Ulrich Weigand | 1f6666a | 2015-03-31 12:52:27 +0000 | [diff] [blame] | 1 | //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements a TargetTransformInfo analysis pass specific to the |
| 11 | // SystemZ target machine. It uses the target's detailed information to provide |
| 12 | // more precise answers to certain TTI queries, while letting the target |
| 13 | // independent and default TTI implementations handle the rest. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #include "SystemZTargetTransformInfo.h" |
| 18 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 19 | #include "llvm/CodeGen/BasicTTIImpl.h" |
| 20 | #include "llvm/IR/IntrinsicInst.h" |
| 21 | #include "llvm/Support/Debug.h" |
| 22 | #include "llvm/Target/CostTable.h" |
| 23 | #include "llvm/Target/TargetLowering.h" |
| 24 | using namespace llvm; |
| 25 | |
| 26 | #define DEBUG_TYPE "systemztti" |
| 27 | |
| 28 | //===----------------------------------------------------------------------===// |
| 29 | // |
| 30 | // SystemZ cost model. |
| 31 | // |
| 32 | //===----------------------------------------------------------------------===// |
| 33 | |
Chandler Carruth | 93205eb | 2015-08-05 18:08:10 +0000 | [diff] [blame] | 34 | int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { |
Ulrich Weigand | 1f6666a | 2015-03-31 12:52:27 +0000 | [diff] [blame] | 35 | assert(Ty->isIntegerTy()); |
| 36 | |
| 37 | unsigned BitSize = Ty->getPrimitiveSizeInBits(); |
| 38 | // There is no cost model for constants with a bit size of 0. Return TCC_Free |
| 39 | // here, so that constant hoisting will ignore this constant. |
| 40 | if (BitSize == 0) |
| 41 | return TTI::TCC_Free; |
| 42 | // No cost model for operations on integers larger than 64 bit implemented yet. |
| 43 | if (BitSize > 64) |
| 44 | return TTI::TCC_Free; |
| 45 | |
| 46 | if (Imm == 0) |
| 47 | return TTI::TCC_Free; |
| 48 | |
| 49 | if (Imm.getBitWidth() <= 64) { |
| 50 | // Constants loaded via lgfi. |
| 51 | if (isInt<32>(Imm.getSExtValue())) |
| 52 | return TTI::TCC_Basic; |
| 53 | // Constants loaded via llilf. |
| 54 | if (isUInt<32>(Imm.getZExtValue())) |
| 55 | return TTI::TCC_Basic; |
| 56 | // Constants loaded via llihf: |
| 57 | if ((Imm.getZExtValue() & 0xffffffff) == 0) |
| 58 | return TTI::TCC_Basic; |
| 59 | |
| 60 | return 2 * TTI::TCC_Basic; |
| 61 | } |
| 62 | |
| 63 | return 4 * TTI::TCC_Basic; |
| 64 | } |
| 65 | |
Chandler Carruth | 93205eb | 2015-08-05 18:08:10 +0000 | [diff] [blame] | 66 | int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, |
| 67 | const APInt &Imm, Type *Ty) { |
Ulrich Weigand | 1f6666a | 2015-03-31 12:52:27 +0000 | [diff] [blame] | 68 | assert(Ty->isIntegerTy()); |
| 69 | |
| 70 | unsigned BitSize = Ty->getPrimitiveSizeInBits(); |
| 71 | // There is no cost model for constants with a bit size of 0. Return TCC_Free |
| 72 | // here, so that constant hoisting will ignore this constant. |
| 73 | if (BitSize == 0) |
| 74 | return TTI::TCC_Free; |
| 75 | // No cost model for operations on integers larger than 64 bit implemented yet. |
| 76 | if (BitSize > 64) |
| 77 | return TTI::TCC_Free; |
| 78 | |
| 79 | switch (Opcode) { |
| 80 | default: |
| 81 | return TTI::TCC_Free; |
| 82 | case Instruction::GetElementPtr: |
| 83 | // Always hoist the base address of a GetElementPtr. This prevents the |
| 84 | // creation of new constants for every base constant that gets constant |
| 85 | // folded with the offset. |
| 86 | if (Idx == 0) |
| 87 | return 2 * TTI::TCC_Basic; |
| 88 | return TTI::TCC_Free; |
| 89 | case Instruction::Store: |
| 90 | if (Idx == 0 && Imm.getBitWidth() <= 64) { |
| 91 | // Any 8-bit immediate store can by implemented via mvi. |
| 92 | if (BitSize == 8) |
| 93 | return TTI::TCC_Free; |
| 94 | // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. |
| 95 | if (isInt<16>(Imm.getSExtValue())) |
| 96 | return TTI::TCC_Free; |
| 97 | } |
| 98 | break; |
| 99 | case Instruction::ICmp: |
| 100 | if (Idx == 1 && Imm.getBitWidth() <= 64) { |
| 101 | // Comparisons against signed 32-bit immediates implemented via cgfi. |
| 102 | if (isInt<32>(Imm.getSExtValue())) |
| 103 | return TTI::TCC_Free; |
| 104 | // Comparisons against unsigned 32-bit immediates implemented via clgfi. |
| 105 | if (isUInt<32>(Imm.getZExtValue())) |
| 106 | return TTI::TCC_Free; |
| 107 | } |
| 108 | break; |
| 109 | case Instruction::Add: |
| 110 | case Instruction::Sub: |
| 111 | if (Idx == 1 && Imm.getBitWidth() <= 64) { |
| 112 | // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. |
| 113 | if (isUInt<32>(Imm.getZExtValue())) |
| 114 | return TTI::TCC_Free; |
| 115 | // Or their negation, by swapping addition vs. subtraction. |
| 116 | if (isUInt<32>(-Imm.getSExtValue())) |
