blob: 9ac768b2189d7d4fbb3c5cab271f0aee019dfc47 [file] [log] [blame]
Ulrich Weigand1f6666a2015-03-31 12:52:27 +00001//===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a TargetTransformInfo analysis pass specific to the
11// SystemZ target machine. It uses the target's detailed information to provide
12// more precise answers to certain TTI queries, while letting the target
13// independent and default TTI implementations handle the rest.
14//
15//===----------------------------------------------------------------------===//
16
17#include "SystemZTargetTransformInfo.h"
18#include "llvm/Analysis/TargetTransformInfo.h"
19#include "llvm/CodeGen/BasicTTIImpl.h"
20#include "llvm/IR/IntrinsicInst.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Target/CostTable.h"
23#include "llvm/Target/TargetLowering.h"
24using namespace llvm;
25
26#define DEBUG_TYPE "systemztti"
27
28//===----------------------------------------------------------------------===//
29//
30// SystemZ cost model.
31//
32//===----------------------------------------------------------------------===//
33
Chandler Carruth93205eb2015-08-05 18:08:10 +000034int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Ulrich Weigand1f6666a2015-03-31 12:52:27 +000035 assert(Ty->isIntegerTy());
36
37 unsigned BitSize = Ty->getPrimitiveSizeInBits();
38 // There is no cost model for constants with a bit size of 0. Return TCC_Free
39 // here, so that constant hoisting will ignore this constant.
40 if (BitSize == 0)
41 return TTI::TCC_Free;
42 // No cost model for operations on integers larger than 64 bit implemented yet.
43 if (BitSize > 64)
44 return TTI::TCC_Free;
45
46 if (Imm == 0)
47 return TTI::TCC_Free;
48
49 if (Imm.getBitWidth() <= 64) {
50 // Constants loaded via lgfi.
51 if (isInt<32>(Imm.getSExtValue()))
52 return TTI::TCC_Basic;
53 // Constants loaded via llilf.
54 if (isUInt<32>(Imm.getZExtValue()))
55 return TTI::TCC_Basic;
56 // Constants loaded via llihf:
57 if ((Imm.getZExtValue() & 0xffffffff) == 0)
58 return TTI::TCC_Basic;
59
60 return 2 * TTI::TCC_Basic;
61 }
62
63 return 4 * TTI::TCC_Basic;
64}
65
Chandler Carruth93205eb2015-08-05 18:08:10 +000066int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
67 const APInt &Imm, Type *Ty) {
Ulrich Weigand1f6666a2015-03-31 12:52:27 +000068 assert(Ty->isIntegerTy());
69
70 unsigned BitSize = Ty->getPrimitiveSizeInBits();
71 // There is no cost model for constants with a bit size of 0. Return TCC_Free
72 // here, so that constant hoisting will ignore this constant.
73 if (BitSize == 0)
74 return TTI::TCC_Free;
75 // No cost model for operations on integers larger than 64 bit implemented yet.
76 if (BitSize > 64)
77 return TTI::TCC_Free;
78
79 switch (Opcode) {
80 default:
81 return TTI::TCC_Free;
82 case Instruction::GetElementPtr:
83 // Always hoist the base address of a GetElementPtr. This prevents the
84 // creation of new constants for every base constant that gets constant
85 // folded with the offset.
86 if (Idx == 0)
87 return 2 * TTI::TCC_Basic;
88 return TTI::TCC_Free;
89 case Instruction::Store:
90 if (Idx == 0 && Imm.getBitWidth() <= 64) {
91 // Any 8-bit immediate store can by implemented via mvi.
92 if (BitSize == 8)
93 return TTI::TCC_Free;
94 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
95 if (isInt<16>(Imm.getSExtValue()))
96 return TTI::TCC_Free;
97 }
98 break;
99 case Instruction::ICmp:
100 if (Idx == 1 && Imm.getBitWidth() <= 64) {
101 // Comparisons against signed 32-bit immediates implemented via cgfi.
102 if (isInt<32>(Imm.getSExtValue()))
103 return TTI::TCC_Free;
104 // Comparisons against unsigned 32-bit immediates implemented via clgfi.
