blob: 08224e4488b08d381c4f700e02a0a6dea426cecf [file] [log] [blame]
Owen Anderson3fb4aab2009-08-23 04:24:24 +00001//===-- ConstantsContext.h - Constants-related Context Interals -----------===//
Owen Anderson9b676982009-08-04 22:55:26 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines various helper methods and classes used by
11// LLVMContextImpl for creating and managing constants.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CONSTANTSCONTEXT_H
16#define LLVM_CONSTANTSCONTEXT_H
17
18#include "llvm/Instructions.h"
19#include "llvm/Operator.h"
David Greene338a9032010-01-05 01:34:26 +000020#include "llvm/Support/Debug.h"
Owen Anderson9b676982009-08-04 22:55:26 +000021#include "llvm/Support/ErrorHandling.h"
Chris Lattner34822f62009-08-23 04:44:11 +000022#include "llvm/Support/raw_ostream.h"
Owen Anderson9b676982009-08-04 22:55:26 +000023#include <map>
24
25namespace llvm {
26template<class ValType>
27struct ConstantTraits;
28
29/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
30/// behind the scenes to implement unary constant exprs.
31class UnaryConstantExpr : public ConstantExpr {
32 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
33public:
34 // allocate space for exactly one operand
35 void *operator new(size_t s) {
36 return User::operator new(s, 1);
37 }
38 UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
39 : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
40 Op<0>() = C;
41 }
42 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
43};
44
45/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
46/// behind the scenes to implement binary constant exprs.
47class BinaryConstantExpr : public ConstantExpr {
48 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
49public:
50 // allocate space for exactly two operands
51 void *operator new(size_t s) {
52 return User::operator new(s, 2);
53 }
Dan Gohman1b849082009-09-07 23:54:19 +000054 BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
55 unsigned Flags)
Owen Anderson9b676982009-08-04 22:55:26 +000056 : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
57 Op<0>() = C1;
58 Op<1>() = C2;
Dan Gohman1b849082009-09-07 23:54:19 +000059 SubclassOptionalData = Flags;
Owen Anderson9b676982009-08-04 22:55:26 +000060 }
61 /// Transparently provide more efficient getOperand methods.
62 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
63};
64
65/// SelectConstantExpr - This class is private to Constants.cpp, and is used
66/// behind the scenes to implement select constant exprs.
67class SelectConstantExpr : public ConstantExpr {
68 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
69public:
70 // allocate space for exactly three operands
71 void *operator new(size_t s) {
72 return User::operator new(s, 3);
73 }
74 SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
75 : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
76 Op<0>() = C1;
77 Op<1>() = C2;
78 Op<2>() = C3;
79 }
80 /// Transparently provide more efficient getOperand methods.
81 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
82};
83
84/// ExtractElementConstantExpr - This class is private to
85/// Constants.cpp, and is used behind the scenes to implement
86/// extractelement constant exprs.
87class ExtractElementConstantExpr : public ConstantExpr {
88 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
89public:
90 // allocate space for exactly two operands
91 void *operator new(size_t s) {
92 return User::operator new(s, 2);
93 }
94 ExtractElementConstantExpr(Constant *C1, Constant *C2)
95 : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
96 Instruction::ExtractElement, &Op<0>(), 2) {
97 Op<0>() = C1;
98 Op<1>() = C2;
99 }
100 /// Transparently provide more efficient getOperand methods.
101 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
102};
103
104/// InsertElementConstantExpr - This class is private to
105/// Constants.cpp, and is used behind the scenes to implement
106/// insertelement constant exprs.
107class InsertElementConstantExpr : public ConstantExpr {
108 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
109public:
110 // allocate space for exactly three operands
111 void *operator new(size_t s) {
112 return User::operator new(s, 3);
113 }
114 InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
115 : ConstantExpr(C1->getType(), Instruction::InsertElement,
116 &Op<0>(), 3) {
117 Op<0>() = C1;
118 Op<1>() = C2;
119 Op<2>() = C3;
120 }
121 /// Transparently provide more efficient getOperand methods.