| 117 | return TTI::TCC_Free; |
| 118 | } |
| 119 | break; |
| 120 | case Instruction::Mul: |
| 121 | if (Idx == 1 && Imm.getBitWidth() <= 64) { |
| 122 | // We use msgfi to multiply by 32-bit signed immediates. |
| 123 | if (isInt<32>(Imm.getSExtValue())) |
| 124 | return TTI::TCC_Free; |
| 125 | } |
| 126 | break; |
| 127 | case Instruction::Or: |
| 128 | case Instruction::Xor: |
| 129 | if (Idx == 1 && Imm.getBitWidth() <= 64) { |
| 130 | // Masks supported by oilf/xilf. |
| 131 | if (isUInt<32>(Imm.getZExtValue())) |
| 132 | return TTI::TCC_Free; |
| 133 | // Masks supported by oihf/xihf. |
| 134 | if ((Imm.getZExtValue() & 0xffffffff) == 0) |
| 135 | return TTI::TCC_Free; |
| 136 | } |
| 137 | break; |
| 138 | case Instruction::And: |
| 139 | if (Idx == 1 && Imm.getBitWidth() <= 64) { |
| 140 | // Any 32-bit AND operation can by implemented via nilf. |
| 141 | if (BitSize <= 32) |
| 142 | return TTI::TCC_Free; |
| 143 | // 64-bit masks supported by nilf. |
| 144 | if (isUInt<32>(~Imm.getZExtValue())) |
| 145 | return TTI::TCC_Free; |
| 146 | // 64-bit masks supported by nilh. |
| 147 | if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) |
| 148 | return TTI::TCC_Free; |
| 149 | // Some 64-bit AND operations can be implemented via risbg. |
| 150 | const SystemZInstrInfo *TII = ST->getInstrInfo(); |
| 151 | unsigned Start, End; |
| 152 | if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) |
| 153 | return TTI::TCC_Free; |
| 154 | } |
| 155 | break; |
| 156 | case Instruction::Shl: |
| 157 | case Instruction::LShr: |
| 158 | case Instruction::AShr: |
| 159 | // Always return TCC_Free for the shift value of a shift instruction. |
| 160 | if (Idx == 1) |
| 161 | return TTI::TCC_Free; |
| 162 | break; |
| 163 | case Instruction::UDiv: |
| 164 | case Instruction::SDiv: |
| 165 | case Instruction::URem: |
| 166 | case Instruction::SRem: |
| 167 | case Instruction::Trunc: |
| 168 | case Instruction::ZExt: |
| 169 | case Instruction::SExt: |
| 170 | case Instruction::IntToPtr: |
| 171 | case Instruction::PtrToInt: |
| 172 | case Instruction::BitCast: |
| 173 | case Instruction::PHI: |
| 174 | case Instruction::Call: |
| 175 | case Instruction::Select: |
| 176 | case Instruction::Ret: |
| 177 | case Instruction::Load: |
| 178 | break; |
| 179 | } |
| 180 | |
| 181 | return SystemZTTIImpl::getIntImmCost(Imm, Ty); |
| 182 | } |
| 183 | |
Chandler Carruth | 93205eb | 2015-08-05 18:08:10 +0000 | [diff] [blame] | 184 | int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, |
| 185 | const APInt &Imm, Type *Ty) { |
Ulrich Weigand | 1f6666a | 2015-03-31 12:52:27 +0000 | [diff] [blame] | 186 | assert(Ty->isIntegerTy()); |
| 187 | |
| 188 | unsigned BitSize = Ty->getPrimitiveSizeInBits(); |
| 189 | // There is no cost model for constants with a bit size of 0. Return TCC_Free |
| 190 | // here, so that constant hoisting will ignore this constant. |
| 191 | if (BitSize == 0) |
| 192 | return TTI::TCC_Free; |
| 193 | // No cost model for operations on integers larger than 64 bit implemented yet. |
| 194 | if (BitSize > 64) |
| 195 | return TTI::TCC_Free; |
| 196 | |
| 197 | switch (IID) { |
| 198 | default: |
| 199 | return TTI::TCC_Free; |
| 200 | case Intrinsic::sadd_with_overflow: |
| 201 | case Intrinsic::uadd_with_overflow: |
| 202 | case Intrinsic::ssub_with_overflow: |
| 203 | case Intrinsic::usub_with_overflow: |
| 204 | // These get expanded to include a normal addition/subtraction. |
| 205 | if (Idx == 1 && Imm.getBitWidth() <= 64) { |
| 206 | if (isUInt<32>(Imm.getZExtValue())) |
| 207 | return TTI::TCC_Free; |
| 208 | if (isUInt<32>(-Imm.getSExtValue())) |
| 209 | return TTI::TCC_Free; |
| 210 | } |
| 211 | break; |
| 212 | case Intrinsic::smul_with_overflow: |
| 213 | case Intrinsic::umul_with_overflow: |
| 214 | // These get expanded to include a normal multiplication. |
| 215 | if (Idx == 1 && Imm.getBitWidth() <= 64) { |
| 216 | if (isInt<32>(Imm.getSExtValue())) |
| 217 | return TTI::TCC_Free; |
| 218 | } |
| 219 | break; |
| 220 | case Intrinsic::experimental_stackmap: |
| 221 | if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) |
| 222 | return TTI::TCC_Free; |
| 223 | break; |
| 224 | case Intrinsic::experimental_patchpoint_void: |
| 225 | case Intrinsic::experimental_patchpoint_i64: |
| 226 | if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) |
| 227 | return TTI::TCC_Free; |
| 228 | break; |
| 229 | } |
| 230 | return SystemZTTIImpl::getIntImmCost(Imm, Ty); |
| 231 | } |
Ulrich Weigand | b401218 | 2015-03-31 12:56:33 +0000 | [diff] [blame] | 232 | |
| 233 | TargetTransformInfo::PopcntSupportKind |
| 234 | SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { |
| 235 | assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); |
| 236 | if (ST->hasPopulationCount() && TyWidth <= 64) |
| 237 | return TTI::PSK_FastHardware; |
| 238 | return TTI::PSK_Software; |
| 239 | } |
| 240 | |
Geoff Berry | 66d9bdb | 2017-06-28 15:53:17 +0000 | [diff] [blame] | 241 | void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, |
Jonas Paulsson | 58c5a7f | 2016-09-28 09:41:38 +0000 | [diff] [blame] | 242 | TTI::UnrollingPreferences &UP) { |
| 243 | // Find out if L contains a call, what the machine instruction count |
| 244 | // estimate is, and how many stores there are. |
| 245 | bool HasCall = false; |
| 246 | unsigned NumStores = 0; |
| 247 | for (auto &BB : L->blocks()) |
| 248 | for (auto &I : *BB) { |
| 249 | if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { |
| 250 | ImmutableCallSite CS(&I); |
| 251 | if (const Function *F = CS.getCalledFunction()) { |
| 252 | if (isLoweredToCall(F)) |
| 253 | HasCall = true; |
| 254 | if (F->getIntrinsicID() == Intrinsic::memcpy || |
| 255 | F->getIntrinsicID() == Intrinsic::memset) |
| 256 | NumStores++; |
| 257 | } else { // indirect call. |
| 258 | HasCall = true; |
| 259 | } |
| 260 | } |
| 261 | if (isa<StoreInst>(&I)) { |
Jonas Paulsson | 58c5a7f | 2016-09-28 09:41:38 +0000 | [diff] [blame] | 262 | Type *MemAccessTy = I.getOperand(0)->getType(); |
Jonas Paulsson | fccc7d6 | 2017-04-12 11:49:08 +0000 | [diff] [blame] | 263 | NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0); |
Jonas Paulsson | 58c5a7f | 2016-09-28 09:41:38 +0000 | [diff] [blame] | 264 | } |
| 265 | } |
| 266 | |
| 267 | // The z13 processor will run out of store tags if too many stores |
| 268 | // are fed into it too quickly. Therefore make sure there are not |
| 269 | // too many stores in the resulting unrolled loop. |
| 270 | unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX); |
| 271 | |
| 272 | if (HasCall) { |
| 273 | // Only allow full unrolling if loop has any calls. |
| 274 | UP.FullUnrollMaxCount = Max; |
| 275 | UP.MaxCount = 1; |
| 276 | return; |
| 277 | } |
| 278 | |
| 279 | UP.MaxCount = Max; |
| 280 | if (UP.MaxCount <= 1) |
| 281 | return; |
| 282 | |
| 283 | // Allow partial and runtime trip count unrolling. |
| 284 | UP.Partial = UP.Runtime = true; |
| 285 | |
| 286 | UP.PartialThreshold = 75; |
| 287 | UP.DefaultUnrollRuntimeCount = 4; |
| 288 | |
| 289 | // Allow expensive instructions in the pre-header of the loop. |
| 290 | UP.AllowExpensiveTripCount = true; |
| 291 | |
| 292 | UP.Force = true; |
| 293 | } |
| 294 | |
Ulrich Weigand | ce4c109 | 2015-05-05 19:25:42 +0000 | [diff] [blame] | 295 | unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) { |
| 296 | if (!Vector) |
| 297 | // Discount the stack pointer. Also leave out %r0, since it can't |
| 298 | // be used in an address. |
| 299 | return 14; |
| 300 | if (ST->hasVector()) |
| 301 | return 32; |
| 302 | return 0; |
| 303 | } |
| 304 | |
Daniel Neilson | c0112ae | 2017-06-12 14:22:21 +0000 | [diff] [blame] | 305 | unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const { |
Ulrich Weigand | ce4c109 | 2015-05-05 19:25:42 +0000 | [diff] [blame] | 306 | if (!Vector) |
| 307 | return 64; |
| 308 | if (ST->hasVector()) |
| 309 | return 128; |
| 310 | return 0; |
| 311 | } |
| 312 | |
Jonas Paulsson | fccc7d6 | 2017-04-12 11:49:08 +0000 | [diff] [blame] | 313 | int SystemZTTIImpl::getArithmeticInstrCost( |
| 314 | unsigned Opcode, Type *Ty, |
| 315 | TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, |
| 316 | TTI::OperandValueProperties Opd1PropInfo, |
| 317 | TTI::OperandValueProperties Opd2PropInfo, |
| 318 | ArrayRef<const Value *> Args) { |
| 319 | |
| 320 | // TODO: return a good value for BB-VECTORIZER that includes the |
| 321 | // immediate loads, which we do not want to count for the loop |
| 322 | // vectorizer, since they are hopefully hoisted out of the loop. This |
| 323 | // would require a new parameter 'InLoop', but not sure if constant |
| 324 | // args are common enough to motivate this. |
| 325 | |
| 326 | unsigned ScalarBits = Ty->getScalarSizeInBits(); |
| 327 | |
Jonas Paulsson | 8722ade | 2017-05-17 12:46:26 +0000 | [diff] [blame] | 328 | // Div with a constant which is a power of 2 will be converted by |
| 329 | // DAGCombiner to use shifts. With vector shift-element instructions, a |
| 330 | // vector sdiv costs about as much as a scalar one. |
| 331 | const unsigned SDivCostEstimate = 4; |
| 332 | bool SDivPow2 = false; |
| 333 | bool UDivPow2 = false; |
| 334 | if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv) && |
| 335 | Args.size() == 2) { |
| 336 | const ConstantInt *CI = nullptr; |
| 337 | if (const Constant *C = dyn_cast<Constant>(Args[1])) { |
| 338 | if (C->getType()->isVectorTy()) |
