only one reg allowed now.
1399 const MachineInstr *DefI = Rs.isVReg() ? MRI->getVRegDef(Rs.Reg) : nullptr;
1400
1401 // This should be guaranteed given that the entire expression is used
1402 // at each instruction in Refs. Add an assertion just in case.
1403 assert(!DefI || MDT->dominates(DefI->getParent(), DomB));
1404#endif
1405
1406 MachineBasicBlock::iterator It;
1407 if (Blocks.count(DomB)) {
1408 // Try to find the latest possible location for the def.
1409 MachineBasicBlock::iterator End = DomB->end();
1410 for (It = DomB->begin(); It != End; ++It)
1411 if (RefMIs.count(&*It))
1412 break;
1413 assert(It != End && "Should have found a ref in DomB");
1414 } else {
1415 // DomB does not contain any refs.
1416 It = DomB->getFirstTerminator();
1417 }
1418 Loc DefLoc(DomB, It);
1419 Defs.emplace(DefLoc, Refs);
1420}
1421
1422HCE::Register HCE::insertInitializer(Loc DefL, const ExtenderInit &ExtI) {
1423 unsigned DefR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1424 MachineBasicBlock &MBB = *DefL.Block;
1425 MachineBasicBlock::iterator At = DefL.At;
1426 DebugLoc dl = DefL.Block->findDebugLoc(DefL.At);
1427 const ExtValue &EV = ExtI.first;
1428 MachineOperand ExtOp(EV);
1429
1430 const ExtExpr &Ex = ExtI.second;
1431 const MachineInstr *InitI = nullptr;
1432
1433 if (Ex.Rs.isSlot()) {
1434 assert(Ex.S == 0 && "Cannot have a shift of a stack slot");
1435 assert(!Ex.Neg && "Cannot subtract a stack slot");
1436 // DefR = PS_fi Rb,##EV
1437 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::PS_fi), DefR)
1438 .add(MachineOperand(Ex.Rs))
1439 .add(ExtOp);
1440 } else {
1441 assert((Ex.Rs.Reg == 0 || Ex.Rs.isVReg()) && "Expecting virtual register");
1442 if (Ex.trivial()) {
1443 // DefR = ##EV
1444 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_tfrsi), DefR)
1445 .add(ExtOp);
1446 } else if (Ex.S == 0) {
1447 if (Ex.Neg) {
1448 // DefR = sub(##EV,Rb)
1449 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR)
1450 .add(ExtOp)
1451 .add(MachineOperand(Ex.Rs));
1452 } else {
1453 // DefR = add(Rb,##EV)
1454 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR)
1455 .add(MachineOperand(Ex.Rs))
1456 .add(ExtOp);
1457 }
1458 } else {
1459 unsigned NewOpc = Ex.Neg ? Hexagon::S4_subi_asl_ri
1460 : Hexagon::S4_addi_asl_ri;
1461 // DefR = add(##EV,asl(Rb,S))
1462 InitI = BuildMI(MBB, At, dl, HII->get(NewOpc), DefR)
1463 .add(ExtOp)
1464 .add(MachineOperand(Ex.Rs))
1465 .addImm(Ex.S);
1466 }
1467 }
1468
1469 assert(InitI);
1470 (void)InitI;
1471 DEBUG(dbgs() << "Inserted def in bb#" << MBB.getNumber()
1472 << " for initializer: " << PrintInit(ExtI, *HRI)
1473 << "\n " << *InitI);
1474 return { DefR, 0 };
1475}
1476
1477// Replace the extender at index Idx with the register ExtR.
1478bool HCE::replaceInstrExact(const ExtDesc &ED, Register ExtR) {
1479 MachineInstr &MI = *ED.UseMI;
1480 MachineBasicBlock &MBB = *MI.getParent();
1481 MachineBasicBlock::iterator At = MI.getIterator();
1482 DebugLoc dl = MI.getDebugLoc();
1483 unsigned ExtOpc = MI.getOpcode();
1484
1485 // With a few exceptions, direct replacement amounts to creating an
1486 // instruction with a corresponding register opcode, with all operands
1487 // the same, except for the register used in place of the extender.