122 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
123};
124
125/// ShuffleVectorConstantExpr - This class is private to
126/// Constants.cpp, and is used behind the scenes to implement
127/// shufflevector constant exprs.
128class ShuffleVectorConstantExpr : public ConstantExpr {
129 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
130public:
131 // allocate space for exactly three operands
132 void *operator new(size_t s) {
133 return User::operator new(s, 3);
134 }
135 ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
136 : ConstantExpr(VectorType::get(
137 cast<VectorType>(C1->getType())->getElementType(),
138 cast<VectorType>(C3->getType())->getNumElements()),
139 Instruction::ShuffleVector,
140 &Op<0>(), 3) {
141 Op<0>() = C1;
142 Op<1>() = C2;
143 Op<2>() = C3;
144 }
145 /// Transparently provide more efficient getOperand methods.
146 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
147};
148
149/// ExtractValueConstantExpr - This class is private to
150/// Constants.cpp, and is used behind the scenes to implement
151/// extractvalue constant exprs.
152class ExtractValueConstantExpr : public ConstantExpr {
153 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
154public:
155 // allocate space for exactly one operand
156 void *operator new(size_t s) {
157 return User::operator new(s, 1);
158 }
159 ExtractValueConstantExpr(Constant *Agg,
160 const SmallVector<unsigned, 4> &IdxList,
161 const Type *DestTy)
162 : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
163 Indices(IdxList) {
164 Op<0>() = Agg;
165 }
166
167 /// Indices - These identify which value to extract.
168 const SmallVector<unsigned, 4> Indices;
169
170 /// Transparently provide more efficient getOperand methods.
171 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
172};
173
174/// InsertValueConstantExpr - This class is private to
175/// Constants.cpp, and is used behind the scenes to implement
176/// insertvalue constant exprs.
177class InsertValueConstantExpr : public ConstantExpr {
178 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
179public:
180 // allocate space for exactly one operand
181 void *operator new(size_t s) {
182 return User::operator new(s, 2);
183 }
184 InsertValueConstantExpr(Constant *Agg, Constant *Val,
185 const SmallVector<unsigned, 4> &IdxList,
186 const Type *DestTy)
187 : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
188 Indices(IdxList) {
189 Op<0>() = Agg;
190 Op<1>() = Val;
191 }
192
193 /// Indices - These identify the position for the insertion.
194 const SmallVector<unsigned, 4> Indices;
195
196 /// Transparently provide more efficient getOperand methods.
197 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
198};
199
200
201/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
202/// used behind the scenes to implement getelementpr constant exprs.
203class GetElementPtrConstantExpr : public ConstantExpr {
204 GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
205 const Type *DestTy);
206public:
207 static GetElementPtrConstantExpr *Create(Constant *C,
208 const std::vector<Constant*>&IdxList,
Dan Gohman1b849082009-09-07 23:54:19 +0000209 const Type *DestTy,
210 unsigned Flags) {
211 GetElementPtrConstantExpr *Result =
Owen Anderson9b676982009-08-04 22:55:26 +0000212 new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
Dan Gohman1b849082009-09-07 23:54:19 +0000213 Result->SubclassOptionalData = Flags;
214 return Result;
Owen Anderson9b676982009-08-04 22:55:26 +0000215 }
216 /// Transparently provide more efficient getOperand methods.
217 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
218};
219
220// CompareConstantExpr - This class is private to Constants.cpp, and is used
221// behind the scenes to implement ICmp and FCmp constant expressions. This is
222// needed in order to store the predicate value for these instructions.
223struct CompareConstantExpr : public ConstantExpr {
224 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
225 // allocate space for exactly two operands
226 void *operator new(size_t s) {
227 return User::operator new(s, 2);
228 }
229 unsigned short predicate;
230 CompareConstantExpr(const Type *ty, Instruction::OtherOps opc,
231 unsigned short pred, Constant* LHS, Constant* RHS)
232 : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
233 Op<0>() = LHS;
234 Op<1>() = RHS;
235 }
236 /// Transparently provide more efficient getOperand methods.
