blob: 9bce9a0fa3b05e6b049495f77bc1a73c4a551338 [file] [log] [blame]
Guy Benyei11169dd2012-12-18 14:30:41 +00001//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14// http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/ABI.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33
34#define MANGLE_CHECKER 0
35
36#if MANGLE_CHECKER
37#include <cxxabi.h>
38#endif
39
40using namespace clang;
41
42namespace {
43
44/// \brief Retrieve the declaration context that should be used when mangling
45/// the given declaration.
46static const DeclContext *getEffectiveDeclContext(const Decl *D) {
47 // The ABI assumes that lambda closure types that occur within
48 // default arguments live in the context of the function. However, due to
49 // the way in which Clang parses and creates function declarations, this is
50 // not the case: the lambda closure type ends up living in the context
51 // where the function itself resides, because the function declaration itself
52 // had not yet been created. Fix the context here.
53 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
54 if (RD->isLambda())
55 if (ParmVarDecl *ContextParam
56 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
57 return ContextParam->getDeclContext();
58 }
Eli Friedman0cd23352013-07-10 01:33:19 +000059
60 // Perform the same check for block literals.
61 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
62 if (ParmVarDecl *ContextParam
63 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
64 return ContextParam->getDeclContext();
65 }
Guy Benyei11169dd2012-12-18 14:30:41 +000066
Eli Friedman95f50122013-07-02 17:52:28 +000067 const DeclContext *DC = D->getDeclContext();
68 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
69 return getEffectiveDeclContext(CD);
70
71 return DC;
Guy Benyei11169dd2012-12-18 14:30:41 +000072}
73
74static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
75 return getEffectiveDeclContext(cast<Decl>(DC));
76}
Eli Friedman95f50122013-07-02 17:52:28 +000077
78static bool isLocalContainerContext(const DeclContext *DC) {
79 return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
80}
81
Eli Friedmaneecc09a2013-07-05 20:27:40 +000082static const RecordDecl *GetLocalClassDecl(const Decl *D) {
Eli Friedman92821742013-07-02 02:01:18 +000083 const DeclContext *DC = getEffectiveDeclContext(D);
Guy Benyei11169dd2012-12-18 14:30:41 +000084 while (!DC->isNamespace() && !DC->isTranslationUnit()) {
Eli Friedman95f50122013-07-02 17:52:28 +000085 if (isLocalContainerContext(DC))
Eli Friedmaneecc09a2013-07-05 20:27:40 +000086 return dyn_cast<RecordDecl>(D);
Eli Friedman92821742013-07-02 02:01:18 +000087 D = cast<Decl>(DC);
88 DC = getEffectiveDeclContext(D);
Guy Benyei11169dd2012-12-18 14:30:41 +000089 }
90 return 0;
91}
92
93static const FunctionDecl *getStructor(const FunctionDecl *fn) {
94 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
95 return ftd->getTemplatedDecl();
96
97 return fn;
98}
99
100static const NamedDecl *getStructor(const NamedDecl *decl) {
101 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
102 return (fn ? getStructor(fn) : decl);
103}
104
105static const unsigned UnknownArity = ~0U;
106
107class ItaniumMangleContext : public MangleContext {
108 llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000109 typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
110 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
Guy Benyei11169dd2012-12-18 14:30:41 +0000111 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
112
113public:
114 explicit ItaniumMangleContext(ASTContext &Context,
115 DiagnosticsEngine &Diags)
116 : MangleContext(Context, Diags) { }
117
118 uint64_t getAnonymousStructId(const TagDecl *TD) {
119 std::pair<llvm::DenseMap<const TagDecl *,
120 uint64_t>::iterator, bool> Result =
121 AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
122 return Result.first->second;
123 }
124
Guy Benyei11169dd2012-12-18 14:30:41 +0000125 /// @name Mangler Entry Points
126 /// @{
127
128 bool shouldMangleDeclName(const NamedDecl *D);
129 void mangleName(const NamedDecl *D, raw_ostream &);
130 void mangleThunk(const CXXMethodDecl *MD,
131 const ThunkInfo &Thunk,
132 raw_ostream &);
133 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
134 const ThisAdjustment &ThisAdjustment,
135 raw_ostream &);
136 void mangleReferenceTemporary(const VarDecl *D,
137 raw_ostream &);
138 void mangleCXXVTable(const CXXRecordDecl *RD,
139 raw_ostream &);
140 void mangleCXXVTT(const CXXRecordDecl *RD,
141 raw_ostream &);
Reid Kleckner7810af02013-06-19 15:20:38 +0000142 void mangleCXXVBTable(const CXXRecordDecl *Derived,
143 ArrayRef<const CXXRecordDecl *> BasePath,
144 raw_ostream &Out);
Guy Benyei11169dd2012-12-18 14:30:41 +0000145 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
146 const CXXRecordDecl *Type,
147 raw_ostream &);
148 void mangleCXXRTTI(QualType T, raw_ostream &);
149 void mangleCXXRTTIName(QualType T, raw_ostream &);
150 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
151 raw_ostream &);
152 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
153 raw_ostream &);
154
155 void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
Richard Smith2fd1d7a2013-04-19 16:42:07 +0000156 void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &);
157 void mangleItaniumThreadLocalWrapper(const VarDecl *D, raw_ostream &);
Guy Benyei11169dd2012-12-18 14:30:41 +0000158
Guy Benyei11169dd2012-12-18 14:30:41 +0000159 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000160 // Lambda closure types are already numbered.
Guy Benyei11169dd2012-12-18 14:30:41 +0000161 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000162 if (RD->isLambda())
Guy Benyei11169dd2012-12-18 14:30:41 +0000163 return false;
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000164
165 // Anonymous tags are already numbered.
166 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
167 if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
168 return false;
169 }
170
171 // Use the canonical number for externally visible decls.
172 if (ND->isExternallyVisible()) {
173 unsigned discriminator = getASTContext().getManglingNumber(ND);
174 if (discriminator == 1)
175 return false;
176 disc = discriminator - 2;
177 return true;
178 }
179
180 // Make up a reasonable number for internal decls.
Guy Benyei11169dd2012-12-18 14:30:41 +0000181 unsigned &discriminator = Uniquifier[ND];
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000182 if (!discriminator) {
183 const DeclContext *DC = getEffectiveDeclContext(ND);
184 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
185 }
Guy Benyei11169dd2012-12-18 14:30:41 +0000186 if (discriminator == 1)
187 return false;
188 disc = discriminator-2;
189 return true;
190 }
191 /// @}
192};
193
194/// CXXNameMangler - Manage the mangling of a single name.
195class CXXNameMangler {
196 ItaniumMangleContext &Context;
197 raw_ostream &Out;
198
199 /// The "structor" is the top-level declaration being mangled, if
200 /// that's not a template specialization; otherwise it's the pattern
201 /// for that specialization.
202 const NamedDecl *Structor;
203 unsigned StructorType;
204
205 /// SeqID - The next subsitution sequence number.
206 unsigned SeqID;
207
208 class FunctionTypeDepthState {
209 unsigned Bits;
210
211 enum { InResultTypeMask = 1 };
212
213 public:
214 FunctionTypeDepthState() : Bits(0) {}
215
216 /// The number of function types we're inside.
217 unsigned getDepth() const {
218 return Bits >> 1;
219 }
220
221 /// True if we're in the return type of the innermost function type.
222 bool isInResultType() const {
223 return Bits & InResultTypeMask;
224 }
225
226 FunctionTypeDepthState push() {
227 FunctionTypeDepthState tmp = *this;
228 Bits = (Bits & ~InResultTypeMask) + 2;
229 return tmp;
230 }
231
232 void enterResultType() {
233 Bits |= InResultTypeMask;
234 }
235
236 void leaveResultType() {
237 Bits &= ~InResultTypeMask;
238 }
239
240 void pop(FunctionTypeDepthState saved) {
241 assert(getDepth() == saved.getDepth() + 1);
242 Bits = saved.Bits;
243 }
244
245 } FunctionTypeDepth;
246
247 llvm::DenseMap<uintptr_t, unsigned> Substitutions;
248
249 ASTContext &getASTContext() const { return Context.getASTContext(); }
250
251public:
252 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
253 const NamedDecl *D = 0)
254 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
255 SeqID(0) {
256 // These can't be mangled without a ctor type or dtor type.
257 assert(!D || (!isa<CXXDestructorDecl>(D) &&
258 !isa<CXXConstructorDecl>(D)));
259 }
260 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
261 const CXXConstructorDecl *D, CXXCtorType Type)
262 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
263 SeqID(0) { }
264 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
265 const CXXDestructorDecl *D, CXXDtorType Type)
266 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
267 SeqID(0) { }
268
269#if MANGLE_CHECKER
270 ~CXXNameMangler() {
271 if (Out.str()[0] == '\01')
272 return;
273
274 int status = 0;
275 char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
276 assert(status == 0 && "Could not demangle mangled name!");
277 free(result);
278 }
279#endif
280 raw_ostream &getStream() { return Out; }
281
282 void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
283 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
284 void mangleNumber(const llvm::APSInt &I);
285 void mangleNumber(int64_t Number);
286 void mangleFloat(const llvm::APFloat &F);
287 void mangleFunctionEncoding(const FunctionDecl *FD);
288 void mangleName(const NamedDecl *ND);
289 void mangleType(QualType T);
290 void mangleNameOrStandardSubstitution(const NamedDecl *ND);
291
292private:
293 bool mangleSubstitution(const NamedDecl *ND);
294 bool mangleSubstitution(QualType T);
295 bool mangleSubstitution(TemplateName Template);
296 bool mangleSubstitution(uintptr_t Ptr);
297
298 void mangleExistingSubstitution(QualType type);
299 void mangleExistingSubstitution(TemplateName name);
300
301 bool mangleStandardSubstitution(const NamedDecl *ND);
302
303 void addSubstitution(const NamedDecl *ND) {
304 ND = cast<NamedDecl>(ND->getCanonicalDecl());
305
306 addSubstitution(reinterpret_cast<uintptr_t>(ND));
307 }
308 void addSubstitution(QualType T);
309 void addSubstitution(TemplateName Template);
310 void addSubstitution(uintptr_t Ptr);
311
312 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
313 NamedDecl *firstQualifierLookup,
314 bool recursive = false);
315 void mangleUnresolvedName(NestedNameSpecifier *qualifier,
316 NamedDecl *firstQualifierLookup,
317 DeclarationName name,
318 unsigned KnownArity = UnknownArity);
319
320 void mangleName(const TemplateDecl *TD,
321 const TemplateArgument *TemplateArgs,
322 unsigned NumTemplateArgs);
323 void mangleUnqualifiedName(const NamedDecl *ND) {
324 mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
325 }
326 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
327 unsigned KnownArity);
328 void mangleUnscopedName(const NamedDecl *ND);
329 void mangleUnscopedTemplateName(const TemplateDecl *ND);
330 void mangleUnscopedTemplateName(TemplateName);
331 void mangleSourceName(const IdentifierInfo *II);
Eli Friedman95f50122013-07-02 17:52:28 +0000332 void mangleLocalName(const Decl *D);
333 void mangleBlockForPrefix(const BlockDecl *Block);
334 void mangleUnqualifiedBlock(const BlockDecl *Block);
Guy Benyei11169dd2012-12-18 14:30:41 +0000335 void mangleLambda(const CXXRecordDecl *Lambda);
336 void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
337 bool NoFunction=false);
338 void mangleNestedName(const TemplateDecl *TD,
339 const TemplateArgument *TemplateArgs,
340 unsigned NumTemplateArgs);
341 void manglePrefix(NestedNameSpecifier *qualifier);
342 void manglePrefix(const DeclContext *DC, bool NoFunction=false);
343 void manglePrefix(QualType type);
Eli Friedman86af13f02013-07-05 18:41:30 +0000344 void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
Guy Benyei11169dd2012-12-18 14:30:41 +0000345 void mangleTemplatePrefix(TemplateName Template);
346 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
347 void mangleQualifiers(Qualifiers Quals);
348 void mangleRefQualifier(RefQualifierKind RefQualifier);
349
350 void mangleObjCMethodName(const ObjCMethodDecl *MD);
351
352 // Declare manglers for every type class.
353#define ABSTRACT_TYPE(CLASS, PARENT)
354#define NON_CANONICAL_TYPE(CLASS, PARENT)
355#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
356#include "clang/AST/TypeNodes.def"
357
358 void mangleType(const TagType*);
359 void mangleType(TemplateName);
360 void mangleBareFunctionType(const FunctionType *T,
361 bool MangleReturnType);
362 void mangleNeonVectorType(const VectorType *T);
Tim Northover2fe823a2013-08-01 09:23:19 +0000363 void mangleAArch64NeonVectorType(const VectorType *T);
Guy Benyei11169dd2012-12-18 14:30:41 +0000364
365 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
366 void mangleMemberExpr(const Expr *base, bool isArrow,
367 NestedNameSpecifier *qualifier,
368 NamedDecl *firstQualifierLookup,
369 DeclarationName name,
370 unsigned knownArity);
371 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
372 void mangleCXXCtorType(CXXCtorType T);
373 void mangleCXXDtorType(CXXDtorType T);
374
375 void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
376 void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
377 unsigned NumTemplateArgs);
378 void mangleTemplateArgs(const TemplateArgumentList &AL);
379 void mangleTemplateArg(TemplateArgument A);
380
381 void mangleTemplateParameter(unsigned Index);
382
383 void mangleFunctionParam(const ParmVarDecl *parm);
384};
385
386}
387
Guy Benyei11169dd2012-12-18 14:30:41 +0000388bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
389 // In C, functions with no attributes never need to be mangled. Fastpath them.
390 if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
391 return false;
392
393 // Any decl can be declared with __asm("foo") on it, and this takes precedence
394 // over all other naming in the .o file.
395 if (D->hasAttr<AsmLabelAttr>())
396 return true;
397
Guy Benyei11169dd2012-12-18 14:30:41 +0000398 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000399 if (FD) {
400 LanguageLinkage L = FD->getLanguageLinkage();
401 // Overloadable functions need mangling.
402 if (FD->hasAttr<OverloadableAttr>())
403 return true;
404
Rafael Espindola3e0e33d2013-02-14 15:38:59 +0000405 // "main" is not mangled.
406 if (FD->isMain())
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000407 return false;
408
409 // C++ functions and those whose names are not a simple identifier need
410 // mangling.
411 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
412 return true;
Rafael Espindola46d2b6b2013-02-14 03:31:26 +0000413
Rafael Espindola3e0e33d2013-02-14 15:38:59 +0000414 // C functions are not mangled.
415 if (L == CLanguageLinkage)
416 return false;
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000417 }
Guy Benyei11169dd2012-12-18 14:30:41 +0000418
419 // Otherwise, no mangling is done outside C++ mode.
420 if (!getASTContext().getLangOpts().CPlusPlus)
421 return false;
422
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000423 const VarDecl *VD = dyn_cast<VarDecl>(D);
424 if (VD) {
425 // C variables are not mangled.
426 if (VD->isExternC())
427 return false;
428
429 // Variables at global scope with non-internal linkage are not mangled
Guy Benyei11169dd2012-12-18 14:30:41 +0000430 const DeclContext *DC = getEffectiveDeclContext(D);
431 // Check for extern variable declared locally.
432 if (DC->isFunctionOrMethod() && D->hasLinkage())
433 while (!DC->isNamespace() && !DC->isTranslationUnit())
434 DC = getEffectiveParentContext(DC);
Rafael Espindola3ae00052013-05-13 00:12:11 +0000435 if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage)
Guy Benyei11169dd2012-12-18 14:30:41 +0000436 return false;
437 }
438
Guy Benyei11169dd2012-12-18 14:30:41 +0000439 return true;
440}
441
442void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
443 // Any decl can be declared with __asm("foo") on it, and this takes precedence
444 // over all other naming in the .o file.