105 if (isUInt<32>(Imm.getZExtValue()))
106 return TTI::TCC_Free;
107 }
108 break;
109 case Instruction::Add:
110 case Instruction::Sub:
111 if (Idx == 1 && Imm.getBitWidth() <= 64) {
112 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
113 if (isUInt<32>(Imm.getZExtValue()))
114 return TTI::TCC_Free;
115 // Or their negation, by swapping addition vs. subtraction.
116 if (isUInt<32>(-Imm.getSExtValue()))
117 return TTI::TCC_Free;
118 }
119 break;
120 case Instruction::Mul:
121 if (Idx == 1 && Imm.getBitWidth() <= 64) {
122 // We use msgfi to multiply by 32-bit signed immediates.
123 if (isInt<32>(Imm.getSExtValue()))
124 return TTI::TCC_Free;
125 }
126 break;
127 case Instruction::Or:
128 case Instruction::Xor:
129 if (Idx == 1 && Imm.getBitWidth() <= 64) {
130 // Masks supported by oilf/xilf.
131 if (isUInt<32>(Imm.getZExtValue()))
132 return TTI::TCC_Free;
133 // Masks supported by oihf/xihf.
134 if ((Imm.getZExtValue() & 0xffffffff) == 0)
135 return TTI::TCC_Free;
136 }
137 break;
138 case Instruction::And:
139 if (Idx == 1 && Imm.getBitWidth() <= 64) {
140 // Any 32-bit AND operation can by implemented via nilf.
141 if (BitSize <= 32)
142 return TTI::TCC_Free;
143 // 64-bit masks supported by nilf.
144 if (isUInt<32>(~Imm.getZExtValue()))
145 return TTI::TCC_Free;
146 // 64-bit masks supported by nilh.
147 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
148 return TTI::TCC_Free;
149 // Some 64-bit AND operations can be implemented via risbg.
150 const SystemZInstrInfo *TII = ST->getInstrInfo();
151 unsigned Start, End;
152 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
153 return TTI::TCC_Free;
154 }
155 break;
156 case Instruction::Shl:
157 case Instruction::LShr:
158 case Instruction::AShr:
159 // Always return TCC_Free for the shift value of a shift instruction.
160 if (Idx == 1)
161 return TTI::TCC_Free;
162 break;
163 case Instruction::UDiv:
164 case Instruction::SDiv:
165 case Instruction::URem:
166 case Instruction::SRem:
167 case Instruction::Trunc:
168 case Instruction::ZExt:
169 case Instruction::SExt:
170 case Instruction::IntToPtr:
171 case Instruction::PtrToInt:
172 case Instruction::BitCast:
173 case Instruction::PHI:
174 case Instruction::Call:
175 case Instruction::Select:
176 case Instruction::Ret:
177 case Instruction::Load:
178 break;
179 }
180
181 return SystemZTTIImpl::getIntImmCost(Imm, Ty);
182}
183
Chandler Carruth93205eb2015-08-05 18:08:10 +0000184int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
185 const APInt &Imm, Type *Ty) {
Ulrich Weigand1f6666a2015-03-31 12:52:27 +0000186 assert(Ty->isIntegerTy());
187
188 unsigned BitSize = Ty->getPrimitiveSizeInBits();
189 // There is no cost model for constants with a bit size of 0. Return TCC_Free
190 // here, so that constant hoisting will ignore this constant.
191 if (BitSize == 0)
192 return TTI::TCC_Free;
193 // No cost model for operations on integers larger than 64 bit implemented yet.
194 if (BitSize > 64)
195 return TTI::TCC_Free;
196
197 switch (IID) {
198 default:
199 return TTI::TCC_Free;
200 case Intrinsic::sadd_with_overflow:
201 case Intrinsic::uadd_with_overflow:
202 case Intrinsic::ssub_with_overflow:
203 case Intrinsic::usub_with_overflow:
204 // These get expanded to include a normal addition/subtraction.