237 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
238};
239
240template <>
Duncan Sands0f5bbb52009-09-06 08:55:57 +0000241struct OperandTraits<UnaryConstantExpr> : public FixedNumOperandTraits<1> {
Owen Anderson9b676982009-08-04 22:55:26 +0000242};
243DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
244
245template <>
Duncan Sands0f5bbb52009-09-06 08:55:57 +0000246struct OperandTraits<BinaryConstantExpr> : public FixedNumOperandTraits<2> {
Owen Anderson9b676982009-08-04 22:55:26 +0000247};
248DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
249
250template <>
Duncan Sands0f5bbb52009-09-06 08:55:57 +0000251struct OperandTraits<SelectConstantExpr> : public FixedNumOperandTraits<3> {
Owen Anderson9b676982009-08-04 22:55:26 +0000252};
253DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
254
255template <>
Duncan Sands0f5bbb52009-09-06 08:55:57 +0000256struct OperandTraits<ExtractElementConstantExpr> : public FixedNumOperandTraits<2> {
Owen Anderson9b676982009-08-04 22:55:26 +0000257};
258DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
259
260template <>
Duncan Sands0f5bbb52009-09-06 08:55:57 +0000261struct OperandTraits<InsertElementConstantExpr> : public FixedNumOperandTraits<3> {
Owen Anderson9b676982009-08-04 22:55:26 +0000262};
263DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
264
265template <>
Duncan Sands0f5bbb52009-09-06 08:55:57 +0000266struct OperandTraits<ShuffleVectorConstantExpr> : public FixedNumOperandTraits<3> {
Owen Anderson9b676982009-08-04 22:55:26 +0000267};
268DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
269
270template <>
Duncan Sands0f5bbb52009-09-06 08:55:57 +0000271struct OperandTraits<ExtractValueConstantExpr> : public FixedNumOperandTraits<1> {
Owen Anderson9b676982009-08-04 22:55:26 +0000272};
273DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
274
275template <>
Duncan Sands0f5bbb52009-09-06 08:55:57 +0000276struct OperandTraits<InsertValueConstantExpr> : public FixedNumOperandTraits<2> {
Owen Anderson9b676982009-08-04 22:55:26 +0000277};
278DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
279
280template <>
Duncan Sands0f5bbb52009-09-06 08:55:57 +0000281struct OperandTraits<GetElementPtrConstantExpr> : public VariadicOperandTraits<1> {
Owen Anderson9b676982009-08-04 22:55:26 +0000282};
283
284DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
285
286
287template <>
Duncan Sands0f5bbb52009-09-06 08:55:57 +0000288struct OperandTraits<CompareConstantExpr> : public FixedNumOperandTraits<2> {
Owen Anderson9b676982009-08-04 22:55:26 +0000289};
290DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
291
292struct ExprMapKeyType {
293 typedef SmallVector<unsigned, 4> IndexList;
294
295 ExprMapKeyType(unsigned opc,
296 const std::vector<Constant*> &ops,
Dan Gohman1b849082009-09-07 23:54:19 +0000297 unsigned short flags = 0,
298 unsigned short optionalflags = 0,
Owen Anderson9b676982009-08-04 22:55:26 +0000299 const IndexList &inds = IndexList())
Dan Gohman1b849082009-09-07 23:54:19 +0000300 : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
301 operands(ops), indices(inds) {}
302 uint8_t opcode;
303 uint8_t subclassoptionaldata;
304 uint16_t subclassdata;
Owen Anderson9b676982009-08-04 22:55:26 +0000305 std::vector<Constant*> operands;
306 IndexList indices;
307 bool operator==(const ExprMapKeyType& that) const {
308 return this->opcode == that.opcode &&
Dan Gohman1b849082009-09-07 23:54:19 +0000309 this->subclassdata == that.subclassdata &&
310 this->subclassoptionaldata == that.subclassoptionaldata &&
Owen Anderson9b676982009-08-04 22:55:26 +0000311 this->operands == that.operands &&
312 this->indices == that.indices;
313 }
314 bool operator<(const ExprMapKeyType & that) const {
Dan Gohman1b849082009-09-07 23:54:19 +0000315 if (this->opcode != that.opcode) return this->opcode < that.opcode;
316 if (this->operands != that.operands) return this->operands < that.operands;
317 if (this->subclassdata != that.subclassdata)
318 return this->subclassdata < that.subclassdata;
319 if (this->subclassoptionaldata != that.subclassoptionaldata)
320 return this->subclassoptionaldata < that.subclassoptionaldata;
321 if (this->indices != that.indices) return this->indices < that.indices;
322 return false;
Owen Anderson9b676982009-08-04 22:55:26 +0000323 }
324
325 bool operator!=(const ExprMapKeyType& that) const {
326 return !(*this == that);
327 }
328};
329
330// The number of operands for each ConstantCreator::create method is
331// determined by the ConstantTraits template.