445 if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
446 // If we have an asm name, then we use it as the mangling.
447
448 // Adding the prefix can cause problems when one file has a "foo" and
449 // another has a "\01foo". That is known to happen on ELF with the
450 // tricks normally used for producing aliases (PR9177). Fortunately the
451 // llvm mangler on ELF is a nop, so we can just avoid adding the \01
452 // marker. We also avoid adding the marker if this is an alias for an
453 // LLVM intrinsic.
454 StringRef UserLabelPrefix =
455 getASTContext().getTargetInfo().getUserLabelPrefix();
456 if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
457 Out << '\01'; // LLVM IR Marker for __asm("foo")
458
459 Out << ALA->getLabel();
460 return;
461 }
462
463 // <mangled-name> ::= _Z <encoding>
464 // ::= <data name>
465 // ::= <special-name>
466 Out << Prefix;
467 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
468 mangleFunctionEncoding(FD);
469 else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
470 mangleName(VD);
471 else
472 mangleName(cast<FieldDecl>(D));
473}
474
475void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
476 // <encoding> ::= <function name> <bare-function-type>
477 mangleName(FD);
478
479 // Don't mangle in the type if this isn't a decl we should typically mangle.
480 if (!Context.shouldMangleDeclName(FD))
481 return;
482
483 // Whether the mangling of a function type includes the return type depends on
484 // the context and the nature of the function. The rules for deciding whether
485 // the return type is included are:
486 //
487 // 1. Template functions (names or types) have return types encoded, with
488 // the exceptions listed below.
489 // 2. Function types not appearing as part of a function name mangling,
490 // e.g. parameters, pointer types, etc., have return type encoded, with the
491 // exceptions listed below.
492 // 3. Non-template function names do not have return types encoded.
493 //
494 // The exceptions mentioned in (1) and (2) above, for which the return type is
495 // never included, are
496 // 1. Constructors.
497 // 2. Destructors.
498 // 3. Conversion operator functions, e.g. operator int.
499 bool MangleReturnType = false;
500 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
501 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
502 isa<CXXConversionDecl>(FD)))
503 MangleReturnType = true;
504
505 // Mangle the type of the primary template.
506 FD = PrimaryTemplate->getTemplatedDecl();
507 }
508
509 mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
510 MangleReturnType);
511}
512
513static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
514 while (isa<LinkageSpecDecl>(DC)) {
515 DC = getEffectiveParentContext(DC);
516 }
517
518 return DC;
519}
520
521/// isStd - Return whether a given namespace is the 'std' namespace.
522static bool isStd(const NamespaceDecl *NS) {
523 if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
524 ->isTranslationUnit())
525 return false;
526
527 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
528 return II && II->isStr("std");
529}
530
531// isStdNamespace - Return whether a given decl context is a toplevel 'std'
532// namespace.
533static bool isStdNamespace(const DeclContext *DC) {
534 if (!DC->isNamespace())
535 return false;
536
537 return isStd(cast<NamespaceDecl>(DC));
538}
539
540static const TemplateDecl *
541isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
542 // Check if we have a function template.
543 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
544 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
545 TemplateArgs = FD->getTemplateSpecializationArgs();
546 return TD;
547 }
548 }
549
550 // Check if we have a class template.
551 if (const ClassTemplateSpecializationDecl *Spec =
552 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
553 TemplateArgs = &Spec->getTemplateArgs();
554 return Spec->getSpecializedTemplate();
555 }
556
557 return 0;
558}
559
560static bool isLambda(const NamedDecl *ND) {
561 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
562 if (!Record)
563 return false;
564
565 return Record->isLambda();
566}
567
568void CXXNameMangler::mangleName(const NamedDecl *ND) {
569 // <name> ::= <nested-name>
570 // ::= <unscoped-name>
571 // ::= <unscoped-template-name> <template-args>
572 // ::= <local-name>
573 //
574 const DeclContext *DC = getEffectiveDeclContext(ND);
575
576 // If this is an extern variable declared locally, the relevant DeclContext
577 // is that of the containing namespace, or the translation unit.
578 // FIXME: This is a hack; extern variables declared locally should have
579 // a proper semantic declaration context!
Eli Friedman95f50122013-07-02 17:52:28 +0000580 if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
Guy Benyei11169dd2012-12-18 14:30:41 +0000581 while (!DC->isNamespace() && !DC->isTranslationUnit())
582 DC = getEffectiveParentContext(DC);
583 else if (GetLocalClassDecl(ND)) {
584 mangleLocalName(ND);
585 return;
586 }
587
588 DC = IgnoreLinkageSpecDecls(DC);
589
590 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
591 // Check if we have a template.
592 const TemplateArgumentList *TemplateArgs = 0;
593 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
594 mangleUnscopedTemplateName(TD);
595 mangleTemplateArgs(*TemplateArgs);
596 return;
597 }
598
599 mangleUnscopedName(ND);
600 return;
601 }
602
Eli Friedman95f50122013-07-02 17:52:28 +0000603 if (isLocalContainerContext(DC)) {
Guy Benyei11169dd2012-12-18 14:30:41 +0000604 mangleLocalName(ND);
605 return;
606 }
607
608 mangleNestedName(ND, DC);
609}
610void CXXNameMangler::mangleName(const TemplateDecl *TD,
611 const TemplateArgument *TemplateArgs,
612 unsigned NumTemplateArgs) {
613 const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
614
615 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
616 mangleUnscopedTemplateName(TD);
617 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
618 } else {
619 mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
620 }
621}
622
623void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
624 // <unscoped-name> ::= <unqualified-name>
625 // ::= St <unqualified-name> # ::std::
626
627 if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
628 Out << "St";
629
630 mangleUnqualifiedName(ND);
631}
632
633void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
634 // <unscoped-template-name> ::= <unscoped-name>
635 // ::= <substitution>
636 if (mangleSubstitution(ND))
637 return;
638
639 // <template-template-param> ::= <template-param>
640 if (const TemplateTemplateParmDecl *TTP
641 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
642 mangleTemplateParameter(TTP->getIndex());
643 return;
644 }
645
646 mangleUnscopedName(ND->getTemplatedDecl());
647 addSubstitution(ND);
648}
649
650void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
651 // <unscoped-template-name> ::= <unscoped-name>
652 // ::= <substitution>
653 if (TemplateDecl *TD = Template.getAsTemplateDecl())
654 return mangleUnscopedTemplateName(TD);
655
656 if (mangleSubstitution(Template))
657 return;
658
659 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
660 assert(Dependent && "Not a dependent template name?");
661 if (const IdentifierInfo *Id = Dependent->getIdentifier())
662 mangleSourceName(Id);
663 else
664 mangleOperatorName(Dependent->getOperator(), UnknownArity);
665
666 addSubstitution(Template);
667}
668
669void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
670 // ABI:
671 // Floating-point literals are encoded using a fixed-length
672 // lowercase hexadecimal string corresponding to the internal
673 // representation (IEEE on Itanium), high-order bytes first,
674 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
675 // on Itanium.
676 // The 'without leading zeroes' thing seems to be an editorial
677 // mistake; see the discussion on cxx-abi-dev beginning on
678 // 2012-01-16.
679
680 // Our requirements here are just barely weird enough to justify
681 // using a custom algorithm instead of post-processing APInt::toString().
682
683 llvm::APInt valueBits = f.bitcastToAPInt();
684 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
685 assert(numCharacters != 0);
686
687 // Allocate a buffer of the right number of characters.
Dmitri Gribenkof8579502013-01-12 19:30:44 +0000688 SmallVector<char, 20> buffer;
Guy Benyei11169dd2012-12-18 14:30:41 +0000689 buffer.set_size(numCharacters);
690
691 // Fill the buffer left-to-right.
692 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
693 // The bit-index of the next hex digit.
694 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
695
696 // Project out 4 bits starting at 'digitIndex'.
697 llvm::integerPart hexDigit
698 = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
699 hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
700 hexDigit &= 0xF;
701
702 // Map that over to a lowercase hex digit.
703 static const char charForHex[16] = {
704 '0', '1', '2', '3', '4', '5', '6', '7',
705 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
706 };
707 buffer[stringIndex] = charForHex[hexDigit];
708 }
709
710 Out.write(buffer.data(), numCharacters);
711}
712
713void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
714 if (Value.isSigned() && Value.isNegative()) {
715 Out << 'n';
716 Value.abs().print(Out, /*signed*/ false);
717 } else {
718 Value.print(Out, /*signed*/ false);
719 }
720}
721
722void CXXNameMangler::mangleNumber(int64_t Number) {
723 // <number> ::= [n] <non-negative decimal integer>
724 if (Number < 0) {
725 Out << 'n';
726 Number = -Number;
727 }
728
729 Out << Number;
730}
731
732void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
733 // <call-offset> ::= h <nv-offset> _
734 // ::= v <v-offset> _
735 // <nv-offset> ::= <offset number> # non-virtual base override
736 // <v-offset> ::= <offset number> _ <virtual offset number>
737 // # virtual base override, with vcall offset
738 if (!Virtual) {
739 Out << 'h';
740 mangleNumber(NonVirtual);
741 Out << '_';
742 return;
743 }
744
745 Out << 'v';
746 mangleNumber(NonVirtual);
747 Out << '_';
748 mangleNumber(Virtual);
749 Out << '_';
750}
751
752void CXXNameMangler::manglePrefix(QualType type) {
753 if (const TemplateSpecializationType *TST =
754 type->getAs<TemplateSpecializationType>()) {
755 if (!mangleSubstitution(QualType(TST, 0))) {
756 mangleTemplatePrefix(TST->getTemplateName());
757
758 // FIXME: GCC does not appear to mangle the template arguments when
759 // the template in question is a dependent template name. Should we
760 // emulate that badness?
761 mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
762 addSubstitution(QualType(TST, 0));
763 }
764 } else if (const DependentTemplateSpecializationType *DTST
765 = type->getAs<DependentTemplateSpecializationType>()) {
766 TemplateName Template
767 = getASTContext().getDependentTemplateName(DTST->getQualifier(),
768 DTST->getIdentifier());
769 mangleTemplatePrefix(Template);
770
771 // FIXME: GCC does not appear to mangle the template arguments when
772 // the template in question is a dependent template name. Should we
773 // emulate that badness?
774 mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
775 } else {
776 // We use the QualType mangle type variant here because it handles
777 // substitutions.
778 mangleType(type);
779 }
780}
781
782/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
783///
784/// \param firstQualifierLookup - the entity found by unqualified lookup
785/// for the first name in the qualifier, if this is for a member expression
786/// \param recursive - true if this is being called recursively,
787/// i.e. if there is more prefix "to the right".
788void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
789 NamedDecl *firstQualifierLookup,
790 bool recursive) {
791
792 // x, ::x
793 // <unresolved-name> ::= [gs] <base-unresolved-name>
794
795 // T::x / decltype(p)::x
796 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
797
798 // T::N::x /decltype(p)::N::x
799 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
800 // <base-unresolved-name>
801
802 // A::x, N::y, A<T>::z; "gs" means leading "::"
803 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
804 // <base-unresolved-name>
805
806 switch (qualifier->getKind()) {
807 case NestedNameSpecifier::Global:
808 Out << "gs";
809
810 // We want an 'sr' unless this is the entire NNS.
811 if (recursive)
812 Out << "sr";
813
814 // We never want an 'E' here.
815 return;
816
817 case NestedNameSpecifier::Namespace:
818 if (qualifier->getPrefix())
819 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
820 /*recursive*/ true);
821 else
822 Out << "sr";
823 mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
824 break;
825 case NestedNameSpecifier::NamespaceAlias:
826 if (qualifier->getPrefix())
827 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
828 /*recursive*/ true);
829 else
830 Out << "sr";
831 mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
832 break;
833
834 case NestedNameSpecifier::TypeSpec:
835 case NestedNameSpecifier::TypeSpecWithTemplate: {
836 const Type *type = qualifier->getAsType();
837
838 // We only want to use an unresolved-type encoding if this is one of:
839 // - a decltype
840 // - a template type parameter
841 // - a template template parameter with arguments
842 // In all of these cases, we should have no prefix.
843 if (qualifier->getPrefix()) {
844 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
845 /*recursive*/ true);
846 } else {
847 // Otherwise, all the cases want this.
848 Out << "sr";
849 }
850
851 // Only certain other types are valid as prefixes; enumerate them.
852 switch (type->getTypeClass()) {
853 case Type::Builtin:
854 case Type::Complex:
Reid Kleckner8a365022013-06-24 17:51:48 +0000855 case Type::Decayed:
Guy Benyei11169dd2012-12-18 14:30:41 +0000856 case Type::Pointer:
857 case Type::BlockPointer:
858 case Type::LValueReference:
859 case Type::RValueReference:
860 case Type::MemberPointer:
861 case Type::ConstantArray:
862 case Type::IncompleteArray:
863 case Type::VariableArray:
864 case Type::DependentSizedArray:
865 case Type::DependentSizedExtVector:
866 case Type::Vector:
867 case Type::ExtVector:
868 case Type::FunctionProto:
869 case Type::FunctionNoProto:
870 case Type::Enum:
871 case Type::Paren:
872 case Type::Elaborated:
873 case Type::Attributed:
874 case Type::Auto:
875 case Type::PackExpansion:
876 case Type::ObjCObject:
877 case Type::ObjCInterface:
878 case Type::ObjCObjectPointer:
879 case Type::Atomic:
880 llvm_unreachable("type is illegal as a nested name specifier");
881
882 case Type::SubstTemplateTypeParmPack:
883 // FIXME: not clear how to mangle this!
884 // template <class T...> class A {
885 // template <class U...> void foo(decltype(T::foo(U())) x...);
886 // };
887 Out << "_SUBSTPACK_";
888 break;
889
890 // <unresolved-type> ::= <template-param>
891 // ::= <decltype>
892 // ::= <template-template-param> <template-args>
893 // (this last is not official yet)
894 case Type::TypeOfExpr:
895 case Type::TypeOf:
896 case Type::Decltype:
897 case Type::TemplateTypeParm:
898 case Type::UnaryTransform:
899 case Type::SubstTemplateTypeParm:
900 unresolvedType:
901 assert(!qualifier->getPrefix());
902
903 // We only get here recursively if we're followed by identifiers.
904 if (recursive) Out << 'N';
905
906 // This seems to do everything we want. It's not really
907 // sanctioned for a substituted template parameter, though.
908 mangleType(QualType(type, 0));
909
910 // We never want to print 'E' directly after an unresolved-type,
911 // so we return directly.
912 return;
913
914 case Type::Typedef:
915 mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
916 break;
917
918 case Type::UnresolvedUsing:
919 mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
920 ->getIdentifier());
921 break;
922
923 case Type::Record:
924 mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
925 break;
926
927 case Type::TemplateSpecialization: {
928 const TemplateSpecializationType *tst
929 = cast<TemplateSpecializationType>(type);
930 TemplateName name = tst->getTemplateName();
931 switch (name.getKind()) {
932 case TemplateName::Template:
933 case TemplateName::QualifiedTemplate: {
934 TemplateDecl *temp = name.getAsTemplateDecl();
935
936 // If the base is a template template parameter, this is an
937 // unresolved type.
938 assert(temp && "no template for template specialization type");
939 if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
940
941 mangleSourceName(temp->getIdentifier());
942 break;
943 }
944
945 case TemplateName::OverloadedTemplate:
946 case TemplateName::DependentTemplate:
947 llvm_unreachable("invalid base for a template specialization type");
948
949 case TemplateName::SubstTemplateTemplateParm: {
950 SubstTemplateTemplateParmStorage *subst
951 = name.getAsSubstTemplateTemplateParm();
952 mangleExistingSubstitution(subst->getReplacement());
953 break;
954 }
955
956 case TemplateName::SubstTemplateTemplateParmPack: {
957 // FIXME: not clear how to mangle this!
