blob: 1c503c29d551282e3a3c694f56fe193c12b68f27 [file] [log] [blame]
Neil Henning66416572018-10-08 15:49:19 +00001//===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
2//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Neil Henning66416572018-10-08 15:49:19 +00006//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This pass optimizes atomic operations by using a single lane of a wavefront
11/// to perform the atomic operation, thus reducing contention on that memory
12/// location.
13//
14//===----------------------------------------------------------------------===//
15
16#include "AMDGPU.h"
17#include "AMDGPUSubtarget.h"
18#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
19#include "llvm/CodeGen/TargetPassConfig.h"
20#include "llvm/IR/IRBuilder.h"
21#include "llvm/IR/InstVisitor.h"
22#include "llvm/Transforms/Utils/BasicBlockUtils.h"
23
24#define DEBUG_TYPE "amdgpu-atomic-optimizer"
25
26using namespace llvm;
27
28namespace {
29
30enum DPP_CTRL {
31 DPP_ROW_SR1 = 0x111,
32 DPP_ROW_SR2 = 0x112,
Neil Henning8c10fa12019-02-11 14:44:14 +000033 DPP_ROW_SR3 = 0x113,
Neil Henning66416572018-10-08 15:49:19 +000034 DPP_ROW_SR4 = 0x114,
35 DPP_ROW_SR8 = 0x118,
36 DPP_WF_SR1 = 0x138,
37 DPP_ROW_BCAST15 = 0x142,
38 DPP_ROW_BCAST31 = 0x143
39};
40
41struct ReplacementInfo {
42 Instruction *I;
43 Instruction::BinaryOps Op;
44 unsigned ValIdx;
45 bool ValDivergent;
46};
47
48class AMDGPUAtomicOptimizer : public FunctionPass,
49 public InstVisitor<AMDGPUAtomicOptimizer> {
50private:
51 SmallVector<ReplacementInfo, 8> ToReplace;
52 const LegacyDivergenceAnalysis *DA;
53 const DataLayout *DL;
54 DominatorTree *DT;
55 bool HasDPP;
Neil Henning233a02d2018-11-05 12:04:48 +000056 bool IsPixelShader;
Neil Henning66416572018-10-08 15:49:19 +000057
58 void optimizeAtomic(Instruction &I, Instruction::BinaryOps Op,
59 unsigned ValIdx, bool ValDivergent) const;
60
Neil Henning66416572018-10-08 15:49:19 +000061public:
62 static char ID;
63
64 AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
65
66 bool runOnFunction(Function &F) override;
67
68 void getAnalysisUsage(AnalysisUsage &AU) const override {
69 AU.addPreserved<DominatorTreeWrapperPass>();
70 AU.addRequired<LegacyDivergenceAnalysis>();
71 AU.addRequired<TargetPassConfig>();
72 }
73
74 void visitAtomicRMWInst(AtomicRMWInst &I);
75 void visitIntrinsicInst(IntrinsicInst &I);
76};
77
78} // namespace
79
80char AMDGPUAtomicOptimizer::ID = 0;
81
82char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
83
84bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
85 if (skipFunction(F)) {
86 return false;
87 }
88
89 DA = &getAnalysis<LegacyDivergenceAnalysis>();
90 DL = &F.getParent()->getDataLayout();
91 DominatorTreeWrapperPass *const DTW =
92 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
93 DT = DTW ? &DTW->getDomTree() : nullptr;
94 const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
95 const TargetMachine &TM = TPC.getTM<TargetMachine>();
96 const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
97 HasDPP = ST.hasDPP();
Neil Henning233a02d2018-11-05 12:04:48 +000098 IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
Neil Henning66416572018-10-08 15:49:19 +000099
100 visit(F);
101
102 const bool Changed = !ToReplace.empty();
103
104 for (ReplacementInfo &Info : ToReplace) {
105 optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
106 }
107
108 ToReplace.clear();
109
110 return Changed;
111}
112
113void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
114 // Early exit for unhandled address space atomic instructions.
115 switch (I.getPointerAddressSpace()) {
116 default:
117 return;
118 case AMDGPUAS::GLOBAL_ADDRESS:
119 case AMDGPUAS::LOCAL_ADDRESS:
120 break;
121 }
122
123 Instruction::BinaryOps Op;
124
125 switch (I.getOperation()) {
126 default:
127 return;
128 case AtomicRMWInst::Add:
129 Op = Instruction::Add;
130 break;
131 case AtomicRMWInst::Sub:
132 Op = Instruction::Sub;
133 break;
134 }
135
136 const unsigned PtrIdx = 0;
137 const unsigned ValIdx = 1;
138
139 // If the pointer operand is divergent, then each lane is doing an atomic
140 // operation on a different address, and we cannot optimize that.