332// ConstantCreator - A class that is used to create constants by
Jeffrey Yasskinf6ee7be2009-10-27 23:45:55 +0000333// ConstantUniqueMap*. This class should be partially specialized if there is
Owen Anderson9b676982009-08-04 22:55:26 +0000334// something strange that needs to be done to interface to the ctor for the
335// constant.
336//
337template<typename T, typename Alloc>
338struct ConstantTraits< std::vector<T, Alloc> > {
339 static unsigned uses(const std::vector<T, Alloc>& v) {
340 return v.size();
341 }
342};
343
344template<class ConstantClass, class TypeClass, class ValType>
345struct ConstantCreator {
346 static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
347 return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
348 }
349};
350
Dan Gohmane4532f32009-09-15 15:58:07 +0000351template<class ConstantClass>
352struct ConstantKeyData {
353 typedef void ValType;
354 static ValType getValType(ConstantClass *C) {
355 llvm_unreachable("Unknown Constant type!");
Owen Anderson9b676982009-08-04 22:55:26 +0000356 }
357};
358
359template<>
360struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
361 static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
362 unsigned short pred = 0) {
363 if (Instruction::isCast(V.opcode))
364 return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
365 if ((V.opcode >= Instruction::BinaryOpsBegin &&
366 V.opcode < Instruction::BinaryOpsEnd))
Dan Gohman1b849082009-09-07 23:54:19 +0000367 return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
368 V.subclassoptionaldata);
Owen Anderson9b676982009-08-04 22:55:26 +0000369 if (V.opcode == Instruction::Select)
370 return new SelectConstantExpr(V.operands[0], V.operands[1],
371 V.operands[2]);
372 if (V.opcode == Instruction::ExtractElement)
373 return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
374 if (V.opcode == Instruction::InsertElement)
375 return new InsertElementConstantExpr(V.operands[0], V.operands[1],
376 V.operands[2]);
377 if (V.opcode == Instruction::ShuffleVector)
378 return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
379 V.operands[2]);
380 if (V.opcode == Instruction::InsertValue)
381 return new InsertValueConstantExpr(V.operands[0], V.operands[1],
382 V.indices, Ty);
383 if (V.opcode == Instruction::ExtractValue)
384 return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
385 if (V.opcode == Instruction::GetElementPtr) {
386 std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
Dan Gohman1b849082009-09-07 23:54:19 +0000387 return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
388 V.subclassoptionaldata);
Owen Anderson9b676982009-08-04 22:55:26 +0000389 }
390
391 // The compare instructions are weird. We have to encode the predicate
392 // value and it is combined with the instruction opcode by multiplying
393 // the opcode by one hundred. We must decode this to get the predicate.