205 if (Idx == 1 && Imm.getBitWidth() <= 64) {
206 if (isUInt<32>(Imm.getZExtValue()))
207 return TTI::TCC_Free;
208 if (isUInt<32>(-Imm.getSExtValue()))
209 return TTI::TCC_Free;
210 }
211 break;
212 case Intrinsic::smul_with_overflow:
213 case Intrinsic::umul_with_overflow:
214 // These get expanded to include a normal multiplication.
215 if (Idx == 1 && Imm.getBitWidth() <= 64) {
216 if (isInt<32>(Imm.getSExtValue()))
217 return TTI::TCC_Free;
218 }
219 break;
220 case Intrinsic::experimental_stackmap:
221 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
222 return TTI::TCC_Free;
223 break;
224 case Intrinsic::experimental_patchpoint_void:
225 case Intrinsic::experimental_patchpoint_i64:
226 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
227 return TTI::TCC_Free;
228 break;
229 }
230 return SystemZTTIImpl::getIntImmCost(Imm, Ty);
231}
Ulrich Weigandb4012182015-03-31 12:56:33 +0000232
233TargetTransformInfo::PopcntSupportKind
234SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
235 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
236 if (ST->hasPopulationCount() && TyWidth <= 64)
237 return TTI::PSK_FastHardware;
238 return TTI::PSK_Software;
239}
240
Geoff Berry66d9bdb2017-06-28 15:53:17 +0000241void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
Jonas Paulsson58c5a7f2016-09-28 09:41:38 +0000242 TTI::UnrollingPreferences &UP) {
243 // Find out if L contains a call, what the machine instruction count
244 // estimate is, and how many stores there are.
245 bool HasCall = false;
246 unsigned NumStores = 0;
247 for (auto &BB : L->blocks())
248 for (auto &I : *BB) {
249 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
250 ImmutableCallSite CS(&I);
251 if (const Function *F = CS.getCalledFunction()) {
252 if (isLoweredToCall(F))
253 HasCall = true;
254 if (F->getIntrinsicID() == Intrinsic::memcpy ||
255 F->getIntrinsicID() == Intrinsic::memset)
256 NumStores++;
257 } else { // indirect call.
258 HasCall = true;
259 }
260 }
261 if (isa<StoreInst>(&I)) {
Jonas Paulsson58c5a7f2016-09-28 09:41:38 +0000262 Type *MemAccessTy = I.getOperand(0)->getType();
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000263 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0);
Jonas Paulsson58c5a7f2016-09-28 09:41:38 +0000264 }
265 }
266
267 // The z13 processor will run out of store tags if too many stores
268 // are fed into it too quickly. Therefore make sure there are not
269 // too many stores in the resulting unrolled loop.
270 unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX);
271
272 if (HasCall) {
273 // Only allow full unrolling if loop has any calls.
274 UP.FullUnrollMaxCount = Max;
275 UP.MaxCount = 1;
276 return;
277 }
278
279 UP.MaxCount = Max;
280 if (UP.MaxCount <= 1)
281 return;
282
283 // Allow partial and runtime trip count unrolling.
284 UP.Partial = UP.Runtime = true;
285
286 UP.PartialThreshold = 75;
287 UP.DefaultUnrollRuntimeCount = 4;
288
289 // Allow expensive instructions in the pre-header of the loop.
290 UP.AllowExpensiveTripCount = true;
291
292 UP.Force = true;
293}
294
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000295unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) {
296 if (!Vector)
297 // Discount the stack pointer. Also leave out %r0, since it can't
298 // be used in an address.
299 return 14;
300 if (ST->hasVector())
301 return 32;
302 return 0;
303}
304
Daniel Neilsonc0112ae2017-06-12 14:22:21 +0000305unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const {
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000306 if (!Vector)
307 return 64;
308 if (ST->hasVector())
309 return 128;
310 return 0;
311}
312
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000313int SystemZTTIImpl::getArithmeticInstrCost(
314 unsigned Opcode, Type *Ty,
315 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
316 TTI::OperandValueProperties Opd1PropInfo,
317 TTI::OperandValueProperties Opd2PropInfo,
318 ArrayRef<const Value *> Args) {
319
320 // TODO: return a good value for BB-VECTORIZER that includes the
321 // immediate loads, which we do not want to count for the loop
322 // vectorizer, since they are hopefully hoisted out of the loop. This
323 // would require a new parameter 'InLoop', but not sure if constant
324 // args are common enough to motivate this.
