blob: 96efea4ba8ee7f1d2a3cb594f5f0dccac7ff8c6e [file] [log] [blame]
Yonghong Song7b410ac2018-12-19 16:40:25 +00001//===- BTFDebug.cpp - BTF Generator ---------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains support for writing BTF debug info.
11//
12//===----------------------------------------------------------------------===//
13
14#include "BTFDebug.h"
15#include "llvm/BinaryFormat/ELF.h"
16#include "llvm/CodeGen/AsmPrinter.h"
17#include "llvm/CodeGen/MachineModuleInfo.h"
18#include "llvm/MC/MCContext.h"
19#include "llvm/MC/MCObjectFileInfo.h"
20#include "llvm/MC/MCSectionELF.h"
21#include "llvm/MC/MCStreamer.h"
22#include <fstream>
23#include <sstream>
24
25using namespace llvm;
26
27static const char *BTFKindStr[] = {
28#define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME,
29#include "BTF.def"
30};
31
32/// Emit a BTF common type.
33void BTFTypeBase::emitType(MCStreamer &OS) {
34 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) +
35 ")");
36 OS.EmitIntValue(BTFType.NameOff, 4);
37 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info));
38 OS.EmitIntValue(BTFType.Info, 4);
39 OS.EmitIntValue(BTFType.Size, 4);
40}
41
42BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag)
43 : DTy(DTy) {
44 switch (Tag) {
45 case dwarf::DW_TAG_pointer_type:
46 Kind = BTF::BTF_KIND_PTR;
47 break;
48 case dwarf::DW_TAG_const_type:
49 Kind = BTF::BTF_KIND_CONST;
50 break;
51 case dwarf::DW_TAG_volatile_type:
52 Kind = BTF::BTF_KIND_VOLATILE;
53 break;
54 case dwarf::DW_TAG_typedef:
55 Kind = BTF::BTF_KIND_TYPEDEF;
56 break;
57 case dwarf::DW_TAG_restrict_type:
58 Kind = BTF::BTF_KIND_RESTRICT;
59 break;
60 default:
61 llvm_unreachable("Unknown DIDerivedType Tag");
62 }
63 BTFType.Info = Kind << 24;
64}
65
66void BTFTypeDerived::completeType(BTFDebug &BDebug) {
67 BTFType.NameOff = BDebug.addString(DTy->getName());
68
69 // The base type for PTR/CONST/VOLATILE could be void.
70 const DIType *ResolvedType = DTy->getBaseType().resolve();
71 if (!ResolvedType) {
72 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST ||
73 Kind == BTF::BTF_KIND_VOLATILE) &&
74 "Invalid null basetype");
75 BTFType.Type = 0;
76 } else {
77 BTFType.Type = BDebug.getTypeId(ResolvedType);
78 }
79}
80
81void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
82
83/// Represent a struct/union forward declaration.
84BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) {
85 Kind = BTF::BTF_KIND_FWD;
86 BTFType.Info = IsUnion << 31 | Kind << 24;
87 BTFType.Type = 0;
88}
89
90void BTFTypeFwd::completeType(BTFDebug &BDebug) {
91 BTFType.NameOff = BDebug.addString(Name);
92}
93
94void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
95
96BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits,
97 uint32_t OffsetInBits, StringRef TypeName)
98 : Name(TypeName) {
99 // Translate IR int encoding to BTF int encoding.
