blob: 3ad078a5feeeb59cb58c6bda0ce0e148491fe5ee [file] [log] [blame]
Sean Silva709c44d2012-12-12 23:44:55 +00001=========================
2Clang Language Extensions
3=========================
4
5.. contents::
6 :local:
Sean Silva13d43fe2013-01-02 21:09:58 +00007 :depth: 1
Sean Silva709c44d2012-12-12 23:44:55 +00008
Sean Silvaf380e0e2013-01-02 21:03:11 +00009.. toctree::
10 :hidden:
11
12 ObjectiveCLiterals
13 BlockLanguageSpec
Michael Gottesman6fd58462013-01-07 22:24:45 +000014 Block-ABI-Apple
15 AutomaticReferenceCounting
Sean Silvaf380e0e2013-01-02 21:03:11 +000016
Sean Silva709c44d2012-12-12 23:44:55 +000017Introduction
18============
19
20This document describes the language extensions provided by Clang. In addition
21to the language extensions listed here, Clang aims to support a broad range of
22GCC extensions. Please see the `GCC manual
23<http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html>`_ for more information on
24these extensions.
25
26.. _langext-feature_check:
27
28Feature Checking Macros
29=======================
30
31Language extensions can be very useful, but only if you know you can depend on
32them. In order to allow fine-grain features checks, we support three builtin
33function-like macros. This allows you to directly test for a feature in your
34code without having to resort to something like autoconf or fragile "compiler
35version checks".
36
37``__has_builtin``
38-----------------
39
40This function-like macro takes a single identifier argument that is the name of
41a builtin function. It evaluates to 1 if the builtin is supported or 0 if not.
42It can be used like this:
43
44.. code-block:: c++
45
46 #ifndef __has_builtin // Optional of course.
47 #define __has_builtin(x) 0 // Compatibility with non-clang compilers.
48 #endif
49
50 ...
51 #if __has_builtin(__builtin_trap)
52 __builtin_trap();
53 #else
54 abort();
55 #endif
56 ...
57
58.. _langext-__has_feature-__has_extension:
59
60``__has_feature`` and ``__has_extension``
61-----------------------------------------
62
63These function-like macros take a single identifier argument that is the name
64of a feature. ``__has_feature`` evaluates to 1 if the feature is both
65supported by Clang and standardized in the current language standard or 0 if
66not (but see :ref:`below <langext-has-feature-back-compat>`), while
67``__has_extension`` evaluates to 1 if the feature is supported by Clang in the
68current language (either as a language extension or a standard language
69feature) or 0 if not. They can be used like this:
70
71.. code-block:: c++
72
73 #ifndef __has_feature // Optional of course.
74 #define __has_feature(x) 0 // Compatibility with non-clang compilers.
75 #endif
76 #ifndef __has_extension
77 #define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
78 #endif
79
80 ...
81 #if __has_feature(cxx_rvalue_references)
82 // This code will only be compiled with the -std=c++11 and -std=gnu++11
83 // options, because rvalue references are only standardized in C++11.
84 #endif
85
86 #if __has_extension(cxx_rvalue_references)
87 // This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
88 // and -std=gnu++98 options, because rvalue references are supported as a
89 // language extension in C++98.
90 #endif
91
92.. _langext-has-feature-back-compat:
93
94For backwards compatibility reasons, ``__has_feature`` can also be used to test
95for support for non-standardized features, i.e. features not prefixed ``c_``,
96``cxx_`` or ``objc_``.
97
98Another use of ``__has_feature`` is to check for compiler features not related
Sean Silva173d2522013-01-02 13:07:47 +000099to the language standard, such as e.g. :doc:`AddressSanitizer
100<AddressSanitizer>`.
Sean Silva709c44d2012-12-12 23:44:55 +0000101
102If the ``-pedantic-errors`` option is given, ``__has_extension`` is equivalent
103to ``__has_feature``.
104
105The feature tag is described along with the language feature below.
106
107The feature name or extension name can also be specified with a preceding and
108following ``__`` (double underscore) to avoid interference from a macro with
109the same name. For instance, ``__cxx_rvalue_references__`` can be used instead
110of ``cxx_rvalue_references``.
111
112``__has_attribute``
113-------------------
114
115This function-like macro takes a single identifier argument that is the name of
Aaron Ballmana4bb4b92014-01-09 23:11:13 +0000116an attribute. It evaluates to 1 if the attribute is supported by the current
117compilation target, or 0 if not. It can be used like this:
Sean Silva709c44d2012-12-12 23:44:55 +0000118
119.. code-block:: c++
120
121 #ifndef __has_attribute // Optional of course.
122 #define __has_attribute(x) 0 // Compatibility with non-clang compilers.
123 #endif
124
125 ...
126 #if __has_attribute(always_inline)
127 #define ALWAYS_INLINE __attribute__((always_inline))
128 #else
129 #define ALWAYS_INLINE
130 #endif
131 ...
132
133The attribute name can also be specified with a preceding and following ``__``
134(double underscore) to avoid interference from a macro with the same name. For
135instance, ``__always_inline__`` can be used instead of ``always_inline``.
136
Aaron Ballmana4bb4b92014-01-09 23:11:13 +0000137
Sean Silva709c44d2012-12-12 23:44:55 +0000138Include File Checking Macros
139============================
140
141Not all developments systems have the same include files. The
142:ref:`langext-__has_include` and :ref:`langext-__has_include_next` macros allow
143you to check for the existence of an include file before doing a possibly
Dmitri Gribenko764ea242013-01-17 17:04:54 +0000144failing ``#include`` directive. Include file checking macros must be used
145as expressions in ``#if`` or ``#elif`` preprocessing directives.
Sean Silva709c44d2012-12-12 23:44:55 +0000146
147.. _langext-__has_include:
148
149``__has_include``
150-----------------
151
152This function-like macro takes a single file name string argument that is the
153name of an include file. It evaluates to 1 if the file can be found using the
154include paths, or 0 otherwise:
155
156.. code-block:: c++
157
158 // Note the two possible file name string formats.
159 #if __has_include("myinclude.h") && __has_include(<stdint.h>)
160 # include "myinclude.h"
161 #endif
162
Richard Smithccfc9ff2013-07-11 00:27:05 +0000163To test for this feature, use ``#if defined(__has_include)``:
164
165.. code-block:: c++
166
Sean Silva709c44d2012-12-12 23:44:55 +0000167 // To avoid problem with non-clang compilers not having this macro.
Richard Smithccfc9ff2013-07-11 00:27:05 +0000168 #if defined(__has_include)
169 #if __has_include("myinclude.h")
Sean Silva709c44d2012-12-12 23:44:55 +0000170 # include "myinclude.h"
171 #endif
Richard Smithccfc9ff2013-07-11 00:27:05 +0000172 #endif
Sean Silva709c44d2012-12-12 23:44:55 +0000173
174.. _langext-__has_include_next:
175
176``__has_include_next``
177----------------------
178
179This function-like macro takes a single file name string argument that is the
180name of an include file. It is like ``__has_include`` except that it looks for
181the second instance of the given file found in the include paths. It evaluates
182to 1 if the second instance of the file can be found using the include paths,
183or 0 otherwise:
184
185.. code-block:: c++
186
187 // Note the two possible file name string formats.
188 #if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>)
189 # include_next "myinclude.h"
190 #endif
191
192 // To avoid problem with non-clang compilers not having this macro.
Richard Smithccfc9ff2013-07-11 00:27:05 +0000193 #if defined(__has_include_next)
194 #if __has_include_next("myinclude.h")
Sean Silva709c44d2012-12-12 23:44:55 +0000195 # include_next "myinclude.h"
196 #endif
Richard Smithccfc9ff2013-07-11 00:27:05 +0000197 #endif
Sean Silva709c44d2012-12-12 23:44:55 +0000198
199Note that ``__has_include_next``, like the GNU extension ``#include_next``
200directive, is intended for use in headers only, and will issue a warning if
201used in the top-level compilation file. A warning will also be issued if an
202absolute path is used in the file argument.
203
204``__has_warning``
205-----------------
206
207This function-like macro takes a string literal that represents a command line
208option for a warning and returns true if that is a valid warning option.
209
210.. code-block:: c++
211
212 #if __has_warning("-Wformat")
213 ...
214 #endif
215
216Builtin Macros
217==============
218
219``__BASE_FILE__``
220 Defined to a string that contains the name of the main input file passed to
221 Clang.
222
223``__COUNTER__``
224 Defined to an integer value that starts at zero and is incremented each time
225 the ``__COUNTER__`` macro is expanded.
226
227``__INCLUDE_LEVEL__``
228 Defined to an integral value that is the include depth of the file currently
229 being translated. For the main file, this value is zero.
230
231``__TIMESTAMP__``
232 Defined to the date and time of the last modification of the current source
233 file.
234
235``__clang__``
236 Defined when compiling with Clang
237
238``__clang_major__``
239 Defined to the major marketing version number of Clang (e.g., the 2 in
240 2.0.1). Note that marketing version numbers should not be used to check for
241 language features, as different vendors use different numbering schemes.
242 Instead, use the :ref:`langext-feature_check`.
243
244``__clang_minor__``
245 Defined to the minor version number of Clang (e.g., the 0 in 2.0.1). Note
246 that marketing version numbers should not be used to check for language
247 features, as different vendors use different numbering schemes. Instead, use
248 the :ref:`langext-feature_check`.
249
250``__clang_patchlevel__``
251 Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).
252
253``__clang_version__``
254 Defined to a string that captures the Clang marketing version, including the
255 Subversion tag or revision number, e.g., "``1.5 (trunk 102332)``".
256
257.. _langext-vectors:
258
259Vectors and Extended Vectors
260============================
261
262Supports the GCC, OpenCL, AltiVec and NEON vector extensions.
263
264OpenCL vector types are created using ``ext_vector_type`` attribute. It
265support for ``V.xyzw`` syntax and other tidbits as seen in OpenCL. An example
266is:
267
268.. code-block:: c++
269
270 typedef float float4 __attribute__((ext_vector_type(4)));
271 typedef float float2 __attribute__((ext_vector_type(2)));
272
273 float4 foo(float2 a, float2 b) {
274 float4 c;
275 c.xz = a;
276 c.yw = b;
277 return c;
278 }
279
280Query for this feature with ``__has_extension(attribute_ext_vector_type)``.
281
282Giving ``-faltivec`` option to clang enables support for AltiVec vector syntax
283and functions. For example:
284
285.. code-block:: c++
286
287 vector float foo(vector int a) {
288 vector int b;
289 b = vec_add(a, a) + a;
290 return (vector float)b;
291 }
292
293NEON vector types are created using ``neon_vector_type`` and
294``neon_polyvector_type`` attributes. For example:
295
296.. code-block:: c++
297
298 typedef __attribute__((neon_vector_type(8))) int8_t int8x8_t;
299 typedef __attribute__((neon_polyvector_type(16))) poly8_t poly8x16_t;
300
301 int8x8_t foo(int8x8_t a) {
302 int8x8_t v;
303 v = a;
304 return v;
305 }
306
307Vector Literals
308---------------
309
310Vector literals can be used to create vectors from a set of scalars, or
311vectors. Either parentheses or braces form can be used. In the parentheses
312form the number of literal values specified must be one, i.e. referring to a
313scalar value, or must match the size of the vector type being created. If a
314single scalar literal value is specified, the scalar literal value will be
315replicated to all the components of the vector type. In the brackets form any
316number of literals can be specified. For example:
317
318.. code-block:: c++
319
320 typedef int v4si __attribute__((__vector_size__(16)));
321 typedef float float4 __attribute__((ext_vector_type(4)));
322 typedef float float2 __attribute__((ext_vector_type(2)));
323
324 v4si vsi = (v4si){1, 2, 3, 4};
325 float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
326 vector int vi1 = (vector int)(1); // vi1 will be (1, 1, 1, 1).
327 vector int vi2 = (vector int){1}; // vi2 will be (1, 0, 0, 0).
328 vector int vi3 = (vector int)(1, 2); // error
329 vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
330 vector int vi5 = (vector int)(1, 2, 3, 4);
331 float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
332
333Vector Operations
334-----------------
335
336The table below shows the support for each operation by vector extension. A
337dash indicates that an operation is not accepted according to a corresponding
338specification.