325
326 unsigned ScalarBits = Ty->getScalarSizeInBits();
327
Jonas Paulsson8722ade2017-05-17 12:46:26 +0000328 // Div with a constant which is a power of 2 will be converted by
329 // DAGCombiner to use shifts. With vector shift-element instructions, a
330 // vector sdiv costs about as much as a scalar one.
331 const unsigned SDivCostEstimate = 4;
332 bool SDivPow2 = false;
333 bool UDivPow2 = false;
334 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv) &&
335 Args.size() == 2) {
336 const ConstantInt *CI = nullptr;
337 if (const Constant *C = dyn_cast<Constant>(Args[1])) {
338 if (C->getType()->isVectorTy())
339 CI = dyn_cast_or_null<const ConstantInt>(C->getSplatValue());
340 else
341 CI = dyn_cast<const ConstantInt>(C);
342 }
343 if (CI != nullptr &&
344 (CI->getValue().isPowerOf2() || (-CI->getValue()).isPowerOf2())) {
345 if (Opcode == Instruction::SDiv)
346 SDivPow2 = true;
347 else
348 UDivPow2 = true;
349 }
350 }
351
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000352 if (Ty->isVectorTy()) {
353 assert (ST->hasVector() && "getArithmeticInstrCost() called with vector type.");
354 unsigned VF = Ty->getVectorNumElements();
355 unsigned NumVectors = getNumberOfParts(Ty);
356
357 // These vector operations are custom handled, but are still supported
358 // with one instruction per vector, regardless of element size.
359 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
Jonas Paulsson8722ade2017-05-17 12:46:26 +0000360 Opcode == Instruction::AShr || UDivPow2) {
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000361 return NumVectors;
362 }
363
Jonas Paulsson8722ade2017-05-17 12:46:26 +0000364 if (SDivPow2)
365 return (NumVectors * SDivCostEstimate);
366
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000367 // These FP operations are supported with a single vector instruction for
368 // double (base implementation assumes float generally costs 2). For
369 // FP128, the scalar cost is 1, and there is no overhead since the values
370 // are already in scalar registers.
371 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
372 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
373 switch (ScalarBits) {
374 case 32: {
375 // Return the cost of multiple scalar invocation plus the cost of
376 // inserting and extracting the values.
377 unsigned ScalarCost = getArithmeticInstrCost(Opcode, Ty->getScalarType());
378 unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args);
379 // FIXME: VF 2 for these FP operations are currently just as
380 // expensive as for VF 4.
381 if (VF == 2)
382 Cost *= 2;
383 return Cost;
384 }
385 case 64:
386 case 128:
387 return NumVectors;
388 default:
389 break;
390 }
391 }
392
393 // There is no native support for FRem.
394 if (Opcode == Instruction::FRem) {
395 unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args);
396 // FIXME: VF 2 for float is currently just as expensive as for VF 4.
397 if (VF == 2 && ScalarBits == 32)
398 Cost *= 2;
399 return Cost;
400 }
401 }
402 else { // Scalar:
403 // These FP operations are supported with a dedicated instruction for
404 // float, double and fp128 (base implementation assumes float generally
405 // costs 2).
406 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
407 Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
408 return 1;
409
410 // There is no native support for FRem.
411 if (Opcode == Instruction::FRem)
412 return LIBCALL_COST;
413
414 if (Opcode == Instruction::LShr || Opcode == Instruction::AShr)
415 return (ScalarBits >= 32 ? 1 : 2 /*ext*/);
416
417 // Or requires one instruction, although it has custom handling for i64.