958 // template <template <class U> class T...> class A {
959 // template <class U...> void foo(decltype(T<U>::foo) x...);
960 // };
961 Out << "_SUBSTPACK_";
962 break;
963 }
964 }
965
966 mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
967 break;
968 }
969
970 case Type::InjectedClassName:
971 mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
972 ->getIdentifier());
973 break;
974
975 case Type::DependentName:
976 mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
977 break;
978
979 case Type::DependentTemplateSpecialization: {
980 const DependentTemplateSpecializationType *tst
981 = cast<DependentTemplateSpecializationType>(type);
982 mangleSourceName(tst->getIdentifier());
983 mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
984 break;
985 }
986 }
987 break;
988 }
989
990 case NestedNameSpecifier::Identifier:
991 // Member expressions can have these without prefixes.
992 if (qualifier->getPrefix()) {
993 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
994 /*recursive*/ true);
995 } else if (firstQualifierLookup) {
996
997 // Try to make a proper qualifier out of the lookup result, and
998 // then just recurse on that.
999 NestedNameSpecifier *newQualifier;
1000 if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
1001 QualType type = getASTContext().getTypeDeclType(typeDecl);
1002
1003 // Pretend we had a different nested name specifier.
1004 newQualifier = NestedNameSpecifier::Create(getASTContext(),
1005 /*prefix*/ 0,
1006 /*template*/ false,
1007 type.getTypePtr());
1008 } else if (NamespaceDecl *nspace =
1009 dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
1010 newQualifier = NestedNameSpecifier::Create(getASTContext(),
1011 /*prefix*/ 0,
1012 nspace);
1013 } else if (NamespaceAliasDecl *alias =
1014 dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
1015 newQualifier = NestedNameSpecifier::Create(getASTContext(),
1016 /*prefix*/ 0,
1017 alias);
1018 } else {
1019 // No sensible mangling to do here.
1020 newQualifier = 0;
1021 }
1022
1023 if (newQualifier)
1024 return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
1025
1026 } else {
1027 Out << "sr";
1028 }
1029
1030 mangleSourceName(qualifier->getAsIdentifier());
1031 break;
1032 }
1033
1034 // If this was the innermost part of the NNS, and we fell out to
1035 // here, append an 'E'.
1036 if (!recursive)
1037 Out << 'E';
1038}
1039
1040/// Mangle an unresolved-name, which is generally used for names which
1041/// weren't resolved to specific entities.
1042void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1043 NamedDecl *firstQualifierLookup,
1044 DeclarationName name,
1045 unsigned knownArity) {
1046 if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1047 mangleUnqualifiedName(0, name, knownArity);
1048}
1049
1050static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1051 assert(RD->isAnonymousStructOrUnion() &&
1052 "Expected anonymous struct or union!");
1053
1054 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1055 I != E; ++I) {
1056 if (I->getIdentifier())
1057 return *I;
1058
1059 if (const RecordType *RT = I->getType()->getAs<RecordType>())
1060 if (const FieldDecl *NamedDataMember =
1061 FindFirstNamedDataMember(RT->getDecl()))
1062 return NamedDataMember;
1063 }
1064
1065 // We didn't find a named data member.
1066 return 0;
1067}
1068
1069void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1070 DeclarationName Name,
1071 unsigned KnownArity) {
1072 // <unqualified-name> ::= <operator-name>
1073 // ::= <ctor-dtor-name>
1074 // ::= <source-name>
1075 switch (Name.getNameKind()) {
1076 case DeclarationName::Identifier: {
1077 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1078 // We must avoid conflicts between internally- and externally-
1079 // linked variable and function declaration names in the same TU:
1080 // void test() { extern void foo(); }
1081 // static void foo();
1082 // This naming convention is the same as that followed by GCC,
1083 // though it shouldn't actually matter.
Rafael Espindola3ae00052013-05-13 00:12:11 +00001084 if (ND && ND->getFormalLinkage() == InternalLinkage &&
Guy Benyei11169dd2012-12-18 14:30:41 +00001085 getEffectiveDeclContext(ND)->isFileContext())
1086 Out << 'L';
1087
1088 mangleSourceName(II);
1089 break;
1090 }
1091
1092 // Otherwise, an anonymous entity. We must have a declaration.
1093 assert(ND && "mangling empty name without declaration");
1094
1095 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1096 if (NS->isAnonymousNamespace()) {
1097 // This is how gcc mangles these names.
1098 Out << "12_GLOBAL__N_1";
1099 break;
1100 }
1101 }
1102
1103 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1104 // We must have an anonymous union or struct declaration.
1105 const RecordDecl *RD =
1106 cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1107
1108 // Itanium C++ ABI 5.1.2:
1109 //
1110 // For the purposes of mangling, the name of an anonymous union is
1111 // considered to be the name of the first named data member found by a
1112 // pre-order, depth-first, declaration-order walk of the data members of
1113 // the anonymous union. If there is no such data member (i.e., if all of
1114 // the data members in the union are unnamed), then there is no way for
1115 // a program to refer to the anonymous union, and there is therefore no
1116 // need to mangle its name.
1117 const FieldDecl *FD = FindFirstNamedDataMember(RD);
1118
1119 // It's actually possible for various reasons for us to get here
1120 // with an empty anonymous struct / union. Fortunately, it
1121 // doesn't really matter what name we generate.
1122 if (!FD) break;
1123 assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1124
1125 mangleSourceName(FD->getIdentifier());
1126 break;
1127 }
John McCall924046f2013-04-10 06:08:21 +00001128
1129 // Class extensions have no name as a category, and it's possible
1130 // for them to be the semantic parent of certain declarations
1131 // (primarily, tag decls defined within declarations). Such
1132 // declarations will always have internal linkage, so the name
1133 // doesn't really matter, but we shouldn't crash on them. For
1134 // safety, just handle all ObjC containers here.
1135 if (isa<ObjCContainerDecl>(ND))
1136 break;
Guy Benyei11169dd2012-12-18 14:30:41 +00001137
1138 // We must have an anonymous struct.
1139 const TagDecl *TD = cast<TagDecl>(ND);
1140 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1141 assert(TD->getDeclContext() == D->getDeclContext() &&
1142 "Typedef should not be in another decl context!");
1143 assert(D->getDeclName().getAsIdentifierInfo() &&
1144 "Typedef was not named!");
1145 mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1146 break;
1147 }
1148
1149 // <unnamed-type-name> ::= <closure-type-name>
1150 //
1151 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1152 // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
1153 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1154 if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1155 mangleLambda(Record);
1156 break;
1157 }
1158 }
1159
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001160 if (TD->isExternallyVisible()) {
1161 unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
Guy Benyei11169dd2012-12-18 14:30:41 +00001162 Out << "Ut";
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001163 if (UnnamedMangle > 1)
1164 Out << llvm::utostr(UnnamedMangle - 2);
Guy Benyei11169dd2012-12-18 14:30:41 +00001165 Out << '_';
1166 break;
1167 }
1168
1169 // Get a unique id for the anonymous struct.
1170 uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1171
1172 // Mangle it as a source name in the form
1173 // [n] $_<id>
1174 // where n is the length of the string.
1175 SmallString<8> Str;
1176 Str += "$_";
1177 Str += llvm::utostr(AnonStructId);
1178
1179 Out << Str.size();
1180 Out << Str.str();
1181 break;
1182 }
1183
1184 case DeclarationName::ObjCZeroArgSelector:
1185 case DeclarationName::ObjCOneArgSelector:
1186 case DeclarationName::ObjCMultiArgSelector:
1187 llvm_unreachable("Can't mangle Objective-C selector names here!");
1188
1189 case DeclarationName::CXXConstructorName:
1190 if (ND == Structor)
1191 // If the named decl is the C++ constructor we're mangling, use the type
1192 // we were given.
1193 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1194 else
1195 // Otherwise, use the complete constructor name. This is relevant if a
1196 // class with a constructor is declared within a constructor.
1197 mangleCXXCtorType(Ctor_Complete);
1198 break;
1199
1200 case DeclarationName::CXXDestructorName:
1201 if (ND == Structor)
1202 // If the named decl is the C++ destructor we're mangling, use the type we
1203 // were given.
1204 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1205 else
1206 // Otherwise, use the complete destructor name. This is relevant if a
1207 // class with a destructor is declared within a destructor.
1208 mangleCXXDtorType(Dtor_Complete);
1209 break;
1210
1211 case DeclarationName::CXXConversionFunctionName:
1212 // <operator-name> ::= cv <type> # (cast)
1213 Out << "cv";
1214 mangleType(Name.getCXXNameType());
1215 break;
1216
1217 case DeclarationName::CXXOperatorName: {
1218 unsigned Arity;
1219 if (ND) {
1220 Arity = cast<FunctionDecl>(ND)->getNumParams();
1221
1222 // If we have a C++ member function, we need to include the 'this' pointer.
1223 // FIXME: This does not make sense for operators that are static, but their
1224 // names stay the same regardless of the arity (operator new for instance).
1225 if (isa<CXXMethodDecl>(ND))
1226 Arity++;
1227 } else
1228 Arity = KnownArity;
1229
1230 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1231 break;
1232 }
1233
1234 case DeclarationName::CXXLiteralOperatorName:
1235 // FIXME: This mangling is not yet official.
1236 Out << "li";
1237 mangleSourceName(Name.getCXXLiteralIdentifier());
1238 break;
1239
1240 case DeclarationName::CXXUsingDirective:
1241 llvm_unreachable("Can't mangle a using directive name!");
1242 }
1243}
1244
1245void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1246 // <source-name> ::= <positive length number> <identifier>
1247 // <number> ::= [n] <non-negative decimal integer>
1248 // <identifier> ::= <unqualified source code identifier>
1249 Out << II->getLength() << II->getName();
1250}
1251
1252void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1253 const DeclContext *DC,
1254 bool NoFunction) {
1255 // <nested-name>
1256 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1257 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1258 // <template-args> E
1259
1260 Out << 'N';
1261 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1262 mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
1263 mangleRefQualifier(Method->getRefQualifier());
1264 }
1265
1266 // Check if we have a template.
1267 const TemplateArgumentList *TemplateArgs = 0;
1268 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
Eli Friedman86af13f02013-07-05 18:41:30 +00001269 mangleTemplatePrefix(TD, NoFunction);
Guy Benyei11169dd2012-12-18 14:30:41 +00001270 mangleTemplateArgs(*TemplateArgs);
1271 }
1272 else {
1273 manglePrefix(DC, NoFunction);
1274 mangleUnqualifiedName(ND);
1275 }
1276
1277 Out << 'E';
1278}
1279void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1280 const TemplateArgument *TemplateArgs,
1281 unsigned NumTemplateArgs) {
1282 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1283
1284 Out << 'N';
1285
1286 mangleTemplatePrefix(TD);
1287 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1288
1289 Out << 'E';
1290}
1291
Eli Friedman95f50122013-07-02 17:52:28 +00001292void CXXNameMangler::mangleLocalName(const Decl *D) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001293 // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1294 // := Z <function encoding> E s [<discriminator>]
1295 // <local-name> := Z <function encoding> E d [ <parameter number> ]
1296 // _ <entity name>
1297 // <discriminator> := _ <non-negative number>
Eli Friedman95f50122013-07-02 17:52:28 +00001298 assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
Eli Friedmaneecc09a2013-07-05 20:27:40 +00001299 const RecordDecl *RD = GetLocalClassDecl(D);
Eli Friedman95f50122013-07-02 17:52:28 +00001300 const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
Guy Benyei11169dd2012-12-18 14:30:41 +00001301
1302 Out << 'Z';
1303
Eli Friedman92821742013-07-02 02:01:18 +00001304 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1305 mangleObjCMethodName(MD);
1306 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
Eli Friedman95f50122013-07-02 17:52:28 +00001307 mangleBlockForPrefix(BD);
Eli Friedman92821742013-07-02 02:01:18 +00001308 else
1309 mangleFunctionEncoding(cast<FunctionDecl>(DC));
Guy Benyei11169dd2012-12-18 14:30:41 +00001310
Eli Friedman92821742013-07-02 02:01:18 +00001311 Out << 'E';
1312
1313 if (RD) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001314 // The parameter number is omitted for the last parameter, 0 for the
1315 // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1316 // <entity name> will of course contain a <closure-type-name>: Its
1317 // numbering will be local to the particular argument in which it appears
1318 // -- other default arguments do not affect its encoding.
Eli Friedmaneecc09a2013-07-05 20:27:40 +00001319 const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1320 if (CXXRD->isLambda()) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001321 if (const ParmVarDecl *Parm
Eli Friedmaneecc09a2013-07-05 20:27:40 +00001322 = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001323 if (const FunctionDecl *Func
1324 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1325 Out << 'd';
1326 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1327 if (Num > 1)
1328 mangleNumber(Num - 2);
1329 Out << '_';
Guy Benyei11169dd2012-12-18 14:30:41 +00001330 }
1331 }
1332 }
1333
1334 // Mangle the name relative to the closest enclosing function.
Eli Friedman95f50122013-07-02 17:52:28 +00001335 // equality ok because RD derived from ND above
1336 if (D == RD) {
1337 mangleUnqualifiedName(RD);
1338 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1339 manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1340 mangleUnqualifiedBlock(BD);
1341 } else {
1342 const NamedDecl *ND = cast<NamedDecl>(D);
Eli Friedman92821742013-07-02 02:01:18 +00001343 mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
Eli Friedman95f50122013-07-02 17:52:28 +00001344 }
Eli Friedman0cd23352013-07-10 01:33:19 +00001345 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1346 // Mangle a block in a default parameter; see above explanation for
1347 // lambdas.
1348 if (const ParmVarDecl *Parm
1349 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1350 if (const FunctionDecl *Func
1351 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1352 Out << 'd';
1353 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1354 if (Num > 1)
1355 mangleNumber(Num - 2);
1356 Out << '_';
1357 }
1358 }
1359
1360 mangleUnqualifiedBlock(BD);
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001361 } else {
Eli Friedman0cd23352013-07-10 01:33:19 +00001362 mangleUnqualifiedName(cast<NamedDecl>(D));
Guy Benyei11169dd2012-12-18 14:30:41 +00001363 }
Eli Friedman0cd23352013-07-10 01:33:19 +00001364
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001365 if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1366 unsigned disc;
1367 if (Context.getNextDiscriminator(ND, disc)) {
1368 if (disc < 10)
1369 Out << '_' << disc;
1370 else
1371 Out << "__" << disc << '_';
1372 }
1373 }
Eli Friedman95f50122013-07-02 17:52:28 +00001374}
1375
1376void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1377 if (GetLocalClassDecl(Block)) {
1378 mangleLocalName(Block);
1379 return;
1380 }
1381 const DeclContext *DC = getEffectiveDeclContext(Block);
1382 if (isLocalContainerContext(DC)) {
1383 mangleLocalName(Block);
1384 return;
1385 }
1386 manglePrefix(getEffectiveDeclContext(Block));
1387 mangleUnqualifiedBlock(Block);
1388}
1389
1390void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1391 if (Decl *Context = Block->getBlockManglingContextDecl()) {
1392 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1393 Context->getDeclContext()->isRecord()) {
1394 if (const IdentifierInfo *Name
1395 = cast<NamedDecl>(Context)->getIdentifier()) {
1396 mangleSourceName(Name);
1397 Out << 'M';
1398 }
1399 }
1400 }
1401
1402 // If we have a block mangling number, use it.
1403 unsigned Number = Block->getBlockManglingNumber();
1404 // Otherwise, just make up a number. It doesn't matter what it is because
1405 // the symbol in question isn't externally visible.