339
340============================== ====== ======= === ====
341 Opeator OpenCL AltiVec GCC NEON
342============================== ====== ======= === ====
343[] yes yes yes --
344unary operators +, -- yes yes yes --
345++, -- -- yes yes yes --
346+,--,*,/,% yes yes yes --
347bitwise operators &,|,^,~ yes yes yes --
348>>,<< yes yes yes --
349!, &&, || no -- -- --
350==, !=, >, <, >=, <= yes yes -- --
351= yes yes yes yes
352:? yes -- -- --
353sizeof yes yes yes yes
354============================== ====== ======= === ====
355
356See also :ref:`langext-__builtin_shufflevector`.
357
358Messages on ``deprecated`` and ``unavailable`` Attributes
359=========================================================
360
361An optional string message can be added to the ``deprecated`` and
362``unavailable`` attributes. For example:
363
364.. code-block:: c++
365
366 void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));
367
368If the deprecated or unavailable declaration is used, the message will be
369incorporated into the appropriate diagnostic:
370
371.. code-block:: c++
372
373 harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
374 [-Wdeprecated-declarations]
375 explode();
376 ^
377
378Query for this feature with
379``__has_extension(attribute_deprecated_with_message)`` and
380``__has_extension(attribute_unavailable_with_message)``.
381
382Attributes on Enumerators
383=========================
384
385Clang allows attributes to be written on individual enumerators. This allows
386enumerators to be deprecated, made unavailable, etc. The attribute must appear
387after the enumerator name and before any initializer, like so:
388
389.. code-block:: c++
390
391 enum OperationMode {
392 OM_Invalid,
393 OM_Normal,
394 OM_Terrified __attribute__((deprecated)),
395 OM_AbortOnError __attribute__((deprecated)) = 4
396 };
397
398Attributes on the ``enum`` declaration do not apply to individual enumerators.
399
400Query for this feature with ``__has_extension(enumerator_attributes)``.
401
402'User-Specified' System Frameworks
403==================================
404
405Clang provides a mechanism by which frameworks can be built in such a way that
406they will always be treated as being "system frameworks", even if they are not
407present in a system framework directory. This can be useful to system
408framework developers who want to be able to test building other applications
409with development builds of their framework, including the manner in which the
410compiler changes warning behavior for system headers.
411
412Framework developers can opt-in to this mechanism by creating a
413"``.system_framework``" file at the top-level of their framework. That is, the
414framework should have contents like:
415
416.. code-block:: none
417
418 .../TestFramework.framework
419 .../TestFramework.framework/.system_framework
420 .../TestFramework.framework/Headers
421 .../TestFramework.framework/Headers/TestFramework.h
422 ...
423
424Clang will treat the presence of this file as an indicator that the framework
425should be treated as a system framework, regardless of how it was found in the
426framework search path. For consistency, we recommend that such files never be
427included in installed versions of the framework.
428
429Availability attribute
430======================
431
432Clang introduces the ``availability`` attribute, which can be placed on
433declarations to describe the lifecycle of that declaration relative to
434operating system versions. Consider the function declaration for a
435hypothetical function ``f``:
436
437.. code-block:: c++
438
439 void f(void) __attribute__((availability(macosx,introduced=10.4,deprecated=10.6,obsoleted=10.7)));
440
441The availability attribute states that ``f`` was introduced in Mac OS X 10.4,
442deprecated in Mac OS X 10.6, and obsoleted in Mac OS X 10.7. This information
443is used by Clang to determine when it is safe to use ``f``: for example, if
444Clang is instructed to compile code for Mac OS X 10.5, a call to ``f()``
445succeeds. If Clang is instructed to compile code for Mac OS X 10.6, the call
446succeeds but Clang emits a warning specifying that the function is deprecated.
447Finally, if Clang is instructed to compile code for Mac OS X 10.7, the call
448fails because ``f()`` is no longer available.
449
Douglas Gregor250ee632013-01-16 01:12:31 +0000450The availability attribute is a comma-separated list starting with the
Sean Silva709c44d2012-12-12 23:44:55 +0000451platform name and then including clauses specifying important milestones in the
452declaration's lifetime (in any order) along with additional information. Those
453clauses can be:
454
455introduced=\ *version*
456 The first version in which this declaration was introduced.
457
458deprecated=\ *version*
459 The first version in which this declaration was deprecated, meaning that
460 users should migrate away from this API.
461
462obsoleted=\ *version*
463 The first version in which this declaration was obsoleted, meaning that it
464 was removed completely and can no longer be used.
465
466unavailable
467 This declaration is never available on this platform.
468
469message=\ *string-literal*
470 Additional message text that Clang will provide when emitting a warning or
471 error about use of a deprecated or obsoleted declaration. Useful to direct
472 users to replacement APIs.
473
474Multiple availability attributes can be placed on a declaration, which may
475correspond to different platforms. Only the availability attribute with the
476platform corresponding to the target platform will be used; any others will be
477ignored. If no availability attribute specifies availability for the current
478target platform, the availability attributes are ignored. Supported platforms
479are:
480
481``ios``
482 Apple's iOS operating system. The minimum deployment target is specified by
483 the ``-mios-version-min=*version*`` or ``-miphoneos-version-min=*version*``
484 command-line arguments.
485
486``macosx``
487 Apple's Mac OS X operating system. The minimum deployment target is
488 specified by the ``-mmacosx-version-min=*version*`` command-line argument.
489
490A declaration can be used even when deploying back to a platform version prior
491to when the declaration was introduced. When this happens, the declaration is
492`weakly linked
493<https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPFrameworks/Concepts/WeakLinking.html>`_,
494as if the ``weak_import`` attribute were added to the declaration. A
495weakly-linked declaration may or may not be present a run-time, and a program
496can determine whether the declaration is present by checking whether the
497address of that declaration is non-NULL.
498
Dmitri Gribenkofb5b2242013-01-16 01:17:05 +0000499If there are multiple declarations of the same entity, the availability
Douglas Gregor250ee632013-01-16 01:12:31 +0000500attributes must either match on a per-platform basis or later
501declarations must not have availability attributes for that
502platform. For example:
503
504.. code-block:: c
505
506 void g(void) __attribute__((availability(macosx,introduced=10.4)));
507 void g(void) __attribute__((availability(macosx,introduced=10.4))); // okay, matches
508 void g(void) __attribute__((availability(ios,introduced=4.0))); // okay, adds a new platform
509 void g(void); // okay, inherits both macosx and ios availability from above.
510 void g(void) __attribute__((availability(macosx,introduced=10.5))); // error: mismatch
511
512When one method overrides another, the overriding method can be more widely available than the overridden method, e.g.,:
513
514.. code-block:: objc
515
516 @interface A
517 - (id)method __attribute__((availability(macosx,introduced=10.4)));
518 - (id)method2 __attribute__((availability(macosx,introduced=10.4)));
519 @end
520
521 @interface B : A
522 - (id)method __attribute__((availability(macosx,introduced=10.3))); // okay: method moved into base class later
523 - (id)method __attribute__((availability(macosx,introduced=10.5))); // error: this method was available via the base class in 10.4
524 @end
525
Sean Silva709c44d2012-12-12 23:44:55 +0000526Checks for Standard Language Features
527=====================================
528
529The ``__has_feature`` macro can be used to query if certain standard language
530features are enabled. The ``__has_extension`` macro can be used to query if
531language features are available as an extension when compiling for a standard
532which does not provide them. The features which can be tested are listed here.
533
534C++98
535-----
536
537The features listed below are part of the C++98 standard. These features are
538enabled by default when compiling C++ code.
539
540C++ exceptions
541^^^^^^^^^^^^^^
542
543Use ``__has_feature(cxx_exceptions)`` to determine if C++ exceptions have been
544enabled. For example, compiling code with ``-fno-exceptions`` disables C++
545exceptions.
546
547C++ RTTI
548^^^^^^^^
549
550Use ``__has_feature(cxx_rtti)`` to determine if C++ RTTI has been enabled. For
551example, compiling code with ``-fno-rtti`` disables the use of RTTI.
552
553C++11
554-----
555
556The features listed below are part of the C++11 standard. As a result, all
557these features are enabled with the ``-std=c++11`` or ``-std=gnu++11`` option
558when compiling C++ code.
559
560C++11 SFINAE includes access control
561^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
562
563Use ``__has_feature(cxx_access_control_sfinae)`` or
564``__has_extension(cxx_access_control_sfinae)`` to determine whether
565access-control errors (e.g., calling a private constructor) are considered to
566be template argument deduction errors (aka SFINAE errors), per `C++ DR1170
567<http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170>`_.
568
569C++11 alias templates
570^^^^^^^^^^^^^^^^^^^^^
571
572Use ``__has_feature(cxx_alias_templates)`` or
573``__has_extension(cxx_alias_templates)`` to determine if support for C++11's
574alias declarations and alias templates is enabled.
575
576C++11 alignment specifiers
577^^^^^^^^^^^^^^^^^^^^^^^^^^
578
579Use ``__has_feature(cxx_alignas)`` or ``__has_extension(cxx_alignas)`` to
580determine if support for alignment specifiers using ``alignas`` is enabled.
581
582C++11 attributes
583^^^^^^^^^^^^^^^^
584
585Use ``__has_feature(cxx_attributes)`` or ``__has_extension(cxx_attributes)`` to
586determine if support for attribute parsing with C++11's square bracket notation
587is enabled.
588
589C++11 generalized constant expressions
590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
591
592Use ``__has_feature(cxx_constexpr)`` to determine if support for generalized
593constant expressions (e.g., ``constexpr``) is enabled.
594
595C++11 ``decltype()``
596^^^^^^^^^^^^^^^^^^^^
597
598Use ``__has_feature(cxx_decltype)`` or ``__has_extension(cxx_decltype)`` to
599determine if support for the ``decltype()`` specifier is enabled. C++11's
600``decltype`` does not require type-completeness of a function call expression.
601Use ``__has_feature(cxx_decltype_incomplete_return_types)`` or
602``__has_extension(cxx_decltype_incomplete_return_types)`` to determine if
603support for this feature is enabled.
604
605C++11 default template arguments in function templates
606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
607
608Use ``__has_feature(cxx_default_function_template_args)`` or
609``__has_extension(cxx_default_function_template_args)`` to determine if support
610for default template arguments in function templates is enabled.
611
612C++11 ``default``\ ed functions
613^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
614
615Use ``__has_feature(cxx_defaulted_functions)`` or
616``__has_extension(cxx_defaulted_functions)`` to determine if support for
617defaulted function definitions (with ``= default``) is enabled.
618
619C++11 delegating constructors
620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
621
622Use ``__has_feature(cxx_delegating_constructors)`` to determine if support for
623delegating constructors is enabled.
624
625C++11 ``deleted`` functions
626^^^^^^^^^^^^^^^^^^^^^^^^^^^
627
628Use ``__has_feature(cxx_deleted_functions)`` or
629``__has_extension(cxx_deleted_functions)`` to determine if support for deleted
630function definitions (with ``= delete``) is enabled.
631
632C++11 explicit conversion functions
633^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
634
635Use ``__has_feature(cxx_explicit_conversions)`` to determine if support for
636``explicit`` conversion functions is enabled.
637
638C++11 generalized initializers
639^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
640
641Use ``__has_feature(cxx_generalized_initializers)`` to determine if support for
642generalized initializers (using braced lists and ``std::initializer_list``) is
643enabled.
644
645C++11 implicit move constructors/assignment operators
646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
647
648Use ``__has_feature(cxx_implicit_moves)`` to determine if Clang will implicitly
649generate move constructors and move assignment operators where needed.
650
651C++11 inheriting constructors
652^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
653
654Use ``__has_feature(cxx_inheriting_constructors)`` to determine if support for
Richard Smith25b555a2013-04-19 17:00:31 +0000655inheriting constructors is enabled.
Sean Silva709c44d2012-12-12 23:44:55 +0000656
657C++11 inline namespaces
658^^^^^^^^^^^^^^^^^^^^^^^
659
660Use ``__has_feature(cxx_inline_namespaces)`` or
661``__has_extension(cxx_inline_namespaces)`` to determine if support for inline
662namespaces is enabled.
663
664C++11 lambdas
665^^^^^^^^^^^^^
666
667Use ``__has_feature(cxx_lambdas)`` or ``__has_extension(cxx_lambdas)`` to
668determine if support for lambdas is enabled.
669
670C++11 local and unnamed types as template arguments
671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
672
673Use ``__has_feature(cxx_local_type_template_args)`` or
674``__has_extension(cxx_local_type_template_args)`` to determine if support for
675local and unnamed types as template arguments is enabled.
676
677C++11 noexcept
678^^^^^^^^^^^^^^
679
680Use ``__has_feature(cxx_noexcept)`` or ``__has_extension(cxx_noexcept)`` to
681determine if support for noexcept exception specifications is enabled.