418 if (Opcode == Instruction::Or)
419 return 1;
420
421 if (Opcode == Instruction::Xor && ScalarBits == 1)
422 // 2 * ipm sequences ; xor ; shift ; compare
423 return 7;
424
Jonas Paulsson8722ade2017-05-17 12:46:26 +0000425 if (UDivPow2)
426 return 1;
427 if (SDivPow2)
428 return SDivCostEstimate;
429
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000430 // An extra extension for narrow types is needed.
431 if ((Opcode == Instruction::SDiv || Opcode == Instruction::SRem))
432 // sext of op(s) for narrow types
433 return (ScalarBits < 32 ? 4 : (ScalarBits == 32 ? 2 : 1));
434
435 if (Opcode == Instruction::UDiv || Opcode == Instruction::URem)
436 // Clearing of low 64 bit reg + sext of op(s) for narrow types + dl[g]r
437 return (ScalarBits < 32 ? 4 : 2);
438 }
439
440 // Fallback to the default implementation.
441 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
442 Opd1PropInfo, Opd2PropInfo, Args);
443}
444
445
446int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
447 Type *SubTp) {
448 assert (Tp->isVectorTy());
449 assert (ST->hasVector() && "getShuffleCost() called.");
450 unsigned NumVectors = getNumberOfParts(Tp);
451
452 // TODO: Since fp32 is expanded, the shuffle cost should always be 0.
453
454 // FP128 values are always in scalar registers, so there is no work
455 // involved with a shuffle, except for broadcast. In that case register
456 // moves are done with a single instruction per element.
457 if (Tp->getScalarType()->isFP128Ty())
458 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
459
460 switch (Kind) {
461 case TargetTransformInfo::SK_ExtractSubvector:
462 // ExtractSubvector Index indicates start offset.
463
464 // Extracting a subvector from first index is a noop.
465 return (Index == 0 ? 0 : NumVectors);
466
467 case TargetTransformInfo::SK_Broadcast:
468 // Loop vectorizer calls here to figure out the extra cost of
469 // broadcasting a loaded value to all elements of a vector. Since vlrep
470 // loads and replicates with a single instruction, adjust the returned
471 // value.
472 return NumVectors - 1;
473
474 default:
475
476 // SystemZ supports single instruction permutation / replication.
477 return NumVectors;
478 }
479
480 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
481}
482
483// Return the log2 difference of the element sizes of the two vector types.
484static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
485 unsigned Bits0 = Ty0->getScalarSizeInBits();
486 unsigned Bits1 = Ty1->getScalarSizeInBits();
487
488 if (Bits1 > Bits0)
489 return (Log2_32(Bits1) - Log2_32(Bits0));
490
491 return (Log2_32(Bits0) - Log2_32(Bits1));
492}
493
494// Return the number of instructions needed to truncate SrcTy to DstTy.
495unsigned SystemZTTIImpl::
496getVectorTruncCost(Type *SrcTy, Type *DstTy) {
497 assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
498 assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() &&
499 "Packing must reduce size of vector type.");
500 assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() &&
501 "Packing should not change number of elements.");
502
503 // TODO: Since fp32 is expanded, the extract cost should always be 0.
504
505 unsigned NumParts = getNumberOfParts(SrcTy);
506 if (NumParts <= 2)
507 // Up to 2 vector registers can be truncated efficiently with pack or
508 // permute. The latter requires an immediate mask to be loaded, which
509 // typically gets hoisted out of a loop. TODO: return a good value for
510 // BB-VECTORIZER that includes the immediate loads, which we do not want
511 // to count for the loop vectorizer.
512 return 1;
513
514 unsigned Cost = 0;
515 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
516 unsigned VF = SrcTy->getVectorNumElements();
517 for (unsigned P = 0; P < Log2Diff; ++P) {
518 if (NumParts > 1)
519 NumParts /= 2;
520 Cost += NumParts;
521 }
522
523 // Currently, a general mix of permutes and pack instructions is output by
524 // isel, which follow the cost computation above except for this case which
525 // is one instruction less:
526 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
527 DstTy->getScalarSizeInBits() == 8)
528 Cost--;
529
530 return Cost;
531}
532
533// Return the cost of converting a vector bitmask produced by a compare
534// (SrcTy), to the type of the select or extend instruction (DstTy).