141 if (DA->isDivergent(I.getOperand(PtrIdx))) {
142 return;
143 }
144
145 const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
146
147 // If the value operand is divergent, each lane is contributing a different
148 // value to the atomic calculation. We can only optimize divergent values if
149 // we have DPP available on our subtarget, and the atomic operation is 32
150 // bits.
151 if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
152 return;
153 }
154
155 // If we get here, we can optimize the atomic using a single wavefront-wide
156 // atomic operation to do the calculation for the entire wavefront, so
157 // remember the instruction so we can come back to it.
158 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
159
160 ToReplace.push_back(Info);
161}
162
163void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
164 Instruction::BinaryOps Op;
165
166 switch (I.getIntrinsicID()) {
167 default:
168 return;
169 case Intrinsic::amdgcn_buffer_atomic_add:
170 case Intrinsic::amdgcn_struct_buffer_atomic_add:
171 case Intrinsic::amdgcn_raw_buffer_atomic_add:
172 Op = Instruction::Add;
173 break;
174 case Intrinsic::amdgcn_buffer_atomic_sub:
175 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
176 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
177 Op = Instruction::Sub;
178 break;
179 }
180
181 const unsigned ValIdx = 0;
182
183 const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
184
185 // If the value operand is divergent, each lane is contributing a different
186 // value to the atomic calculation. We can only optimize divergent values if
187 // we have DPP available on our subtarget, and the atomic operation is 32
188 // bits.
189 if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
190 return;
191 }
192
193 // If any of the other arguments to the intrinsic are divergent, we can't
194 // optimize the operation.
195 for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
196 if (DA->isDivergent(I.getOperand(Idx))) {
197 return;
198 }
199 }
200
201 // If we get here, we can optimize the atomic using a single wavefront-wide
202 // atomic operation to do the calculation for the entire wavefront, so
203 // remember the instruction so we can come back to it.
204 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
205
206 ToReplace.push_back(Info);
207}
208
209void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
210 Instruction::BinaryOps Op,
211 unsigned ValIdx,
212 bool ValDivergent) const {
Neil Henning66416572018-10-08 15:49:19 +0000213 // Start building just before the instruction.
214 IRBuilder<> B(&I);
215
Neil Henning233a02d2018-11-05 12:04:48 +0000216 // If we are in a pixel shader, because of how we have to mask out helper
217 // lane invocations, we need to record the entry and exit BB's.
218 BasicBlock *PixelEntryBB = nullptr;
219 BasicBlock *PixelExitBB = nullptr;
220
221 // If we're optimizing an atomic within a pixel shader, we need to wrap the
222 // entire atomic operation in a helper-lane check. We do not want any helper
223 // lanes that are around only for the purposes of derivatives to take part
224 // in any cross-lane communication, and we use a branch on whether the lane is
225 // live to do this.
226 if (IsPixelShader) {
227 // Record I's original position as the entry block.
228 PixelEntryBB = I.getParent();
229
230 Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
231 Instruction *const NonHelperTerminator =
232 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
233
234 // Record I's new position as the exit block.
235 PixelExitBB = I.getParent();
236
237 I.moveBefore(NonHelperTerminator);
238 B.SetInsertPoint(&I);
239 }
240
Neil Henning66416572018-10-08 15:49:19 +0000241 Type *const Ty = I.getType();
242 const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
243 Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);
244
245 // This is the value in the atomic operation we need to combine in order to
246 // reduce the number of atomic operations.
247 Value *const V = I.getOperand(ValIdx);
248
249 // We need to know how many lanes are active within the wavefront, and we do
Neil Henning8c10fa12019-02-11 14:44:14 +0000250 // this by doing a ballot of active lanes.
251 CallInst *const Ballot =
Stanislav Mekhanoshin68a2fef2019-06-13 23:47:36 +0000252 B.CreateIntrinsic(Intrinsic::amdgcn_icmp,
253 {B.getInt64Ty(), B.getInt32Ty()},
Neil Henning8c10fa12019-02-11 14:44:14 +0000254 {B.getInt32(1), B.getInt32(0), B.getInt32(33)});
Neil Henning66416572018-10-08 15:49:19 +0000255
256 // We need to know how many lanes are active within the wavefront that are
257 // below us. If we counted each lane linearly starting from 0, a lane is
258 // below us only if its associated index was less than ours. We do this by
259 // using the mbcnt intrinsic.