394 if (V.opcode == Instruction::ICmp)
Dan Gohman1b849082009-09-07 23:54:19 +0000395 return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
Owen Anderson9b676982009-08-04 22:55:26 +0000396 V.operands[0], V.operands[1]);
397 if (V.opcode == Instruction::FCmp)
Dan Gohman1b849082009-09-07 23:54:19 +0000398 return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
Owen Anderson9b676982009-08-04 22:55:26 +0000399 V.operands[0], V.operands[1]);
400 llvm_unreachable("Invalid ConstantExpr!");
401 return 0;
402 }
403};
404
405template<>
Dan Gohmane4532f32009-09-15 15:58:07 +0000406struct ConstantKeyData<ConstantExpr> {
407 typedef ExprMapKeyType ValType;
408 static ValType getValType(ConstantExpr *CE) {
409 std::vector<Constant*> Operands;
410 Operands.reserve(CE->getNumOperands());
411 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
412 Operands.push_back(cast<Constant>(CE->getOperand(i)));
413 return ExprMapKeyType(CE->getOpcode(), Operands,
414 CE->isCompare() ? CE->getPredicate() : 0,
415 CE->getRawSubclassOptionalData(),
416 CE->hasIndices() ?
417 CE->getIndices() : SmallVector<unsigned, 4>());
Owen Anderson9b676982009-08-04 22:55:26 +0000418 }
419};
420
421// ConstantAggregateZero does not take extra "value" argument...
422template<class ValType>
423struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
424 static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
425 return new ConstantAggregateZero(Ty);
426 }
427};
428
429template<>
Dan Gohmane4532f32009-09-15 15:58:07 +0000430struct ConstantKeyData<ConstantVector> {
431 typedef std::vector<Constant*> ValType;
432 static ValType getValType(ConstantVector *CP) {
433 std::vector<Constant*> Elements;
434 Elements.reserve(CP->getNumOperands());
435 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
436 Elements.push_back(CP->getOperand(i));
437 return Elements;
Owen Anderson9b676982009-08-04 22:55:26 +0000438 }
439};
440
441template<>
Dan Gohmane4532f32009-09-15 15:58:07 +0000442struct ConstantKeyData<ConstantAggregateZero> {
443 typedef char ValType;
444 static ValType getValType(ConstantAggregateZero *C) {
445 return 0;
Owen Anderson9b676982009-08-04 22:55:26 +0000446 }
447};
448
449template<>
Dan Gohmane4532f32009-09-15 15:58:07 +0000450struct ConstantKeyData<ConstantArray> {
451 typedef std::vector<Constant*> ValType;
452 static ValType getValType(ConstantArray *CA) {
453 std::vector<Constant*> Elements;
454 Elements.reserve(CA->getNumOperands());
455 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
456 Elements.push_back(cast<Constant>(CA->getOperand(i)));
457 return Elements;
Owen Anderson9b676982009-08-04 22:55:26 +0000458 }
459};
460
461template<>
Dan Gohmane4532f32009-09-15 15:58:07 +0000462struct ConstantKeyData<ConstantStruct> {
463 typedef std::vector<Constant*> ValType;
464 static ValType getValType(ConstantStruct *CS) {
465 std::vector<Constant*> Elements;
466 Elements.reserve(CS->getNumOperands());
467 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
468 Elements.push_back(cast<Constant>(CS->getOperand(i)));
469 return Elements;
Owen Anderson9b676982009-08-04 22:55:26 +0000470 }
471};
472
473// ConstantPointerNull does not take extra "value" argument...
474template<class ValType>
475struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
476 static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
477 return new ConstantPointerNull(Ty);
478 }
479};
480
481template<>
Dan Gohmane4532f32009-09-15 15:58:07 +0000482struct ConstantKeyData<ConstantPointerNull> {
483 typedef char ValType;
484 static ValType getValType(ConstantPointerNull *C) {
485 return 0;
Owen Anderson9b676982009-08-04 22:55:26 +0000486 }
487};
488
489// UndefValue does not take extra "value" argument...