535unsigned SystemZTTIImpl::
536getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
537 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
538 "Should only be called with vector types.");
539
540 unsigned PackCost = 0;
541 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
542 unsigned DstScalarBits = DstTy->getScalarSizeInBits();
543 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
544 if (SrcScalarBits > DstScalarBits)
545 // The bitmask will be truncated.
546 PackCost = getVectorTruncCost(SrcTy, DstTy);
547 else if (SrcScalarBits < DstScalarBits) {
548 unsigned DstNumParts = getNumberOfParts(DstTy);
549 // Each vector select needs its part of the bitmask unpacked.
550 PackCost = Log2Diff * DstNumParts;
551 // Extra cost for moving part of mask before unpacking.
552 PackCost += DstNumParts - 1;
553 }
554
555 return PackCost;
556}
557
558// Return the type of the compared operands. This is needed to compute the
559// cost for a Select / ZExt or SExt instruction.
560static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
561 Type *OpTy = nullptr;
562 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
563 OpTy = CI->getOperand(0)->getType();
564 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
Jonas Paulssonf40eac52017-05-03 13:33:45 +0000565 if (LogicI->getNumOperands() == 2)
566 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
567 if (isa<CmpInst>(LogicI->getOperand(1)))
568 OpTy = CI0->getOperand(0)->getType();
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000569
570 if (OpTy != nullptr) {
571 if (VF == 1) {
572 assert (!OpTy->isVectorTy() && "Expected scalar type");
573 return OpTy;
574 }
575 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may
576 // be either scalar or already vectorized with a same or lesser VF.
577 Type *ElTy = OpTy->getScalarType();
578 return VectorType::get(ElTy, VF);
579 }
580
581 return nullptr;
582}
583
584int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
585 const Instruction *I) {
586 unsigned DstScalarBits = Dst->getScalarSizeInBits();
587 unsigned SrcScalarBits = Src->getScalarSizeInBits();
588
589 if (Src->isVectorTy()) {
590 assert (ST->hasVector() && "getCastInstrCost() called with vector type.");
591 assert (Dst->isVectorTy());
592 unsigned VF = Src->getVectorNumElements();
593 unsigned NumDstVectors = getNumberOfParts(Dst);
594 unsigned NumSrcVectors = getNumberOfParts(Src);
595
596 if (Opcode == Instruction::Trunc) {
597 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
598 return 0; // Check for NOOP conversions.
599 return getVectorTruncCost(Src, Dst);
600 }
601
602 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
603 if (SrcScalarBits >= 8) {
604 // ZExt/SExt will be handled with one unpack per doubling of width.
605 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
606
607 // For types that spans multiple vector registers, some additional
608 // instructions are used to setup the unpacking.
609 unsigned NumSrcVectorOps =
610 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
611 : (NumDstVectors / 2));
612
613 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
614 }
615 else if (SrcScalarBits == 1) {
616 // This should be extension of a compare i1 result.
617 // If we know what the widths of the compared operands, get the
618 // cost of converting it to Dst. Otherwise assume same widths.
619 unsigned Cost = 0;
620 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
621 if (CmpOpTy != nullptr)
622 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
623 if (Opcode == Instruction::ZExt)
624 // One 'vn' per dst vector with an immediate mask.
625 Cost += NumDstVectors;
626 return Cost;
627 }
628 }
629
630 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
631 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
632 // TODO: Fix base implementation which could simplify things a bit here
633 // (seems to miss on differentiating on scalar/vector types).
634
635 // Only 64 bit vector conversions are natively supported.
636 if (SrcScalarBits == 64 && DstScalarBits == 64)
637 return NumDstVectors;
638
639 // Return the cost of multiple scalar invocation plus the cost of
640 // inserting and extracting the values. Base implementation does not
641 // realize float->int gets scalarized.
642 unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(),
643 Src->getScalarType());
644 unsigned TotCost = VF * ScalarCost;
645 bool NeedsInserts = true, NeedsExtracts = true;
646 // FP128 registers do not get inserted or extracted.
