Jingyue Wu | d7966ff | 2015-02-03 19:37:06 +0000 | [diff] [blame] | 1 | //===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements straight-line strength reduction (SLSR). Unlike loop |
| 11 | // strength reduction, this algorithm is designed to reduce arithmetic |
| 12 | // redundancy in straight-line code instead of loops. It has proven to be |
| 13 | // effective in simplifying arithmetic statements derived from an unrolled loop. |
| 14 | // It can also simplify the logic of SeparateConstOffsetFromGEP. |
| 15 | // |
| 16 | // There are many optimizations we can perform in the domain of SLSR. This file |
| 17 | // for now contains only an initial step. Specifically, we look for strength |
| 18 | // reduction candidate in the form of |
| 19 | // |
| 20 | // (B + i) * S |
| 21 | // |
| 22 | // where B and S are integer constants or variables, and i is a constant |
| 23 | // integer. If we found two such candidates |
| 24 | // |
| 25 | // S1: X = (B + i) * S S2: Y = (B + i') * S |
| 26 | // |
| 27 | // and S1 dominates S2, we call S1 a basis of S2, and can replace S2 with |
| 28 | // |
| 29 | // Y = X + (i' - i) * S |
| 30 | // |
| 31 | // where (i' - i) * S is folded to the extent possible. When S2 has multiple |
| 32 | // bases, we pick the one that is closest to S2, or S2's "immediate" basis. |
| 33 | // |
| 34 | // TODO: |
| 35 | // |
| 36 | // - Handle candidates in the form of B + i * S |
| 37 | // |
| 38 | // - Handle candidates in the form of pointer arithmetics. e.g., B[i * S] |
| 39 | // |
| 40 | // - Floating point arithmetics when fast math is enabled. |
| 41 | // |
| 42 | // - SLSR may decrease ILP at the architecture level. Targets that are very |
| 43 | // sensitive to ILP may want to disable it. Having SLSR to consider ILP is |
| 44 | // left as future work. |
| 45 | #include <vector> |
| 46 | |
| 47 | #include "llvm/ADT/DenseSet.h" |
| 48 | #include "llvm/IR/Dominators.h" |
| 49 | #include "llvm/IR/IRBuilder.h" |
| 50 | #include "llvm/IR/Module.h" |
| 51 | #include "llvm/IR/PatternMatch.h" |
| 52 | #include "llvm/Support/raw_ostream.h" |
| 53 | #include "llvm/Transforms/Scalar.h" |
| 54 | |
| 55 | using namespace llvm; |
| 56 | using namespace PatternMatch; |
| 57 | |
| 58 | namespace { |
| 59 | |
| 60 | class StraightLineStrengthReduce : public FunctionPass { |
| 61 | public: |
| 62 | // SLSR candidate. Such a candidate must be in the form of |
| 63 | // (Base + Index) * Stride |
| 64 | struct Candidate : public ilist_node<Candidate> { |
| 65 | Candidate(Value *B = nullptr, ConstantInt *Idx = nullptr, |
| 66 | Value *S = nullptr, Instruction *I = nullptr) |
| 67 | : Base(B), Index(Idx), Stride(S), Ins(I), Basis(nullptr) {} |
| 68 | Value *Base; |
| 69 | ConstantInt *Index; |
| 70 | Value *Stride; |
| 71 | // The instruction this candidate corresponds to. It helps us to rewrite a |
| 72 | // candidate with respect to its immediate basis. Note that one instruction |
| 73 | // can corresponds to multiple candidates depending on how you associate the |
| 74 | // expression. For instance, |
| 75 | // |
| 76 | // (a + 1) * (b + 2) |
| 77 | // |
| 78 | // can be treated as |
| 79 | // |
| 80 | // <Base: a, Index: 1, Stride: b + 2> |
| 81 | // |
| 82 | // or |
| 83 | // |
| 84 | // <Base: b, Index: 2, Stride: a + 1> |
| 85 | Instruction *Ins; |
| 86 | // Points to the immediate basis of this candidate, or nullptr if we cannot |
| 87 | // find any basis for this candidate. |
| 88 | Candidate *Basis; |
| 89 | }; |
| 90 | |
| 91 | static char ID; |
| 92 | |
| 93 | StraightLineStrengthReduce() : FunctionPass(ID), DT(nullptr) { |
| 94 | initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry()); |
| 95 | } |
| 96 | |
| 97 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 98 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 99 | // We do not modify the shape of the CFG. |
| 100 | AU.setPreservesCFG(); |
| 101 | } |
| 102 | |
| 103 | bool runOnFunction(Function &F) override; |
| 104 | |