1488 unsigned RegOpc = getDirectRegReplacement(ExtOpc);
1489
1490 if (RegOpc == TargetOpcode::REG_SEQUENCE) {
1491 if (ExtOpc == Hexagon::A4_combineri)
1492 BuildMI(MBB, At, dl, HII->get(RegOpc))
1493 .add(MI.getOperand(0))
1494 .add(MI.getOperand(1))
1495 .addImm(Hexagon::isub_hi)
1496 .add(MachineOperand(ExtR))
1497 .addImm(Hexagon::isub_lo);
1498 else if (ExtOpc == Hexagon::A4_combineir)
1499 BuildMI(MBB, At, dl, HII->get(RegOpc))
1500 .add(MI.getOperand(0))
1501 .add(MachineOperand(ExtR))
1502 .addImm(Hexagon::isub_hi)
1503 .add(MI.getOperand(2))
1504 .addImm(Hexagon::isub_lo);
1505 else
1506 llvm_unreachable("Unexpected opcode became REG_SEQUENCE");
1507 MBB.erase(MI);
1508 return true;
1509 }
1510 if (ExtOpc == Hexagon::C2_cmpgei || ExtOpc == Hexagon::C2_cmpgeui) {
1511 unsigned NewOpc = ExtOpc == Hexagon::C2_cmpgei ? Hexagon::C2_cmplt
1512 : Hexagon::C2_cmpltu;
1513 BuildMI(MBB, At, dl, HII->get(NewOpc))
1514 .add(MI.getOperand(0))
1515 .add(MachineOperand(ExtR))
1516 .add(MI.getOperand(1));
1517 MBB.erase(MI);
1518 return true;
1519 }
1520
1521 if (RegOpc != 0) {
1522 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc));
1523 unsigned RegN = ED.OpNum;
1524 // Copy all operands except the one that has the extender.
1525 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1526 if (i != RegN)
1527 MIB.add(MI.getOperand(i));
1528 else
1529 MIB.add(MachineOperand(ExtR));
1530 }
1531 MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
1532 MBB.erase(MI);
1533 return true;
1534 }
1535
1536 if ((MI.mayLoad() || MI.mayStore()) && !isStoreImmediate(ExtOpc)) {
1537 // For memory instructions, there is an asymmetry in the addressing
1538 // modes. Addressing modes allowing extenders can be replaced with
1539 // addressing modes that use registers, but the order of operands
1540 // (or even their number) may be different.
1541 // Replacements:
1542 // BaseImmOffset (io) -> BaseRegOffset (rr)
1543 // BaseLongOffset (ur) -> BaseRegOffset (rr)
1544 unsigned RegOpc, Shift;
1545 unsigned AM = HII->getAddrMode(MI);
1546 if (AM == HexagonII::BaseImmOffset) {
1547 RegOpc = HII->changeAddrMode_io_rr(ExtOpc);
1548 Shift = 0;
1549 } else if (AM == HexagonII::BaseLongOffset) {
1550 // Loads: Rd = L4_loadri_ur Rs, S, ##
1551 // Stores: S4_storeri_ur Rs, S, ##, Rt
1552 RegOpc = HII->changeAddrMode_ur_rr(ExtOpc);
1553 Shift = MI.getOperand(MI.mayLoad() ? 2 : 1).getImm();
1554 } else {
1555 llvm_unreachable("Unexpected addressing mode");
1556 }
1557#ifndef NDEBUG
1558 if (RegOpc == -1u) {
1559 dbgs() << "\nExtOpc: " << HII->getName(ExtOpc) << " has no rr version\n";
1560 llvm_unreachable("No corresponding rr instruction");
1561 }
1562#endif
1563
1564 unsigned BaseP, OffP;
1565 HII->getBaseAndOffsetPosition(MI, BaseP, OffP);
1566
1567 // Build an rr instruction: (RegOff + RegBase<<0)
1568 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc));
1569 // First, add the def for loads.
1570 if (MI.mayLoad())
1571 MIB.add(getLoadResultOp(MI));
1572 // Handle possible predication.
1573 if (HII->isPredicated(MI))
1574 MIB.add(getPredicateOp(MI));
1575 // Build the address.
1576 MIB.add(MachineOperand(ExtR)); // RegOff
1577 MIB.add(MI.getOperand(BaseP)); // RegBase
1578 MIB.addImm(Shift); // << Shift
1579 // Add the stored value for stores.
1580 if (MI.mayStore())
1581 MIB.add(getStoredValueOp(MI));
1582 MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
1583 MBB.erase(MI);
1584 return true;
1585 }
1586
1587#ifndef NDEBUG
1588 dbgs() << '\n' << MI;
1589#endif
1590 llvm_unreachable("Unhandled exact replacement");
1591 return false;
1592}
1593
1594// Replace the extender ED with a form corresponding to the initializer ExtI.