682
683C++11 in-class non-static data member initialization
684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
685
686Use ``__has_feature(cxx_nonstatic_member_init)`` to determine whether in-class
687initialization of non-static data members is enabled.
688
689C++11 ``nullptr``
690^^^^^^^^^^^^^^^^^
691
692Use ``__has_feature(cxx_nullptr)`` or ``__has_extension(cxx_nullptr)`` to
693determine if support for ``nullptr`` is enabled.
694
695C++11 ``override control``
696^^^^^^^^^^^^^^^^^^^^^^^^^^
697
698Use ``__has_feature(cxx_override_control)`` or
699``__has_extension(cxx_override_control)`` to determine if support for the
700override control keywords is enabled.
701
702C++11 reference-qualified functions
703^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
704
705Use ``__has_feature(cxx_reference_qualified_functions)`` or
706``__has_extension(cxx_reference_qualified_functions)`` to determine if support
707for reference-qualified functions (e.g., member functions with ``&`` or ``&&``
708applied to ``*this``) is enabled.
709
710C++11 range-based ``for`` loop
711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
712
713Use ``__has_feature(cxx_range_for)`` or ``__has_extension(cxx_range_for)`` to
714determine if support for the range-based for loop is enabled.
715
716C++11 raw string literals
717^^^^^^^^^^^^^^^^^^^^^^^^^
718
719Use ``__has_feature(cxx_raw_string_literals)`` to determine if support for raw
720string literals (e.g., ``R"x(foo\bar)x"``) is enabled.
721
722C++11 rvalue references
723^^^^^^^^^^^^^^^^^^^^^^^
724
725Use ``__has_feature(cxx_rvalue_references)`` or
726``__has_extension(cxx_rvalue_references)`` to determine if support for rvalue
727references is enabled.
728
729C++11 ``static_assert()``
730^^^^^^^^^^^^^^^^^^^^^^^^^
731
732Use ``__has_feature(cxx_static_assert)`` or
733``__has_extension(cxx_static_assert)`` to determine if support for compile-time
734assertions using ``static_assert`` is enabled.
735
Richard Smith25b555a2013-04-19 17:00:31 +0000736C++11 ``thread_local``
737^^^^^^^^^^^^^^^^^^^^^^
738
739Use ``__has_feature(cxx_thread_local)`` to determine if support for
740``thread_local`` variables is enabled.
741
Sean Silva709c44d2012-12-12 23:44:55 +0000742C++11 type inference
743^^^^^^^^^^^^^^^^^^^^
744
745Use ``__has_feature(cxx_auto_type)`` or ``__has_extension(cxx_auto_type)`` to
746determine C++11 type inference is supported using the ``auto`` specifier. If
747this is disabled, ``auto`` will instead be a storage class specifier, as in C
748or C++98.
749
750C++11 strongly typed enumerations
751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
752
753Use ``__has_feature(cxx_strong_enums)`` or
754``__has_extension(cxx_strong_enums)`` to determine if support for strongly
755typed, scoped enumerations is enabled.
756
757C++11 trailing return type
758^^^^^^^^^^^^^^^^^^^^^^^^^^
759
760Use ``__has_feature(cxx_trailing_return)`` or
761``__has_extension(cxx_trailing_return)`` to determine if support for the
762alternate function declaration syntax with trailing return type is enabled.
763
764C++11 Unicode string literals
765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
766
767Use ``__has_feature(cxx_unicode_literals)`` to determine if support for Unicode
768string literals is enabled.
769
770C++11 unrestricted unions
771^^^^^^^^^^^^^^^^^^^^^^^^^
772
773Use ``__has_feature(cxx_unrestricted_unions)`` to determine if support for
774unrestricted unions is enabled.
775
776C++11 user-defined literals
777^^^^^^^^^^^^^^^^^^^^^^^^^^^
778
779Use ``__has_feature(cxx_user_literals)`` to determine if support for
780user-defined literals is enabled.
781
782C++11 variadic templates
783^^^^^^^^^^^^^^^^^^^^^^^^
784
785Use ``__has_feature(cxx_variadic_templates)`` or
786``__has_extension(cxx_variadic_templates)`` to determine if support for
787variadic templates is enabled.
788
Richard Smith0a715422013-05-07 19:32:56 +0000789C++1y
790-----
791
792The features listed below are part of the committee draft for the C++1y
793standard. As a result, all these features are enabled with the ``-std=c++1y``
794or ``-std=gnu++1y`` option when compiling C++ code.
795
796C++1y binary literals
797^^^^^^^^^^^^^^^^^^^^^
798
799Use ``__has_feature(cxx_binary_literals)`` or
800``__has_extension(cxx_binary_literals)`` to determine whether
801binary literals (for instance, ``0b10010``) are recognized. Clang supports this
802feature as an extension in all language modes.
803
804C++1y contextual conversions
805^^^^^^^^^^^^^^^^^^^^^^^^^^^^
806
807Use ``__has_feature(cxx_contextual_conversions)`` or
808``__has_extension(cxx_contextual_conversions)`` to determine if the C++1y rules
809are used when performing an implicit conversion for an array bound in a
810*new-expression*, the operand of a *delete-expression*, an integral constant
Richard Smithc0f7b812013-07-24 17:41:31 +0000811expression, or a condition in a ``switch`` statement.
Richard Smith0a715422013-05-07 19:32:56 +0000812
813C++1y decltype(auto)
814^^^^^^^^^^^^^^^^^^^^
815
816Use ``__has_feature(cxx_decltype_auto)`` or
817``__has_extension(cxx_decltype_auto)`` to determine if support
818for the ``decltype(auto)`` placeholder type is enabled.
819
820C++1y default initializers for aggregates
821^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
822
823Use ``__has_feature(cxx_aggregate_nsdmi)`` or
824``__has_extension(cxx_aggregate_nsdmi)`` to determine if support
825for default initializers in aggregate members is enabled.
826
827C++1y generalized lambda capture
828^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
829
Richard Smith4fb09722013-07-24 17:51:13 +0000830Use ``__has_feature(cxx_init_capture)`` or
831``__has_extension(cxx_init_capture)`` to determine if support for
832lambda captures with explicit initializers is enabled
Richard Smith0a715422013-05-07 19:32:56 +0000833(for instance, ``[n(0)] { return ++n; }``).
834Clang does not yet support this feature.
835
836C++1y generic lambdas
837^^^^^^^^^^^^^^^^^^^^^
838
839Use ``__has_feature(cxx_generic_lambda)`` or
840``__has_extension(cxx_generic_lambda)`` to determine if support for generic
841(polymorphic) lambdas is enabled
842(for instance, ``[] (auto x) { return x + 1; }``).
843Clang does not yet support this feature.
844
845C++1y relaxed constexpr
846^^^^^^^^^^^^^^^^^^^^^^^
847
848Use ``__has_feature(cxx_relaxed_constexpr)`` or
849``__has_extension(cxx_relaxed_constexpr)`` to determine if variable
850declarations, local variable modification, and control flow constructs
851are permitted in ``constexpr`` functions.
Richard Smith0a715422013-05-07 19:32:56 +0000852
853C++1y return type deduction
854^^^^^^^^^^^^^^^^^^^^^^^^^^^
855
856Use ``__has_feature(cxx_return_type_deduction)`` or
857``__has_extension(cxx_return_type_deduction)`` to determine if support
858for return type deduction for functions (using ``auto`` as a return type)
859is enabled.
Richard Smith0a715422013-05-07 19:32:56 +0000860
861C++1y runtime-sized arrays
862^^^^^^^^^^^^^^^^^^^^^^^^^^
863
864Use ``__has_feature(cxx_runtime_array)`` or
865``__has_extension(cxx_runtime_array)`` to determine if support
866for arrays of runtime bound (a restricted form of variable-length arrays)
867is enabled.
868Clang's implementation of this feature is incomplete.
869
870C++1y variable templates
871^^^^^^^^^^^^^^^^^^^^^^^^
872
873Use ``__has_feature(cxx_variable_templates)`` or
874``__has_extension(cxx_variable_templates)`` to determine if support for
875templated variable declarations is enabled.
876Clang does not yet support this feature.
877
Sean Silva709c44d2012-12-12 23:44:55 +0000878C11
879---
880
881The features listed below are part of the C11 standard. As a result, all these
882features are enabled with the ``-std=c11`` or ``-std=gnu11`` option when
883compiling C code. Additionally, because these features are all
884backward-compatible, they are available as extensions in all language modes.
885
886C11 alignment specifiers
887^^^^^^^^^^^^^^^^^^^^^^^^
888
889Use ``__has_feature(c_alignas)`` or ``__has_extension(c_alignas)`` to determine
890if support for alignment specifiers using ``_Alignas`` is enabled.
891
892C11 atomic operations
893^^^^^^^^^^^^^^^^^^^^^
894
895Use ``__has_feature(c_atomic)`` or ``__has_extension(c_atomic)`` to determine
896if support for atomic types using ``_Atomic`` is enabled. Clang also provides
897:ref:`a set of builtins <langext-__c11_atomic>` which can be used to implement
898the ``<stdatomic.h>`` operations on ``_Atomic`` types.
899
900C11 generic selections
901^^^^^^^^^^^^^^^^^^^^^^
902
903Use ``__has_feature(c_generic_selections)`` or
904``__has_extension(c_generic_selections)`` to determine if support for generic
905selections is enabled.
906
907As an extension, the C11 generic selection expression is available in all
908languages supported by Clang. The syntax is the same as that given in the C11
909standard.
910
911In C, type compatibility is decided according to the rules given in the
912appropriate standard, but in C++, which lacks the type compatibility rules used
913in C, types are considered compatible only if they are equivalent.
914
915C11 ``_Static_assert()``
916^^^^^^^^^^^^^^^^^^^^^^^^
917
918Use ``__has_feature(c_static_assert)`` or ``__has_extension(c_static_assert)``
919to determine if support for compile-time assertions using ``_Static_assert`` is
920enabled.
921
Richard Smith25b555a2013-04-19 17:00:31 +0000922C11 ``_Thread_local``
923^^^^^^^^^^^^^^^^^^^^^
924
Ed Schouten401aeba2013-09-14 16:17:20 +0000925Use ``__has_feature(c_thread_local)`` or ``__has_extension(c_thread_local)``
926to determine if support for ``_Thread_local`` variables is enabled.
Richard Smith25b555a2013-04-19 17:00:31 +0000927
Sean Silva709c44d2012-12-12 23:44:55 +0000928Checks for Type Traits
929======================
930
931Clang supports the `GNU C++ type traits
932<http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html>`_ and a subset of the
933`Microsoft Visual C++ Type traits
934<http://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx>`_. For each
935supported type trait ``__X``, ``__has_extension(X)`` indicates the presence of
936the type trait. For example:
937
938.. code-block:: c++
939
940 #if __has_extension(is_convertible_to)
941 template<typename From, typename To>
942 struct is_convertible_to {
943 static const bool value = __is_convertible_to(From, To);
944 };
945 #else
946 // Emulate type trait
947 #endif
948
949The following type traits are supported by Clang:
950
951* ``__has_nothrow_assign`` (GNU, Microsoft)
952* ``__has_nothrow_copy`` (GNU, Microsoft)
953* ``__has_nothrow_constructor`` (GNU, Microsoft)
954* ``__has_trivial_assign`` (GNU, Microsoft)
955* ``__has_trivial_copy`` (GNU, Microsoft)
956* ``__has_trivial_constructor`` (GNU, Microsoft)
957* ``__has_trivial_destructor`` (GNU, Microsoft)
958* ``__has_virtual_destructor`` (GNU, Microsoft)
959* ``__is_abstract`` (GNU, Microsoft)
960* ``__is_base_of`` (GNU, Microsoft)
961* ``__is_class`` (GNU, Microsoft)
962* ``__is_convertible_to`` (Microsoft)
963* ``__is_empty`` (GNU, Microsoft)
964* ``__is_enum`` (GNU, Microsoft)
965* ``__is_interface_class`` (Microsoft)
966* ``__is_pod`` (GNU, Microsoft)
967* ``__is_polymorphic`` (GNU, Microsoft)
968* ``__is_union`` (GNU, Microsoft)
969* ``__is_literal(type)``: Determines whether the given type is a literal type
970* ``__is_final``: Determines whether the given type is declared with a
971 ``final`` class-virt-specifier.
972* ``__underlying_type(type)``: Retrieves the underlying type for a given
973 ``enum`` type. This trait is required to implement the C++11 standard
974 library.