| 339 | CI = dyn_cast_or_null<const ConstantInt>(C->getSplatValue()); |
| 340 | else |
| 341 | CI = dyn_cast<const ConstantInt>(C); |
| 342 | } |
| 343 | if (CI != nullptr && |
| 344 | (CI->getValue().isPowerOf2() || (-CI->getValue()).isPowerOf2())) { |
| 345 | if (Opcode == Instruction::SDiv) |
| 346 | SDivPow2 = true; |
| 347 | else |
| 348 | UDivPow2 = true; |
| 349 | } |
| 350 | } |
| 351 | |
Jonas Paulsson | fccc7d6 | 2017-04-12 11:49:08 +0000 | [diff] [blame] | 352 | if (Ty->isVectorTy()) { |
| 353 | assert (ST->hasVector() && "getArithmeticInstrCost() called with vector type."); |
| 354 | unsigned VF = Ty->getVectorNumElements(); |
| 355 | unsigned NumVectors = getNumberOfParts(Ty); |
| 356 | |
| 357 | // These vector operations are custom handled, but are still supported |
| 358 | // with one instruction per vector, regardless of element size. |
| 359 | if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || |
Jonas Paulsson | 8722ade | 2017-05-17 12:46:26 +0000 | [diff] [blame] | 360 | Opcode == Instruction::AShr || UDivPow2) { |
Jonas Paulsson | fccc7d6 | 2017-04-12 11:49:08 +0000 | [diff] [blame] | 361 | return NumVectors; |
| 362 | } |
| 363 | |
Jonas Paulsson | 8722ade | 2017-05-17 12:46:26 +0000 | [diff] [blame] | 364 | if (SDivPow2) |
| 365 | return (NumVectors * SDivCostEstimate); |
| 366 | |
Jonas Paulsson | fccc7d6 | 2017-04-12 11:49:08 +0000 | [diff] [blame] | 367 | // These FP operations are supported with a single vector instruction for |
| 368 | // double (base implementation assumes float generally costs 2). For |
| 369 | // FP128, the scalar cost is 1, and there is no overhead since the values |
| 370 | // are already in scalar registers. |
| 371 | if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || |
| 372 | Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { |
| 373 | switch (ScalarBits) { |
| 374 | case 32: { |
| 375 | // Return the cost of multiple scalar invocation plus the cost of |
| 376 | // inserting and extracting the values. |
| 377 | unsigned ScalarCost = getArithmeticInstrCost(Opcode, Ty->getScalarType()); |
| 378 | unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args); |
| 379 | // FIXME: VF 2 for these FP operations are currently just as |
| 380 | // expensive as for VF 4. |
| 381 | if (VF == 2) |
| 382 | Cost *= 2; |
| 383 | return Cost; |
| 384 | } |
| 385 | case 64: |
| 386 | case 128: |
| 387 | return NumVectors; |
| 388 | default: |
| 389 | break; |
| 390 | } |
| 391 | } |
| 392 | |
| 393 | // There is no native support for FRem. |
| 394 | if (Opcode == Instruction::FRem) { |
| 395 | unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args); |
| 396 | // FIXME: VF 2 for float is currently just as expensive as for VF 4. |
| 397 | if (VF == 2 && ScalarBits == 32) |
| 398 | Cost *= 2; |
| 399 | return Cost; |
| 400 | } |
| 401 | } |
| 402 | else { // Scalar: |
| 403 | // These FP operations are supported with a dedicated instruction for |
| 404 | // float, double and fp128 (base implementation assumes float generally |
| 405 | // costs 2). |
| 406 | if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || |
| 407 | Opcode == Instruction::FMul || Opcode == Instruction::FDiv) |
| 408 | return 1; |
| 409 | |
| 410 | // There is no native support for FRem. |
| 411 | if (Opcode == Instruction::FRem) |
| 412 | return LIBCALL_COST; |
| 413 | |
| 414 | if (Opcode == Instruction::LShr || Opcode == Instruction::AShr) |
| 415 | return (ScalarBits >= 32 ? 1 : 2 /*ext*/); |
| 416 | |
| 417 | // Or requires one instruction, although it has custom handling for i64. |
| 418 | if (Opcode == Instruction::Or) |
| 419 | return 1; |
| 420 | |
| 421 | if (Opcode == Instruction::Xor && ScalarBits == 1) |
| 422 | // 2 * ipm sequences ; xor ; shift ; compare |
| 423 | return 7; |
| 424 | |
Jonas Paulsson | 8722ade | 2017-05-17 12:46:26 +0000 | [diff] [blame] | 425 | if (UDivPow2) |
| 426 | return 1; |
| 427 | if (SDivPow2) |
| 428 | return SDivCostEstimate; |
| 429 | |
Jonas Paulsson | fccc7d6 | 2017-04-12 11:49:08 +0000 | [diff] [blame] | 430 | // An extra extension for narrow types is needed. |
| 431 | if ((Opcode == Instruction::SDiv || Opcode == Instruction::SRem)) |
| 432 | // sext of op(s) for narrow types |
| 433 | return (ScalarBits < 32 ? 4 : (ScalarBits == 32 ? 2 : 1)); |
| 434 | |
| 435 | if (Opcode == Instruction::UDiv || Opcode == Instruction::URem) |
| 436 | // Clearing of low 64 bit reg + sext of op(s) for narrow types + dl[g]r |
| 437 | return (ScalarBits < 32 ? 4 : 2); |
| 438 | } |
| 439 | |
| 440 | // Fallback to the default implementation. |
| 441 | return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, |
| 442 | Opd1PropInfo, Opd2PropInfo, Args); |
| 443 | } |