| 105 | private: |
| 106 | // Returns true if Basis is a basis for C, i.e., Basis dominates C and they |
| 107 | // share the same base and stride. |
| 108 | bool isBasisFor(const Candidate &Basis, const Candidate &C); |
| 109 | // Checks whether I is in a candidate form. If so, adds all the matching forms |
| 110 | // to Candidates, and tries to find the immediate basis for each of them. |
| 111 | void allocateCandidateAndFindBasis(Instruction *I); |
| 112 | // Given that I is in the form of "(B + Idx) * S", adds this form to |
| 113 | // Candidates, and finds its immediate basis. |
| 114 | void allocateCandidateAndFindBasis(Value *B, ConstantInt *Idx, Value *S, |
| 115 | Instruction *I); |
| 116 | // Rewrites candidate C with respect to Basis. |
| 117 | void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis); |
| 118 | |
| 119 | DominatorTree *DT; |
| 120 | ilist<Candidate> Candidates; |
| 121 | // Temporarily holds all instructions that are unlinked (but not deleted) by |
| 122 | // rewriteCandidateWithBasis. These instructions will be actually removed |
| 123 | // after all rewriting finishes. |
| 124 | DenseSet<Instruction *> UnlinkedInstructions; |
| 125 | }; |
| 126 | } // anonymous namespace |
| 127 | |
| 128 | char StraightLineStrengthReduce::ID = 0; |
| 129 | INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr", |
| 130 | "Straight line strength reduction", false, false) |
| 131 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 132 | INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr", |
| 133 | "Straight line strength reduction", false, false) |
| 134 | |
| 135 | FunctionPass *llvm::createStraightLineStrengthReducePass() { |
| 136 | return new StraightLineStrengthReduce(); |
| 137 | } |
| 138 | |
| 139 | bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis, |
| 140 | const Candidate &C) { |
| 141 | return (Basis.Ins != C.Ins && // skip the same instruction |
| 142 | // Basis must dominate C in order to rewrite C with respect to Basis. |
| 143 | DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) && |
| 144 | // They share the same base and stride. |
| 145 | Basis.Base == C.Base && |
| 146 | Basis.Stride == C.Stride); |
| 147 | } |
| 148 | |
| 149 | // TODO: We currently implement an algorithm whose time complexity is linear to |
| 150 | // the number of existing candidates. However, a better algorithm exists. We |
| 151 | // could depth-first search the dominator tree, and maintain a hash table that |
| 152 | // contains all candidates that dominate the node being traversed. This hash |
| 153 | // table is indexed by the base and the stride of a candidate. Therefore, |
| 154 | // finding the immediate basis of a candidate boils down to one hash-table look |
| 155 | // up. |
| 156 | void StraightLineStrengthReduce::allocateCandidateAndFindBasis(Value *B, |
| 157 | ConstantInt *Idx, |
| 158 | Value *S, |
| 159 | Instruction *I) { |
| 160 | Candidate C(B, Idx, S, I); |
| 161 | // Try to compute the immediate basis of C. |
| 162 | unsigned NumIterations = 0; |
| 163 | // Limit the scan radius to avoid running forever. |
| 164 | static const int MaxNumIterations = 50; |
| 165 | for (auto Basis = Candidates.rbegin(); |
| 166 | Basis != Candidates.rend() && NumIterations < MaxNumIterations; |
| 167 | ++Basis, ++NumIterations) { |
| 168 | if (isBasisFor(*Basis, C)) { |
| 169 | C.Basis = &(*Basis); |
| 170 | break; |
| 171 | } |
| 172 | } |
| 173 | // Regardless of whether we find a basis for C, we need to push C to the |
| 174 | // candidate list. |
| 175 | Candidates.push_back(C); |
| 176 | } |
| 177 | |
| 178 | void StraightLineStrengthReduce::allocateCandidateAndFindBasis(Instruction *I) { |
| 179 | Value *B = nullptr; |
| 180 | ConstantInt *Idx = nullptr; |
| 181 | // "(Base + Index) * Stride" must be a Mul instruction at the first hand. |
| 182 | if (I->getOpcode() == Instruction::Mul) { |
| 183 | if (IntegerType *ITy = dyn_cast<IntegerType>(I->getType())) { |