490template<class ValType>
491struct ConstantCreator<UndefValue, Type, ValType> {
492 static UndefValue *create(const Type *Ty, const ValType &V) {
493 return new UndefValue(Ty);
494 }
495};
496
497template<>
Dan Gohmane4532f32009-09-15 15:58:07 +0000498struct ConstantKeyData<UndefValue> {
499 typedef char ValType;
500 static ValType getValType(UndefValue *C) {
501 return 0;
Owen Anderson9b676982009-08-04 22:55:26 +0000502 }
503};
504
505template<class ValType, class TypeClass, class ConstantClass,
506 bool HasLargeKey = false /*true for arrays and structs*/ >
Jeffrey Yasskinf6ee7be2009-10-27 23:45:55 +0000507class ConstantUniqueMap : public AbstractTypeUser {
Owen Anderson9b676982009-08-04 22:55:26 +0000508public:
Dan Gohmane4532f32009-09-15 15:58:07 +0000509 typedef std::pair<const TypeClass*, ValType> MapKey;
510 typedef std::map<MapKey, ConstantClass *> MapTy;
511 typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
512 typedef std::map<const DerivedType*, typename MapTy::iterator>
513 AbstractTypeMapTy;
Owen Anderson9b676982009-08-04 22:55:26 +0000514private:
515 /// Map - This is the main map from the element descriptor to the Constants.
516 /// This is the primary way we avoid creating two of the same shape
517 /// constant.
518 MapTy Map;
519
520 /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
521 /// from the constants to their element in Map. This is important for
522 /// removal of constants from the array, which would otherwise have to scan
523 /// through the map with very large keys.
524 InverseMapTy InverseMap;
525
526 /// AbstractTypeMap - Map for abstract type constants.
527 ///
528 AbstractTypeMapTy AbstractTypeMap;
529
Owen Anderson9b676982009-08-04 22:55:26 +0000530public:
Devang Patelc5aa8c62009-08-11 06:31:57 +0000531 typename MapTy::iterator map_begin() { return Map.begin(); }
Owen Anderson9b676982009-08-04 22:55:26 +0000532 typename MapTy::iterator map_end() { return Map.end(); }
Torok Edwind18e6682009-08-31 16:14:59 +0000533
534 void freeConstants() {
535 for (typename MapTy::iterator I=Map.begin(), E=Map.end();
536 I != E; ++I) {
537 if (I->second->use_empty())
538 delete I->second;
539 }
540 }
Owen Anderson9b676982009-08-04 22:55:26 +0000541
542 /// InsertOrGetItem - Return an iterator for the specified element.
543 /// If the element exists in the map, the returned iterator points to the
544 /// entry and Exists=true. If not, the iterator points to the newly
545 /// inserted entry and returns Exists=false. Newly inserted entries have
546 /// I->second == 0, and should be filled in.
Dan Gohmane4532f32009-09-15 15:58:07 +0000547 typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
Owen Anderson9b676982009-08-04 22:55:26 +0000548 &InsertVal,
549 bool &Exists) {
550 std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
551 Exists = !IP.second;
552 return IP.first;
553 }
554
555private:
556 typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
557 if (HasLargeKey) {
558 typename InverseMapTy::iterator IMI = InverseMap.find(CP);
559 assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
560 IMI->second->second == CP &&
561 "InverseMap corrupt!");
562 return IMI->second;
563 }
564
565 typename MapTy::iterator I =
566 Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
Dan Gohmane4532f32009-09-15 15:58:07 +0000567 ConstantKeyData<ConstantClass>::getValType(CP)));
Owen Anderson9b676982009-08-04 22:55:26 +0000568 if (I == Map.end() || I->second != CP) {
569 // FIXME: This should not use a linear scan. If this gets to be a
570 // performance problem, someone should look at this.
571 for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
572 /* empty */;
573 }
574 return I;
575 }
576
Dan Gohmane4532f32009-09-15 15:58:07 +0000577 void AddAbstractTypeUser(const Type *Ty, typename MapTy::iterator I) {
578 // If the type of the constant is abstract, make sure that an entry
579 // exists for it in the AbstractTypeMap.
580 if (Ty->isAbstract()) {
581 const DerivedType *DTy = static_cast<const DerivedType *>(Ty);
582 typename AbstractTypeMapTy::iterator TI = AbstractTypeMap.find(DTy);
583
584 if (TI == AbstractTypeMap.end()) {
585 // Add ourselves to the ATU list of the type.