975* ``__is_trivially_assignable(totype, fromtype)``: Determines whether a value
976 of type ``totype`` can be assigned to from a value of type ``fromtype`` such
977 that no non-trivial functions are called as part of that assignment. This
978 trait is required to implement the C++11 standard library.
979* ``__is_trivially_constructible(type, argtypes...)``: Determines whether a
980 value of type ``type`` can be direct-initialized with arguments of types
981 ``argtypes...`` such that no non-trivial functions are called as part of
982 that initialization. This trait is required to implement the C++11 standard
983 library.
984
985Blocks
986======
987
988The syntax and high level language feature description is in
Michael Gottesman6fd58462013-01-07 22:24:45 +0000989:doc:`BlockLanguageSpec<BlockLanguageSpec>`. Implementation and ABI details for
990the clang implementation are in :doc:`Block-ABI-Apple<Block-ABI-Apple>`.
Sean Silva709c44d2012-12-12 23:44:55 +0000991
992Query for this feature with ``__has_extension(blocks)``.
993
994Objective-C Features
995====================
996
997Related result types
998--------------------
999
1000According to Cocoa conventions, Objective-C methods with certain names
1001("``init``", "``alloc``", etc.) always return objects that are an instance of
1002the receiving class's type. Such methods are said to have a "related result
1003type", meaning that a message send to one of these methods will have the same
1004static type as an instance of the receiver class. For example, given the
1005following classes:
1006
1007.. code-block:: objc
1008
1009 @interface NSObject
1010 + (id)alloc;
1011 - (id)init;
1012 @end
1013
1014 @interface NSArray : NSObject
1015 @end
1016
1017and this common initialization pattern
1018
1019.. code-block:: objc
1020
1021 NSArray *array = [[NSArray alloc] init];
1022
1023the type of the expression ``[NSArray alloc]`` is ``NSArray*`` because
1024``alloc`` implicitly has a related result type. Similarly, the type of the
1025expression ``[[NSArray alloc] init]`` is ``NSArray*``, since ``init`` has a
1026related result type and its receiver is known to have the type ``NSArray *``.
1027If neither ``alloc`` nor ``init`` had a related result type, the expressions
1028would have had type ``id``, as declared in the method signature.
1029
1030A method with a related result type can be declared by using the type
1031``instancetype`` as its result type. ``instancetype`` is a contextual keyword
1032that is only permitted in the result type of an Objective-C method, e.g.
1033
1034.. code-block:: objc
1035
1036 @interface A
1037 + (instancetype)constructAnA;
1038 @end
1039
1040The related result type can also be inferred for some methods. To determine
1041whether a method has an inferred related result type, the first word in the
1042camel-case selector (e.g., "``init``" in "``initWithObjects``") is considered,
1043and the method will have a related result type if its return type is compatible
1044with the type of its class and if:
1045
1046* the first word is "``alloc``" or "``new``", and the method is a class method,
1047 or
1048
1049* the first word is "``autorelease``", "``init``", "``retain``", or "``self``",
1050 and the method is an instance method.
1051
1052If a method with a related result type is overridden by a subclass method, the
1053subclass method must also return a type that is compatible with the subclass
1054type. For example:
1055
1056.. code-block:: objc
1057
1058 @interface NSString : NSObject
1059 - (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
1060 @end
1061
1062Related result types only affect the type of a message send or property access
1063via the given method. In all other respects, a method with a related result
1064type is treated the same way as method that returns ``id``.
1065
1066Use ``__has_feature(objc_instancetype)`` to determine whether the
1067``instancetype`` contextual keyword is available.
1068
1069Automatic reference counting
1070----------------------------
1071
Sean Silva173d2522013-01-02 13:07:47 +00001072Clang provides support for :doc:`automated reference counting
1073<AutomaticReferenceCounting>` in Objective-C, which eliminates the need
Sean Silva709c44d2012-12-12 23:44:55 +00001074for manual ``retain``/``release``/``autorelease`` message sends. There are two
1075feature macros associated with automatic reference counting:
1076``__has_feature(objc_arc)`` indicates the availability of automated reference
1077counting in general, while ``__has_feature(objc_arc_weak)`` indicates that
1078automated reference counting also includes support for ``__weak`` pointers to
1079Objective-C objects.
1080
Sean Silva173d2522013-01-02 13:07:47 +00001081.. _objc-fixed-enum:
1082
Sean Silva709c44d2012-12-12 23:44:55 +00001083Enumerations with a fixed underlying type
1084-----------------------------------------
1085
1086Clang provides support for C++11 enumerations with a fixed underlying type
1087within Objective-C. For example, one can write an enumeration type as:
1088
1089.. code-block:: c++
1090
1091 typedef enum : unsigned char { Red, Green, Blue } Color;
1092
1093This specifies that the underlying type, which is used to store the enumeration
1094value, is ``unsigned char``.
1095
1096Use ``__has_feature(objc_fixed_enum)`` to determine whether support for fixed
1097underlying types is available in Objective-C.
1098
1099Interoperability with C++11 lambdas
1100-----------------------------------
1101
1102Clang provides interoperability between C++11 lambdas and blocks-based APIs, by
1103permitting a lambda to be implicitly converted to a block pointer with the
1104corresponding signature. For example, consider an API such as ``NSArray``'s
1105array-sorting method:
1106
1107.. code-block:: objc
1108
1109 - (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr;
1110
1111``NSComparator`` is simply a typedef for the block pointer ``NSComparisonResult
1112(^)(id, id)``, and parameters of this type are generally provided with block
1113literals as arguments. However, one can also use a C++11 lambda so long as it
1114provides the same signature (in this case, accepting two parameters of type
1115``id`` and returning an ``NSComparisonResult``):
1116
1117.. code-block:: objc
1118
1119 NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
1120 @"String 02"];
1121 const NSStringCompareOptions comparisonOptions
1122 = NSCaseInsensitiveSearch | NSNumericSearch |
1123 NSWidthInsensitiveSearch | NSForcedOrderingSearch;
1124 NSLocale *currentLocale = [NSLocale currentLocale];
1125 NSArray *sorted
1126 = [array sortedArrayUsingComparator:[=](id s1, id s2) -> NSComparisonResult {
1127 NSRange string1Range = NSMakeRange(0, [s1 length]);
1128 return [s1 compare:s2 options:comparisonOptions
1129 range:string1Range locale:currentLocale];
1130 }];
1131 NSLog(@"sorted: %@", sorted);
1132
1133This code relies on an implicit conversion from the type of the lambda
1134expression (an unnamed, local class type called the *closure type*) to the
1135corresponding block pointer type. The conversion itself is expressed by a
1136conversion operator in that closure type that produces a block pointer with the
1137same signature as the lambda itself, e.g.,
1138
1139.. code-block:: objc
1140
1141 operator NSComparisonResult (^)(id, id)() const;
1142
1143This conversion function returns a new block that simply forwards the two
1144parameters to the lambda object (which it captures by copy), then returns the
1145result. The returned block is first copied (with ``Block_copy``) and then
1146autoreleased. As an optimization, if a lambda expression is immediately
1147converted to a block pointer (as in the first example, above), then the block
1148is not copied and autoreleased: rather, it is given the same lifetime as a
1149block literal written at that point in the program, which avoids the overhead
1150of copying a block to the heap in the common case.
1151
1152The conversion from a lambda to a block pointer is only available in
1153Objective-C++, and not in C++ with blocks, due to its use of Objective-C memory
1154management (autorelease).
1155
1156Object Literals and Subscripting
1157--------------------------------
1158
Sean Silva173d2522013-01-02 13:07:47 +00001159Clang provides support for :doc:`Object Literals and Subscripting
1160<ObjectiveCLiterals>` in Objective-C, which simplifies common Objective-C
Sean Silva709c44d2012-12-12 23:44:55 +00001161programming patterns, makes programs more concise, and improves the safety of
1162container creation. There are several feature macros associated with object
1163literals and subscripting: ``__has_feature(objc_array_literals)`` tests the
1164availability of array literals; ``__has_feature(objc_dictionary_literals)``
1165tests the availability of dictionary literals;
1166``__has_feature(objc_subscripting)`` tests the availability of object
1167subscripting.
1168
1169Objective-C Autosynthesis of Properties
1170---------------------------------------
1171
1172Clang provides support for autosynthesis of declared properties. Using this
1173feature, clang provides default synthesis of those properties not declared
1174@dynamic and not having user provided backing getter and setter methods.
1175``__has_feature(objc_default_synthesize_properties)`` checks for availability
1176of this feature in version of clang being used.
1177
Jordan Rose32e94892012-12-15 00:37:01 +00001178.. _langext-objc_method_family:
1179
Ted Kremenekc3481f42013-10-23 22:14:59 +00001180
Ted Kremenek7f7a4832013-10-23 22:41:52 +00001181Objective-C requiring a call to ``super`` in an override
1182--------------------------------------------------------
Ted Kremenekf2ee81d2013-10-23 22:15:01 +00001183
Ted Kremenek7f7a4832013-10-23 22:41:52 +00001184Some Objective-C classes allow a subclass to override a particular method in a
Warren Hunte0bc9802013-10-24 00:59:24 +00001185parent class but expect that the overriding method also calls the overridden
1186method in the parent class. For these cases, we provide an attribute to
1187designate that a method requires a "call to ``super``" in the overriding
1188method in the subclass.
Ted Kremenekf2ee81d2013-10-23 22:15:01 +00001189
Warren Hunte0bc9802013-10-24 00:59:24 +00001190**Usage**: ``__attribute__((objc_requires_super))``. This attribute can only
1191be placed at the end of a method declaration:
Ted Kremenekf2ee81d2013-10-23 22:15:01 +00001192
1193.. code-block:: objc
1194
1195 - (void)foo __attribute__((objc_requires_super));
1196
Warren Hunte0bc9802013-10-24 00:59:24 +00001197This attribute can only be applied the method declarations within a class, and
1198not a protocol. Currently this attribute does not enforce any placement of
1199where the call occurs in the overriding method (such as in the case of
1200``-dealloc`` where the call must appear at the end). It checks only that it
1201exists.
Ted Kremenekf2ee81d2013-10-23 22:15:01 +00001202
1203Note that on both OS X and iOS that the Foundation framework provides a
Ted Kremenek620cde32013-10-23 22:25:59 +00001204convenience macro ``NS_REQUIRES_SUPER`` that provides syntactic sugar for this
Ted Kremenekf2ee81d2013-10-23 22:15:01 +00001205attribute:
1206
1207.. code-block:: objc
1208
1209 - (void)foo NS_REQUIRES_SUPER;
1210
1211This macro is conditionally defined depending on the compiler's support for
1212this attribute. If the compiler does not support the attribute the macro
1213expands to nothing.
1214
1215Operationally, when a method has this annotation the compiler will warn if the
1216implementation of an override in a subclass does not call super. For example:
1217
1218.. code-block:: objc
1219
1220 warning: method possibly missing a [super AnnotMeth] call
1221 - (void) AnnotMeth{};
1222 ^
1223
Ted Kremenekc3481f42013-10-23 22:14:59 +00001224Objective-C Method Families
1225---------------------------
Jordan Rose32e94892012-12-15 00:37:01 +00001226
1227Many methods in Objective-C have conventional meanings determined by their
1228selectors. It is sometimes useful to be able to mark a method as having a
1229particular conventional meaning despite not having the right selector, or as
1230not having the conventional meaning that its selector would suggest. For these
1231use cases, we provide an attribute to specifically describe the "method family"
1232that a method belongs to.
1233
1234**Usage**: ``__attribute__((objc_method_family(X)))``, where ``X`` is one of
1235``none``, ``alloc``, ``copy``, ``init``, ``mutableCopy``, or ``new``. This
1236attribute can only be placed at the end of a method declaration:
1237
1238.. code-block:: objc
1239
1240 - (NSString *)initMyStringValue __attribute__((objc_method_family(none)));
1241
1242Users who do not wish to change the conventional meaning of a method, and who
1243merely want to document its non-standard retain and release semantics, should
1244use the :ref:`retaining behavior attributes <langext-objc-retain-release>`
1245described below.
1246
1247Query for this feature with ``__has_attribute(objc_method_family)``.
1248
1249.. _langext-objc-retain-release:
1250
1251Objective-C retaining behavior attributes
1252-----------------------------------------
1253
1254In Objective-C, functions and methods are generally assumed to follow the
1255`Cocoa Memory Management
1256<http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html>`_
1257conventions for ownership of object arguments and
1258return values. However, there are exceptions, and so Clang provides attributes
1259to allow these exceptions to be documented. This are used by ARC and the
1260`static analyzer <http://clang-analyzer.llvm.org>`_ Some exceptions may be
1261better described using the :ref:`objc_method_family
1262<langext-objc_method_family>` attribute instead.