647 if (DstScalarBits == 128 &&
648 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
649 NeedsInserts = false;
650 if (SrcScalarBits == 128 &&
651 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
652 NeedsExtracts = false;
653
654 TotCost += getScalarizationOverhead(Dst, NeedsInserts, NeedsExtracts);
655
656 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
657 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
658 TotCost *= 2;
659
660 return TotCost;
661 }
662
663 if (Opcode == Instruction::FPTrunc) {
664 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements.
665 return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false);
666 else // double -> float
667 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
668 }
669
670 if (Opcode == Instruction::FPExt) {
671 if (SrcScalarBits == 32 && DstScalarBits == 64) {
672 // float -> double is very rare and currently unoptimized. Instead of
673 // using vldeb, which can do two at a time, all conversions are
674 // scalarized.
675 return VF * 2;
676 }
677 // -> fp128. VF * lxdb/lxeb + extraction of elements.
678 return VF + getScalarizationOverhead(Src, false, true);
679 }
680 }
681 else { // Scalar
682 assert (!Dst->isVectorTy());
683
684 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)
685 return (SrcScalarBits >= 32 ? 1 : 2 /*i8/i16 extend*/);
686
687 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
688 Src->isIntegerTy(1)) {
689 // This should be extension of a compare i1 result, which is done with
690 // ipm and a varying sequence of instructions.
691 unsigned Cost = 0;
692 if (Opcode == Instruction::SExt)
693 Cost = (DstScalarBits < 64 ? 3 : 4);
694 if (Opcode == Instruction::ZExt)
695 Cost = 3;
696 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
697 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
698 // If operands of an fp-type was compared, this costs +1.
699 Cost++;
700
701 return Cost;
702 }
703 }
704
705 return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
706}
707
708int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
709 const Instruction *I) {
710 if (ValTy->isVectorTy()) {
711 assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type.");
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000712 unsigned VF = ValTy->getVectorNumElements();
713
714 // Called with a compare instruction.
715 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
716 unsigned PredicateExtraCost = 0;
717 if (I != nullptr) {
718 // Some predicates cost one or two extra instructions.
719 switch (dyn_cast<CmpInst>(I)->getPredicate()) {
720 case CmpInst::Predicate::ICMP_NE:
721 case CmpInst::Predicate::ICMP_UGE:
722 case CmpInst::Predicate::ICMP_ULE:
723 case CmpInst::Predicate::ICMP_SGE:
724 case CmpInst::Predicate::ICMP_SLE:
725 PredicateExtraCost = 1;
726 break;
727 case CmpInst::Predicate::FCMP_ONE:
728 case CmpInst::Predicate::FCMP_ORD:
729 case CmpInst::Predicate::FCMP_UEQ:
730 case CmpInst::Predicate::FCMP_UNO:
731 PredicateExtraCost = 2;
732 break;
733 default:
734 break;
735 }
736 }
737
738 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
739 // floats. FIXME: <2 x float> generates same code as <4 x float>.
740 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
741 unsigned NumVecs_cmp = getNumberOfParts(ValTy);
742
743 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
744 return Cost;
745 }
746 else { // Called with a select instruction.
747 assert (Opcode == Instruction::Select);
748
749 // We can figure out the extra cost of packing / unpacking if the
750 // instruction was passed and the compare instruction is found.
751 unsigned PackCost = 0;
752 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
753 if (CmpOpTy != nullptr)
754 PackCost =
755 getVectorBitmaskConversionCost(CmpOpTy, ValTy);
756
757 return getNumberOfParts(ValTy) /*vsel*/ + PackCost;
758 }
759 }
760 else { // Scalar
761 switch (Opcode) {
762 case Instruction::ICmp: {
763 unsigned Cost = 1;
764 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
765 Cost += 2; // extend both operands
766 return Cost;
767 }
768 case Instruction::Select:
769 if (ValTy->isFloatingPointTy())
770 return 4; // No load on condition for FP, so this costs a conditional jump.
771 return 1; // Load On Condition.
772 }
773 }
774
775 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr);
776}
777
778int SystemZTTIImpl::
779getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
780 // vlvgp will insert two grs into a vector register, so only count half the
781 // number of instructions.