586 cast<DerivedType>(DTy)->addAbstractTypeUser(this);
587
588 AbstractTypeMap.insert(TI, std::make_pair(DTy, I));
589 }
590 }
591 }
592
Owen Anderson9b676982009-08-04 22:55:26 +0000593 ConstantClass* Create(const TypeClass *Ty, const ValType &V,
594 typename MapTy::iterator I) {
595 ConstantClass* Result =
596 ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
597
598 assert(Result->getType() == Ty && "Type specified is not correct!");
599 I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
600
601 if (HasLargeKey) // Remember the reverse mapping if needed.
602 InverseMap.insert(std::make_pair(Result, I));
603
Dan Gohmane4532f32009-09-15 15:58:07 +0000604 AddAbstractTypeUser(Ty, I);
Owen Anderson9b676982009-08-04 22:55:26 +0000605
606 return Result;
607 }
608public:
609
610 /// getOrCreate - Return the specified constant from the map, creating it if
611 /// necessary.
612 ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
Owen Anderson9b676982009-08-04 22:55:26 +0000613 MapKey Lookup(Ty, V);
614 ConstantClass* Result = 0;
615
616 typename MapTy::iterator I = Map.find(Lookup);
617 // Is it in the map?
618 if (I != Map.end())
Dan Gohmane4532f32009-09-15 15:58:07 +0000619 Result = I->second;
Owen Anderson9b676982009-08-04 22:55:26 +0000620
621 if (!Result) {
622 // If no preexisting value, create one now...
623 Result = Create(Ty, V, I);
624 }
625
626 return Result;
627 }
628
Dan Gohmane4532f32009-09-15 15:58:07 +0000629 void UpdateAbstractTypeMap(const DerivedType *Ty,
630 typename MapTy::iterator I) {
631 assert(AbstractTypeMap.count(Ty) &&
632 "Abstract type not in AbstractTypeMap?");
633 typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
634 if (ATMEntryIt == I) {
635 // Yes, we are removing the representative entry for this type.
636 // See if there are any other entries of the same type.
637 typename MapTy::iterator TmpIt = ATMEntryIt;
638
639 // First check the entry before this one...
640 if (TmpIt != Map.begin()) {
641 --TmpIt;
642 if (TmpIt->first.first != Ty) // Not the same type, move back...
643 ++TmpIt;
644 }
645
646 // If we didn't find the same type, try to move forward...
647 if (TmpIt == ATMEntryIt) {
648 ++TmpIt;
649 if (TmpIt == Map.end() || TmpIt->first.first != Ty)
650 --TmpIt; // No entry afterwards with the same type
651 }
652
653 // If there is another entry in the map of the same abstract type,
654 // update the AbstractTypeMap entry now.
655 if (TmpIt != ATMEntryIt) {
656 ATMEntryIt = TmpIt;
657 } else {
658 // Otherwise, we are removing the last instance of this type
659 // from the table. Remove from the ATM, and from user list.
660 cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
661 AbstractTypeMap.erase(Ty);
662 }
663 }
664 }
665
Owen Anderson9b676982009-08-04 22:55:26 +0000666 void remove(ConstantClass *CP) {
Owen Anderson9b676982009-08-04 22:55:26 +0000667 typename MapTy::iterator I = FindExistingElement(CP);
668 assert(I != Map.end() && "Constant not found in constant table!");
669 assert(I->second == CP && "Didn't find correct element?");
670
671 if (HasLargeKey) // Remember the reverse mapping if needed.
672 InverseMap.erase(CP);
673
674 // Now that we found the entry, make sure this isn't the entry that
675 // the AbstractTypeMap points to.
Dan Gohmane4532f32009-09-15 15:58:07 +0000676 const TypeClass *Ty = I->first.first;
677 if (Ty->isAbstract())
678 UpdateAbstractTypeMap(static_cast<const DerivedType *>(Ty), I);
Owen Anderson9b676982009-08-04 22:55:26 +0000679
680 Map.erase(I);
681 }
682
Owen Anderson9b676982009-08-04 22:55:26 +0000683 /// MoveConstantToNewSlot - If we are about to change C to be the element
684 /// specified by I, update our internal data structures to reflect this
685 /// fact.