1263
1264**Usage**: The ``ns_returns_retained``, ``ns_returns_not_retained``,
1265``ns_returns_autoreleased``, ``cf_returns_retained``, and
1266``cf_returns_not_retained`` attributes can be placed on methods and functions
1267that return Objective-C or CoreFoundation objects. They are commonly placed at
1268the end of a function prototype or method declaration:
1269
1270.. code-block:: objc
1271
1272 id foo() __attribute__((ns_returns_retained));
1273
1274 - (NSString *)bar:(int)x __attribute__((ns_returns_retained));
1275
1276The ``*_returns_retained`` attributes specify that the returned object has a +1
1277retain count. The ``*_returns_not_retained`` attributes specify that the return
1278object has a +0 retain count, even if the normal convention for its selector
1279would be +1. ``ns_returns_autoreleased`` specifies that the returned object is
1280+0, but is guaranteed to live at least as long as the next flush of an
1281autorelease pool.
1282
1283**Usage**: The ``ns_consumed`` and ``cf_consumed`` attributes can be placed on
1284an parameter declaration; they specify that the argument is expected to have a
1285+1 retain count, which will be balanced in some way by the function or method.
1286The ``ns_consumes_self`` attribute can only be placed on an Objective-C
1287method; it specifies that the method expects its ``self`` parameter to have a
1288+1 retain count, which it will balance in some way.
1289
1290.. code-block:: objc
1291
1292 void foo(__attribute__((ns_consumed)) NSString *string);
1293
1294 - (void) bar __attribute__((ns_consumes_self));
1295 - (void) baz:(id) __attribute__((ns_consumed)) x;
1296
1297Further examples of these attributes are available in the static analyzer's `list of annotations for analysis
1298<http://clang-analyzer.llvm.org/annotations.html#cocoa_mem>`_.
1299
1300Query for these features with ``__has_attribute(ns_consumed)``,
1301``__has_attribute(ns_returns_retained)``, etc.
1302
1303
Ted Kremenek84342d62013-10-15 04:28:42 +00001304Objective-C++ ABI: protocol-qualifier mangling of parameters
1305------------------------------------------------------------
1306
1307Starting with LLVM 3.4, Clang produces a new mangling for parameters whose
1308type is a qualified-``id`` (e.g., ``id<Foo>``). This mangling allows such
1309parameters to be differentiated from those with the regular unqualified ``id``
1310type.
1311
1312This was a non-backward compatible mangling change to the ABI. This change
1313allows proper overloading, and also prevents mangling conflicts with template
1314parameters of protocol-qualified type.
1315
1316Query the presence of this new mangling with
1317``__has_feature(objc_protocol_qualifier_mangling)``.
1318
Sean Silva709c44d2012-12-12 23:44:55 +00001319Function Overloading in C
1320=========================
1321
1322Clang provides support for C++ function overloading in C. Function overloading
1323in C is introduced using the ``overloadable`` attribute. For example, one
1324might provide several overloaded versions of a ``tgsin`` function that invokes
1325the appropriate standard function computing the sine of a value with ``float``,
1326``double``, or ``long double`` precision:
1327
1328.. code-block:: c
1329
1330 #include <math.h>
1331 float __attribute__((overloadable)) tgsin(float x) { return sinf(x); }
1332 double __attribute__((overloadable)) tgsin(double x) { return sin(x); }
1333 long double __attribute__((overloadable)) tgsin(long double x) { return sinl(x); }
1334
1335Given these declarations, one can call ``tgsin`` with a ``float`` value to
1336receive a ``float`` result, with a ``double`` to receive a ``double`` result,
1337etc. Function overloading in C follows the rules of C++ function overloading
1338to pick the best overload given the call arguments, with a few C-specific
1339semantics:
1340
1341* Conversion from ``float`` or ``double`` to ``long double`` is ranked as a
1342 floating-point promotion (per C99) rather than as a floating-point conversion
1343 (as in C++).
1344
1345* A conversion from a pointer of type ``T*`` to a pointer of type ``U*`` is
1346 considered a pointer conversion (with conversion rank) if ``T`` and ``U`` are
1347 compatible types.
1348
1349* A conversion from type ``T`` to a value of type ``U`` is permitted if ``T``
1350 and ``U`` are compatible types. This conversion is given "conversion" rank.
1351
1352The declaration of ``overloadable`` functions is restricted to function
1353declarations and definitions. Most importantly, if any function with a given
1354name is given the ``overloadable`` attribute, then all function declarations
1355and definitions with that name (and in that scope) must have the
1356``overloadable`` attribute. This rule even applies to redeclarations of
1357functions whose original declaration had the ``overloadable`` attribute, e.g.,
1358
1359.. code-block:: c
1360
1361 int f(int) __attribute__((overloadable));
1362 float f(float); // error: declaration of "f" must have the "overloadable" attribute
1363
1364 int g(int) __attribute__((overloadable));
1365 int g(int) { } // error: redeclaration of "g" must also have the "overloadable" attribute
1366
1367Functions marked ``overloadable`` must have prototypes. Therefore, the
1368following code is ill-formed:
1369
1370.. code-block:: c
1371
1372 int h() __attribute__((overloadable)); // error: h does not have a prototype
1373
1374However, ``overloadable`` functions are allowed to use a ellipsis even if there
1375are no named parameters (as is permitted in C++). This feature is particularly
1376useful when combined with the ``unavailable`` attribute:
1377
1378.. code-block:: c++
1379
1380 void honeypot(...) __attribute__((overloadable, unavailable)); // calling me is an error
1381
1382Functions declared with the ``overloadable`` attribute have their names mangled
1383according to the same rules as C++ function names. For example, the three
1384``tgsin`` functions in our motivating example get the mangled names
1385``_Z5tgsinf``, ``_Z5tgsind``, and ``_Z5tgsine``, respectively. There are two
1386caveats to this use of name mangling:
1387
1388* Future versions of Clang may change the name mangling of functions overloaded
1389 in C, so you should not depend on an specific mangling. To be completely
1390 safe, we strongly urge the use of ``static inline`` with ``overloadable``
1391 functions.
1392
1393* The ``overloadable`` attribute has almost no meaning when used in C++,
1394 because names will already be mangled and functions are already overloadable.
1395 However, when an ``overloadable`` function occurs within an ``extern "C"``
1396 linkage specification, it's name *will* be mangled in the same way as it
1397 would in C.
1398
1399Query for this feature with ``__has_extension(attribute_overloadable)``.
1400
1401Initializer lists for complex numbers in C
1402==========================================
1403
1404clang supports an extension which allows the following in C:
1405
1406.. code-block:: c++
1407
1408 #include <math.h>
1409 #include <complex.h>
1410 complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)
1411
1412This construct is useful because there is no way to separately initialize the
1413real and imaginary parts of a complex variable in standard C, given that clang
1414does not support ``_Imaginary``. (Clang also supports the ``__real__`` and
1415``__imag__`` extensions from gcc, which help in some cases, but are not usable
1416in static initializers.)
1417
1418Note that this extension does not allow eliding the braces; the meaning of the
1419following two lines is different:
1420
1421.. code-block:: c++
1422
1423 complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
1424 complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)
1425
1426This extension also works in C++ mode, as far as that goes, but does not apply
1427to the C++ ``std::complex``. (In C++11, list initialization allows the same
1428syntax to be used with ``std::complex`` with the same meaning.)
1429
1430Builtin Functions
1431=================
1432
1433Clang supports a number of builtin library functions with the same syntax as
1434GCC, including things like ``__builtin_nan``, ``__builtin_constant_p``,
1435``__builtin_choose_expr``, ``__builtin_types_compatible_p``,
1436``__sync_fetch_and_add``, etc. In addition to the GCC builtins, Clang supports
1437a number of builtins that GCC does not, which are listed here.
1438
1439Please note that Clang does not and will not support all of the GCC builtins
1440for vector operations. Instead of using builtins, you should use the functions
1441defined in target-specific header files like ``<xmmintrin.h>``, which define
1442portable wrappers for these. Many of the Clang versions of these functions are
1443implemented directly in terms of :ref:`extended vector support
1444<langext-vectors>` instead of builtins, in order to reduce the number of
1445builtins that we need to implement.
1446
1447``__builtin_readcyclecounter``
1448------------------------------
1449
1450``__builtin_readcyclecounter`` is used to access the cycle counter register (or
1451a similar low-latency, high-accuracy clock) on those targets that support it.
1452
1453**Syntax**:
1454
1455.. code-block:: c++
1456
1457 __builtin_readcyclecounter()
1458
1459**Example of Use**:
1460
1461.. code-block:: c++
1462
1463 unsigned long long t0 = __builtin_readcyclecounter();
1464 do_something();
1465 unsigned long long t1 = __builtin_readcyclecounter();
1466 unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow
1467
1468**Description**:
1469
1470The ``__builtin_readcyclecounter()`` builtin returns the cycle counter value,
1471which may be either global or process/thread-specific depending on the target.
1472As the backing counters often overflow quickly (on the order of seconds) this
1473should only be used for timing small intervals. When not supported by the
1474target, the return value is always zero. This builtin takes no arguments and
1475produces an unsigned long long result.
1476
Tim Northoverbfe2e5f72013-05-23 19:14:12 +00001477Query for this feature with ``__has_builtin(__builtin_readcyclecounter)``. Note
1478that even if present, its use may depend on run-time privilege or other OS
1479controlled state.
Sean Silva709c44d2012-12-12 23:44:55 +00001480
1481.. _langext-__builtin_shufflevector:
1482
1483``__builtin_shufflevector``
1484---------------------------
1485
1486``__builtin_shufflevector`` is used to express generic vector
1487permutation/shuffle/swizzle operations. This builtin is also very important
1488for the implementation of various target-specific header files like
1489``<xmmintrin.h>``.
1490
1491**Syntax**:
1492
1493.. code-block:: c++
1494
1495 __builtin_shufflevector(vec1, vec2, index1, index2, ...)
1496
1497**Examples**:
1498
1499.. code-block:: c++
1500
Craig Topper50ad5b72013-08-03 17:40:38 +00001501 // identity operation - return 4-element vector v1.
1502 __builtin_shufflevector(v1, v1, 0, 1, 2, 3)
Sean Silva709c44d2012-12-12 23:44:55 +00001503
1504 // "Splat" element 0 of V1 into a 4-element result.
1505 __builtin_shufflevector(V1, V1, 0, 0, 0, 0)
1506
1507 // Reverse 4-element vector V1.
1508 __builtin_shufflevector(V1, V1, 3, 2, 1, 0)
1509
1510 // Concatenate every other element of 4-element vectors V1 and V2.
1511 __builtin_shufflevector(V1, V2, 0, 2, 4, 6)
1512
1513 // Concatenate every other element of 8-element vectors V1 and V2.
1514 __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
1515
Craig Topper50ad5b72013-08-03 17:40:38 +00001516 // Shuffle v1 with some elements being undefined
1517 __builtin_shufflevector(v1, v1, 3, -1, 1, -1)
1518
Sean Silva709c44d2012-12-12 23:44:55 +00001519**Description**:
1520
1521The first two arguments to ``__builtin_shufflevector`` are vectors that have
1522the same element type. The remaining arguments are a list of integers that
1523specify the elements indices of the first two vectors that should be extracted
1524and returned in a new vector. These element indices are numbered sequentially
1525starting with the first vector, continuing into the second vector. Thus, if
1526``vec1`` is a 4-element vector, index 5 would refer to the second element of
Craig Topper50ad5b72013-08-03 17:40:38 +00001527``vec2``. An index of -1 can be used to indicate that the corresponding element
1528in the returned vector is a don't care and can be optimized by the backend.
Sean Silva709c44d2012-12-12 23:44:55 +00001529
1530The result of ``__builtin_shufflevector`` is a vector with the same element
1531type as ``vec1``/``vec2`` but that has an element count equal to the number of
1532indices specified.
1533
1534Query for this feature with ``__has_builtin(__builtin_shufflevector)``.
1535
Hal Finkelc4d7c822013-09-18 03:29:45 +00001536``__builtin_convertvector``
1537---------------------------
1538
1539``__builtin_convertvector`` is used to express generic vector
1540type-conversion operations. The input vector and the output vector
1541type must have the same number of elements.