| 184 | Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); |
| 185 | for (unsigned Swapped = 0; Swapped < 2; ++Swapped) { |
| 186 | // Only handle the canonical operand ordering. |
| 187 | if (match(LHS, m_Add(m_Value(B), m_ConstantInt(Idx)))) { |
| 188 | // If LHS is in the form of "Base + Index", then I is in the form of |
| 189 | // "(Base + Index) * RHS". |
| 190 | allocateCandidateAndFindBasis(B, Idx, RHS, I); |
| 191 | } else { |
| 192 | // Otherwise, at least try the form (LHS + 0) * RHS. |
| 193 | allocateCandidateAndFindBasis(LHS, ConstantInt::get(ITy, 0), RHS, I); |
| 194 | } |
| 195 | // Swap LHS and RHS so that we also cover the cases where LHS is the |
| 196 | // stride. |
| 197 | if (LHS == RHS) |
| 198 | break; |
| 199 | std::swap(LHS, RHS); |
| 200 | } |
| 201 | } |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | void StraightLineStrengthReduce::rewriteCandidateWithBasis( |
| 206 | const Candidate &C, const Candidate &Basis) { |
| 207 | // An instruction can correspond to multiple candidates. Therefore, instead of |
| 208 | // simply deleting an instruction when we rewrite it, we mark its parent as |
| 209 | // nullptr (i.e. unlink it) so that we can skip the candidates whose |
| 210 | // instruction is already rewritten. |
| 211 | if (!C.Ins->getParent()) |
| 212 | return; |
| 213 | assert(C.Base == Basis.Base && C.Stride == Basis.Stride); |
| 214 | // Basis = (B + i) * S |
| 215 | // C = (B + i') * S |
| 216 | // ==> |
| 217 | // C = Basis + (i' - i) * S |
| 218 | IRBuilder<> Builder(C.Ins); |
| 219 | ConstantInt *IndexOffset = ConstantInt::get( |
| 220 | C.Ins->getContext(), C.Index->getValue() - Basis.Index->getValue()); |
| 221 | Value *Reduced; |
| 222 | // TODO: preserve nsw/nuw in some cases. |
| 223 | if (IndexOffset->isOne()) { |
| 224 | // If (i' - i) is 1, fold C into Basis + S. |
| 225 | Reduced = Builder.CreateAdd(Basis.Ins, C.Stride); |
| 226 | } else if (IndexOffset->isMinusOne()) { |
| 227 | // If (i' - i) is -1, fold C into Basis - S. |
| 228 | Reduced = Builder.CreateSub(Basis.Ins, C.Stride); |
| 229 | } else { |
| 230 | Value *Bump = Builder.CreateMul(C.Stride, IndexOffset); |
| 231 | Reduced = Builder.CreateAdd(Basis.Ins, Bump); |
| 232 | } |
| 233 | Reduced->takeName(C.Ins); |
| 234 | C.Ins->replaceAllUsesWith(Reduced); |
| 235 | C.Ins->dropAllReferences(); |
| 236 | // Unlink C.Ins so that we can skip other candidates also corresponding to |
| 237 | // C.Ins. The actual deletion is postponed to the end of runOnFunction. |
| 238 | C.Ins->removeFromParent(); |
| 239 | UnlinkedInstructions.insert(C.Ins); |
| 240 | } |
| 241 | |
| 242 | bool StraightLineStrengthReduce::runOnFunction(Function &F) { |
| 243 | if (skipOptnoneFunction(F)) |
| 244 | return false; |
| 245 | |
| 246 | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 247 | // Traverse the dominator tree in the depth-first order. This order makes sure |
| 248 | // all bases of a candidate are in Candidates when we process it. |
| 249 | for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT); |
| 250 | node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) { |
| 251 | BasicBlock *B = node->getBlock(); |
| 252 | for (auto I = B->begin(); I != B->end(); ++I) { |
| 253 | allocateCandidateAndFindBasis(I); |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | // Rewrite candidates in the reverse depth-first order. This order makes sure |
| 258 | // a candidate being rewritten is not a basis for any other candidate. |
| 259 | while (!Candidates.empty()) { |
| 260 | const Candidate &C = Candidates.back(); |
| 261 | if (C.Basis != nullptr) { |
| 262 | rewriteCandidateWithBasis(C, *C.Basis); |
| 263 | } |
| 264 | Candidates.pop_back(); |
| 265 | } |
| 266 | |
| 267 | // Delete all unlink instructions. |
| 268 | for (auto I : UnlinkedInstructions) { |
| 269 | delete I; |
| 270 | } |
| 271 | bool Ret = !UnlinkedInstructions.empty(); |
| 272 | UnlinkedInstructions.clear(); |
| 273 | return Ret; |
| 274 | } |