1406 if (!Number)
1407 Number = Context.getBlockId(Block, false);
1408 Out << "Ub";
1409 if (Number > 1)
1410 Out << Number - 2;
1411 Out << '_';
Guy Benyei11169dd2012-12-18 14:30:41 +00001412}
1413
1414void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1415 // If the context of a closure type is an initializer for a class member
1416 // (static or nonstatic), it is encoded in a qualified name with a final
1417 // <prefix> of the form:
1418 //
1419 // <data-member-prefix> := <member source-name> M
1420 //
1421 // Technically, the data-member-prefix is part of the <prefix>. However,
1422 // since a closure type will always be mangled with a prefix, it's easier
1423 // to emit that last part of the prefix here.
1424 if (Decl *Context = Lambda->getLambdaContextDecl()) {
1425 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1426 Context->getDeclContext()->isRecord()) {
1427 if (const IdentifierInfo *Name
1428 = cast<NamedDecl>(Context)->getIdentifier()) {
1429 mangleSourceName(Name);
1430 Out << 'M';
1431 }
1432 }
1433 }
1434
1435 Out << "Ul";
1436 const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1437 getAs<FunctionProtoType>();
1438 mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1439 Out << "E";
1440
1441 // The number is omitted for the first closure type with a given
1442 // <lambda-sig> in a given context; it is n-2 for the nth closure type
1443 // (in lexical order) with that same <lambda-sig> and context.
1444 //
1445 // The AST keeps track of the number for us.
1446 unsigned Number = Lambda->getLambdaManglingNumber();
1447 assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1448 if (Number > 1)
1449 mangleNumber(Number - 2);
1450 Out << '_';
1451}
1452
1453void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1454 switch (qualifier->getKind()) {
1455 case NestedNameSpecifier::Global:
1456 // nothing
1457 return;
1458
1459 case NestedNameSpecifier::Namespace:
1460 mangleName(qualifier->getAsNamespace());
1461 return;
1462
1463 case NestedNameSpecifier::NamespaceAlias:
1464 mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1465 return;
1466
1467 case NestedNameSpecifier::TypeSpec:
1468 case NestedNameSpecifier::TypeSpecWithTemplate:
1469 manglePrefix(QualType(qualifier->getAsType(), 0));
1470 return;
1471
1472 case NestedNameSpecifier::Identifier:
1473 // Member expressions can have these without prefixes, but that
1474 // should end up in mangleUnresolvedPrefix instead.
1475 assert(qualifier->getPrefix());
1476 manglePrefix(qualifier->getPrefix());
1477
1478 mangleSourceName(qualifier->getAsIdentifier());
1479 return;
1480 }
1481
1482 llvm_unreachable("unexpected nested name specifier");
1483}
1484
1485void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1486 // <prefix> ::= <prefix> <unqualified-name>
1487 // ::= <template-prefix> <template-args>
1488 // ::= <template-param>
1489 // ::= # empty
1490 // ::= <substitution>
1491
1492 DC = IgnoreLinkageSpecDecls(DC);
1493
1494 if (DC->isTranslationUnit())
1495 return;
1496
Eli Friedman95f50122013-07-02 17:52:28 +00001497 if (NoFunction && isLocalContainerContext(DC))
1498 return;
Eli Friedman7e346a82013-07-01 20:22:57 +00001499
Eli Friedman95f50122013-07-02 17:52:28 +00001500 assert(!isLocalContainerContext(DC));
1501
Guy Benyei11169dd2012-12-18 14:30:41 +00001502 const NamedDecl *ND = cast<NamedDecl>(DC);
1503 if (mangleSubstitution(ND))
1504 return;
1505
1506 // Check if we have a template.
1507 const TemplateArgumentList *TemplateArgs = 0;
1508 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1509 mangleTemplatePrefix(TD);
1510 mangleTemplateArgs(*TemplateArgs);
Eli Friedman95f50122013-07-02 17:52:28 +00001511 } else {
Guy Benyei11169dd2012-12-18 14:30:41 +00001512 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1513 mangleUnqualifiedName(ND);
1514 }
1515
1516 addSubstitution(ND);
1517}
1518
1519void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1520 // <template-prefix> ::= <prefix> <template unqualified-name>
1521 // ::= <template-param>
1522 // ::= <substitution>
1523 if (TemplateDecl *TD = Template.getAsTemplateDecl())
1524 return mangleTemplatePrefix(TD);
1525
1526 if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1527 manglePrefix(Qualified->getQualifier());
1528
1529 if (OverloadedTemplateStorage *Overloaded
1530 = Template.getAsOverloadedTemplate()) {
1531 mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1532 UnknownArity);
1533 return;
1534 }
1535
1536 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1537 assert(Dependent && "Unknown template name kind?");
1538 manglePrefix(Dependent->getQualifier());
1539 mangleUnscopedTemplateName(Template);
1540}
1541
Eli Friedman86af13f02013-07-05 18:41:30 +00001542void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1543 bool NoFunction) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001544 // <template-prefix> ::= <prefix> <template unqualified-name>
1545 // ::= <template-param>
1546 // ::= <substitution>
1547 // <template-template-param> ::= <template-param>
1548 // <substitution>
1549
1550 if (mangleSubstitution(ND))
1551 return;
1552
1553 // <template-template-param> ::= <template-param>
1554 if (const TemplateTemplateParmDecl *TTP
1555 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1556 mangleTemplateParameter(TTP->getIndex());
1557 return;
1558 }
1559
Eli Friedman86af13f02013-07-05 18:41:30 +00001560 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
Guy Benyei11169dd2012-12-18 14:30:41 +00001561 mangleUnqualifiedName(ND->getTemplatedDecl());
1562 addSubstitution(ND);
1563}
1564
1565/// Mangles a template name under the production <type>. Required for
1566/// template template arguments.
1567/// <type> ::= <class-enum-type>
1568/// ::= <template-param>
1569/// ::= <substitution>
1570void CXXNameMangler::mangleType(TemplateName TN) {
1571 if (mangleSubstitution(TN))
1572 return;
1573
1574 TemplateDecl *TD = 0;
1575
1576 switch (TN.getKind()) {
1577 case TemplateName::QualifiedTemplate:
1578 TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1579 goto HaveDecl;
1580
1581 case TemplateName::Template:
1582 TD = TN.getAsTemplateDecl();
1583 goto HaveDecl;
1584
1585 HaveDecl:
1586 if (isa<TemplateTemplateParmDecl>(TD))
1587 mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1588 else
1589 mangleName(TD);
1590 break;
1591
1592 case TemplateName::OverloadedTemplate:
1593 llvm_unreachable("can't mangle an overloaded template name as a <type>");
1594
1595 case TemplateName::DependentTemplate: {
1596 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1597 assert(Dependent->isIdentifier());
1598
1599 // <class-enum-type> ::= <name>
1600 // <name> ::= <nested-name>
1601 mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1602 mangleSourceName(Dependent->getIdentifier());
1603 break;
1604 }
1605
1606 case TemplateName::SubstTemplateTemplateParm: {
1607 // Substituted template parameters are mangled as the substituted
1608 // template. This will check for the substitution twice, which is
1609 // fine, but we have to return early so that we don't try to *add*
1610 // the substitution twice.
1611 SubstTemplateTemplateParmStorage *subst
1612 = TN.getAsSubstTemplateTemplateParm();
1613 mangleType(subst->getReplacement());
1614 return;
1615 }
1616
1617 case TemplateName::SubstTemplateTemplateParmPack: {
1618 // FIXME: not clear how to mangle this!
1619 // template <template <class> class T...> class A {
1620 // template <template <class> class U...> void foo(B<T,U> x...);
1621 // };
1622 Out << "_SUBSTPACK_";
1623 break;
1624 }
1625 }
1626
1627 addSubstitution(TN);
1628}
1629
1630void
1631CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1632 switch (OO) {
1633 // <operator-name> ::= nw # new
1634 case OO_New: Out << "nw"; break;
1635 // ::= na # new[]
1636 case OO_Array_New: Out << "na"; break;
1637 // ::= dl # delete
1638 case OO_Delete: Out << "dl"; break;
1639 // ::= da # delete[]
1640 case OO_Array_Delete: Out << "da"; break;
1641 // ::= ps # + (unary)
1642 // ::= pl # + (binary or unknown)
1643 case OO_Plus:
1644 Out << (Arity == 1? "ps" : "pl"); break;
1645 // ::= ng # - (unary)
1646 // ::= mi # - (binary or unknown)
1647 case OO_Minus:
1648 Out << (Arity == 1? "ng" : "mi"); break;
1649 // ::= ad # & (unary)
1650 // ::= an # & (binary or unknown)
1651 case OO_Amp:
1652 Out << (Arity == 1? "ad" : "an"); break;
1653 // ::= de # * (unary)
1654 // ::= ml # * (binary or unknown)
1655 case OO_Star:
1656 // Use binary when unknown.
1657 Out << (Arity == 1? "de" : "ml"); break;
1658 // ::= co # ~
1659 case OO_Tilde: Out << "co"; break;
1660 // ::= dv # /
1661 case OO_Slash: Out << "dv"; break;
1662 // ::= rm # %
1663 case OO_Percent: Out << "rm"; break;
1664 // ::= or # |
1665 case OO_Pipe: Out << "or"; break;
1666 // ::= eo # ^
1667 case OO_Caret: Out << "eo"; break;
1668 // ::= aS # =
1669 case OO_Equal: Out << "aS"; break;
1670 // ::= pL # +=
1671 case OO_PlusEqual: Out << "pL"; break;
1672 // ::= mI # -=
1673 case OO_MinusEqual: Out << "mI"; break;
1674 // ::= mL # *=
1675 case OO_StarEqual: Out << "mL"; break;
1676 // ::= dV # /=
1677 case OO_SlashEqual: Out << "dV"; break;
1678 // ::= rM # %=
1679 case OO_PercentEqual: Out << "rM"; break;
1680 // ::= aN # &=
1681 case OO_AmpEqual: Out << "aN"; break;
1682 // ::= oR # |=
1683 case OO_PipeEqual: Out << "oR"; break;
1684 // ::= eO # ^=
1685 case OO_CaretEqual: Out << "eO"; break;
1686 // ::= ls # <<
1687 case OO_LessLess: Out << "ls"; break;
1688 // ::= rs # >>
1689 case OO_GreaterGreater: Out << "rs"; break;
1690 // ::= lS # <<=
1691 case OO_LessLessEqual: Out << "lS"; break;
1692 // ::= rS # >>=
1693 case OO_GreaterGreaterEqual: Out << "rS"; break;
1694 // ::= eq # ==
1695 case OO_EqualEqual: Out << "eq"; break;
1696 // ::= ne # !=
1697 case OO_ExclaimEqual: Out << "ne"; break;
1698 // ::= lt # <
1699 case OO_Less: Out << "lt"; break;
1700 // ::= gt # >
1701 case OO_Greater: Out << "gt"; break;
1702 // ::= le # <=
1703 case OO_LessEqual: Out << "le"; break;
1704 // ::= ge # >=
1705 case OO_GreaterEqual: Out << "ge"; break;
1706 // ::= nt # !
1707 case OO_Exclaim: Out << "nt"; break;
1708 // ::= aa # &&
1709 case OO_AmpAmp: Out << "aa"; break;
1710 // ::= oo # ||
1711 case OO_PipePipe: Out << "oo"; break;
1712 // ::= pp # ++
1713 case OO_PlusPlus: Out << "pp"; break;
1714 // ::= mm # --
1715 case OO_MinusMinus: Out << "mm"; break;
1716 // ::= cm # ,
1717 case OO_Comma: Out << "cm"; break;
1718 // ::= pm # ->*
1719 case OO_ArrowStar: Out << "pm"; break;
1720 // ::= pt # ->
1721 case OO_Arrow: Out << "pt"; break;
1722 // ::= cl # ()
1723 case OO_Call: Out << "cl"; break;
1724 // ::= ix # []
1725 case OO_Subscript: Out << "ix"; break;
1726
1727 // ::= qu # ?
1728 // The conditional operator can't be overloaded, but we still handle it when
1729 // mangling expressions.
1730 case OO_Conditional: Out << "qu"; break;
1731
1732 case OO_None:
1733 case NUM_OVERLOADED_OPERATORS:
1734 llvm_unreachable("Not an overloaded operator");
1735 }
1736}
1737
1738void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1739 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
1740 if (Quals.hasRestrict())
1741 Out << 'r';
1742 if (Quals.hasVolatile())
1743 Out << 'V';
1744 if (Quals.hasConst())
1745 Out << 'K';
1746
1747 if (Quals.hasAddressSpace()) {
1748 // Extension:
1749 //
1750 // <type> ::= U <address-space-number>
1751 //
1752 // where <address-space-number> is a source name consisting of 'AS'
1753 // followed by the address space <number>.
1754 SmallString<64> ASString;
Tanya Lattner60e93a62013-02-08 01:07:32 +00001755 ASString = "AS" + llvm::utostr_32(
1756 Context.getASTContext().getTargetAddressSpace(Quals.getAddressSpace()));
Guy Benyei11169dd2012-12-18 14:30:41 +00001757 Out << 'U' << ASString.size() << ASString;
1758 }
1759
1760 StringRef LifetimeName;
1761 switch (Quals.getObjCLifetime()) {
1762 // Objective-C ARC Extension:
1763 //
1764 // <type> ::= U "__strong"
1765 // <type> ::= U "__weak"
1766 // <type> ::= U "__autoreleasing"
1767 case Qualifiers::OCL_None:
1768 break;
1769
1770 case Qualifiers::OCL_Weak:
1771 LifetimeName = "__weak";
1772 break;
1773
1774 case Qualifiers::OCL_Strong:
1775 LifetimeName = "__strong";
1776 break;
1777
1778 case Qualifiers::OCL_Autoreleasing:
1779 LifetimeName = "__autoreleasing";
1780 break;
1781
1782 case Qualifiers::OCL_ExplicitNone:
1783 // The __unsafe_unretained qualifier is *not* mangled, so that
1784 // __unsafe_unretained types in ARC produce the same manglings as the
1785 // equivalent (but, naturally, unqualified) types in non-ARC, providing
1786 // better ABI compatibility.
1787 //
1788 // It's safe to do this because unqualified 'id' won't show up
1789 // in any type signatures that need to be mangled.
1790 break;
1791 }
1792 if (!LifetimeName.empty())
1793 Out << 'U' << LifetimeName.size() << LifetimeName;
1794}
1795
1796void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1797 // <ref-qualifier> ::= R # lvalue reference
1798 // ::= O # rvalue-reference
1799 // Proposal to Itanium C++ ABI list on 1/26/11
1800 switch (RefQualifier) {
1801 case RQ_None:
1802 break;
1803
1804 case RQ_LValue:
1805 Out << 'R';
1806 break;
1807
1808 case RQ_RValue:
1809 Out << 'O';
1810 break;
1811 }
1812}
1813
1814void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1815 Context.mangleObjCMethodName(MD, Out);
1816}
1817
1818void CXXNameMangler::mangleType(QualType T) {
1819 // If our type is instantiation-dependent but not dependent, we mangle
1820 // it as it was written in the source, removing any top-level sugar.
1821 // Otherwise, use the canonical type.
1822 //
1823 // FIXME: This is an approximation of the instantiation-dependent name
1824 // mangling rules, since we should really be using the type as written and
1825 // augmented via semantic analysis (i.e., with implicit conversions and
1826 // default template arguments) for any instantiation-dependent type.
1827 // Unfortunately, that requires several changes to our AST:
1828 // - Instantiation-dependent TemplateSpecializationTypes will need to be
1829 // uniqued, so that we can handle substitutions properly
1830 // - Default template arguments will need to be represented in the
1831 // TemplateSpecializationType, since they need to be mangled even though
1832 // they aren't written.