Craig Topperfde47232017-07-09 07:04:03 +0000782 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000783 return ((Index % 2 == 0) ? 1 : 0);
784
785 if (Opcode == Instruction::ExtractElement) {
786 int Cost = ((Val->getScalarSizeInBits() == 1) ? 2 /*+test-under-mask*/ : 1);
787
788 // Give a slight penalty for moving out of vector pipeline to FXU unit.
Craig Topper95d23472017-07-09 07:04:00 +0000789 if (Index == 0 && Val->isIntOrIntVectorTy())
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000790 Cost += 1;
791
792 return Cost;
793 }
794
795 return BaseT::getVectorInstrCost(Opcode, Val, Index);
796}
797
798int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
799 unsigned Alignment, unsigned AddressSpace,
800 const Instruction *I) {
801 assert(!Src->isVoidTy() && "Invalid type");
802
803 if (!Src->isVectorTy() && Opcode == Instruction::Load &&
804 I != nullptr && I->hasOneUse()) {
805 const Instruction *UserI = cast<Instruction>(*I->user_begin());
806 unsigned Bits = Src->getScalarSizeInBits();
807 bool FoldsLoad = false;
808 switch (UserI->getOpcode()) {
809 case Instruction::ICmp:
810 case Instruction::Add:
811 case Instruction::Sub:
812 case Instruction::Mul:
813 case Instruction::SDiv:
814 case Instruction::UDiv:
815 case Instruction::And:
816 case Instruction::Or:
817 case Instruction::Xor:
818 // This also makes sense for float operations, but disabled for now due
819 // to regressions.
820 // case Instruction::FCmp:
821 // case Instruction::FAdd:
822 // case Instruction::FSub:
823 // case Instruction::FMul:
824 // case Instruction::FDiv:
825 FoldsLoad = (Bits == 32 || Bits == 64);
826 break;
827 }
828
829 if (FoldsLoad) {
830 assert (UserI->getNumOperands() == 2 &&
831 "Expected to only handle binops.");
832
833 // UserI can't fold two loads, so in that case return 0 cost only
834 // half of the time.
835 for (unsigned i = 0; i < 2; ++i) {
836 if (UserI->getOperand(i) == I)
837 continue;
838 if (LoadInst *LI = dyn_cast<LoadInst>(UserI->getOperand(i))) {
839 if (LI->hasOneUse())
840 return i == 0;
841 }
842 }
843
844 return 0;
845 }
846 }
847
848 unsigned NumOps = getNumberOfParts(Src);
849
850 if (Src->getScalarSizeInBits() == 128)
851 // 128 bit scalars are held in a pair of two 64 bit registers.
852 NumOps *= 2;
853
854 return NumOps;
855}
856
857int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
858 unsigned Factor,
859 ArrayRef<unsigned> Indices,
860 unsigned Alignment,
861 unsigned AddressSpace) {
862 assert(isa<VectorType>(VecTy) &&
863 "Expect a vector type for interleaved memory op");
864
865 unsigned WideBits = (VecTy->isPtrOrPtrVectorTy() ?
866 (64U * VecTy->getVectorNumElements()) : VecTy->getPrimitiveSizeInBits());
867 assert (WideBits > 0 && "Could not compute size of vector");
868 int NumWideParts =
869 ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
870
871 // How many source vectors are handled to produce a vectorized operand?
872 int NumElsPerVector = (VecTy->getVectorNumElements() / NumWideParts);
873 int NumSrcParts =
874 ((NumWideParts > NumElsPerVector) ? NumElsPerVector : NumWideParts);
875
876 // A Load group may have gaps.
877 unsigned NumOperands =
878 ((Opcode == Instruction::Load) ? Indices.size() : Factor);
879
880 // Each needed permute takes two vectors as input.
881 if (NumSrcParts > 1)
882 NumSrcParts--;
883 int NumPermutes = NumSrcParts * NumOperands;
884
885 // Cost of load/store operations and the permutations needed.
886 return NumWideParts + NumPermutes;
887}