1595bool HCE::replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI,
1596 Register ExtR, int32_t &Diff) {
1597 MachineInstr &MI = *ED.UseMI;
1598 MachineBasicBlock &MBB = *MI.getParent();
1599 MachineBasicBlock::iterator At = MI.getIterator();
1600 DebugLoc dl = MI.getDebugLoc();
1601 unsigned ExtOpc = MI.getOpcode();
1602
1603 if (ExtOpc == Hexagon::A2_tfrsi) {
1604 // A2_tfrsi is a special case: it's replaced with A2_addi, which introduces
1605 // another range. One range is the one that's common to all tfrsi's uses,
1606 // this one is the range of immediates in A2_addi. When calculating ranges,
1607 // the addi's 16-bit argument was included, so now we need to make it such
1608 // that the produced value is in the range for the uses alone.
1609 // Most of the time, simply adding Diff will make the addi produce exact
1610 // result, but if Diff is outside of the 16-bit range, some adjustment
1611 // will be needed.
1612 unsigned IdxOpc = getRegOffOpcode(ExtOpc);
1613 assert(IdxOpc == Hexagon::A2_addi);
1614
1615 // Clamp Diff to the 16 bit range.
1616 int32_t D = isInt<16>(Diff) ? Diff : (Diff > 32767 ? 32767 : -32767);
1617 BuildMI(MBB, At, dl, HII->get(IdxOpc))
1618 .add(MI.getOperand(0))
1619 .add(MachineOperand(ExtR))
1620 .addImm(D);
1621 Diff -= D;
1622#ifndef NDEBUG
1623 // Make sure the output is within allowable range for uses.
1624 OffsetRange Uses = getOffsetRange(MI.getOperand(0));
1625 assert(Uses.contains(Diff));
1626#endif
1627 MBB.erase(MI);
1628 return true;
1629 }
1630
1631 const ExtValue &EV = ExtI.first; (void)EV;
1632 const ExtExpr &Ex = ExtI.second; (void)Ex;
1633
1634 if (ExtOpc == Hexagon::A2_addi || ExtOpc == Hexagon::A2_subri) {
1635 // If addi/subri are replaced with the exactly matching initializer,
1636 // they amount to COPY.
1637 // Check that the initializer is an exact match (for simplicity).
Benjamin Kramer9f21ca62017-10-13 20:46:14 +00001638#ifndef NDEBUG
Krzysztof Parzyszek7c9c0582017-10-13 19:02:59 +00001639 bool IsAddi = ExtOpc == Hexagon::A2_addi;
1640 const MachineOperand &RegOp = MI.getOperand(IsAddi ? 1 : 2);
1641 const MachineOperand &ImmOp = MI.getOperand(IsAddi ? 2 : 1);
1642 assert(Ex.Rs == RegOp && EV == ImmOp && Ex.Neg != IsAddi &&
1643 "Initializer mismatch");
Benjamin Kramer9f21ca62017-10-13 20:46:14 +00001644#endif
Krzysztof Parzyszek7c9c0582017-10-13 19:02:59 +00001645 BuildMI(MBB, At, dl, HII->get(TargetOpcode::COPY))
1646 .add(MI.getOperand(0))
1647 .add(MachineOperand(ExtR));
1648 Diff = 0;
1649 MBB.erase(MI);
1650 return true;
1651 }
1652 if (ExtOpc == Hexagon::M2_accii || ExtOpc == Hexagon::M2_naccii ||
1653 ExtOpc == Hexagon::S4_addaddi || ExtOpc == Hexagon::S4_subaddi) {
1654 // M2_accii: add(Rt,add(Rs,V)) (tied)
1655 // M2_naccii: sub(Rt,add(Rs,V))
1656 // S4_addaddi: add(Rt,add(Rs,V))
1657 // S4_subaddi: add(Rt,sub(V,Rs))
1658 // Check that Rs and V match the initializer expression. The Rs+V is the
1659 // combination that is considered "subexpression" for V, although Rx+V
1660 // would also be valid.