Neil Henning8c10fa12019-02-11 14:44:14 +0000260 Value *const BitCast = B.CreateBitCast(Ballot, VecTy);
Neil Henning66416572018-10-08 15:49:19 +0000261 Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
262 Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
263 CallInst *const PartialMbcnt = B.CreateIntrinsic(
264 Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)});
265 CallInst *const Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {},
266 {ExtractHi, PartialMbcnt});
267
268 Value *const MbcntCast = B.CreateIntCast(Mbcnt, Ty, false);
269
270 Value *LaneOffset = nullptr;
271 Value *NewV = nullptr;
272
273 // If we have a divergent value in each lane, we need to combine the value
274 // using DPP.
275 if (ValDivergent) {
Neil Henning8c10fa12019-02-11 14:44:14 +0000276 Value *const Identity = B.getIntN(TyBitWidth, 0);
277
Neil Henning66416572018-10-08 15:49:19 +0000278 // First we need to set all inactive invocations to 0, so that they can
279 // correctly contribute to the final result.
Neil Henning8c10fa12019-02-11 14:44:14 +0000280 CallInst *const SetInactive =
281 B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});
Neil Henning66416572018-10-08 15:49:19 +0000282
Neil Henning8c10fa12019-02-11 14:44:14 +0000283 CallInst *const FirstDPP =
284 B.CreateIntrinsic(Intrinsic::amdgcn_update_dpp, Ty,
285 {Identity, SetInactive, B.getInt32(DPP_WF_SR1),
286 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
Neil Henning8c10fa12019-02-11 14:44:14 +0000287 NewV = FirstDPP;
Neil Henning66416572018-10-08 15:49:19 +0000288
Neil Henning8c10fa12019-02-11 14:44:14 +0000289 const unsigned Iters = 7;
290 const unsigned DPPCtrl[Iters] = {
291 DPP_ROW_SR1, DPP_ROW_SR2, DPP_ROW_SR3, DPP_ROW_SR4,
292 DPP_ROW_SR8, DPP_ROW_BCAST15, DPP_ROW_BCAST31};
293 const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xf, 0xa, 0xc};
294 const unsigned BankMask[Iters] = {0xf, 0xf, 0xf, 0xe, 0xc, 0xf, 0xf};
295
296 // This loop performs an exclusive scan across the wavefront, with all lanes
Neil Henning66416572018-10-08 15:49:19 +0000297 // active (by using the WWM intrinsic).
298 for (unsigned Idx = 0; Idx < Iters; Idx++) {
Neil Henning8c10fa12019-02-11 14:44:14 +0000299 Value *const UpdateValue = Idx < 3 ? FirstDPP : NewV;
300 CallInst *const DPP = B.CreateIntrinsic(
301 Intrinsic::amdgcn_update_dpp, Ty,
302 {Identity, UpdateValue, B.getInt32(DPPCtrl[Idx]),
303 B.getInt32(RowMask[Idx]), B.getInt32(BankMask[Idx]), B.getFalse()});
Neil Henning66416572018-10-08 15:49:19 +0000304
Neil Henning8c10fa12019-02-11 14:44:14 +0000305 NewV = B.CreateBinOp(Op, NewV, DPP);
Neil Henning66416572018-10-08 15:49:19 +0000306 }
307
Neil Henning8c10fa12019-02-11 14:44:14 +0000308 LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
Carl Ritson9e3f7d82019-03-05 12:21:44 +0000309 NewV = B.CreateBinOp(Op, SetInactive, NewV);
Neil Henning66416572018-10-08 15:49:19 +0000310
311 // Read the value from the last lane, which has accumlated the values of
312 // each active lane in the wavefront. This will be our new value with which
313 // we will provide to the atomic operation.
314 if (TyBitWidth == 64) {
315 Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
316 Value *const ExtractHi =
317 B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty());
318 CallInst *const ReadLaneLo = B.CreateIntrinsic(
319 Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)});
Neil Henning66416572018-10-08 15:49:19 +0000320 CallInst *const ReadLaneHi = B.CreateIntrinsic(
321 Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)});
Neil Henning66416572018-10-08 15:49:19 +0000322 Value *const PartialInsert = B.CreateInsertElement(
323 UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
324 Value *const Insert =
325 B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
326 NewV = B.CreateBitCast(Insert, Ty);
327 } else if (TyBitWidth == 32) {
328 CallInst *const ReadLane = B.CreateIntrinsic(Intrinsic::amdgcn_readlane,
329 {}, {NewV, B.getInt32(63)});
Neil Henning66416572018-10-08 15:49:19 +0000330 NewV = ReadLane;
331 } else {
332 llvm_unreachable("Unhandled atomic bit width");
333 }
Neil Henning8c10fa12019-02-11 14:44:14 +0000334
335 // Finally mark the readlanes in the WWM section.