1833 // - Conversions on non-type template arguments need to be expressed, since
1834 // they can affect the mangling of sizeof/alignof.
1835 if (!T->isInstantiationDependentType() || T->isDependentType())
1836 T = T.getCanonicalType();
1837 else {
1838 // Desugar any types that are purely sugar.
1839 do {
1840 // Don't desugar through template specialization types that aren't
1841 // type aliases. We need to mangle the template arguments as written.
1842 if (const TemplateSpecializationType *TST
1843 = dyn_cast<TemplateSpecializationType>(T))
1844 if (!TST->isTypeAlias())
1845 break;
1846
1847 QualType Desugared
1848 = T.getSingleStepDesugaredType(Context.getASTContext());
1849 if (Desugared == T)
1850 break;
1851
1852 T = Desugared;
1853 } while (true);
1854 }
1855 SplitQualType split = T.split();
1856 Qualifiers quals = split.Quals;
1857 const Type *ty = split.Ty;
1858
1859 bool isSubstitutable = quals || !isa<BuiltinType>(T);
1860 if (isSubstitutable && mangleSubstitution(T))
1861 return;
1862
1863 // If we're mangling a qualified array type, push the qualifiers to
1864 // the element type.
1865 if (quals && isa<ArrayType>(T)) {
1866 ty = Context.getASTContext().getAsArrayType(T);
1867 quals = Qualifiers();
1868
1869 // Note that we don't update T: we want to add the
1870 // substitution at the original type.
1871 }
1872
1873 if (quals) {
1874 mangleQualifiers(quals);
1875 // Recurse: even if the qualified type isn't yet substitutable,
1876 // the unqualified type might be.
1877 mangleType(QualType(ty, 0));
1878 } else {
1879 switch (ty->getTypeClass()) {
1880#define ABSTRACT_TYPE(CLASS, PARENT)
1881#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1882 case Type::CLASS: \
1883 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1884 return;
1885#define TYPE(CLASS, PARENT) \
1886 case Type::CLASS: \
1887 mangleType(static_cast<const CLASS##Type*>(ty)); \
1888 break;
1889#include "clang/AST/TypeNodes.def"
1890 }
1891 }
1892
1893 // Add the substitution.
1894 if (isSubstitutable)
1895 addSubstitution(T);
1896}
1897
1898void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1899 if (!mangleStandardSubstitution(ND))
1900 mangleName(ND);
1901}
1902
1903void CXXNameMangler::mangleType(const BuiltinType *T) {
1904 // <type> ::= <builtin-type>
1905 // <builtin-type> ::= v # void
1906 // ::= w # wchar_t
1907 // ::= b # bool
1908 // ::= c # char
1909 // ::= a # signed char
1910 // ::= h # unsigned char
1911 // ::= s # short
1912 // ::= t # unsigned short
1913 // ::= i # int
1914 // ::= j # unsigned int
1915 // ::= l # long
1916 // ::= m # unsigned long
1917 // ::= x # long long, __int64
1918 // ::= y # unsigned long long, __int64
1919 // ::= n # __int128
1920 // UNSUPPORTED: ::= o # unsigned __int128
1921 // ::= f # float
1922 // ::= d # double
1923 // ::= e # long double, __float80
1924 // UNSUPPORTED: ::= g # __float128
1925 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
1926 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
1927 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
1928 // ::= Dh # IEEE 754r half-precision floating point (16 bits)
1929 // ::= Di # char32_t
1930 // ::= Ds # char16_t
1931 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1932 // ::= u <source-name> # vendor extended type
1933 switch (T->getKind()) {
1934 case BuiltinType::Void: Out << 'v'; break;
1935 case BuiltinType::Bool: Out << 'b'; break;
1936 case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1937 case BuiltinType::UChar: Out << 'h'; break;
1938 case BuiltinType::UShort: Out << 't'; break;
1939 case BuiltinType::UInt: Out << 'j'; break;
1940 case BuiltinType::ULong: Out << 'm'; break;
1941 case BuiltinType::ULongLong: Out << 'y'; break;
1942 case BuiltinType::UInt128: Out << 'o'; break;
1943 case BuiltinType::SChar: Out << 'a'; break;
1944 case BuiltinType::WChar_S:
1945 case BuiltinType::WChar_U: Out << 'w'; break;
1946 case BuiltinType::Char16: Out << "Ds"; break;
1947 case BuiltinType::Char32: Out << "Di"; break;
1948 case BuiltinType::Short: Out << 's'; break;
1949 case BuiltinType::Int: Out << 'i'; break;
1950 case BuiltinType::Long: Out << 'l'; break;
1951 case BuiltinType::LongLong: Out << 'x'; break;
1952 case BuiltinType::Int128: Out << 'n'; break;
1953 case BuiltinType::Half: Out << "Dh"; break;
1954 case BuiltinType::Float: Out << 'f'; break;
1955 case BuiltinType::Double: Out << 'd'; break;
1956 case BuiltinType::LongDouble: Out << 'e'; break;
1957 case BuiltinType::NullPtr: Out << "Dn"; break;
1958
1959#define BUILTIN_TYPE(Id, SingletonId)
1960#define PLACEHOLDER_TYPE(Id, SingletonId) \
1961 case BuiltinType::Id:
1962#include "clang/AST/BuiltinTypes.def"
1963 case BuiltinType::Dependent:
1964 llvm_unreachable("mangling a placeholder type");
1965 case BuiltinType::ObjCId: Out << "11objc_object"; break;
1966 case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1967 case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
Guy Benyeid8a08ea2012-12-18 14:38:23 +00001968 case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
1969 case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
1970 case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
1971 case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
1972 case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
1973 case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
Guy Benyei61054192013-02-07 10:55:47 +00001974 case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
Guy Benyei1b4fb3e2013-01-20 12:31:11 +00001975 case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
Guy Benyei11169dd2012-12-18 14:30:41 +00001976 }
1977}
1978
1979// <type> ::= <function-type>
1980// <function-type> ::= [<CV-qualifiers>] F [Y]
1981// <bare-function-type> [<ref-qualifier>] E
1982// (Proposal to cxx-abi-dev, 2012-05-11)
1983void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1984 // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
1985 // e.g. "const" in "int (A::*)() const".
1986 mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
1987
1988 Out << 'F';
1989
1990 // FIXME: We don't have enough information in the AST to produce the 'Y'
1991 // encoding for extern "C" function types.
1992 mangleBareFunctionType(T, /*MangleReturnType=*/true);
1993
1994 // Mangle the ref-qualifier, if present.
1995 mangleRefQualifier(T->getRefQualifier());
1996
1997 Out << 'E';
1998}
1999void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2000 llvm_unreachable("Can't mangle K&R function prototypes");
2001}
2002void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
2003 bool MangleReturnType) {
2004 // We should never be mangling something without a prototype.
2005 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2006
2007 // Record that we're in a function type. See mangleFunctionParam
2008 // for details on what we're trying to achieve here.
2009 FunctionTypeDepthState saved = FunctionTypeDepth.push();
2010
2011 // <bare-function-type> ::= <signature type>+
2012 if (MangleReturnType) {
2013 FunctionTypeDepth.enterResultType();
2014 mangleType(Proto->getResultType());
2015 FunctionTypeDepth.leaveResultType();
2016 }
2017
2018 if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
2019 // <builtin-type> ::= v # void
2020 Out << 'v';
2021
2022 FunctionTypeDepth.pop(saved);
2023 return;
2024 }
2025
2026 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
2027 ArgEnd = Proto->arg_type_end();
2028 Arg != ArgEnd; ++Arg)
2029 mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
2030
2031 FunctionTypeDepth.pop(saved);
2032
2033 // <builtin-type> ::= z # ellipsis
2034 if (Proto->isVariadic())
2035 Out << 'z';
2036}
2037
2038// <type> ::= <class-enum-type>
2039// <class-enum-type> ::= <name>
2040void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2041 mangleName(T->getDecl());
2042}
2043
2044// <type> ::= <class-enum-type>
2045// <class-enum-type> ::= <name>
2046void CXXNameMangler::mangleType(const EnumType *T) {
2047 mangleType(static_cast<const TagType*>(T));
2048}
2049void CXXNameMangler::mangleType(const RecordType *T) {
2050 mangleType(static_cast<const TagType*>(T));
2051}
2052void CXXNameMangler::mangleType(const TagType *T) {
2053 mangleName(T->getDecl());
2054}
2055
2056// <type> ::= <array-type>
2057// <array-type> ::= A <positive dimension number> _ <element type>
2058// ::= A [<dimension expression>] _ <element type>
2059void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2060 Out << 'A' << T->getSize() << '_';
2061 mangleType(T->getElementType());
2062}
2063void CXXNameMangler::mangleType(const VariableArrayType *T) {
2064 Out << 'A';
2065 // decayed vla types (size 0) will just be skipped.
2066 if (T->getSizeExpr())
2067 mangleExpression(T->getSizeExpr());
2068 Out << '_';
2069 mangleType(T->getElementType());
2070}
2071void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2072 Out << 'A';
2073 mangleExpression(T->getSizeExpr());
2074 Out << '_';
2075 mangleType(T->getElementType());
2076}
2077void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2078 Out << "A_";
2079 mangleType(T->getElementType());
2080}
2081
2082// <type> ::= <pointer-to-member-type>
2083// <pointer-to-member-type> ::= M <class type> <member type>
2084void CXXNameMangler::mangleType(const MemberPointerType *T) {
2085 Out << 'M';
2086 mangleType(QualType(T->getClass(), 0));
2087 QualType PointeeType = T->getPointeeType();
2088 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2089 mangleType(FPT);
2090
2091 // Itanium C++ ABI 5.1.8:
2092 //
2093 // The type of a non-static member function is considered to be different,
2094 // for the purposes of substitution, from the type of a namespace-scope or
2095 // static member function whose type appears similar. The types of two
2096 // non-static member functions are considered to be different, for the
2097 // purposes of substitution, if the functions are members of different
2098 // classes. In other words, for the purposes of substitution, the class of
2099 // which the function is a member is considered part of the type of
2100 // function.
2101
2102 // Given that we already substitute member function pointers as a
2103 // whole, the net effect of this rule is just to unconditionally
2104 // suppress substitution on the function type in a member pointer.
2105 // We increment the SeqID here to emulate adding an entry to the
2106 // substitution table.
2107 ++SeqID;
2108 } else
2109 mangleType(PointeeType);
2110}
2111
2112// <type> ::= <template-param>
2113void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2114 mangleTemplateParameter(T->getIndex());
2115}
2116
2117// <type> ::= <template-param>
2118void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2119 // FIXME: not clear how to mangle this!
2120 // template <class T...> class A {
2121 // template <class U...> void foo(T(*)(U) x...);
2122 // };
2123 Out << "_SUBSTPACK_";
2124}
2125
2126// <type> ::= P <type> # pointer-to
2127void CXXNameMangler::mangleType(const PointerType *T) {
2128 Out << 'P';
2129 mangleType(T->getPointeeType());
2130}
2131void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2132 Out << 'P';
2133 mangleType(T->getPointeeType());
2134}
2135
2136// <type> ::= R <type> # reference-to
2137void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2138 Out << 'R';
2139 mangleType(T->getPointeeType());
2140}
2141
2142// <type> ::= O <type> # rvalue reference-to (C++0x)
2143void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2144 Out << 'O';
2145 mangleType(T->getPointeeType());
2146}
2147
2148// <type> ::= C <type> # complex pair (C 2000)
2149void CXXNameMangler::mangleType(const ComplexType *T) {
2150 Out << 'C';
2151 mangleType(T->getElementType());
2152}
2153
2154// ARM's ABI for Neon vector types specifies that they should be mangled as
2155// if they are structs (to match ARM's initial implementation). The
2156// vector type must be one of the special types predefined by ARM.
2157void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2158 QualType EltType = T->getElementType();
2159 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2160 const char *EltName = 0;
2161 if (T->getVectorKind() == VectorType::NeonPolyVector) {
2162 switch (cast<BuiltinType>(EltType)->getKind()) {
2163 case BuiltinType::SChar: EltName = "poly8_t"; break;
2164 case BuiltinType::Short: EltName = "poly16_t"; break;
2165 default: llvm_unreachable("unexpected Neon polynomial vector element type");
2166 }
2167 } else {
2168 switch (cast<BuiltinType>(EltType)->getKind()) {
2169 case BuiltinType::SChar: EltName = "int8_t"; break;
2170 case BuiltinType::UChar: EltName = "uint8_t"; break;
2171 case BuiltinType::Short: EltName = "int16_t"; break;
2172 case BuiltinType::UShort: EltName = "uint16_t"; break;
2173 case BuiltinType::Int: EltName = "int32_t"; break;
2174 case BuiltinType::UInt: EltName = "uint32_t"; break;
2175 case BuiltinType::LongLong: EltName = "int64_t"; break;
2176 case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2177 case BuiltinType::Float: EltName = "float32_t"; break;
Tim Northover2fe823a2013-08-01 09:23:19 +00002178 case BuiltinType::Half: EltName = "float16_t";break;
2179 default:
2180 llvm_unreachable("unexpected Neon vector element type");
Guy Benyei11169dd2012-12-18 14:30:41 +00002181 }
2182 }
2183 const char *BaseName = 0;
2184 unsigned BitSize = (T->getNumElements() *
2185 getASTContext().getTypeSize(EltType));
2186 if (BitSize == 64)
2187 BaseName = "__simd64_";
2188 else {
2189 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2190 BaseName = "__simd128_";
2191 }
2192 Out << strlen(BaseName) + strlen(EltName);
2193 Out << BaseName << EltName;
2194}
2195
Tim Northover2fe823a2013-08-01 09:23:19 +00002196static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
2197 switch (EltType->getKind()) {
2198 case BuiltinType::SChar:
2199 return "Int8";
2200 case BuiltinType::Short:
2201 return "Int16";
2202 case BuiltinType::Int:
2203 return "Int32";
2204 case BuiltinType::LongLong:
2205 return "Int64";
2206 case BuiltinType::UChar:
2207 return "Uint8";
2208 case BuiltinType::UShort:
2209 return "Uint16";
2210 case BuiltinType::UInt:
2211 return "Uint32";
2212 case BuiltinType::ULongLong:
2213 return "Uint64";
2214 case BuiltinType::Half:
2215 return "Float16";
2216 case BuiltinType::Float:
2217 return "Float32";
2218 case BuiltinType::Double:
2219 return "Float64";
2220 default:
2221 llvm_unreachable("Unexpected vector element base type");
2222 }
2223}
2224
2225// AArch64's ABI for Neon vector types specifies that they should be mangled as
2226// the equivalent internal name. The vector type must be one of the special
2227// types predefined by ARM.
2228void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
2229 QualType EltType = T->getElementType();
2230 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2231 unsigned BitSize =
2232 (T->getNumElements() * getASTContext().getTypeSize(EltType));
Daniel Jasper8698af42013-08-01 10:30:11 +00002233 (void)BitSize; // Silence warning.