100 uint8_t BTFEncoding;
101 switch (Encoding) {
102 case dwarf::DW_ATE_boolean:
103 BTFEncoding = BTF::INT_BOOL;
104 break;
105 case dwarf::DW_ATE_signed:
106 case dwarf::DW_ATE_signed_char:
107 BTFEncoding = BTF::INT_SIGNED;
108 break;
109 case dwarf::DW_ATE_unsigned:
110 case dwarf::DW_ATE_unsigned_char:
111 BTFEncoding = 0;
112 break;
113 default:
114 llvm_unreachable("Unknown BTFTypeInt Encoding");
115 }
116
117 Kind = BTF::BTF_KIND_INT;
118 BTFType.Info = Kind << 24;
119 BTFType.Size = roundupToBytes(SizeInBits);
120 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits;
121}
122
123void BTFTypeInt::completeType(BTFDebug &BDebug) {
124 BTFType.NameOff = BDebug.addString(Name);
125}
126
127void BTFTypeInt::emitType(MCStreamer &OS) {
128 BTFTypeBase::emitType(OS);
129 OS.AddComment("0x" + Twine::utohexstr(IntVal));
130 OS.EmitIntValue(IntVal, 4);
131}
132
133BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) {
134 Kind = BTF::BTF_KIND_ENUM;
135 BTFType.Info = Kind << 24 | VLen;
136 BTFType.Size = roundupToBytes(ETy->getSizeInBits());
137}
138
139void BTFTypeEnum::completeType(BTFDebug &BDebug) {
140 BTFType.NameOff = BDebug.addString(ETy->getName());
141
142 DINodeArray Elements = ETy->getElements();
143 for (const auto Element : Elements) {
144 const auto *Enum = cast<DIEnumerator>(Element);
145
146 struct BTF::BTFEnum BTFEnum;
147 BTFEnum.NameOff = BDebug.addString(Enum->getName());
148 // BTF enum value is 32bit, enforce it.
149 BTFEnum.Val = static_cast<uint32_t>(Enum->getValue());
150 EnumValues.push_back(BTFEnum);
151 }
152}
153
154void BTFTypeEnum::emitType(MCStreamer &OS) {
155 BTFTypeBase::emitType(OS);
156 for (const auto &Enum : EnumValues) {
157 OS.EmitIntValue(Enum.NameOff, 4);
158 OS.EmitIntValue(Enum.Val, 4);
159 }
160}
161
162BTFTypeArray::BTFTypeArray(const DICompositeType *ATy) : ATy(ATy) {
163 Kind = BTF::BTF_KIND_ARRAY;
164 BTFType.Info = Kind << 24;
165}
166
167/// Represent a BTF array. BTF does not record array dimensions,
168/// so conceptually a BTF array is a one-dimensional array.
169void BTFTypeArray::completeType(BTFDebug &BDebug) {
170 BTFType.NameOff = BDebug.addString(ATy->getName());
171 BTFType.Size = 0;
172
173 auto *BaseType = ATy->getBaseType().resolve();
174 ArrayInfo.ElemType = BDebug.getTypeId(BaseType);
175
176 // The IR does not really have a type for the index.
177 // A special type for array index should have been
178 // created during initial type traversal. Just
179 // retrieve that type id.
180 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId();
181
182 // Get the number of array elements.
183 // If the array size is 0, set the number of elements as 0.
184 // Otherwise, recursively traverse the base types to
185 // find the element size. The number of elements is
186 // the totoal array size in bits divided by
187 // element size in bits.
188 uint64_t ArraySizeInBits = ATy->getSizeInBits();
189 if (!ArraySizeInBits) {
190 ArrayInfo.Nelems = 0;
191 } else {
192 uint32_t BaseTypeSize = BaseType->getSizeInBits();
193 while (!BaseTypeSize) {
194 const auto *DDTy = cast<DIDerivedType>(BaseType);
195 BaseType = DDTy->getBaseType().resolve();
196 assert(BaseType);
197 BaseTypeSize = BaseType->getSizeInBits();
198 }
199 ArrayInfo.Nelems = ATy->getSizeInBits() / BaseTypeSize;
200 }
201}
202
203void BTFTypeArray::emitType(MCStreamer &OS) {
204 BTFTypeBase::emitType(OS);
205 OS.EmitIntValue(ArrayInfo.ElemType, 4);
206 OS.EmitIntValue(ArrayInfo.IndexType, 4);
207 OS.EmitIntValue(ArrayInfo.Nelems, 4);
208}
209
210/// Represent either a struct or a union.
211BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct,
212 bool HasBitField, uint32_t Vlen)
213 : STy(STy), HasBitField(HasBitField) {
214 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION;
215 BTFType.Size = roundupToBytes(STy->getSizeInBits());
216 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen;
217}
218
219void BTFTypeStruct::completeType(BTFDebug &BDebug) {
220 BTFType.NameOff = BDebug.addString(STy->getName());
221
222 // Add struct/union members.
223 const DINodeArray Elements = STy->getElements();
224 for (const auto *Element : Elements) {
225 struct BTF::BTFMember BTFMember;
226 const auto *DDTy = cast<DIDerivedType>(Element);
227
228 BTFMember.NameOff = BDebug.addString(DDTy->getName());
229 if (HasBitField) {
230 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0;
231 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits();
232 } else {
233 BTFMember.Offset = DDTy->getOffsetInBits();
234 }
235 BTFMember.Type = BDebug.getTypeId(DDTy->getBaseType().resolve());
236 Members.push_back(BTFMember);
237 }
238}
239
240void BTFTypeStruct::emitType(MCStreamer &OS) {
241 BTFTypeBase::emitType(OS);
242 for (const auto &Member : Members) {
243 OS.EmitIntValue(Member.NameOff, 4);
244 OS.EmitIntValue(Member.Type, 4);
245 OS.AddComment("0x" + Twine::utohexstr(Member.Offset));
246 OS.EmitIntValue(Member.Offset, 4);
247 }
248}
249
250/// The Func kind represents both subprogram and pointee of function
251/// pointers. If the FuncName is empty, it represents a pointee of function
252/// pointer. Otherwise, it represents a subprogram. The func arg names
253/// are empty for pointee of function pointer case, and are valid names
254/// for subprogram.
255BTFTypeFuncProto::BTFTypeFuncProto(
256 const DISubroutineType *STy, uint32_t VLen,
257 const std::unordered_map<uint32_t, StringRef> &FuncArgNames)
258 : STy(STy), FuncArgNames(FuncArgNames) {
259 Kind = BTF::BTF_KIND_FUNC_PROTO;
260 BTFType.Info = (Kind << 24) | VLen;
261}
262
263void BTFTypeFuncProto::completeType(BTFDebug &BDebug) {
264 DITypeRefArray Elements = STy->getTypeArray();
265 auto RetType = Elements[0].resolve();
266 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0;
267 BTFType.NameOff = 0;
268
269 // For null parameter which is typically the last one
270 // to represent the vararg, encode the NameOff/Type to be 0.
271 for (unsigned I = 1, N = Elements.size(); I < N; ++I) {
272 struct BTF::BTFParam Param;
273 auto Element = Elements[I].resolve();
274 if (Element) {
275 Param.NameOff = BDebug.addString(FuncArgNames[I]);
276 Param.Type = BDebug.getTypeId(Element);
277 } else {
278 Param.NameOff = 0;
279 Param.Type = 0;
280 }
281 Parameters.push_back(Param);
282 }
283}
284
285void BTFTypeFuncProto::emitType(MCStreamer &OS) {
286 BTFTypeBase::emitType(OS);
287 for (const auto &Param : Parameters) {
288 OS.EmitIntValue(Param.NameOff, 4);
289 OS.EmitIntValue(Param.Type, 4);
290 }
291}
292
293BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId)
294 : Name(FuncName) {
295 Kind = BTF::BTF_KIND_FUNC;
296 BTFType.Info = Kind << 24;
297 BTFType.Type = ProtoTypeId;
298}
299
300void BTFTypeFunc::completeType(BTFDebug &BDebug) {
301 BTFType.NameOff = BDebug.addString(Name);
302}
303
304void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
305
306uint32_t BTFStringTable::addString(StringRef S) {
307 // Check whether the string already exists.
308 for (auto &OffsetM : OffsetToIdMap) {
309 if (Table[OffsetM.second] == S)
310 return OffsetM.first;
311 }
312 // Not find, add to the string table.