Benjamin Kramer9f21ca62017-10-13 20:46:14 +00001661#ifndef NDEBUG
Krzysztof Parzyszek7c9c0582017-10-13 19:02:59 +00001662 bool IsSub = ExtOpc == Hexagon::S4_subaddi;
1663 Register Rs = MI.getOperand(IsSub ? 3 : 2);
1664 ExtValue V = MI.getOperand(IsSub ? 2 : 3);
1665 assert(EV == V && Rs == Ex.Rs && IsSub == Ex.Neg && "Initializer mismatch");
Benjamin Kramer9f21ca62017-10-13 20:46:14 +00001666#endif
Krzysztof Parzyszek7c9c0582017-10-13 19:02:59 +00001667 unsigned NewOpc = ExtOpc == Hexagon::M2_naccii ? Hexagon::A2_sub
1668 : Hexagon::A2_add;
1669 BuildMI(MBB, At, dl, HII->get(NewOpc))
1670 .add(MI.getOperand(0))
1671 .add(MI.getOperand(1))
1672 .add(MachineOperand(ExtR));
1673 MBB.erase(MI);
1674 return true;
1675 }
1676
1677 if (MI.mayLoad() || MI.mayStore()) {
1678 unsigned IdxOpc = getRegOffOpcode(ExtOpc);
1679 assert(IdxOpc && "Expecting indexed opcode");
1680 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(IdxOpc));
1681 // Construct the new indexed instruction.
1682 // First, add the def for loads.
1683 if (MI.mayLoad())
1684 MIB.add(getLoadResultOp(MI));
1685 // Handle possible predication.
1686 if (HII->isPredicated(MI))
1687 MIB.add(getPredicateOp(MI));
1688 // Build the address.
1689 MIB.add(MachineOperand(ExtR));
1690 MIB.addImm(Diff);
1691 // Add the stored value for stores.
1692 if (MI.mayStore())
1693 MIB.add(getStoredValueOp(MI));
1694 MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
1695 MBB.erase(MI);
1696 return true;
1697 }
1698
1699#ifndef NDEBUG
1700 dbgs() << '\n' << PrintInit(ExtI, *HRI) << " " << MI;
1701#endif
1702 llvm_unreachable("Unhandled expr replacement");
1703 return false;
1704}
1705
1706bool HCE::replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI) {
1707 if (ReplaceLimit.getNumOccurrences()) {
1708 if (ReplaceLimit <= ReplaceCounter)
1709 return false;
1710 ++ReplaceCounter;
1711 }
1712 const ExtDesc &ED = Extenders[Idx];
1713 assert((!ED.IsDef || ED.Rd.Reg != 0) && "Missing Rd for def");
1714 const ExtValue &DefV = ExtI.first;
1715 assert(ExtRoot(ExtValue(ED)) == ExtRoot(DefV) && "Extender root mismatch");
1716 const ExtExpr &DefEx = ExtI.second;
1717
1718 ExtValue EV(ED);
1719 int32_t Diff = EV.Offset - DefV.Offset;
1720 const MachineInstr &MI = *ED.UseMI;
1721 DEBUG(dbgs() << __func__ << " Idx:" << Idx << " ExtR:"
1722 << PrintRegister(ExtR, *HRI) << " Diff:" << Diff << '\n');
1723
1724 // These two addressing modes must be converted into indexed forms
1725 // regardless of what the initializer looks like.
1726 bool IsAbs = false, IsAbsSet = false;
1727 if (MI.mayLoad() || MI.mayStore()) {
1728 unsigned AM = HII->getAddrMode(MI);
1729 IsAbs = AM == HexagonII::Absolute;
1730 IsAbsSet = AM == HexagonII::AbsoluteSet;
1731 }
1732
1733 // If it's a def, remember all operands that need to be updated.
1734 // If ED is a def, and Diff is not 0, then all uses of the register Rd
1735 // defined by ED must be in the form (Rd, imm), i.e. the immediate offset
1736 // must follow the Rd in the operand list.
1737 std::vector<std::pair<MachineInstr*,unsigned>> RegOps;
1738 if (ED.IsDef && Diff != 0) {
1739 for (MachineOperand &Op : MRI->use_operands(ED.Rd.Reg)) {
1740 MachineInstr &UI = *Op.getParent();
1741 RegOps.push_back({&UI, getOperandIndex(UI, Op)});
1742 }
1743 }
1744
1745 // Replace the instruction.
1746 bool Replaced = false;
1747 if (Diff == 0 && DefEx.trivial() && !IsAbs && !IsAbsSet)
1748 Replaced = replaceInstrExact(ED, ExtR);
1749 else
1750 Replaced = replaceInstrExpr(ED, ExtI, ExtR, Diff);
1751
1752 if (Diff != 0 && Replaced && ED.IsDef) {
1753 // Update offsets of the def's uses.