| 444 | |
| 445 | |
| 446 | int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, |
| 447 | Type *SubTp) { |
| 448 | assert (Tp->isVectorTy()); |
| 449 | assert (ST->hasVector() && "getShuffleCost() called."); |
| 450 | unsigned NumVectors = getNumberOfParts(Tp); |
| 451 | |
| 452 | // TODO: Since fp32 is expanded, the shuffle cost should always be 0. |
| 453 | |
| 454 | // FP128 values are always in scalar registers, so there is no work |
| 455 | // involved with a shuffle, except for broadcast. In that case register |
| 456 | // moves are done with a single instruction per element. |
| 457 | if (Tp->getScalarType()->isFP128Ty()) |
| 458 | return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); |
| 459 | |
| 460 | switch (Kind) { |
| 461 | case TargetTransformInfo::SK_ExtractSubvector: |
| 462 | // ExtractSubvector Index indicates start offset. |
| 463 | |
| 464 | // Extracting a subvector from first index is a noop. |
| 465 | return (Index == 0 ? 0 : NumVectors); |
| 466 | |
| 467 | case TargetTransformInfo::SK_Broadcast: |
| 468 | // Loop vectorizer calls here to figure out the extra cost of |
| 469 | // broadcasting a loaded value to all elements of a vector. Since vlrep |
| 470 | // loads and replicates with a single instruction, adjust the returned |
| 471 | // value. |
| 472 | return NumVectors - 1; |
| 473 | |
| 474 | default: |
| 475 | |
| 476 | // SystemZ supports single instruction permutation / replication. |
| 477 | return NumVectors; |
| 478 | } |
| 479 | |
| 480 | return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); |
| 481 | } |
| 482 | |
| 483 | // Return the log2 difference of the element sizes of the two vector types. |
| 484 | static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { |
| 485 | unsigned Bits0 = Ty0->getScalarSizeInBits(); |
| 486 | unsigned Bits1 = Ty1->getScalarSizeInBits(); |
| 487 | |
| 488 | if (Bits1 > Bits0) |
| 489 | return (Log2_32(Bits1) - Log2_32(Bits0)); |
| 490 | |
| 491 | return (Log2_32(Bits0) - Log2_32(Bits1)); |
| 492 | } |
| 493 | |
| 494 | // Return the number of instructions needed to truncate SrcTy to DstTy. |
| 495 | unsigned SystemZTTIImpl:: |
| 496 | getVectorTruncCost(Type *SrcTy, Type *DstTy) { |
| 497 | assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); |
| 498 | assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() && |
| 499 | "Packing must reduce size of vector type."); |
| 500 | assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() && |
| 501 | "Packing should not change number of elements."); |
| 502 | |
| 503 | // TODO: Since fp32 is expanded, the extract cost should always be 0. |
| 504 | |
| 505 | unsigned NumParts = getNumberOfParts(SrcTy); |
| 506 | if (NumParts <= 2) |
| 507 | // Up to 2 vector registers can be truncated efficiently with pack or |
| 508 | // permute. The latter requires an immediate mask to be loaded, which |
| 509 | // typically gets hoisted out of a loop. TODO: return a good value for |
| 510 | // BB-VECTORIZER that includes the immediate loads, which we do not want |
| 511 | // to count for the loop vectorizer. |
| 512 | return 1; |
| 513 | |
| 514 | unsigned Cost = 0; |
| 515 | unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); |
| 516 | unsigned VF = SrcTy->getVectorNumElements(); |
| 517 | for (unsigned P = 0; P < Log2Diff; ++P) { |
| 518 | if (NumParts > 1) |
| 519 | NumParts /= 2; |
| 520 | Cost += NumParts; |
| 521 | } |
| 522 | |
| 523 | // Currently, a general mix of permutes and pack instructions is output by |
| 524 | // isel, which follow the cost computation above except for this case which |
| 525 | // is one instruction less: |
| 526 | if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && |
| 527 | DstTy->getScalarSizeInBits() == 8) |
| 528 | Cost--; |
| 529 | |
| 530 | return Cost; |
| 531 | } |
| 532 | |
| 533 | // Return the cost of converting a vector bitmask produced by a compare |
| 534 | // (SrcTy), to the type of the select or extend instruction (DstTy). |
| 535 | unsigned SystemZTTIImpl:: |
| 536 | getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { |
| 537 | assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && |
| 538 | "Should only be called with vector types."); |
| 539 | |
| 540 | unsigned PackCost = 0; |
| 541 | unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); |
| 542 | unsigned DstScalarBits = DstTy->getScalarSizeInBits(); |
| 543 | unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); |
| 544 | if (SrcScalarBits > DstScalarBits) |
| 545 | // The bitmask will be truncated. |
| 546 | PackCost = getVectorTruncCost(SrcTy, DstTy); |
| 547 | else if (SrcScalarBits < DstScalarBits) { |
| 548 | unsigned DstNumParts = getNumberOfParts(DstTy); |