Tim Northover2fe823a2013-08-01 09:23:19 +00002234
2235 assert((BitSize == 64 || BitSize == 128) &&
2236 "Neon vector type not 64 or 128 bits");
2237
2238 assert(getASTContext().getTypeSize(EltType) != BitSize &&
2239 "Vector of 1 element not permitted");
2240
2241 StringRef EltName;
2242 if (T->getVectorKind() == VectorType::NeonPolyVector) {
2243 switch (cast<BuiltinType>(EltType)->getKind()) {
2244 case BuiltinType::UChar:
2245 EltName = "Poly8";
2246 break;
2247 case BuiltinType::UShort:
2248 EltName = "Poly16";
2249 break;
2250 default:
2251 llvm_unreachable("unexpected Neon polynomial vector element type");
2252 }
2253 } else
2254 EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
2255
2256 std::string TypeName =
2257 ("__" + EltName + "x" + llvm::utostr(T->getNumElements()) + "_t").str();
2258 Out << TypeName.length() << TypeName;
2259}
2260
Guy Benyei11169dd2012-12-18 14:30:41 +00002261// GNU extension: vector types
2262// <type> ::= <vector-type>
2263// <vector-type> ::= Dv <positive dimension number> _
2264// <extended element type>
2265// ::= Dv [<dimension expression>] _ <element type>
2266// <extended element type> ::= <element type>
2267// ::= p # AltiVec vector pixel
2268// ::= b # Altivec vector bool
2269void CXXNameMangler::mangleType(const VectorType *T) {
2270 if ((T->getVectorKind() == VectorType::NeonVector ||
2271 T->getVectorKind() == VectorType::NeonPolyVector)) {
Tim Northover2fe823a2013-08-01 09:23:19 +00002272 if (getASTContext().getTargetInfo().getTriple().getArch() ==
2273 llvm::Triple::aarch64)
2274 mangleAArch64NeonVectorType(T);
2275 else
2276 mangleNeonVectorType(T);
Guy Benyei11169dd2012-12-18 14:30:41 +00002277 return;
2278 }
2279 Out << "Dv" << T->getNumElements() << '_';
2280 if (T->getVectorKind() == VectorType::AltiVecPixel)
2281 Out << 'p';
2282 else if (T->getVectorKind() == VectorType::AltiVecBool)
2283 Out << 'b';
2284 else
2285 mangleType(T->getElementType());
2286}
2287void CXXNameMangler::mangleType(const ExtVectorType *T) {
2288 mangleType(static_cast<const VectorType*>(T));
2289}
2290void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2291 Out << "Dv";
2292 mangleExpression(T->getSizeExpr());
2293 Out << '_';
2294 mangleType(T->getElementType());
2295}
2296
2297void CXXNameMangler::mangleType(const PackExpansionType *T) {
2298 // <type> ::= Dp <type> # pack expansion (C++0x)
2299 Out << "Dp";
2300 mangleType(T->getPattern());
2301}
2302
2303void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2304 mangleSourceName(T->getDecl()->getIdentifier());
2305}
2306
2307void CXXNameMangler::mangleType(const ObjCObjectType *T) {
Eli Friedman5f508952013-06-18 22:41:37 +00002308 if (!T->qual_empty()) {
2309 // Mangle protocol qualifiers.
2310 SmallString<64> QualStr;
2311 llvm::raw_svector_ostream QualOS(QualStr);
2312 QualOS << "objcproto";
2313 ObjCObjectType::qual_iterator i = T->qual_begin(), e = T->qual_end();
2314 for ( ; i != e; ++i) {
2315 StringRef name = (*i)->getName();
2316 QualOS << name.size() << name;
2317 }
2318 QualOS.flush();
2319 Out << 'U' << QualStr.size() << QualStr;
2320 }
Guy Benyei11169dd2012-12-18 14:30:41 +00002321 mangleType(T->getBaseType());
2322}
2323
2324void CXXNameMangler::mangleType(const BlockPointerType *T) {
2325 Out << "U13block_pointer";
2326 mangleType(T->getPointeeType());
2327}
2328
2329void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2330 // Mangle injected class name types as if the user had written the
2331 // specialization out fully. It may not actually be possible to see
2332 // this mangling, though.
2333 mangleType(T->getInjectedSpecializationType());
2334}
2335
2336void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2337 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2338 mangleName(TD, T->getArgs(), T->getNumArgs());
2339 } else {
2340 if (mangleSubstitution(QualType(T, 0)))
2341 return;
2342
2343 mangleTemplatePrefix(T->getTemplateName());
2344
2345 // FIXME: GCC does not appear to mangle the template arguments when
2346 // the template in question is a dependent template name. Should we
2347 // emulate that badness?
2348 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2349 addSubstitution(QualType(T, 0));
2350 }
2351}
2352
2353void CXXNameMangler::mangleType(const DependentNameType *T) {
2354 // Typename types are always nested
2355 Out << 'N';
2356 manglePrefix(T->getQualifier());
2357 mangleSourceName(T->getIdentifier());
2358 Out << 'E';
2359}
2360
2361void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2362 // Dependently-scoped template types are nested if they have a prefix.
2363 Out << 'N';
2364
2365 // TODO: avoid making this TemplateName.
2366 TemplateName Prefix =
2367 getASTContext().getDependentTemplateName(T->getQualifier(),
2368 T->getIdentifier());
2369 mangleTemplatePrefix(Prefix);
2370
2371 // FIXME: GCC does not appear to mangle the template arguments when
2372 // the template in question is a dependent template name. Should we
2373 // emulate that badness?
2374 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2375 Out << 'E';
2376}
2377
2378void CXXNameMangler::mangleType(const TypeOfType *T) {
2379 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2380 // "extension with parameters" mangling.
2381 Out << "u6typeof";
2382}
2383
2384void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2385 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2386 // "extension with parameters" mangling.
2387 Out << "u6typeof";
2388}
2389
2390void CXXNameMangler::mangleType(const DecltypeType *T) {
2391 Expr *E = T->getUnderlyingExpr();
2392
2393 // type ::= Dt <expression> E # decltype of an id-expression
2394 // # or class member access
2395 // ::= DT <expression> E # decltype of an expression
2396
2397 // This purports to be an exhaustive list of id-expressions and
2398 // class member accesses. Note that we do not ignore parentheses;
2399 // parentheses change the semantics of decltype for these
2400 // expressions (and cause the mangler to use the other form).
2401 if (isa<DeclRefExpr>(E) ||
2402 isa<MemberExpr>(E) ||
2403 isa<UnresolvedLookupExpr>(E) ||
2404 isa<DependentScopeDeclRefExpr>(E) ||
2405 isa<CXXDependentScopeMemberExpr>(E) ||
2406 isa<UnresolvedMemberExpr>(E))
2407 Out << "Dt";
2408 else
2409 Out << "DT";
2410 mangleExpression(E);
2411 Out << 'E';
2412}
2413
2414void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2415 // If this is dependent, we need to record that. If not, we simply
2416 // mangle it as the underlying type since they are equivalent.
2417 if (T->isDependentType()) {
2418 Out << 'U';
2419
2420 switch (T->getUTTKind()) {
2421 case UnaryTransformType::EnumUnderlyingType:
2422 Out << "3eut";
2423 break;
2424 }
2425 }
2426
2427 mangleType(T->getUnderlyingType());
2428}
2429
2430void CXXNameMangler::mangleType(const AutoType *T) {
2431 QualType D = T->getDeducedType();
2432 // <builtin-type> ::= Da # dependent auto
2433 if (D.isNull())
Richard Smith74aeef52013-04-26 16:15:35 +00002434 Out << (T->isDecltypeAuto() ? "Dc" : "Da");
Guy Benyei11169dd2012-12-18 14:30:41 +00002435 else
2436 mangleType(D);
2437}
2438
2439void CXXNameMangler::mangleType(const AtomicType *T) {
2440 // <type> ::= U <source-name> <type> # vendor extended type qualifier
2441 // (Until there's a standardized mangling...)
2442 Out << "U7_Atomic";
2443 mangleType(T->getValueType());
2444}
2445
2446void CXXNameMangler::mangleIntegerLiteral(QualType T,
2447 const llvm::APSInt &Value) {
2448 // <expr-primary> ::= L <type> <value number> E # integer literal
2449 Out << 'L';
2450
2451 mangleType(T);
2452 if (T->isBooleanType()) {
2453 // Boolean values are encoded as 0/1.
2454 Out << (Value.getBoolValue() ? '1' : '0');
2455 } else {
2456 mangleNumber(Value);
2457 }
2458 Out << 'E';
2459
2460}
2461
2462/// Mangles a member expression.
2463void CXXNameMangler::mangleMemberExpr(const Expr *base,
2464 bool isArrow,
2465 NestedNameSpecifier *qualifier,
2466 NamedDecl *firstQualifierLookup,
2467 DeclarationName member,
2468 unsigned arity) {
2469 // <expression> ::= dt <expression> <unresolved-name>
2470 // ::= pt <expression> <unresolved-name>
2471 if (base) {
2472 if (base->isImplicitCXXThis()) {
2473 // Note: GCC mangles member expressions to the implicit 'this' as
2474 // *this., whereas we represent them as this->. The Itanium C++ ABI
2475 // does not specify anything here, so we follow GCC.
2476 Out << "dtdefpT";
2477 } else {
2478 Out << (isArrow ? "pt" : "dt");
2479 mangleExpression(base);
2480 }
2481 }
2482 mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2483}
2484
2485/// Look at the callee of the given call expression and determine if
2486/// it's a parenthesized id-expression which would have triggered ADL
2487/// otherwise.
2488static bool isParenthesizedADLCallee(const CallExpr *call) {
2489 const Expr *callee = call->getCallee();
2490 const Expr *fn = callee->IgnoreParens();
2491
2492 // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
2493 // too, but for those to appear in the callee, it would have to be
2494 // parenthesized.
2495 if (callee == fn) return false;
2496
2497 // Must be an unresolved lookup.
2498 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2499 if (!lookup) return false;
2500
2501 assert(!lookup->requiresADL());
2502
2503 // Must be an unqualified lookup.
2504 if (lookup->getQualifier()) return false;
2505
2506 // Must not have found a class member. Note that if one is a class
2507 // member, they're all class members.
2508 if (lookup->getNumDecls() > 0 &&
2509 (*lookup->decls_begin())->isCXXClassMember())
2510 return false;
2511
2512 // Otherwise, ADL would have been triggered.
2513 return true;
2514}
2515
2516void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2517 // <expression> ::= <unary operator-name> <expression>
2518 // ::= <binary operator-name> <expression> <expression>
2519 // ::= <trinary operator-name> <expression> <expression> <expression>
2520 // ::= cv <type> expression # conversion with one argument
2521 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2522 // ::= st <type> # sizeof (a type)
2523 // ::= at <type> # alignof (a type)
2524 // ::= <template-param>
2525 // ::= <function-param>
2526 // ::= sr <type> <unqualified-name> # dependent name
2527 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
2528 // ::= ds <expression> <expression> # expr.*expr
2529 // ::= sZ <template-param> # size of a parameter pack
2530 // ::= sZ <function-param> # size of a function parameter pack
2531 // ::= <expr-primary>
2532 // <expr-primary> ::= L <type> <value number> E # integer literal
2533 // ::= L <type <value float> E # floating literal
2534 // ::= L <mangled-name> E # external name
2535 // ::= fpT # 'this' expression
2536 QualType ImplicitlyConvertedToType;
2537
2538recurse:
2539 switch (E->getStmtClass()) {
2540 case Expr::NoStmtClass:
2541#define ABSTRACT_STMT(Type)
2542#define EXPR(Type, Base)
2543#define STMT(Type, Base) \
2544 case Expr::Type##Class:
2545#include "clang/AST/StmtNodes.inc"
2546 // fallthrough
2547
2548 // These all can only appear in local or variable-initialization
2549 // contexts and so should never appear in a mangling.
2550 case Expr::AddrLabelExprClass:
2551 case Expr::DesignatedInitExprClass:
2552 case Expr::ImplicitValueInitExprClass:
2553 case Expr::ParenListExprClass:
2554 case Expr::LambdaExprClass:
John McCall5e77d762013-04-16 07:28:30 +00002555 case Expr::MSPropertyRefExprClass:
Guy Benyei11169dd2012-12-18 14:30:41 +00002556 llvm_unreachable("unexpected statement kind");
2557
2558 // FIXME: invent manglings for all these.
2559 case Expr::BlockExprClass:
2560 case Expr::CXXPseudoDestructorExprClass:
2561 case Expr::ChooseExprClass:
2562 case Expr::CompoundLiteralExprClass:
2563 case Expr::ExtVectorElementExprClass:
2564 case Expr::GenericSelectionExprClass:
2565 case Expr::ObjCEncodeExprClass:
2566 case Expr::ObjCIsaExprClass:
2567 case Expr::ObjCIvarRefExprClass:
2568 case Expr::ObjCMessageExprClass:
2569 case Expr::ObjCPropertyRefExprClass:
2570 case Expr::ObjCProtocolExprClass:
2571 case Expr::ObjCSelectorExprClass:
2572 case Expr::ObjCStringLiteralClass:
2573 case Expr::ObjCBoxedExprClass:
2574 case Expr::ObjCArrayLiteralClass:
2575 case Expr::ObjCDictionaryLiteralClass:
2576 case Expr::ObjCSubscriptRefExprClass:
2577 case Expr::ObjCIndirectCopyRestoreExprClass:
2578 case Expr::OffsetOfExprClass:
2579 case Expr::PredefinedExprClass:
2580 case Expr::ShuffleVectorExprClass:
2581 case Expr::StmtExprClass:
2582 case Expr::UnaryTypeTraitExprClass:
2583 case Expr::BinaryTypeTraitExprClass:
2584 case Expr::TypeTraitExprClass:
2585 case Expr::ArrayTypeTraitExprClass:
2586 case Expr::ExpressionTraitExprClass:
2587 case Expr::VAArgExprClass:
2588 case Expr::CXXUuidofExprClass:
2589 case Expr::CUDAKernelCallExprClass:
2590 case Expr::AsTypeExprClass:
2591 case Expr::PseudoObjectExprClass:
2592 case Expr::AtomicExprClass:
2593 {
2594 // As bad as this diagnostic is, it's better than crashing.
2595 DiagnosticsEngine &Diags = Context.getDiags();
2596 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2597 "cannot yet mangle expression type %0");
2598 Diags.Report(E->getExprLoc(), DiagID)
2599 << E->getStmtClassName() << E->getSourceRange();
2600 break;
2601 }
2602
2603 // Even gcc-4.5 doesn't mangle this.
2604 case Expr::BinaryConditionalOperatorClass: {
2605 DiagnosticsEngine &Diags = Context.getDiags();
2606 unsigned DiagID =
2607 Diags.getCustomDiagID(DiagnosticsEngine::Error,
2608 "?: operator with omitted middle operand cannot be mangled");
2609 Diags.Report(E->getExprLoc(), DiagID)
2610 << E->getStmtClassName() << E->getSourceRange();
2611 break;
2612 }
2613
2614 // These are used for internal purposes and cannot be meaningfully mangled.
2615 case Expr::OpaqueValueExprClass:
2616 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2617
2618 case Expr::InitListExprClass: {
2619 // Proposal by Jason Merrill, 2012-01-03
2620 Out << "il";
2621 const InitListExpr *InitList = cast<InitListExpr>(E);
2622 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2623 mangleExpression(InitList->getInit(i));
2624 Out << "E";
2625 break;
2626 }
2627
2628 case Expr::CXXDefaultArgExprClass:
2629 mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2630 break;
2631
Richard Smith852c9db2013-04-20 22:23:05 +00002632 case Expr::CXXDefaultInitExprClass:
2633 mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
2634 break;
2635
Richard Smithcc1b96d2013-06-12 22:31:48 +00002636 case Expr::CXXStdInitializerListExprClass:
2637 mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
2638 break;
2639
Guy Benyei11169dd2012-12-18 14:30:41 +00002640 case Expr::SubstNonTypeTemplateParmExprClass:
2641 mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2642 Arity);
2643 break;
2644
2645 case Expr::UserDefinedLiteralClass:
2646 // We follow g++'s approach of mangling a UDL as a call to the literal
2647 // operator.
2648 case Expr::CXXMemberCallExprClass: // fallthrough
2649 case Expr::CallExprClass: {
2650 const CallExpr *CE = cast<CallExpr>(E);
2651
2652 // <expression> ::= cp <simple-id> <expression>* E
2653 // We use this mangling only when the call would use ADL except
2654 // for being parenthesized. Per discussion with David
2655 // Vandervoorde, 2011.04.25.