313 uint32_t Offset = Size;
314 OffsetToIdMap[Offset] = Table.size();
315 Table.push_back(S);
316 Size += S.size() + 1;
317 return Offset;
318}
319
320BTFDebug::BTFDebug(AsmPrinter *AP)
321 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false),
322 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0) {
323 addString("\0");
324}
325
326void BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry,
327 const DIType *Ty) {
328 TypeEntry->setId(TypeEntries.size() + 1);
329 DIToIdMap[Ty] = TypeEntry->getId();
330 TypeEntries.push_back(std::move(TypeEntry));
331}
332
333uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) {
334 TypeEntry->setId(TypeEntries.size() + 1);
335 uint32_t Id = TypeEntry->getId();
336 TypeEntries.push_back(std::move(TypeEntry));
337 return Id;
338}
339
340void BTFDebug::visitBasicType(const DIBasicType *BTy) {
341 // Only int types are supported in BTF.
342 uint32_t Encoding = BTy->getEncoding();
343 if (Encoding != dwarf::DW_ATE_boolean && Encoding != dwarf::DW_ATE_signed &&
344 Encoding != dwarf::DW_ATE_signed_char &&
345 Encoding != dwarf::DW_ATE_unsigned &&
346 Encoding != dwarf::DW_ATE_unsigned_char)
347 return;
348
349 // Create a BTF type instance for this DIBasicType and put it into
350 // DIToIdMap for cross-type reference check.
351 auto TypeEntry = llvm::make_unique<BTFTypeInt>(
352 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName());
353 addType(std::move(TypeEntry), BTy);
354}
355
356/// Handle subprogram or subroutine types.
357void BTFDebug::visitSubroutineType(
358 const DISubroutineType *STy, bool ForSubprog,
359 const std::unordered_map<uint32_t, StringRef> &FuncArgNames,
360 uint32_t &TypeId) {
361 DITypeRefArray Elements = STy->getTypeArray();
362 uint32_t VLen = Elements.size() - 1;
363 if (VLen > BTF::MAX_VLEN)
364 return;
365
366 // Subprogram has a valid non-zero-length name, and the pointee of
367 // a function pointer has an empty name. The subprogram type will
368 // not be added to DIToIdMap as it should not be referenced by
369 // any other types.
370 auto TypeEntry = llvm::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames);
371 if (ForSubprog)
372 TypeId = addType(std::move(TypeEntry)); // For subprogram
373 else
374 addType(std::move(TypeEntry), STy); // For func ptr
375
376 // Visit return type and func arg types.
377 for (const auto Element : Elements) {
378 visitTypeEntry(Element.resolve());
379 }
380}
381
382/// Handle structure/union types.
383void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct) {
384 const DINodeArray Elements = CTy->getElements();
385 uint32_t VLen = Elements.size();
386 if (VLen > BTF::MAX_VLEN)
387 return;
388
389 // Check whether we have any bitfield members or not
390 bool HasBitField = false;
391 for (const auto *Element : Elements) {
392 auto E = cast<DIDerivedType>(Element);
393 if (E->isBitField()) {
394 HasBitField = true;
395 break;
396 }
397 }
398
399 auto TypeEntry =
400 llvm::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen);
401 addType(std::move(TypeEntry), CTy);
402
403 // Visit all struct members.
404 for (const auto *Element : Elements)
405 visitTypeEntry(cast<DIDerivedType>(Element));
406}
407
408void BTFDebug::visitArrayType(const DICompositeType *CTy) {
409 auto TypeEntry = llvm::make_unique<BTFTypeArray>(CTy);
410 addType(std::move(TypeEntry), CTy);
411
412 // The IR does not have a type for array index while BTF wants one.
413 // So create an array index type if there is none.
414 if (!ArrayIndexTypeId) {
415 auto TypeEntry = llvm::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32,
416 0, "__ARRAY_SIZE_TYPE__");
417 ArrayIndexTypeId = addType(std::move(TypeEntry));
418 }
419
420 // Visit array element type.
421 visitTypeEntry(CTy->getBaseType().resolve());
422}
423
424void BTFDebug::visitEnumType(const DICompositeType *CTy) {
425 DINodeArray Elements = CTy->getElements();
426 uint32_t VLen = Elements.size();
427 if (VLen > BTF::MAX_VLEN)
428 return;
429
430 auto TypeEntry = llvm::make_unique<BTFTypeEnum>(CTy, VLen);
431 addType(std::move(TypeEntry), CTy);
432 // No need to visit base type as BTF does not encode it.