1542
1543**Syntax**:
1544
1545.. code-block:: c++
1546
1547 __builtin_convertvector(src_vec, dst_vec_type)
1548
1549**Examples**:
1550
1551.. code-block:: c++
1552
1553 typedef double vector4double __attribute__((__vector_size__(32)));
1554 typedef float vector4float __attribute__((__vector_size__(16)));
1555 typedef short vector4short __attribute__((__vector_size__(8)));
1556 vector4float vf; vector4short vs;
1557
1558 // convert from a vector of 4 floats to a vector of 4 doubles.
1559 __builtin_convertvector(vf, vector4double)
1560 // equivalent to:
1561 (vector4double) { (double) vf[0], (double) vf[1], (double) vf[2], (double) vf[3] }
1562
1563 // convert from a vector of 4 shorts to a vector of 4 floats.
1564 __builtin_convertvector(vs, vector4float)
1565 // equivalent to:
1566 (vector4float) { (float) vf[0], (float) vf[1], (float) vf[2], (float) vf[3] }
1567
1568**Description**:
1569
1570The first argument to ``__builtin_convertvector`` is a vector, and the second
1571argument is a vector type with the same number of elements as the first
1572argument.
1573
1574The result of ``__builtin_convertvector`` is a vector with the same element
1575type as the second argument, with a value defined in terms of the action of a
1576C-style cast applied to each element of the first argument.
1577
1578Query for this feature with ``__has_builtin(__builtin_convertvector)``.
1579
Sean Silva709c44d2012-12-12 23:44:55 +00001580``__builtin_unreachable``
1581-------------------------
1582
1583``__builtin_unreachable`` is used to indicate that a specific point in the
1584program cannot be reached, even if the compiler might otherwise think it can.
1585This is useful to improve optimization and eliminates certain warnings. For
1586example, without the ``__builtin_unreachable`` in the example below, the
1587compiler assumes that the inline asm can fall through and prints a "function
1588declared '``noreturn``' should not return" warning.
1589
1590**Syntax**:
1591
1592.. code-block:: c++
1593
1594 __builtin_unreachable()
1595
1596**Example of use**:
1597
1598.. code-block:: c++
1599
1600 void myabort(void) __attribute__((noreturn));
1601 void myabort(void) {
1602 asm("int3");
1603 __builtin_unreachable();
1604 }
1605
1606**Description**:
1607
1608The ``__builtin_unreachable()`` builtin has completely undefined behavior.
1609Since it has undefined behavior, it is a statement that it is never reached and
1610the optimizer can take advantage of this to produce better code. This builtin
1611takes no arguments and produces a void result.
1612
1613Query for this feature with ``__has_builtin(__builtin_unreachable)``.
1614
1615``__sync_swap``
1616---------------
1617
1618``__sync_swap`` is used to atomically swap integers or pointers in memory.
1619
1620**Syntax**:
1621
1622.. code-block:: c++
1623
1624 type __sync_swap(type *ptr, type value, ...)
1625
1626**Example of Use**:
1627
1628.. code-block:: c++
1629
1630 int old_value = __sync_swap(&value, new_value);
1631
1632**Description**:
1633
1634The ``__sync_swap()`` builtin extends the existing ``__sync_*()`` family of
1635atomic intrinsics to allow code to atomically swap the current value with the
1636new value. More importantly, it helps developers write more efficient and
1637correct code by avoiding expensive loops around
1638``__sync_bool_compare_and_swap()`` or relying on the platform specific
1639implementation details of ``__sync_lock_test_and_set()``. The
1640``__sync_swap()`` builtin is a full barrier.
1641
Richard Smith6cbd65d2013-07-11 02:27:57 +00001642``__builtin_addressof``
1643-----------------------
1644
1645``__builtin_addressof`` performs the functionality of the built-in ``&``
1646operator, ignoring any ``operator&`` overload. This is useful in constant
1647expressions in C++11, where there is no other way to take the address of an
1648object that overloads ``operator&``.
1649
1650**Example of use**:
1651
1652.. code-block:: c++
1653
1654 template<typename T> constexpr T *addressof(T &value) {
1655 return __builtin_addressof(value);
1656 }
1657
Michael Gottesmanc5cc9f12013-01-13 04:35:31 +00001658Multiprecision Arithmetic Builtins
1659----------------------------------
1660
1661Clang provides a set of builtins which expose multiprecision arithmetic in a
1662manner amenable to C. They all have the following form:
1663
1664.. code-block:: c
1665
1666 unsigned x = ..., y = ..., carryin = ..., carryout;
1667 unsigned sum = __builtin_addc(x, y, carryin, &carryout);
1668
1669Thus one can form a multiprecision addition chain in the following manner:
1670
1671.. code-block:: c
1672
1673 unsigned *x, *y, *z, carryin=0, carryout;
1674 z[0] = __builtin_addc(x[0], y[0], carryin, &carryout);
1675 carryin = carryout;
1676 z[1] = __builtin_addc(x[1], y[1], carryin, &carryout);
1677 carryin = carryout;
1678 z[2] = __builtin_addc(x[2], y[2], carryin, &carryout);
1679 carryin = carryout;
1680 z[3] = __builtin_addc(x[3], y[3], carryin, &carryout);
1681
1682The complete list of builtins are:
1683
1684.. code-block:: c
1685
Michael Gottesman15343992013-06-18 20:40:40 +00001686 unsigned char __builtin_addcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
Michael Gottesmanc5cc9f12013-01-13 04:35:31 +00001687 unsigned short __builtin_addcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
1688 unsigned __builtin_addc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
1689 unsigned long __builtin_addcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
1690 unsigned long long __builtin_addcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
Michael Gottesman15343992013-06-18 20:40:40 +00001691 unsigned char __builtin_subcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
Michael Gottesmanc5cc9f12013-01-13 04:35:31 +00001692 unsigned short __builtin_subcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
1693 unsigned __builtin_subc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
1694 unsigned long __builtin_subcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
1695 unsigned long long __builtin_subcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
1696
Michael Gottesman930ecdb2013-06-20 23:28:10 +00001697Checked Arithmetic Builtins
1698---------------------------
1699
1700Clang provides a set of builtins that implement checked arithmetic for security
1701critical applications in a manner that is fast and easily expressable in C. As
1702an example of their usage:
1703
1704.. code-block:: c
1705
1706 errorcode_t security_critical_application(...) {
1707 unsigned x, y, result;
1708 ...
1709 if (__builtin_umul_overflow(x, y, &result))
1710 return kErrorCodeHackers;
1711 ...
1712 use_multiply(result);
1713 ...
1714 }
1715
1716A complete enumeration of the builtins are:
1717
1718.. code-block:: c
1719
1720 bool __builtin_uadd_overflow (unsigned x, unsigned y, unsigned *sum);
1721 bool __builtin_uaddl_overflow (unsigned long x, unsigned long y, unsigned long *sum);
1722 bool __builtin_uaddll_overflow(unsigned long long x, unsigned long long y, unsigned long long *sum);
1723 bool __builtin_usub_overflow (unsigned x, unsigned y, unsigned *diff);
1724 bool __builtin_usubl_overflow (unsigned long x, unsigned long y, unsigned long *diff);
1725 bool __builtin_usubll_overflow(unsigned long long x, unsigned long long y, unsigned long long *diff);
1726 bool __builtin_umul_overflow (unsigned x, unsigned y, unsigned *prod);
1727 bool __builtin_umull_overflow (unsigned long x, unsigned long y, unsigned long *prod);
1728 bool __builtin_umulll_overflow(unsigned long long x, unsigned long long y, unsigned long long *prod);
1729 bool __builtin_sadd_overflow (int x, int y, int *sum);
1730 bool __builtin_saddl_overflow (long x, long y, long *sum);
1731 bool __builtin_saddll_overflow(long long x, long long y, long long *sum);
1732 bool __builtin_ssub_overflow (int x, int y, int *diff);
1733 bool __builtin_ssubl_overflow (long x, long y, long *diff);
1734 bool __builtin_ssubll_overflow(long long x, long long y, long long *diff);
1735 bool __builtin_smul_overflow (int x, int y, int *prod);
1736 bool __builtin_smull_overflow (long x, long y, long *prod);
1737 bool __builtin_smulll_overflow(long long x, long long y, long long *prod);
1738
1739
Sean Silva709c44d2012-12-12 23:44:55 +00001740.. _langext-__c11_atomic:
1741
1742__c11_atomic builtins
1743---------------------
1744
1745Clang provides a set of builtins which are intended to be used to implement
1746C11's ``<stdatomic.h>`` header. These builtins provide the semantics of the
1747``_explicit`` form of the corresponding C11 operation, and are named with a
1748``__c11_`` prefix. The supported operations are:
1749
1750* ``__c11_atomic_init``
1751* ``__c11_atomic_thread_fence``
1752* ``__c11_atomic_signal_fence``
1753* ``__c11_atomic_is_lock_free``
1754* ``__c11_atomic_store``
1755* ``__c11_atomic_load``
1756* ``__c11_atomic_exchange``
1757* ``__c11_atomic_compare_exchange_strong``
1758* ``__c11_atomic_compare_exchange_weak``
1759* ``__c11_atomic_fetch_add``
1760* ``__c11_atomic_fetch_sub``
1761* ``__c11_atomic_fetch_and``
1762* ``__c11_atomic_fetch_or``
1763* ``__c11_atomic_fetch_xor``
1764
Tim Northover6aacd492013-07-16 09:47:53 +00001765Low-level ARM exclusive memory builtins
1766---------------------------------------
1767
1768Clang provides overloaded builtins giving direct access to the three key ARM
1769instructions for implementing atomic operations.
1770
1771.. code-block:: c
Sean Silvaa928c242013-09-09 19:50:40 +00001772
Tim Northover6aacd492013-07-16 09:47:53 +00001773 T __builtin_arm_ldrex(const volatile T *addr);
1774 int __builtin_arm_strex(T val, volatile T *addr);
1775 void __builtin_arm_clrex(void);
1776
1777The types ``T`` currently supported are:
1778* Integer types with width at most 64 bits.
1779* Floating-point types
1780* Pointer types.
1781
1782Note that the compiler does not guarantee it will not insert stores which clear
1783the exclusive monitor in between an ``ldrex`` and its paired ``strex``. In
1784practice this is only usually a risk when the extra store is on the same cache
1785line as the variable being modified and Clang will only insert stack stores on
1786its own, so it is best not to use these operations on variables with automatic
1787storage duration.
1788
1789Also, loads and stores may be implicit in code written between the ``ldrex`` and
1790``strex``. Clang will not necessarily mitigate the effects of these either, so
1791care should be exercised.
1792
1793For these reasons the higher level atomic primitives should be preferred where
1794possible.
1795
Sean Silva709c44d2012-12-12 23:44:55 +00001796Non-standard C++11 Attributes
1797=============================
1798
Richard Smithf6d2d3b2013-02-14 00:13:34 +00001799Clang's non-standard C++11 attributes live in the ``clang`` attribute
1800namespace.
Sean Silva709c44d2012-12-12 23:44:55 +00001801
1802The ``clang::fallthrough`` attribute
1803------------------------------------
1804
1805The ``clang::fallthrough`` attribute is used along with the
1806``-Wimplicit-fallthrough`` argument to annotate intentional fall-through
1807between switch labels. It can only be applied to a null statement placed at a
1808point of execution between any statement and the next switch label. It is
1809common to mark these places with a specific comment, but this attribute is
1810meant to replace comments with a more strict annotation, which can be checked
1811by the compiler. This attribute doesn't change semantics of the code and can
1812be used wherever an intended fall-through occurs. It is designed to mimic
1813control-flow statements like ``break;``, so it can be placed in most places
1814where ``break;`` can, but only if there are no statements on the execution path
1815between it and the next switch label.
1816
1817Here is an example:
1818
1819.. code-block:: c++
1820
1821 // compile with -Wimplicit-fallthrough
1822 switch (n) {
1823 case 22:
1824 case 33: // no warning: no statements between case labels
1825 f();
1826 case 44: // warning: unannotated fall-through
1827 g();
1828 [[clang::fallthrough]];
1829 case 55: // no warning
1830 if (x) {
1831 h();
1832 break;
1833 }
1834 else {
1835 i();
1836 [[clang::fallthrough]];
1837 }
1838 case 66: // no warning
1839 p();
1840 [[clang::fallthrough]]; // warning: fallthrough annotation does not
1841 // directly precede case label
1842 q();
1843 case 77: // warning: unannotated fall-through
1844 r();
1845 }
1846
Richard Smithf6d2d3b2013-02-14 00:13:34 +00001847``gnu::`` attributes
1848--------------------
1849
1850Clang also supports GCC's ``gnu`` attribute namespace. All GCC attributes which
1851are accepted with the ``__attribute__((foo))`` syntax are also accepted as
1852``[[gnu::foo]]``. This only extends to attributes which are specified by GCC
1853(see the list of `GCC function attributes
1854<http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_, `GCC variable
1855attributes <http://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html>`_, and
1856`GCC type attributes
Richard Smithccfc9ff2013-07-11 00:27:05 +00001857<http://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html>`_). As with the GCC
Richard Smithf6d2d3b2013-02-14 00:13:34 +00001858implementation, these attributes must appertain to the *declarator-id* in a
1859declaration, which means they must go either at the start of the declaration or
1860immediately after the name being declared.