2656 if (isParenthesizedADLCallee(CE)) {
2657 Out << "cp";
2658 // The callee here is a parenthesized UnresolvedLookupExpr with
2659 // no qualifier and should always get mangled as a <simple-id>
2660 // anyway.
2661
2662 // <expression> ::= cl <expression>* E
2663 } else {
2664 Out << "cl";
2665 }
2666
2667 mangleExpression(CE->getCallee(), CE->getNumArgs());
2668 for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2669 mangleExpression(CE->getArg(I));
2670 Out << 'E';
2671 break;
2672 }
2673
2674 case Expr::CXXNewExprClass: {
2675 const CXXNewExpr *New = cast<CXXNewExpr>(E);
2676 if (New->isGlobalNew()) Out << "gs";
2677 Out << (New->isArray() ? "na" : "nw");
2678 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2679 E = New->placement_arg_end(); I != E; ++I)
2680 mangleExpression(*I);
2681 Out << '_';
2682 mangleType(New->getAllocatedType());
2683 if (New->hasInitializer()) {
2684 // Proposal by Jason Merrill, 2012-01-03
2685 if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2686 Out << "il";
2687 else
2688 Out << "pi";
2689 const Expr *Init = New->getInitializer();
2690 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2691 // Directly inline the initializers.
2692 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2693 E = CCE->arg_end();
2694 I != E; ++I)
2695 mangleExpression(*I);
2696 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2697 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2698 mangleExpression(PLE->getExpr(i));
2699 } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2700 isa<InitListExpr>(Init)) {
2701 // Only take InitListExprs apart for list-initialization.
2702 const InitListExpr *InitList = cast<InitListExpr>(Init);
2703 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2704 mangleExpression(InitList->getInit(i));
2705 } else
2706 mangleExpression(Init);
2707 }
2708 Out << 'E';
2709 break;
2710 }
2711
2712 case Expr::MemberExprClass: {
2713 const MemberExpr *ME = cast<MemberExpr>(E);
2714 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2715 ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2716 Arity);
2717 break;
2718 }
2719
2720 case Expr::UnresolvedMemberExprClass: {
2721 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2722 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2723 ME->getQualifier(), 0, ME->getMemberName(),
2724 Arity);
2725 if (ME->hasExplicitTemplateArgs())
2726 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2727 break;
2728 }
2729
2730 case Expr::CXXDependentScopeMemberExprClass: {
2731 const CXXDependentScopeMemberExpr *ME
2732 = cast<CXXDependentScopeMemberExpr>(E);
2733 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2734 ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2735 ME->getMember(), Arity);
2736 if (ME->hasExplicitTemplateArgs())
2737 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2738 break;
2739 }
2740
2741 case Expr::UnresolvedLookupExprClass: {
2742 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2743 mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2744
2745 // All the <unresolved-name> productions end in a
2746 // base-unresolved-name, where <template-args> are just tacked
2747 // onto the end.
2748 if (ULE->hasExplicitTemplateArgs())
2749 mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2750 break;
2751 }
2752
2753 case Expr::CXXUnresolvedConstructExprClass: {
2754 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2755 unsigned N = CE->arg_size();
2756
2757 Out << "cv";
2758 mangleType(CE->getType());
2759 if (N != 1) Out << '_';
2760 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2761 if (N != 1) Out << 'E';
2762 break;
2763 }
2764
2765 case Expr::CXXTemporaryObjectExprClass:
2766 case Expr::CXXConstructExprClass: {
2767 const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2768 unsigned N = CE->getNumArgs();
2769
2770 // Proposal by Jason Merrill, 2012-01-03
2771 if (CE->isListInitialization())
2772 Out << "tl";
2773 else
2774 Out << "cv";
2775 mangleType(CE->getType());
2776 if (N != 1) Out << '_';
2777 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2778 if (N != 1) Out << 'E';
2779 break;
2780 }
2781
2782 case Expr::CXXScalarValueInitExprClass:
2783 Out <<"cv";
2784 mangleType(E->getType());
2785 Out <<"_E";
2786 break;
2787
2788 case Expr::CXXNoexceptExprClass:
2789 Out << "nx";
2790 mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
2791 break;
2792
2793 case Expr::UnaryExprOrTypeTraitExprClass: {
2794 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2795
2796 if (!SAE->isInstantiationDependent()) {
2797 // Itanium C++ ABI:
2798 // If the operand of a sizeof or alignof operator is not
2799 // instantiation-dependent it is encoded as an integer literal
2800 // reflecting the result of the operator.
2801 //
2802 // If the result of the operator is implicitly converted to a known
2803 // integer type, that type is used for the literal; otherwise, the type
2804 // of std::size_t or std::ptrdiff_t is used.
2805 QualType T = (ImplicitlyConvertedToType.isNull() ||
2806 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2807 : ImplicitlyConvertedToType;
2808 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2809 mangleIntegerLiteral(T, V);
2810 break;
2811 }
2812
2813 switch(SAE->getKind()) {
2814 case UETT_SizeOf:
2815 Out << 's';
2816 break;
2817 case UETT_AlignOf:
2818 Out << 'a';
2819 break;
2820 case UETT_VecStep:
2821 DiagnosticsEngine &Diags = Context.getDiags();
2822 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2823 "cannot yet mangle vec_step expression");
2824 Diags.Report(DiagID);
2825 return;
2826 }
2827 if (SAE->isArgumentType()) {
2828 Out << 't';
2829 mangleType(SAE->getArgumentType());
2830 } else {
2831 Out << 'z';
2832 mangleExpression(SAE->getArgumentExpr());
2833 }
2834 break;
2835 }
2836
2837 case Expr::CXXThrowExprClass: {
2838 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2839
2840 // Proposal from David Vandervoorde, 2010.06.30
2841 if (TE->getSubExpr()) {
2842 Out << "tw";
2843 mangleExpression(TE->getSubExpr());
2844 } else {
2845 Out << "tr";
2846 }
2847 break;
2848 }
2849
2850 case Expr::CXXTypeidExprClass: {
2851 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2852
2853 // Proposal from David Vandervoorde, 2010.06.30
2854 if (TIE->isTypeOperand()) {
2855 Out << "ti";
2856 mangleType(TIE->getTypeOperand());
2857 } else {
2858 Out << "te";
2859 mangleExpression(TIE->getExprOperand());
2860 }
2861 break;
2862 }
2863
2864 case Expr::CXXDeleteExprClass: {
2865 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2866
2867 // Proposal from David Vandervoorde, 2010.06.30
2868 if (DE->isGlobalDelete()) Out << "gs";
2869 Out << (DE->isArrayForm() ? "da" : "dl");
2870 mangleExpression(DE->getArgument());
2871 break;
2872 }
2873
2874 case Expr::UnaryOperatorClass: {
2875 const UnaryOperator *UO = cast<UnaryOperator>(E);
2876 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2877 /*Arity=*/1);
2878 mangleExpression(UO->getSubExpr());
2879 break;
2880 }
2881
2882 case Expr::ArraySubscriptExprClass: {
2883 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2884
2885 // Array subscript is treated as a syntactically weird form of
2886 // binary operator.
2887 Out << "ix";
2888 mangleExpression(AE->getLHS());
2889 mangleExpression(AE->getRHS());
2890 break;
2891 }
2892
2893 case Expr::CompoundAssignOperatorClass: // fallthrough
2894 case Expr::BinaryOperatorClass: {
2895 const BinaryOperator *BO = cast<BinaryOperator>(E);
2896 if (BO->getOpcode() == BO_PtrMemD)
2897 Out << "ds";
2898 else
2899 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2900 /*Arity=*/2);
2901 mangleExpression(BO->getLHS());
2902 mangleExpression(BO->getRHS());
2903 break;
2904 }
2905
2906 case Expr::ConditionalOperatorClass: {
2907 const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2908 mangleOperatorName(OO_Conditional, /*Arity=*/3);
2909 mangleExpression(CO->getCond());
2910 mangleExpression(CO->getLHS(), Arity);
2911 mangleExpression(CO->getRHS(), Arity);
2912 break;
2913 }
2914
2915 case Expr::ImplicitCastExprClass: {
2916 ImplicitlyConvertedToType = E->getType();
2917 E = cast<ImplicitCastExpr>(E)->getSubExpr();
2918 goto recurse;
2919 }
2920
2921 case Expr::ObjCBridgedCastExprClass: {
2922 // Mangle ownership casts as a vendor extended operator __bridge,
2923 // __bridge_transfer, or __bridge_retain.
2924 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2925 Out << "v1U" << Kind.size() << Kind;
2926 }
2927 // Fall through to mangle the cast itself.
2928
2929 case Expr::CStyleCastExprClass:
2930 case Expr::CXXStaticCastExprClass:
2931 case Expr::CXXDynamicCastExprClass:
2932 case Expr::CXXReinterpretCastExprClass:
2933 case Expr::CXXConstCastExprClass:
2934 case Expr::CXXFunctionalCastExprClass: {
2935 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2936 Out << "cv";
2937 mangleType(ECE->getType());
2938 mangleExpression(ECE->getSubExpr());
2939 break;
2940 }
2941
2942 case Expr::CXXOperatorCallExprClass: {
2943 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2944 unsigned NumArgs = CE->getNumArgs();
2945 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2946 // Mangle the arguments.
2947 for (unsigned i = 0; i != NumArgs; ++i)
2948 mangleExpression(CE->getArg(i));
2949 break;
2950 }
2951
2952 case Expr::ParenExprClass:
2953 mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2954 break;
2955
2956 case Expr::DeclRefExprClass: {
2957 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2958
2959 switch (D->getKind()) {
2960 default:
2961 // <expr-primary> ::= L <mangled-name> E # external name
2962 Out << 'L';
2963 mangle(D, "_Z");
2964 Out << 'E';
2965 break;
2966
2967 case Decl::ParmVar:
2968 mangleFunctionParam(cast<ParmVarDecl>(D));
2969 break;
2970
2971 case Decl::EnumConstant: {
2972 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2973 mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2974 break;
2975 }
2976
2977 case Decl::NonTypeTemplateParm: {
2978 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2979 mangleTemplateParameter(PD->getIndex());
2980 break;
2981 }
2982
2983 }
2984
2985 break;
2986 }
2987
2988 case Expr::SubstNonTypeTemplateParmPackExprClass:
2989 // FIXME: not clear how to mangle this!
2990 // template <unsigned N...> class A {
2991 // template <class U...> void foo(U (&x)[N]...);
2992 // };
2993 Out << "_SUBSTPACK_";
2994 break;
2995
2996 case Expr::FunctionParmPackExprClass: {
2997 // FIXME: not clear how to mangle this!
2998 const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
2999 Out << "v110_SUBSTPACK";
3000 mangleFunctionParam(FPPE->getParameterPack());
3001 break;
3002 }
3003
3004 case Expr::DependentScopeDeclRefExprClass: {
3005 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
3006 mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
3007
3008 // All the <unresolved-name> productions end in a
3009 // base-unresolved-name, where <template-args> are just tacked
3010 // onto the end.
3011 if (DRE->hasExplicitTemplateArgs())
3012 mangleTemplateArgs(DRE->getExplicitTemplateArgs());
3013 break;
3014 }
3015
3016 case Expr::CXXBindTemporaryExprClass:
3017 mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
3018 break;
3019
3020 case Expr::ExprWithCleanupsClass:
3021 mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
3022 break;
3023
3024 case Expr::FloatingLiteralClass: {
3025 const FloatingLiteral *FL = cast<FloatingLiteral>(E);
3026 Out << 'L';
3027 mangleType(FL->getType());
3028 mangleFloat(FL->getValue());
3029 Out << 'E';
3030 break;
3031 }
3032
3033 case Expr::CharacterLiteralClass:
3034 Out << 'L';
3035 mangleType(E->getType());
3036 Out << cast<CharacterLiteral>(E)->getValue();
3037 Out << 'E';
3038 break;
3039
3040 // FIXME. __objc_yes/__objc_no are mangled same as true/false
3041 case Expr::ObjCBoolLiteralExprClass:
3042 Out << "Lb";
3043 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3044 Out << 'E';
3045 break;
3046
3047 case Expr::CXXBoolLiteralExprClass:
3048 Out << "Lb";
3049 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3050 Out << 'E';
3051 break;
3052
3053 case Expr::IntegerLiteralClass: {
3054 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
3055 if (E->getType()->isSignedIntegerType())
3056 Value.setIsSigned(true);
3057 mangleIntegerLiteral(E->getType(), Value);
3058 break;
3059 }
3060
3061 case Expr::ImaginaryLiteralClass: {
3062 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
3063 // Mangle as if a complex literal.
3064 // Proposal from David Vandevoorde, 2010.06.30.
3065 Out << 'L';
3066 mangleType(E->getType());
3067 if (const FloatingLiteral *Imag =
3068 dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
3069 // Mangle a floating-point zero of the appropriate type.
3070 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
3071 Out << '_';
3072 mangleFloat(Imag->getValue());
3073 } else {
3074 Out << "0_";
3075 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
3076 if (IE->getSubExpr()->getType()->isSignedIntegerType())
3077 Value.setIsSigned(true);
3078 mangleNumber(Value);
3079 }
3080 Out << 'E';
3081 break;
3082 }
3083
3084 case Expr::StringLiteralClass: {
3085 // Revised proposal from David Vandervoorde, 2010.07.15.
3086 Out << 'L';
3087 assert(isa<ConstantArrayType>(E->getType()));
3088 mangleType(E->getType());
3089 Out << 'E';
3090 break;
3091 }
3092
3093 case Expr::GNUNullExprClass:
3094 // FIXME: should this really be mangled the same as nullptr?
3095 // fallthrough
3096
3097 case Expr::CXXNullPtrLiteralExprClass: {
3098 // Proposal from David Vandervoorde, 2010.06.30, as
3099 // modified by ABI list discussion.
3100 Out << "LDnE";
3101 break;
3102 }
3103
3104 case Expr::PackExpansionExprClass:
3105 Out << "sp";
3106 mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
3107 break;
3108
3109 case Expr::SizeOfPackExprClass: {
3110 Out << "sZ";
3111 const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
3112 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
3113 mangleTemplateParameter(TTP->getIndex());
3114 else if (const NonTypeTemplateParmDecl *NTTP
3115 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
3116 mangleTemplateParameter(NTTP->getIndex());
3117 else if (const TemplateTemplateParmDecl *TempTP
3118 = dyn_cast<TemplateTemplateParmDecl>(Pack))
3119 mangleTemplateParameter(TempTP->getIndex());
3120 else
3121 mangleFunctionParam(cast<ParmVarDecl>(Pack));
3122 break;
3123 }
3124
3125 case Expr::MaterializeTemporaryExprClass: {
3126 mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3127 break;
3128 }
3129
3130 case Expr::CXXThisExprClass:
3131 Out << "fpT";
3132 break;
3133 }
3134}
3135
3136/// Mangle an expression which refers to a parameter variable.
3137///
3138/// <expression> ::= <function-param>
3139/// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
3140/// <function-param> ::= fp <top-level CV-qualifiers>
3141/// <parameter-2 non-negative number> _ # L == 0, I > 0
3142/// <function-param> ::= fL <L-1 non-negative number>
3143/// p <top-level CV-qualifiers> _ # L > 0, I == 0
3144/// <function-param> ::= fL <L-1 non-negative number>
3145/// p <top-level CV-qualifiers>
3146/// <I-1 non-negative number> _ # L > 0, I > 0
3147///
3148/// L is the nesting depth of the parameter, defined as 1 if the
3149/// parameter comes from the innermost function prototype scope
3150/// enclosing the current context, 2 if from the next enclosing
3151/// function prototype scope, and so on, with one special case: if
3152/// we've processed the full parameter clause for the innermost
3153/// function type, then L is one less. This definition conveniently
3154/// makes it irrelevant whether a function's result type was written
3155/// trailing or leading, but is otherwise overly complicated; the
3156/// numbering was first designed without considering references to
3157/// parameter in locations other than return types, and then the
3158/// mangling had to be generalized without changing the existing
3159/// manglings.