433}
434
435/// Handle structure/union forward declarations.
436void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion) {
437 auto TypeEntry = llvm::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion);
438 addType(std::move(TypeEntry), CTy);
439}
440
441/// Handle structure, union, array and enumeration types.
442void BTFDebug::visitCompositeType(const DICompositeType *CTy) {
443 auto Tag = CTy->getTag();
444 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) {
445 // Handle forward declaration differently as it does not have members.
446 if (CTy->isForwardDecl())
447 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type);
448 else
449 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type);
450 } else if (Tag == dwarf::DW_TAG_array_type)
451 visitArrayType(CTy);
452 else if (Tag == dwarf::DW_TAG_enumeration_type)
453 visitEnumType(CTy);
454}
455
456/// Handle pointer, typedef, const, volatile, restrict and member types.
457void BTFDebug::visitDerivedType(const DIDerivedType *DTy) {
458 unsigned Tag = DTy->getTag();
459
460 if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef ||
461 Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
462 Tag == dwarf::DW_TAG_restrict_type) {
463 auto TypeEntry = llvm::make_unique<BTFTypeDerived>(DTy, Tag);
464 addType(std::move(TypeEntry), DTy);
465 } else if (Tag != dwarf::DW_TAG_member) {
466 return;
467 }
468
469 // Visit base type of pointer, typedef, const, volatile, restrict or
470 // struct/union member.
471 visitTypeEntry(DTy->getBaseType().resolve());
472}
473
474void BTFDebug::visitTypeEntry(const DIType *Ty) {
475 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end())
476 return;
477
478 uint32_t TypeId;
479 if (const auto *BTy = dyn_cast<DIBasicType>(Ty))
480 visitBasicType(BTy);
481 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty))
482 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(),
483 TypeId);
484 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty))
485 visitCompositeType(CTy);
486 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty))
487 visitDerivedType(DTy);
488 else
489 llvm_unreachable("Unknown DIType");
490}
491
492/// Read file contents from the actual file or from the source
493std::string BTFDebug::populateFileContent(const DISubprogram *SP) {
494 auto File = SP->getFile();
495 std::string FileName;
496
497 if (File->getDirectory().size())
498 FileName = File->getDirectory().str() + "/" + File->getFilename().str();
499 else
500 FileName = File->getFilename();
501
502 // No need to populate the contends if it has been populated!
503 if (FileContent.find(FileName) != FileContent.end())
504 return FileName;
505
506 std::vector<std::string> Content;
507 std::string Line;
508 Content.push_back(Line); // Line 0 for empty string
509
510 auto Source = File->getSource();
511 if (Source) {
512 std::istringstream InputString(Source.getValue());
513 while (std::getline(InputString, Line))
514 Content.push_back(Line);
515 } else {
516 std::ifstream InputFile(FileName);
517 while (std::getline(InputFile, Line))
518 Content.push_back(Line);
519 }
520
521 FileContent[FileName] = Content;
522 return FileName;
523}
524
525void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label,
526 uint32_t Line, uint32_t Column) {
527 std::string FileName = populateFileContent(SP);
528 BTFLineInfo LineInfo;
529
530 LineInfo.Label = Label;
531 LineInfo.FileNameOff = addString(FileName);
532 // If file content is not available, let LineOff = 0.
533 if (Line < FileContent[FileName].size())
534 LineInfo.LineOff = addString(FileContent[FileName][Line]);
535 else
536 LineInfo.LineOff = 0;
537 LineInfo.LineNum = Line;
538 LineInfo.ColumnNum = Column;
539 LineInfoTable[SecNameOff].push_back(LineInfo);
540}
541
542void BTFDebug::emitCommonHeader() {
543 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC));
544 OS.EmitIntValue(BTF::MAGIC, 2);
545 OS.EmitIntValue(BTF::VERSION, 1);
546 OS.EmitIntValue(0, 1);
547}
548
549void BTFDebug::emitBTFSection() {
550 MCContext &Ctx = OS.getContext();
551 OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0));
552
553 // Emit header.