Owen Anderson9b676982009-08-04 22:55:26 +0000686 void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
687 // First, remove the old location of the specified constant in the map.
688 typename MapTy::iterator OldI = FindExistingElement(C);
689 assert(OldI != Map.end() && "Constant not found in constant table!");
690 assert(OldI->second == C && "Didn't find correct element?");
691
692 // If this constant is the representative element for its abstract type,
693 // update the AbstractTypeMap so that the representative element is I.
694 if (C->getType()->isAbstract()) {
695 typename AbstractTypeMapTy::iterator ATI =
696 AbstractTypeMap.find(C->getType());
697 assert(ATI != AbstractTypeMap.end() &&
698 "Abstract type not in AbstractTypeMap?");
699 if (ATI->second == OldI)
700 ATI->second = I;
701 }
702
703 // Remove the old entry from the map.
704 Map.erase(OldI);
705
706 // Update the inverse map so that we know that this constant is now
707 // located at descriptor I.
708 if (HasLargeKey) {
709 assert(I->second == C && "Bad inversemap entry!");
710 InverseMap[C] = I;
711 }
712 }
713
714 void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
Dan Gohmane4532f32009-09-15 15:58:07 +0000715 typename AbstractTypeMapTy::iterator I = AbstractTypeMap.find(OldTy);
Owen Anderson9b676982009-08-04 22:55:26 +0000716
717 assert(I != AbstractTypeMap.end() &&
718 "Abstract type not in AbstractTypeMap?");
719
720 // Convert a constant at a time until the last one is gone. The last one
721 // leaving will remove() itself, causing the AbstractTypeMapEntry to be
722 // eliminated eventually.
723 do {
Dan Gohmane4532f32009-09-15 15:58:07 +0000724 ConstantClass *C = I->second->second;
725 MapKey Key(cast<TypeClass>(NewTy),
726 ConstantKeyData<ConstantClass>::getValType(C));
Owen Anderson9b676982009-08-04 22:55:26 +0000727
Dan Gohmane4532f32009-09-15 15:58:07 +0000728 std::pair<typename MapTy::iterator, bool> IP =
729 Map.insert(std::make_pair(Key, C));
730 if (IP.second) {
731 // The map didn't previously have an appropriate constant in the
732 // new type.
733
734 // Remove the old entry.
735 typename MapTy::iterator OldI =
736 Map.find(MapKey(cast<TypeClass>(OldTy), IP.first->first.second));
737 assert(OldI != Map.end() && "Constant not in map!");
738 UpdateAbstractTypeMap(OldTy, OldI);
739 Map.erase(OldI);
740
741 // Set the constant's type. This is done in place!
742 setType(C, NewTy);
743
744 // Update the inverse map so that we know that this constant is now
745 // located at descriptor I.
746 if (HasLargeKey)
747 InverseMap[C] = IP.first;
748
749 AddAbstractTypeUser(NewTy, IP.first);
750 } else {
751 // The map already had an appropriate constant in the new type, so
752 // there's no longer a need for the old constant.
753 C->uncheckedReplaceAllUsesWith(IP.first->second);
754 C->destroyConstant(); // This constant is now dead, destroy it.
755 }
756 I = AbstractTypeMap.find(OldTy);
Owen Anderson9b676982009-08-04 22:55:26 +0000757 } while (I != AbstractTypeMap.end());
758 }
759
760 // If the type became concrete without being refined to any other existing
761 // type, we just remove ourselves from the ATU list.
762 void typeBecameConcrete(const DerivedType *AbsTy) {
763 AbsTy->removeAbstractTypeUser(this);
764 }
765
766 void dump() const {
David Greene338a9032010-01-05 01:34:26 +0000767 DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
Owen Anderson9b676982009-08-04 22:55:26 +0000768 }
769};
770
771}
772
773#endif