| 549 | // Each vector select needs its part of the bitmask unpacked. |
| 550 | PackCost = Log2Diff * DstNumParts; |
| 551 | // Extra cost for moving part of mask before unpacking. |
| 552 | PackCost += DstNumParts - 1; |
| 553 | } |
| 554 | |
| 555 | return PackCost; |
| 556 | } |
| 557 | |
| 558 | // Return the type of the compared operands. This is needed to compute the |
| 559 | // cost for a Select / ZExt or SExt instruction. |
| 560 | static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { |
| 561 | Type *OpTy = nullptr; |
| 562 | if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) |
| 563 | OpTy = CI->getOperand(0)->getType(); |
| 564 | else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) |
Jonas Paulsson | f40eac5 | 2017-05-03 13:33:45 +0000 | [diff] [blame] | 565 | if (LogicI->getNumOperands() == 2) |
| 566 | if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) |
| 567 | if (isa<CmpInst>(LogicI->getOperand(1))) |
| 568 | OpTy = CI0->getOperand(0)->getType(); |
Jonas Paulsson | fccc7d6 | 2017-04-12 11:49:08 +0000 | [diff] [blame] | 569 | |
| 570 | if (OpTy != nullptr) { |
| 571 | if (VF == 1) { |
| 572 | assert (!OpTy->isVectorTy() && "Expected scalar type"); |
| 573 | return OpTy; |
| 574 | } |
| 575 | // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may |
| 576 | // be either scalar or already vectorized with a same or lesser VF. |
| 577 | Type *ElTy = OpTy->getScalarType(); |
| 578 | return VectorType::get(ElTy, VF); |
| 579 | } |
| 580 | |
| 581 | return nullptr; |
| 582 | } |
| 583 | |
| 584 | int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, |
| 585 | const Instruction *I) { |
| 586 | unsigned DstScalarBits = Dst->getScalarSizeInBits(); |
| 587 | unsigned SrcScalarBits = Src->getScalarSizeInBits(); |
| 588 | |
| 589 | if (Src->isVectorTy()) { |
| 590 | assert (ST->hasVector() && "getCastInstrCost() called with vector type."); |
| 591 | assert (Dst->isVectorTy()); |
| 592 | unsigned VF = Src->getVectorNumElements(); |
| 593 | unsigned NumDstVectors = getNumberOfParts(Dst); |
| 594 | unsigned NumSrcVectors = getNumberOfParts(Src); |
| 595 | |
| 596 | if (Opcode == Instruction::Trunc) { |
| 597 | if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) |
| 598 | return 0; // Check for NOOP conversions. |
| 599 | return getVectorTruncCost(Src, Dst); |
| 600 | } |
| 601 | |
| 602 | if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { |
| 603 | if (SrcScalarBits >= 8) { |
| 604 | // ZExt/SExt will be handled with one unpack per doubling of width. |
| 605 | unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); |
| 606 | |
| 607 | // For types that spans multiple vector registers, some additional |
| 608 | // instructions are used to setup the unpacking. |
| 609 | unsigned NumSrcVectorOps = |
| 610 | (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) |
| 611 | : (NumDstVectors / 2)); |
| 612 | |
| 613 | return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; |
| 614 | } |
| 615 | else if (SrcScalarBits == 1) { |
| 616 | // This should be extension of a compare i1 result. |
| 617 | // If we know what the widths of the compared operands, get the |
| 618 | // cost of converting it to Dst. Otherwise assume same widths. |
| 619 | unsigned Cost = 0; |
| 620 | Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); |
| 621 | if (CmpOpTy != nullptr) |
| 622 | Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); |
| 623 | if (Opcode == Instruction::ZExt) |
| 624 | // One 'vn' per dst vector with an immediate mask. |
| 625 | Cost += NumDstVectors; |
| 626 | return Cost; |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || |
| 631 | Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { |
| 632 | // TODO: Fix base implementation which could simplify things a bit here |
| 633 | // (seems to miss on differentiating on scalar/vector types). |
| 634 | |
| 635 | // Only 64 bit vector conversions are natively supported. |
| 636 | if (SrcScalarBits == 64 && DstScalarBits == 64) |
| 637 | return NumDstVectors; |
| 638 | |
| 639 | // Return the cost of multiple scalar invocation plus the cost of |
| 640 | // inserting and extracting the values. Base implementation does not |
| 641 | // realize float->int gets scalarized. |
| 642 | unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(), |
| 643 | Src->getScalarType()); |
| 644 | unsigned TotCost = VF * ScalarCost; |
| 645 | bool NeedsInserts = true, NeedsExtracts = true; |
| 646 | // FP128 registers do not get inserted or extracted. |
| 647 | if (DstScalarBits == 128 && |
| 648 | (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) |
| 649 | NeedsInserts = false; |
| 650 | if (SrcScalarBits == 128 && |
| 651 | (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) |