554 emitCommonHeader();
555 OS.EmitIntValue(BTF::HeaderSize, 4);
556
557 uint32_t TypeLen = 0, StrLen;
558 for (const auto &TypeEntry : TypeEntries)
559 TypeLen += TypeEntry->getSize();
560 StrLen = StringTable.getSize();
561
562 OS.EmitIntValue(0, 4);
563 OS.EmitIntValue(TypeLen, 4);
564 OS.EmitIntValue(TypeLen, 4);
565 OS.EmitIntValue(StrLen, 4);
566
567 // Emit type table.
568 for (const auto &TypeEntry : TypeEntries)
569 TypeEntry->emitType(OS);
570
571 // Emit string table.
572 uint32_t StringOffset = 0;
573 for (const auto &S : StringTable.getTable()) {
574 OS.AddComment("string offset=" + std::to_string(StringOffset));
575 OS.EmitBytes(S);
576 OS.EmitBytes(StringRef("\0", 1));
577 StringOffset += S.size() + 1;
578 }
579}
580
581void BTFDebug::emitBTFExtSection() {
582 MCContext &Ctx = OS.getContext();
583 OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0));
584
585 // Emit header.
586 emitCommonHeader();
587 OS.EmitIntValue(BTF::ExtHeaderSize, 4);
588
589 // Account for FuncInfo/LineInfo record size as well.
590 uint32_t FuncLen = 4, LineLen = 4;
591 for (const auto &FuncSec : FuncInfoTable) {
592 FuncLen += BTF::SecFuncInfoSize;
593 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize;
594 }
595 for (const auto &LineSec : LineInfoTable) {
596 LineLen += BTF::SecLineInfoSize;
597 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize;
598 }
599
600 OS.EmitIntValue(0, 4);
601 OS.EmitIntValue(FuncLen, 4);
602 OS.EmitIntValue(FuncLen, 4);
603 OS.EmitIntValue(LineLen, 4);
604
605 // Emit func_info table.
606 OS.AddComment("FuncInfo");
607 OS.EmitIntValue(BTF::BPFFuncInfoSize, 4);
608 for (const auto &FuncSec : FuncInfoTable) {
609 OS.AddComment("FuncInfo section string offset=" +
610 std::to_string(FuncSec.first));
611 OS.EmitIntValue(FuncSec.first, 4);
612 OS.EmitIntValue(FuncSec.second.size(), 4);
613 for (const auto &FuncInfo : FuncSec.second) {
614 Asm->EmitLabelReference(FuncInfo.Label, 4);
615 OS.EmitIntValue(FuncInfo.TypeId, 4);
616 }
617 }
618
619 // Emit line_info table.
620 OS.AddComment("LineInfo");
621 OS.EmitIntValue(BTF::BPFLineInfoSize, 4);
622 for (const auto &LineSec : LineInfoTable) {
623 OS.AddComment("LineInfo section string offset=" +
624 std::to_string(LineSec.first));
625 OS.EmitIntValue(LineSec.first, 4);
626 OS.EmitIntValue(LineSec.second.size(), 4);
627 for (const auto &LineInfo : LineSec.second) {
628 Asm->EmitLabelReference(LineInfo.Label, 4);
629 OS.EmitIntValue(LineInfo.FileNameOff, 4);
630 OS.EmitIntValue(LineInfo.LineOff, 4);
631 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " +
632 std::to_string(LineInfo.ColumnNum));
633 OS.EmitIntValue(LineInfo.LineNum << 10 | LineInfo.ColumnNum, 4);
634 }
635 }
636}
637
638void BTFDebug::beginFunctionImpl(const MachineFunction *MF) {
639 auto *SP = MF->getFunction().getSubprogram();
640 auto *Unit = SP->getUnit();
641
642 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) {
643 SkipInstruction = true;
644 return;
645 }
646 SkipInstruction = false;
647
648 // Collect all types locally referenced in this function.