336 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
Neil Henning66416572018-10-08 15:49:19 +0000337 } else {
338 // Get the total number of active lanes we have by using popcount.
Neil Henning8c10fa12019-02-11 14:44:14 +0000339 Instruction *const Ctpop = B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot);
Neil Henning66416572018-10-08 15:49:19 +0000340 Value *const CtpopCast = B.CreateIntCast(Ctpop, Ty, false);
341
342 // Calculate the new value we will be contributing to the atomic operation
343 // for the entire wavefront.
344 NewV = B.CreateMul(V, CtpopCast);
345 LaneOffset = B.CreateMul(V, MbcntCast);
346 }
347
348 // We only want a single lane to enter our new control flow, and we do this
349 // by checking if there are any active lanes below us. Only one lane will
350 // have 0 active lanes below us, so that will be the only one to progress.
351 Value *const Cond = B.CreateICmpEQ(MbcntCast, B.getIntN(TyBitWidth, 0));
352
353 // Store I's original basic block before we split the block.
354 BasicBlock *const EntryBB = I.getParent();
355
356 // We need to introduce some new control flow to force a single lane to be
357 // active. We do this by splitting I's basic block at I, and introducing the
358 // new block such that:
359 // entry --> single_lane -\
360 // \------------------> exit
361 Instruction *const SingleLaneTerminator =
362 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
363
364 // Move the IR builder into single_lane next.
365 B.SetInsertPoint(SingleLaneTerminator);
366
367 // Clone the original atomic operation into single lane, replacing the
368 // original value with our newly created one.
369 Instruction *const NewI = I.clone();
370 B.Insert(NewI);
371 NewI->setOperand(ValIdx, NewV);
372
373 // Move the IR builder into exit next, and start inserting just before the
374 // original instruction.
375 B.SetInsertPoint(&I);
376
377 // Create a PHI node to get our new atomic result into the exit block.
378 PHINode *const PHI = B.CreatePHI(Ty, 2);
379 PHI->addIncoming(UndefValue::get(Ty), EntryBB);
380 PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
381
382 // We need to broadcast the value who was the lowest active lane (the first
383 // lane) to all other lanes in the wavefront. We use an intrinsic for this,
384 // but have to handle 64-bit broadcasts with two calls to this intrinsic.
385 Value *BroadcastI = nullptr;
386
387 if (TyBitWidth == 64) {
388 Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
389 Value *const ExtractHi =
390 B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty());
391 CallInst *const ReadFirstLaneLo =
392 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
Neil Henning66416572018-10-08 15:49:19 +0000393 CallInst *const ReadFirstLaneHi =
394 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
Neil Henning66416572018-10-08 15:49:19 +0000395 Value *const PartialInsert = B.CreateInsertElement(
396 UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
397 Value *const Insert =
398 B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
399 BroadcastI = B.CreateBitCast(Insert, Ty);
400 } else if (TyBitWidth == 32) {
Matt Arsenault3a31b3f2019-03-14 13:46:09 +0000401
402 BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
Neil Henning66416572018-10-08 15:49:19 +0000403 } else {
404 llvm_unreachable("Unhandled atomic bit width");
405 }
406
407 // Now that we have the result of our single atomic operation, we need to
408 // get our individual lane's slice into the result. We use the lane offset we
409 // previously calculated combined with the atomic result value we got from the
410 // first lane, to get our lane's index into the atomic result.
411 Value *const Result = B.CreateBinOp(Op, BroadcastI, LaneOffset);
412
Neil Henning233a02d2018-11-05 12:04:48 +0000413 if (IsPixelShader) {
414 // Need a final PHI to reconverge to above the helper lane branch mask.
415 B.SetInsertPoint(PixelExitBB->getFirstNonPHI());
416
417 PHINode *const PHI = B.CreatePHI(Ty, 2);
418 PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB);
419 PHI->addIncoming(Result, I.getParent());
420 I.replaceAllUsesWith(PHI);
421 } else {
422 // Replace the original atomic instruction with the new one.
423 I.replaceAllUsesWith(Result);
424 }
Neil Henning66416572018-10-08 15:49:19 +0000425
426 // And delete the original.
427 I.eraseFromParent();
428}
429
Neil Henning66416572018-10-08 15:49:19 +0000430INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
431 "AMDGPU atomic optimizations", false, false)
432INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
433INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
434INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
435 "AMDGPU atomic optimizations", false, false)
436
437FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
438 return new AMDGPUAtomicOptimizer();
439}