| 652 | NeedsExtracts = false; |
| 653 | |
| 654 | TotCost += getScalarizationOverhead(Dst, NeedsInserts, NeedsExtracts); |
| 655 | |
| 656 | // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. |
| 657 | if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) |
| 658 | TotCost *= 2; |
| 659 | |
| 660 | return TotCost; |
| 661 | } |
| 662 | |
| 663 | if (Opcode == Instruction::FPTrunc) { |
| 664 | if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements. |
| 665 | return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false); |
| 666 | else // double -> float |
| 667 | return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); |
| 668 | } |
| 669 | |
| 670 | if (Opcode == Instruction::FPExt) { |
| 671 | if (SrcScalarBits == 32 && DstScalarBits == 64) { |
| 672 | // float -> double is very rare and currently unoptimized. Instead of |
| 673 | // using vldeb, which can do two at a time, all conversions are |
| 674 | // scalarized. |
| 675 | return VF * 2; |
| 676 | } |
| 677 | // -> fp128. VF * lxdb/lxeb + extraction of elements. |
| 678 | return VF + getScalarizationOverhead(Src, false, true); |
| 679 | } |
| 680 | } |
| 681 | else { // Scalar |
| 682 | assert (!Dst->isVectorTy()); |
| 683 | |
| 684 | if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) |
| 685 | return (SrcScalarBits >= 32 ? 1 : 2 /*i8/i16 extend*/); |
| 686 | |
| 687 | if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && |
| 688 | Src->isIntegerTy(1)) { |
| 689 | // This should be extension of a compare i1 result, which is done with |
| 690 | // ipm and a varying sequence of instructions. |
| 691 | unsigned Cost = 0; |
| 692 | if (Opcode == Instruction::SExt) |
| 693 | Cost = (DstScalarBits < 64 ? 3 : 4); |
| 694 | if (Opcode == Instruction::ZExt) |
| 695 | Cost = 3; |
| 696 | Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); |
| 697 | if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) |
| 698 | // If operands of an fp-type was compared, this costs +1. |
| 699 | Cost++; |
| 700 | |
| 701 | return Cost; |
| 702 | } |
| 703 | } |
| 704 | |
| 705 | return BaseT::getCastInstrCost(Opcode, Dst, Src, I); |
| 706 | } |
| 707 | |
| 708 | int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, |
| 709 | const Instruction *I) { |
| 710 | if (ValTy->isVectorTy()) { |
| 711 | assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type."); |
Jonas Paulsson | fccc7d6 | 2017-04-12 11:49:08 +0000 | [diff] [blame] | 712 | unsigned VF = ValTy->getVectorNumElements(); |
| 713 | |
| 714 | // Called with a compare instruction. |
| 715 | if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { |
| 716 | unsigned PredicateExtraCost = 0; |
| 717 | if (I != nullptr) { |
| 718 | // Some predicates cost one or two extra instructions. |
| 719 | switch (dyn_cast<CmpInst>(I)->getPredicate()) { |
| 720 | case CmpInst::Predicate::ICMP_NE: |
| 721 | case CmpInst::Predicate::ICMP_UGE: |
| 722 | case CmpInst::Predicate::ICMP_ULE: |
| 723 | case CmpInst::Predicate::ICMP_SGE: |
| 724 | case CmpInst::Predicate::ICMP_SLE: |
| 725 | PredicateExtraCost = 1; |
| 726 | break; |
| 727 | case CmpInst::Predicate::FCMP_ONE: |
| 728 | case CmpInst::Predicate::FCMP_ORD: |
| 729 | case CmpInst::Predicate::FCMP_UEQ: |
| 730 | case CmpInst::Predicate::FCMP_UNO: |
| 731 | PredicateExtraCost = 2; |
| 732 | break; |
| 733 | default: |
| 734 | break; |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of |
| 739 | // floats. FIXME: <2 x float> generates same code as <4 x float>. |
| 740 | unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); |
| 741 | unsigned NumVecs_cmp = getNumberOfParts(ValTy); |
| 742 | |
| 743 | unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); |
| 744 | return Cost; |
| 745 | } |
| 746 | else { // Called with a select instruction. |
| 747 | assert (Opcode == Instruction::Select); |
| 748 | |
| 749 | // We can figure out the extra cost of packing / unpacking if the |
| 750 | // instruction was passed and the compare instruction is found. |
| 751 | unsigned PackCost = 0; |
| 752 | Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); |
| 753 | if (CmpOpTy != nullptr) |
| 754 | PackCost = |
| 755 | getVectorBitmaskConversionCost(CmpOpTy, ValTy); |
| 756 | |
| 757 | return getNumberOfParts(ValTy) /*vsel*/ + PackCost; |
| 758 | } |
| 759 | } |
| 760 | else { // Scalar |
| 761 | switch (Opcode) { |
| 762 | case Instruction::ICmp: { |
| 763 | unsigned Cost = 1; |
| 764 | if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) |
| 765 | Cost += 2; // extend both operands |
| 766 | return Cost; |
| 767 | } |
| 768 | case Instruction::Select: |
| 769 | if (ValTy->isFloatingPointTy()) |