1754 for (std::pair<MachineInstr*,unsigned> P : RegOps) {
1755 unsigned J = P.second;
1756 assert(P.first->getNumOperands() < J+1 &&
1757 P.first->getOperand(J+1).isImm());
1758 MachineOperand &ImmOp = P.first->getOperand(J+1);
1759 ImmOp.setImm(ImmOp.getImm() + Diff);
1760 }
1761 // If it was an absolute-set instruction, the "set" part has been removed.
1762 // ExtR will now be the register with the extended value, and since all
1763 // users of Rd have been updated, all that needs to be done is to replace
1764 // Rd with ExtR.
1765 if (IsAbsSet) {
1766 assert(ED.Rd.Sub == 0 && ExtR.Sub == 0);
1767 MRI->replaceRegWith(ED.Rd.Reg, ExtR.Reg);
1768 }
1769 }
1770
1771 return Replaced;
1772}
1773
1774bool HCE::replaceExtenders(const AssignmentMap &IMap) {
1775 LocDefMap Defs;
1776 bool Changed = false;
1777
1778 for (const std::pair<ExtenderInit,IndexList> &P : IMap) {
1779 const IndexList &Idxs = P.second;
1780 if (Idxs.size() < CountThreshold)
1781 continue;
1782
1783 Defs.clear();
1784 calculatePlacement(P.first, Idxs, Defs);
1785 for (const std::pair<Loc,IndexList> &Q : Defs) {
1786 Register DefR = insertInitializer(Q.first, P.first);
1787 NewRegs.push_back(DefR.Reg);
1788 for (unsigned I : Q.second)
1789 Changed |= replaceInstr(I, DefR, P.first);
1790 }
1791 }
1792 return Changed;
1793}
1794
1795unsigned HCE::getOperandIndex(const MachineInstr &MI,
1796 const MachineOperand &Op) const {
1797 for (unsigned i = 0, n = MI.getNumOperands(); i != n; ++i)
1798 if (&MI.getOperand(i) == &Op)
1799 return i;
1800 llvm_unreachable("Not an operand of MI");
1801}
1802
1803const MachineOperand &HCE::getPredicateOp(const MachineInstr &MI) const {
1804 assert(HII->isPredicated(MI));
1805 for (const MachineOperand &Op : MI.operands()) {
1806 if (!Op.isReg() || !Op.isUse() ||
1807 MRI->getRegClass(Op.getReg()) != &Hexagon::PredRegsRegClass)
1808 continue;
1809 assert(Op.getSubReg() == 0 && "Predicate register with a subregister");
1810 return Op;
1811 }
1812 llvm_unreachable("Predicate operand not found");
1813}
1814
1815const MachineOperand &HCE::getLoadResultOp(const MachineInstr &MI) const {
1816 assert(MI.mayLoad());
1817 return MI.getOperand(0);
1818}
1819
1820const MachineOperand &HCE::getStoredValueOp(const MachineInstr &MI) const {
1821 assert(MI.mayStore());
1822 return MI.getOperand(MI.getNumExplicitOperands()-1);
1823}
1824
1825bool HCE::runOnMachineFunction(MachineFunction &MF) {
1826 if (skipFunction(*MF.getFunction()))
1827 return false;
1828 DEBUG(MF.print(dbgs() << "Before " << getPassName() << '\n', nullptr));
1829
1830 HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
1831 HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1832 MDT = &getAnalysis<MachineDominatorTree>();
1833 MRI = &MF.getRegInfo();
1834 AssignmentMap IMap;
1835
1836 collect(MF);
1837 std::sort(Extenders.begin(), Extenders.end(),
1838 [](const ExtDesc &A, const ExtDesc &B) {
1839 return ExtValue(A) < ExtValue(B);
1840 });
1841
1842 bool Changed = false;
1843 DEBUG(dbgs() << "Collected " << Extenders.size() << " extenders\n");
1844 for (unsigned I = 0, E = Extenders.size(); I != E; ) {
1845 unsigned B = I;
1846 const ExtRoot &T = Extenders[B].getOp();
1847 while (I != E && ExtRoot(Extenders[I].getOp()) == T)
1848 ++I;
1849
1850 IMap.clear();
1851 assignInits(T, B, I, IMap);
1852 Changed |= replaceExtenders(IMap);
1853 }
1854
1855 DEBUG({
1856 if (Changed)
1857 MF.print(dbgs() << "After " << getPassName() << '\n', nullptr);
1858 else
1859 dbgs() << "No changes\n";
1860 });
1861 return Changed;
1862}
1863
1864FunctionPass *llvm::createHexagonConstExtenders() {
1865 return new HexagonConstExtenders();
1866}