1861
1862For example, this applies the GNU ``unused`` attribute to ``a`` and ``f``, and
1863also applies the GNU ``noreturn`` attribute to ``f``.
1864
1865.. code-block:: c++
1866
1867 [[gnu::unused]] int a, f [[gnu::noreturn]] ();
1868
Sean Silva709c44d2012-12-12 23:44:55 +00001869Target-Specific Extensions
1870==========================
1871
1872Clang supports some language features conditionally on some targets.
1873
1874X86/X86-64 Language Extensions
1875------------------------------
1876
1877The X86 backend has these language extensions:
1878
1879Memory references off the GS segment
1880^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1881
1882Annotating a pointer with address space #256 causes it to be code generated
1883relative to the X86 GS segment register, and address space #257 causes it to be
1884relative to the X86 FS segment. Note that this is a very very low-level
1885feature that should only be used if you know what you're doing (for example in
1886an OS kernel).
1887
1888Here is an example:
1889
1890.. code-block:: c++
1891
1892 #define GS_RELATIVE __attribute__((address_space(256)))
1893 int foo(int GS_RELATIVE *P) {
1894 return *P;
1895 }
1896
1897Which compiles to (on X86-32):
1898
1899.. code-block:: gas
1900
1901 _foo:
1902 movl 4(%esp), %eax
1903 movl %gs:(%eax), %eax
1904 ret
1905
Tim Northovera484bc02013-10-01 14:34:25 +00001906ARM Language Extensions
1907-----------------------
1908
1909Interrupt attribute
1910^^^^^^^^^^^^^^^^^^^
1911
Alp Toker3b557ba2013-12-03 06:53:39 +00001912Clang supports the GNU style ``__attribute__((interrupt("TYPE")))`` attribute on
1913ARM targets. This attribute may be attached to a function definition and
Tim Northovera484bc02013-10-01 14:34:25 +00001914instructs the backend to generate appropriate function entry/exit code so that
1915it can be used directly as an interrupt service routine.
1916
1917 The parameter passed to the interrupt attribute is optional, but if
1918provided it must be a string literal with one of the following values: "IRQ",
1919"FIQ", "SWI", "ABORT", "UNDEF".
1920
1921The semantics are as follows:
1922
1923- If the function is AAPCS, Clang instructs the backend to realign the stack to
1924 8 bytes on entry. This is a general requirement of the AAPCS at public
1925 interfaces, but may not hold when an exception is taken. Doing this allows
1926 other AAPCS functions to be called.
1927- If the CPU is M-class this is all that needs to be done since the architecture
1928 itself is designed in such a way that functions obeying the normal AAPCS ABI
1929 constraints are valid exception handlers.
1930- If the CPU is not M-class, the prologue and epilogue are modified to save all
1931 non-banked registers that are used, so that upon return the user-mode state
1932 will not be corrupted. Note that to avoid unnecessary overhead, only
1933 general-purpose (integer) registers are saved in this way. If VFP operations
1934 are needed, that state must be saved manually.
1935
1936 Specifically, interrupt kinds other than "FIQ" will save all core registers
1937 except "lr" and "sp". "FIQ" interrupts will save r0-r7.
1938- If the CPU is not M-class, the return instruction is changed to one of the
1939 canonical sequences permitted by the architecture for exception return. Where
1940 possible the function itself will make the necessary "lr" adjustments so that
1941 the "preferred return address" is selected.
1942
Tim Northovera77b7b82013-10-01 14:39:43 +00001943 Unfortunately the compiler is unable to make this guarantee for an "UNDEF"
Tim Northovera484bc02013-10-01 14:34:25 +00001944 handler, where the offset from "lr" to the preferred return address depends on
1945 the execution state of the code which generated the exception. In this case
1946 a sequence equivalent to "movs pc, lr" will be used.
1947
Jordan Rose32e94892012-12-15 00:37:01 +00001948Extensions for Static Analysis
Dmitri Gribenkoace09a22012-12-15 14:25:25 +00001949==============================
Sean Silva709c44d2012-12-12 23:44:55 +00001950
1951Clang supports additional attributes that are useful for documenting program
Jordan Rose32e94892012-12-15 00:37:01 +00001952invariants and rules for static analysis tools, such as the `Clang Static
1953Analyzer <http://clang-analyzer.llvm.org/>`_. These attributes are documented
1954in the analyzer's `list of source-level annotations
1955<http://clang-analyzer.llvm.org/annotations.html>`_.
Sean Silva709c44d2012-12-12 23:44:55 +00001956
Sean Silva709c44d2012-12-12 23:44:55 +00001957
Jordan Rose32e94892012-12-15 00:37:01 +00001958Extensions for Dynamic Analysis
Dmitri Gribenkoace09a22012-12-15 14:25:25 +00001959===============================
Sean Silva709c44d2012-12-12 23:44:55 +00001960
1961.. _langext-address_sanitizer:
1962
1963AddressSanitizer
1964----------------
1965
1966Use ``__has_feature(address_sanitizer)`` to check if the code is being built
Dmitri Gribenkoace09a22012-12-15 14:25:25 +00001967with :doc:`AddressSanitizer`.
Sean Silva709c44d2012-12-12 23:44:55 +00001968
Kostya Serebryany4c0fc992013-02-26 06:58:27 +00001969Use ``__attribute__((no_sanitize_address))``
1970on a function declaration
Sean Silva709c44d2012-12-12 23:44:55 +00001971to specify that address safety instrumentation (e.g. AddressSanitizer) should
1972not be applied to that function.
1973
Kostya Serebryany4c0fc992013-02-26 06:58:27 +00001974.. _langext-thread_sanitizer:
1975
1976ThreadSanitizer
1977----------------
1978
1979Use ``__has_feature(thread_sanitizer)`` to check if the code is being built
1980with :doc:`ThreadSanitizer`.
1981
1982Use ``__attribute__((no_sanitize_thread))`` on a function declaration
1983to specify that checks for data races on plain (non-atomic) memory accesses
1984should not be inserted by ThreadSanitizer.
Dmitry Vyukovae4ea1d2013-10-17 08:06:19 +00001985The function is still instrumented by the tool to avoid false positives and
1986provide meaningful stack traces.
Kostya Serebryany4c0fc992013-02-26 06:58:27 +00001987
1988.. _langext-memory_sanitizer:
1989
1990MemorySanitizer
1991----------------
1992Use ``__has_feature(memory_sanitizer)`` to check if the code is being built
1993with :doc:`MemorySanitizer`.
1994
1995Use ``__attribute__((no_sanitize_memory))`` on a function declaration
1996to specify that checks for uninitialized memory should not be inserted
1997(e.g. by MemorySanitizer). The function may still be instrumented by the tool
1998to avoid false positives in other places.
1999
2000
Sean Silva709c44d2012-12-12 23:44:55 +00002001Thread-Safety Annotation Checking
2002=================================
2003
2004Clang supports additional attributes for checking basic locking policies in
2005multithreaded programs. Clang currently parses the following list of
2006attributes, although **the implementation for these annotations is currently in
2007development.** For more details, see the `GCC implementation
2008<http://gcc.gnu.org/wiki/ThreadSafetyAnnotation>`_.
2009
2010``no_thread_safety_analysis``
2011-----------------------------
2012
2013Use ``__attribute__((no_thread_safety_analysis))`` on a function declaration to
2014specify that the thread safety analysis should not be run on that function.
2015This attribute provides an escape hatch (e.g. for situations when it is
2016difficult to annotate the locking policy).
2017
2018``lockable``
2019------------
2020
2021Use ``__attribute__((lockable))`` on a class definition to specify that it has
2022a lockable type (e.g. a Mutex class). This annotation is primarily used to
2023check consistency.
2024
2025``scoped_lockable``
2026-------------------
2027
2028Use ``__attribute__((scoped_lockable))`` on a class definition to specify that
2029it has a "scoped" lockable type. Objects of this type will acquire the lock
2030upon construction and release it upon going out of scope. This annotation is
2031primarily used to check consistency.
2032
2033``guarded_var``
2034---------------
2035
2036Use ``__attribute__((guarded_var))`` on a variable declaration to specify that
2037the variable must be accessed while holding some lock.
2038
2039``pt_guarded_var``
2040------------------
2041
2042Use ``__attribute__((pt_guarded_var))`` on a pointer declaration to specify
2043that the pointer must be dereferenced while holding some lock.
2044
2045``guarded_by(l)``
2046-----------------
2047
2048Use ``__attribute__((guarded_by(l)))`` on a variable declaration to specify
2049that the variable must be accessed while holding lock ``l``.
2050
2051``pt_guarded_by(l)``
2052--------------------
2053
2054Use ``__attribute__((pt_guarded_by(l)))`` on a pointer declaration to specify
2055that the pointer must be dereferenced while holding lock ``l``.
2056
2057``acquired_before(...)``
2058------------------------
2059
2060Use ``__attribute__((acquired_before(...)))`` on a declaration of a lockable
2061variable to specify that the lock must be acquired before all attribute
2062arguments. Arguments must be lockable type, and there must be at least one
2063argument.
2064
2065``acquired_after(...)``
2066-----------------------
2067
2068Use ``__attribute__((acquired_after(...)))`` on a declaration of a lockable
2069variable to specify that the lock must be acquired after all attribute
2070arguments. Arguments must be lockable type, and there must be at least one
2071argument.
2072
2073``exclusive_lock_function(...)``
2074--------------------------------
2075
2076Use ``__attribute__((exclusive_lock_function(...)))`` on a function declaration
2077to specify that the function acquires all listed locks exclusively. This
2078attribute takes zero or more arguments: either of lockable type or integers
2079indexing into function parameters of lockable type. If no arguments are given,
2080the acquired lock is implicitly ``this`` of the enclosing object.
2081
2082``shared_lock_function(...)``
2083-----------------------------
2084
2085Use ``__attribute__((shared_lock_function(...)))`` on a function declaration to
2086specify that the function acquires all listed locks, although the locks may be
2087shared (e.g. read locks). This attribute takes zero or more arguments: either
2088of lockable type or integers indexing into function parameters of lockable
2089type. If no arguments are given, the acquired lock is implicitly ``this`` of
2090the enclosing object.
2091
2092``exclusive_trylock_function(...)``
2093-----------------------------------
2094
2095Use ``__attribute__((exclusive_lock_function(...)))`` on a function declaration
2096to specify that the function will try (without blocking) to acquire all listed
2097locks exclusively. This attribute takes one or more arguments. The first
2098argument is an integer or boolean value specifying the return value of a
2099successful lock acquisition. The remaining arugments are either of lockable
2100type or integers indexing into function parameters of lockable type. If only
2101one argument is given, the acquired lock is implicitly ``this`` of the
2102enclosing object.
2103
2104``shared_trylock_function(...)``
2105--------------------------------
2106
2107Use ``__attribute__((shared_lock_function(...)))`` on a function declaration to
2108specify that the function will try (without blocking) to acquire all listed
2109locks, although the locks may be shared (e.g. read locks). This attribute
2110takes one or more arguments. The first argument is an integer or boolean value
2111specifying the return value of a successful lock acquisition. The remaining
2112arugments are either of lockable type or integers indexing into function
2113parameters of lockable type. If only one argument is given, the acquired lock
2114is implicitly ``this`` of the enclosing object.
2115
2116``unlock_function(...)``
2117------------------------
2118
2119Use ``__attribute__((unlock_function(...)))`` on a function declaration to
2120specify that the function release all listed locks. This attribute takes zero
2121or more arguments: either of lockable type or integers indexing into function
2122parameters of lockable type. If no arguments are given, the acquired lock is
2123implicitly ``this`` of the enclosing object.
2124
2125``lock_returned(l)``
2126--------------------
2127
2128Use ``__attribute__((lock_returned(l)))`` on a function declaration to specify
2129that the function returns lock ``l`` (``l`` must be of lockable type). This
2130annotation is used to aid in resolving lock expressions.
2131
2132``locks_excluded(...)``
2133-----------------------
2134
2135Use ``__attribute__((locks_excluded(...)))`` on a function declaration to
2136specify that the function must not be called with the listed locks. Arguments
2137must be lockable type, and there must be at least one argument.