| 770 | return 4; // No load on condition for FP, so this costs a conditional jump. |
| 771 | return 1; // Load On Condition. |
| 772 | } |
| 773 | } |
| 774 | |
| 775 | return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr); |
| 776 | } |
| 777 | |
| 778 | int SystemZTTIImpl:: |
| 779 | getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { |
| 780 | // vlvgp will insert two grs into a vector register, so only count half the |
| 781 | // number of instructions. |
Craig Topper | fde4723 | 2017-07-09 07:04:03 +0000 | [diff] [blame] | 782 | if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) |
Jonas Paulsson | fccc7d6 | 2017-04-12 11:49:08 +0000 | [diff] [blame] | 783 | return ((Index % 2 == 0) ? 1 : 0); |
| 784 | |
| 785 | if (Opcode == Instruction::ExtractElement) { |
| 786 | int Cost = ((Val->getScalarSizeInBits() == 1) ? 2 /*+test-under-mask*/ : 1); |
| 787 | |
| 788 | // Give a slight penalty for moving out of vector pipeline to FXU unit. |
Craig Topper | 95d2347 | 2017-07-09 07:04:00 +0000 | [diff] [blame] | 789 | if (Index == 0 && Val->isIntOrIntVectorTy()) |
Jonas Paulsson | fccc7d6 | 2017-04-12 11:49:08 +0000 | [diff] [blame] | 790 | Cost += 1; |
| 791 | |
| 792 | return Cost; |
| 793 | } |
| 794 | |
| 795 | return BaseT::getVectorInstrCost(Opcode, Val, Index); |
| 796 | } |
| 797 | |
| 798 | int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, |
| 799 | unsigned Alignment, unsigned AddressSpace, |
| 800 | const Instruction *I) { |
| 801 | assert(!Src->isVoidTy() && "Invalid type"); |
| 802 | |
| 803 | if (!Src->isVectorTy() && Opcode == Instruction::Load && |
| 804 | I != nullptr && I->hasOneUse()) { |
| 805 | const Instruction *UserI = cast<Instruction>(*I->user_begin()); |
| 806 | unsigned Bits = Src->getScalarSizeInBits(); |
| 807 | bool FoldsLoad = false; |
| 808 | switch (UserI->getOpcode()) { |
| 809 | case Instruction::ICmp: |
| 810 | case Instruction::Add: |
| 811 | case Instruction::Sub: |
| 812 | case Instruction::Mul: |
| 813 | case Instruction::SDiv: |
| 814 | case Instruction::UDiv: |
| 815 | case Instruction::And: |
| 816 | case Instruction::Or: |
| 817 | case Instruction::Xor: |
| 818 | // This also makes sense for float operations, but disabled for now due |
| 819 | // to regressions. |
| 820 | // case Instruction::FCmp: |
| 821 | // case Instruction::FAdd: |
| 822 | // case Instruction::FSub: |
| 823 | // case Instruction::FMul: |
| 824 | // case Instruction::FDiv: |
| 825 | FoldsLoad = (Bits == 32 || Bits == 64); |
| 826 | break; |
| 827 | } |
| 828 | |
| 829 | if (FoldsLoad) { |
| 830 | assert (UserI->getNumOperands() == 2 && |
| 831 | "Expected to only handle binops."); |
| 832 | |
| 833 | // UserI can't fold two loads, so in that case return 0 cost only |
| 834 | // half of the time. |
| 835 | for (unsigned i = 0; i < 2; ++i) { |
| 836 | if (UserI->getOperand(i) == I) |
| 837 | continue; |
| 838 | if (LoadInst *LI = dyn_cast<LoadInst>(UserI->getOperand(i))) { |
| 839 | if (LI->hasOneUse()) |
| 840 | return i == 0; |
| 841 | } |
| 842 | } |
| 843 | |
| 844 | return 0; |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | unsigned NumOps = getNumberOfParts(Src); |
| 849 | |
| 850 | if (Src->getScalarSizeInBits() == 128) |
| 851 | // 128 bit scalars are held in a pair of two 64 bit registers. |
| 852 | NumOps *= 2; |
| 853 | |
| 854 | return NumOps; |
| 855 | } |
| 856 | |
| 857 | int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, |
| 858 | unsigned Factor, |
| 859 | ArrayRef<unsigned> Indices, |
| 860 | unsigned Alignment, |
| 861 | unsigned AddressSpace) { |
| 862 | assert(isa<VectorType>(VecTy) && |
| 863 | "Expect a vector type for interleaved memory op"); |
| 864 | |
| 865 | unsigned WideBits = (VecTy->isPtrOrPtrVectorTy() ? |
| 866 | (64U * VecTy->getVectorNumElements()) : VecTy->getPrimitiveSizeInBits()); |
| 867 | assert (WideBits > 0 && "Could not compute size of vector"); |
| 868 | int NumWideParts = |
| 869 | ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); |
| 870 | |
| 871 | // How many source vectors are handled to produce a vectorized operand? |
| 872 | int NumElsPerVector = (VecTy->getVectorNumElements() / NumWideParts); |
| 873 | int NumSrcParts = |
| 874 | ((NumWideParts > NumElsPerVector) ? NumElsPerVector : NumWideParts); |
| 875 | |
| 876 | // A Load group may have gaps. |
| 877 | unsigned NumOperands = |
| 878 | ((Opcode == Instruction::Load) ? Indices.size() : Factor); |
| 879 | |
| 880 | // Each needed permute takes two vectors as input. |
| 881 | if (NumSrcParts > 1) |
| 882 | NumSrcParts--; |
| 883 | int NumPermutes = NumSrcParts * NumOperands; |
| 884 | |
| 885 | // Cost of load/store operations and the permutations needed. |
| 886 | return NumWideParts + NumPermutes; |
| 887 | } |