649 // Use RetainedNodes so we can collect all argument names
650 // even if the argument is not used.
651 std::unordered_map<uint32_t, StringRef> FuncArgNames;
652 for (const DINode *DN : SP->getRetainedNodes()) {
653 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) {
654 visitTypeEntry(DV->getType().resolve());
655
656 // Collect function arguments for subprogram func type.
657 uint32_t Arg = DV->getArg();
658 if (Arg)
659 FuncArgNames[Arg] = DV->getName();
660 }
661 }
662
663 // Construct subprogram func proto type.
664 uint32_t ProtoTypeId;
665 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId);
666
667 // Construct subprogram func type
668 auto FuncTypeEntry =
669 llvm::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId);
670 uint32_t FuncTypeId = addType(std::move(FuncTypeEntry));
671
672 // Construct funcinfo and the first lineinfo for the function.
673 MCSymbol *FuncLabel = Asm->getFunctionBegin();
674 BTFFuncInfo FuncInfo;
675 FuncInfo.Label = FuncLabel;
676 FuncInfo.TypeId = FuncTypeId;
677 if (FuncLabel->isInSection()) {
678 MCSection &Section = FuncLabel->getSection();
679 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section);
680 assert(SectionELF && "Null section for Function Label");
681 SecNameOff = addString(SectionELF->getSectionName());
682 } else {
683 SecNameOff = addString(".text");
684 }
685 FuncInfoTable[SecNameOff].push_back(FuncInfo);
686}
687
688void BTFDebug::endFunctionImpl(const MachineFunction *MF) {
689 SkipInstruction = false;
690 LineInfoGenerated = false;
691 SecNameOff = 0;
692}
693
694void BTFDebug::beginInstruction(const MachineInstr *MI) {
695 DebugHandlerBase::beginInstruction(MI);
696
697 if (SkipInstruction || MI->isMetaInstruction() ||
698 MI->getFlag(MachineInstr::FrameSetup))
699 return;
700
701 if (MI->isInlineAsm()) {
702 // Count the number of register definitions to find the asm string.
703 unsigned NumDefs = 0;
704 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
705 ++NumDefs)
706 ;
707
708 // Skip this inline asm instruction if the asmstr is empty.
709 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
710 if (AsmStr[0] == 0)
711 return;
712 }
713
714 // Skip this instruction if no DebugLoc or the DebugLoc
715 // is the same as the previous instruction.
716 const DebugLoc &DL = MI->getDebugLoc();
717 if (!DL || PrevInstLoc == DL) {
718 // This instruction will be skipped, no LineInfo has
719 // been generated, construct one based on function signature.
720 if (LineInfoGenerated == false) {
721 auto *S = MI->getMF()->getFunction().getSubprogram();
722 MCSymbol *FuncLabel = Asm->getFunctionBegin();
723 constructLineInfo(S, FuncLabel, S->getLine(), 0);
724 LineInfoGenerated = true;
725 }
726
727 return;
728 }
729
730 // Create a temporary label to remember the insn for lineinfo.
731 MCSymbol *LineSym = OS.getContext().createTempSymbol();
732 OS.EmitLabel(LineSym);
733
734 // Construct the lineinfo.
735 auto SP = DL.get()->getScope()->getSubprogram();
736 constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol());
737
738 LineInfoGenerated = true;
739 PrevInstLoc = DL;
740}
741
742void BTFDebug::endModule() {
743 // Collect all types referenced by globals.
744 const Module *M = MMI->getModule();
745 for (const DICompileUnit *CUNode : M->debug_compile_units()) {
746 for (const auto *GVE : CUNode->getGlobalVariables()) {
747 DIGlobalVariable *GV = GVE->getVariable();
748 visitTypeEntry(GV->getType().resolve());
749 }
750 }
751
752 // Complete BTF type cross refereences.
753 for (const auto &TypeEntry : TypeEntries)
754 TypeEntry->completeType(*this);
755
756 // Emit BTF sections.
757 emitBTFSection();
758 emitBTFExtSection();
759}