2138
2139``exclusive_locks_required(...)``
2140---------------------------------
2141
2142Use ``__attribute__((exclusive_locks_required(...)))`` on a function
2143declaration to specify that the function must be called while holding the
2144listed exclusive locks. Arguments must be lockable type, and there must be at
2145least one argument.
2146
2147``shared_locks_required(...)``
2148------------------------------
2149
2150Use ``__attribute__((shared_locks_required(...)))`` on a function declaration
2151to specify that the function must be called while holding the listed shared
2152locks. Arguments must be lockable type, and there must be at least one
2153argument.
2154
DeLesley Hutchinsc2ecf0d2013-08-22 20:44:47 +00002155Consumed Annotation Checking
2156============================
2157
2158Clang supports additional attributes for checking basic resource management
2159properties, specifically for unique objects that have a single owning reference.
2160The following attributes are currently supported, although **the implementation
2161for these annotations is currently in development and are subject to change.**
2162
Chris Wailes155df712013-10-21 20:54:06 +00002163``consumable``
2164--------------
DeLesley Hutchinsc2ecf0d2013-08-22 20:44:47 +00002165
Chris Wailes155df712013-10-21 20:54:06 +00002166Each class that uses any of the following annotations must first be marked
2167using the consumable attribute. Failure to do so will result in a warning.
DeLesley Hutchinsc2ecf0d2013-08-22 20:44:47 +00002168
Chris Wailes155df712013-10-21 20:54:06 +00002169``set_typestate(new_state)``
DeLesley Hutchinsc2ecf0d2013-08-22 20:44:47 +00002170----------------------------
2171
Chris Wailes155df712013-10-21 20:54:06 +00002172Annotate methods that transition an object into a new state with
2173``__attribute__((set_typestate(new_state)))``. The new new state must be
2174unconsumed, consumed, or unknown.
DeLesley Hutchinsc2ecf0d2013-08-22 20:44:47 +00002175
Chris Wailes155df712013-10-21 20:54:06 +00002176``callable_when(...)``
2177----------------------
DeLesley Hutchinsc2ecf0d2013-08-22 20:44:47 +00002178
Chris Wailes155df712013-10-21 20:54:06 +00002179Use ``__attribute__((callable_when(...)))`` to indicate what states a method
2180may be called in. Valid states are unconsumed, consumed, or unknown. Each
2181argument to this attribute must be a quoted string. E.g.:
DeLesley Hutchinsc2ecf0d2013-08-22 20:44:47 +00002182
Chris Wailes155df712013-10-21 20:54:06 +00002183``__attribute__((callable_when("unconsumed", "unknown")))``
2184
2185``tests_typestate(tested_state)``
2186---------------------------------
2187
2188Use ``__attribute__((tests_typestate(tested_state)))`` to indicate that a method
2189returns true if the object is in the specified state..
2190
2191``param_typestate(expected_state)``
2192-----------------------------------
2193
2194This attribute specifies expectations about function parameters. Calls to an
2195function with annotated parameters will issue a warning if the corresponding
2196argument isn't in the expected state. The attribute is also used to set the
2197initial state of the parameter when analyzing the function's body.
2198
2199``return_typestate(ret_state)``
2200-------------------------------
2201
2202The ``return_typestate`` attribute can be applied to functions or parameters.
2203When applied to a function the attribute specifies the state of the returned
2204value. The function's body is checked to ensure that it always returns a value
2205in the specified state. On the caller side, values returned by the annotated
2206function are initialized to the given state.
2207
2208If the attribute is applied to a function parameter it modifies the state of
2209an argument after a call to the function returns. The function's body is
2210checked to ensure that the parameter is in the expected state before returning.
DeLesley Hutchinsc2ecf0d2013-08-22 20:44:47 +00002211
Sean Silva709c44d2012-12-12 23:44:55 +00002212Type Safety Checking
2213====================
2214
2215Clang supports additional attributes to enable checking type safety properties
Richard Smith36ee4fc2013-07-11 00:34:42 +00002216that can't be enforced by the C type system. Use cases include:
Sean Silva709c44d2012-12-12 23:44:55 +00002217
2218* MPI library implementations, where these attributes enable checking that
Richard Smith36ee4fc2013-07-11 00:34:42 +00002219 the buffer type matches the passed ``MPI_Datatype``;
2220* for HDF5 library there is a similar use case to MPI;
Sean Silva709c44d2012-12-12 23:44:55 +00002221* checking types of variadic functions' arguments for functions like
2222 ``fcntl()`` and ``ioctl()``.
2223
2224You can detect support for these attributes with ``__has_attribute()``. For
2225example:
2226
2227.. code-block:: c++
2228
2229 #if defined(__has_attribute)
2230 # if __has_attribute(argument_with_type_tag) && \
2231 __has_attribute(pointer_with_type_tag) && \
2232 __has_attribute(type_tag_for_datatype)
2233 # define ATTR_MPI_PWT(buffer_idx, type_idx) __attribute__((pointer_with_type_tag(mpi,buffer_idx,type_idx)))
2234 /* ... other macros ... */
2235 # endif
2236 #endif
2237
2238 #if !defined(ATTR_MPI_PWT)
2239 # define ATTR_MPI_PWT(buffer_idx, type_idx)
2240 #endif
2241
2242 int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
2243 ATTR_MPI_PWT(1,3);
2244
2245``argument_with_type_tag(...)``
2246-------------------------------
2247
2248Use ``__attribute__((argument_with_type_tag(arg_kind, arg_idx,
2249type_tag_idx)))`` on a function declaration to specify that the function
2250accepts a type tag that determines the type of some other argument.
2251``arg_kind`` is an identifier that should be used when annotating all
2252applicable type tags.
2253
2254This attribute is primarily useful for checking arguments of variadic functions
Richard Smith36ee4fc2013-07-11 00:34:42 +00002255(``pointer_with_type_tag`` can be used in most non-variadic cases).
Sean Silva709c44d2012-12-12 23:44:55 +00002256
2257For example:
2258
2259.. code-block:: c++
2260
2261 int fcntl(int fd, int cmd, ...)
2262 __attribute__(( argument_with_type_tag(fcntl,3,2) ));
2263
2264``pointer_with_type_tag(...)``
2265------------------------------
2266
2267Use ``__attribute__((pointer_with_type_tag(ptr_kind, ptr_idx, type_tag_idx)))``
2268on a function declaration to specify that the function accepts a type tag that
2269determines the pointee type of some other pointer argument.
2270
2271For example:
2272
2273.. code-block:: c++
2274
2275 int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
2276 __attribute__(( pointer_with_type_tag(mpi,1,3) ));
2277
2278``type_tag_for_datatype(...)``
2279------------------------------
2280
2281Clang supports annotating type tags of two forms.
2282
2283* **Type tag that is an expression containing a reference to some declared
2284 identifier.** Use ``__attribute__((type_tag_for_datatype(kind, type)))`` on a
2285 declaration with that identifier:
2286
2287 .. code-block:: c++
2288
2289 extern struct mpi_datatype mpi_datatype_int
2290 __attribute__(( type_tag_for_datatype(mpi,int) ));
2291 #define MPI_INT ((MPI_Datatype) &mpi_datatype_int)
2292
2293* **Type tag that is an integral literal.** Introduce a ``static const``
2294 variable with a corresponding initializer value and attach
2295 ``__attribute__((type_tag_for_datatype(kind, type)))`` on that declaration,
2296 for example:
2297
2298 .. code-block:: c++
2299
2300 #define MPI_INT ((MPI_Datatype) 42)
2301 static const MPI_Datatype mpi_datatype_int
2302 __attribute__(( type_tag_for_datatype(mpi,int) )) = 42
2303
2304The attribute also accepts an optional third argument that determines how the
2305expression is compared to the type tag. There are two supported flags:
2306
2307* ``layout_compatible`` will cause types to be compared according to
2308 layout-compatibility rules (C++11 [class.mem] p 17, 18). This is
2309 implemented to support annotating types like ``MPI_DOUBLE_INT``.
2310
2311 For example:
2312
2313 .. code-block:: c++
2314
2315 /* In mpi.h */
2316 struct internal_mpi_double_int { double d; int i; };
2317 extern struct mpi_datatype mpi_datatype_double_int
2318 __attribute__(( type_tag_for_datatype(mpi, struct internal_mpi_double_int, layout_compatible) ));
2319
2320 #define MPI_DOUBLE_INT ((MPI_Datatype) &mpi_datatype_double_int)
2321
2322 /* In user code */
2323 struct my_pair { double a; int b; };
2324 struct my_pair *buffer;
2325 MPI_Send(buffer, 1, MPI_DOUBLE_INT /*, ... */); // no warning
2326
2327 struct my_int_pair { int a; int b; }
2328 struct my_int_pair *buffer2;
2329 MPI_Send(buffer2, 1, MPI_DOUBLE_INT /*, ... */); // warning: actual buffer element
2330 // type 'struct my_int_pair'
2331 // doesn't match specified MPI_Datatype
2332
2333* ``must_be_null`` specifies that the expression should be a null pointer
2334 constant, for example:
2335
2336 .. code-block:: c++
2337
2338 /* In mpi.h */
2339 extern struct mpi_datatype mpi_datatype_null
2340 __attribute__(( type_tag_for_datatype(mpi, void, must_be_null) ));
2341
2342 #define MPI_DATATYPE_NULL ((MPI_Datatype) &mpi_datatype_null)
2343
2344 /* In user code */
2345 MPI_Send(buffer, 1, MPI_DATATYPE_NULL /*, ... */); // warning: MPI_DATATYPE_NULL
2346 // was specified but buffer
2347 // is not a null pointer
2348
Dmitri Gribenkodc81f512013-01-13 16:37:18 +00002349Format String Checking
2350======================
2351
2352Clang supports the ``format`` attribute, which indicates that the function
2353accepts a ``printf`` or ``scanf``-like format string and corresponding
2354arguments or a ``va_list`` that contains these arguments.
2355
2356Please see `GCC documentation about format attribute
2357<http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_ to find details
2358about attribute syntax.
2359
2360Clang implements two kinds of checks with this attribute.
2361
2362#. Clang checks that the function with the ``format`` attribute is called with
2363 a format string that uses format specifiers that are allowed, and that
2364 arguments match the format string. This is the ``-Wformat`` warning, it is
2365 on by default.
2366
2367#. Clang checks that the format string argument is a literal string. This is
2368 the ``-Wformat-nonliteral`` warning, it is off by default.
2369
2370 Clang implements this mostly the same way as GCC, but there is a difference
2371 for functions that accept a ``va_list`` argument (for example, ``vprintf``).
2372 GCC does not emit ``-Wformat-nonliteral`` warning for calls to such
2373 fuctions. Clang does not warn if the format string comes from a function
Richard Smithfabbcd92013-02-14 00:22:00 +00002374 parameter, where the function is annotated with a compatible attribute,
Dmitri Gribenkodc81f512013-01-13 16:37:18 +00002375 otherwise it warns. For example:
2376
2377 .. code-block:: c
2378
2379 __attribute__((__format__ (__scanf__, 1, 3)))
2380 void foo(const char* s, char *buf, ...) {
2381 va_list ap;
2382 va_start(ap, buf);
2383
2384 vprintf(s, ap); // warning: format string is not a string literal
2385 }
2386
2387 In this case we warn because ``s`` contains a format string for a
Richard Smithfabbcd92013-02-14 00:22:00 +00002388 ``scanf``-like function, but it is passed to a ``printf``-like function.
Dmitri Gribenkodc81f512013-01-13 16:37:18 +00002389
2390 If the attribute is removed, clang still warns, because the format string is
2391 not a string literal.
2392
Richard Smithfabbcd92013-02-14 00:22:00 +00002393 Another example:
Dmitri Gribenkodc81f512013-01-13 16:37:18 +00002394
Richard Smithd06a8702013-02-14 00:23:04 +00002395 .. code-block:: c
Dmitri Gribenkodc81f512013-01-13 16:37:18 +00002396
2397 __attribute__((__format__ (__printf__, 1, 3)))
2398 void foo(const char* s, char *buf, ...) {
2399 va_list ap;
2400 va_start(ap, buf);
2401
2402 vprintf(s, ap); // warning
2403 }
2404
Richard Smithfabbcd92013-02-14 00:22:00 +00002405 In this case Clang does not warn because the format string ``s`` and
2406 the corresponding arguments are annotated. If the arguments are
2407 incorrect, the caller of ``foo`` will receive a warning.