3160///
3161/// I is the zero-based index of the parameter within its parameter
3162/// declaration clause. Note that the original ABI document describes
3163/// this using 1-based ordinals.
3164void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3165 unsigned parmDepth = parm->getFunctionScopeDepth();
3166 unsigned parmIndex = parm->getFunctionScopeIndex();
3167
3168 // Compute 'L'.
3169 // parmDepth does not include the declaring function prototype.
3170 // FunctionTypeDepth does account for that.
3171 assert(parmDepth < FunctionTypeDepth.getDepth());
3172 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3173 if (FunctionTypeDepth.isInResultType())
3174 nestingDepth--;
3175
3176 if (nestingDepth == 0) {
3177 Out << "fp";
3178 } else {
3179 Out << "fL" << (nestingDepth - 1) << 'p';
3180 }
3181
3182 // Top-level qualifiers. We don't have to worry about arrays here,
3183 // because parameters declared as arrays should already have been
3184 // transformed to have pointer type. FIXME: apparently these don't
3185 // get mangled if used as an rvalue of a known non-class type?
3186 assert(!parm->getType()->isArrayType()
3187 && "parameter's type is still an array type?");
3188 mangleQualifiers(parm->getType().getQualifiers());
3189
3190 // Parameter index.
3191 if (parmIndex != 0) {
3192 Out << (parmIndex - 1);
3193 }
3194 Out << '_';
3195}
3196
3197void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3198 // <ctor-dtor-name> ::= C1 # complete object constructor
3199 // ::= C2 # base object constructor
3200 // ::= C3 # complete object allocating constructor
3201 //
3202 switch (T) {
3203 case Ctor_Complete:
3204 Out << "C1";
3205 break;
3206 case Ctor_Base:
3207 Out << "C2";
3208 break;
3209 case Ctor_CompleteAllocating:
3210 Out << "C3";
3211 break;
3212 }
3213}
3214
3215void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3216 // <ctor-dtor-name> ::= D0 # deleting destructor
3217 // ::= D1 # complete object destructor
3218 // ::= D2 # base object destructor
3219 //
3220 switch (T) {
3221 case Dtor_Deleting:
3222 Out << "D0";
3223 break;
3224 case Dtor_Complete:
3225 Out << "D1";
3226 break;
3227 case Dtor_Base:
3228 Out << "D2";
3229 break;
3230 }
3231}
3232
3233void CXXNameMangler::mangleTemplateArgs(
3234 const ASTTemplateArgumentListInfo &TemplateArgs) {
3235 // <template-args> ::= I <template-arg>+ E
3236 Out << 'I';
3237 for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3238 mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3239 Out << 'E';
3240}
3241
3242void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3243 // <template-args> ::= I <template-arg>+ E
3244 Out << 'I';
3245 for (unsigned i = 0, e = AL.size(); i != e; ++i)
3246 mangleTemplateArg(AL[i]);
3247 Out << 'E';
3248}
3249
3250void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3251 unsigned NumTemplateArgs) {
3252 // <template-args> ::= I <template-arg>+ E
3253 Out << 'I';
3254 for (unsigned i = 0; i != NumTemplateArgs; ++i)
3255 mangleTemplateArg(TemplateArgs[i]);
3256 Out << 'E';
3257}
3258
3259void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3260 // <template-arg> ::= <type> # type or template
3261 // ::= X <expression> E # expression
3262 // ::= <expr-primary> # simple expressions
3263 // ::= J <template-arg>* E # argument pack
3264 // ::= sp <expression> # pack expansion of (C++0x)
3265 if (!A.isInstantiationDependent() || A.isDependent())
3266 A = Context.getASTContext().getCanonicalTemplateArgument(A);
3267
3268 switch (A.getKind()) {
3269 case TemplateArgument::Null:
3270 llvm_unreachable("Cannot mangle NULL template argument");
3271
3272 case TemplateArgument::Type:
3273 mangleType(A.getAsType());
3274 break;
3275 case TemplateArgument::Template:
3276 // This is mangled as <type>.
3277 mangleType(A.getAsTemplate());
3278 break;
3279 case TemplateArgument::TemplateExpansion:
3280 // <type> ::= Dp <type> # pack expansion (C++0x)
3281 Out << "Dp";
3282 mangleType(A.getAsTemplateOrTemplatePattern());
3283 break;
3284 case TemplateArgument::Expression: {
3285 // It's possible to end up with a DeclRefExpr here in certain
3286 // dependent cases, in which case we should mangle as a
3287 // declaration.
3288 const Expr *E = A.getAsExpr()->IgnoreParens();
3289 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3290 const ValueDecl *D = DRE->getDecl();
3291 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3292 Out << "L";
3293 mangle(D, "_Z");
3294 Out << 'E';
3295 break;
3296 }
3297 }
3298
3299 Out << 'X';
3300 mangleExpression(E);
3301 Out << 'E';
3302 break;
3303 }
3304 case TemplateArgument::Integral:
3305 mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3306 break;
3307 case TemplateArgument::Declaration: {
3308 // <expr-primary> ::= L <mangled-name> E # external name
3309 // Clang produces AST's where pointer-to-member-function expressions
3310 // and pointer-to-function expressions are represented as a declaration not
3311 // an expression. We compensate for it here to produce the correct mangling.
3312 ValueDecl *D = A.getAsDecl();
3313 bool compensateMangling = !A.isDeclForReferenceParam();
3314 if (compensateMangling) {
3315 Out << 'X';
3316 mangleOperatorName(OO_Amp, 1);
3317 }
3318
3319 Out << 'L';
3320 // References to external entities use the mangled name; if the name would
3321 // not normally be manged then mangle it as unqualified.
3322 //
3323 // FIXME: The ABI specifies that external names here should have _Z, but
3324 // gcc leaves this off.
3325 if (compensateMangling)
3326 mangle(D, "_Z");
3327 else
3328 mangle(D, "Z");
3329 Out << 'E';
3330
3331 if (compensateMangling)
3332 Out << 'E';
3333
3334 break;
3335 }
3336 case TemplateArgument::NullPtr: {
3337 // <expr-primary> ::= L <type> 0 E
3338 Out << 'L';
3339 mangleType(A.getNullPtrType());
3340 Out << "0E";
3341 break;
3342 }
3343 case TemplateArgument::Pack: {
3344 // Note: proposal by Mike Herrick on 12/20/10
3345 Out << 'J';
3346 for (TemplateArgument::pack_iterator PA = A.pack_begin(),
3347 PAEnd = A.pack_end();
3348 PA != PAEnd; ++PA)
3349 mangleTemplateArg(*PA);
3350 Out << 'E';
3351 }
3352 }
3353}
3354
3355void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3356 // <template-param> ::= T_ # first template parameter
3357 // ::= T <parameter-2 non-negative number> _
3358 if (Index == 0)
3359 Out << "T_";
3360 else
3361 Out << 'T' << (Index - 1) << '_';
3362}
3363
3364void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3365 bool result = mangleSubstitution(type);
3366 assert(result && "no existing substitution for type");
3367 (void) result;
3368}
3369
3370void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3371 bool result = mangleSubstitution(tname);
3372 assert(result && "no existing substitution for template name");
3373 (void) result;
3374}
3375
3376// <substitution> ::= S <seq-id> _
3377// ::= S_
3378bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3379 // Try one of the standard substitutions first.
3380 if (mangleStandardSubstitution(ND))
3381 return true;
3382
3383 ND = cast<NamedDecl>(ND->getCanonicalDecl());
3384 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3385}
3386
3387/// \brief Determine whether the given type has any qualifiers that are
3388/// relevant for substitutions.
3389static bool hasMangledSubstitutionQualifiers(QualType T) {
3390 Qualifiers Qs = T.getQualifiers();
3391 return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3392}
3393
3394bool CXXNameMangler::mangleSubstitution(QualType T) {
3395 if (!hasMangledSubstitutionQualifiers(T)) {
3396 if (const RecordType *RT = T->getAs<RecordType>())
3397 return mangleSubstitution(RT->getDecl());
3398 }
3399
3400 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3401
3402 return mangleSubstitution(TypePtr);
3403}
3404
3405bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3406 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3407 return mangleSubstitution(TD);
3408
3409 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3410 return mangleSubstitution(
3411 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3412}
3413
3414bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3415 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3416 if (I == Substitutions.end())
3417 return false;
3418
3419 unsigned SeqID = I->second;
3420 if (SeqID == 0)
3421 Out << "S_";
3422 else {
3423 SeqID--;
3424
3425 // <seq-id> is encoded in base-36, using digits and upper case letters.
3426 char Buffer[10];
3427 char *BufferPtr = llvm::array_endof(Buffer);
3428
3429 if (SeqID == 0) *--BufferPtr = '0';
3430
3431 while (SeqID) {
3432 assert(BufferPtr > Buffer && "Buffer overflow!");
3433
3434 char c = static_cast<char>(SeqID % 36);
3435
3436 *--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10);
3437 SeqID /= 36;
3438 }
3439
3440 Out << 'S'
3441 << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3442 << '_';
3443 }
3444
3445 return true;
3446}
3447
3448static bool isCharType(QualType T) {
3449 if (T.isNull())
3450 return false;
3451
3452 return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3453 T->isSpecificBuiltinType(BuiltinType::Char_U);
3454}
3455
3456/// isCharSpecialization - Returns whether a given type is a template
3457/// specialization of a given name with a single argument of type char.
3458static bool isCharSpecialization(QualType T, const char *Name) {
3459 if (T.isNull())
3460 return false;
3461
3462 const RecordType *RT = T->getAs<RecordType>();
3463 if (!RT)
3464 return false;
3465
3466 const ClassTemplateSpecializationDecl *SD =
3467 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3468 if (!SD)
3469 return false;
3470
3471 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3472 return false;
3473
3474 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3475 if (TemplateArgs.size() != 1)
3476 return false;
3477
3478 if (!isCharType(TemplateArgs[0].getAsType()))
3479 return false;
3480
3481 return SD->getIdentifier()->getName() == Name;
3482}
3483
3484template <std::size_t StrLen>
3485static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3486 const char (&Str)[StrLen]) {
3487 if (!SD->getIdentifier()->isStr(Str))
3488 return false;
3489
3490 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3491 if (TemplateArgs.size() != 2)
3492 return false;
3493
3494 if (!isCharType(TemplateArgs[0].getAsType()))
3495 return false;
3496
3497 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3498 return false;
3499
3500 return true;
3501}
3502
3503bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3504 // <substitution> ::= St # ::std::
3505 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3506 if (isStd(NS)) {
3507 Out << "St";
3508 return true;
3509 }
3510 }
3511
3512 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3513 if (!isStdNamespace(getEffectiveDeclContext(TD)))
3514 return false;
3515
3516 // <substitution> ::= Sa # ::std::allocator
3517 if (TD->getIdentifier()->isStr("allocator")) {
3518 Out << "Sa";
3519 return true;
3520 }
3521
3522 // <<substitution> ::= Sb # ::std::basic_string
3523 if (TD->getIdentifier()->isStr("basic_string")) {
3524 Out << "Sb";
3525 return true;
3526 }
3527 }
3528
3529 if (const ClassTemplateSpecializationDecl *SD =
3530 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3531 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3532 return false;
3533
3534 // <substitution> ::= Ss # ::std::basic_string<char,
3535 // ::std::char_traits<char>,
3536 // ::std::allocator<char> >
3537 if (SD->getIdentifier()->isStr("basic_string")) {
3538 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3539
3540 if (TemplateArgs.size() != 3)
3541 return false;
3542
3543 if (!isCharType(TemplateArgs[0].getAsType()))
3544 return false;
3545
3546 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3547 return false;
3548
3549 if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3550 return false;
3551
3552 Out << "Ss";
3553 return true;
3554 }
3555
3556 // <substitution> ::= Si # ::std::basic_istream<char,
3557 // ::std::char_traits<char> >
3558 if (isStreamCharSpecialization(SD, "basic_istream")) {
3559 Out << "Si";
3560 return true;
3561 }
3562
3563 // <substitution> ::= So # ::std::basic_ostream<char,
3564 // ::std::char_traits<char> >
3565 if (isStreamCharSpecialization(SD, "basic_ostream")) {
3566 Out << "So";
3567 return true;
3568 }
3569
3570 // <substitution> ::= Sd # ::std::basic_iostream<char,
3571 // ::std::char_traits<char> >
3572 if (isStreamCharSpecialization(SD, "basic_iostream")) {
3573 Out << "Sd";
3574 return true;
3575 }
3576 }
3577 return false;
3578}
3579
3580void CXXNameMangler::addSubstitution(QualType T) {
3581 if (!hasMangledSubstitutionQualifiers(T)) {
3582 if (const RecordType *RT = T->getAs<RecordType>()) {
3583 addSubstitution(RT->getDecl());
3584 return;
3585 }
3586 }
3587
3588 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3589 addSubstitution(TypePtr);
3590}
3591
3592void CXXNameMangler::addSubstitution(TemplateName Template) {
3593 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3594 return addSubstitution(TD);
3595
3596 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3597 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3598}
3599
3600void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3601 assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3602 Substitutions[Ptr] = SeqID++;
3603}
3604
3605//
3606
3607/// \brief Mangles the name of the declaration D and emits that name to the
3608/// given output stream.
3609///
3610/// If the declaration D requires a mangled name, this routine will emit that
3611/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3612/// and this routine will return false. In this case, the caller should just
3613/// emit the identifier of the declaration (\c D->getIdentifier()) as its
3614/// name.
3615void ItaniumMangleContext::mangleName(const NamedDecl *D,
3616 raw_ostream &Out) {
3617 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3618 "Invalid mangleName() call, argument is not a variable or function!");
3619 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3620 "Invalid mangleName() call on 'structor decl!");
3621
3622 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3623 getASTContext().getSourceManager(),
3624 "Mangling declaration");
3625
3626 CXXNameMangler Mangler(*this, Out, D);
3627 return Mangler.mangle(D);
3628}
3629
3630void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
3631 CXXCtorType Type,
3632 raw_ostream &Out) {
3633 CXXNameMangler Mangler(*this, Out, D, Type);
3634 Mangler.mangle(D);
3635}
3636
3637void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
3638 CXXDtorType Type,
3639 raw_ostream &Out) {
3640 CXXNameMangler Mangler(*this, Out, D, Type);
3641 Mangler.mangle(D);
3642}
3643
3644void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
3645 const ThunkInfo &Thunk,
3646 raw_ostream &Out) {
3647 // <special-name> ::= T <call-offset> <base encoding>
3648 // # base is the nominal target function of thunk
3649 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3650 // # base is the nominal target function of thunk
3651 // # first call-offset is 'this' adjustment
3652 // # second call-offset is result adjustment
3653
3654 assert(!isa<CXXDestructorDecl>(MD) &&
3655 "Use mangleCXXDtor for destructor decls!");
3656 CXXNameMangler Mangler(*this, Out);
3657 Mangler.getStream() << "_ZT";
3658 if (!Thunk.Return.isEmpty())
3659 Mangler.getStream() << 'c';
3660
3661 // Mangle the 'this' pointer adjustment.
3662 Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3663
3664 // Mangle the return pointer adjustment if there is one.
3665 if (!Thunk.Return.isEmpty())
3666 Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3667 Thunk.Return.VBaseOffsetOffset);
3668
3669 Mangler.mangleFunctionEncoding(MD);
3670}
3671
3672void
3673ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
3674 CXXDtorType Type,
3675 const ThisAdjustment &ThisAdjustment,
3676 raw_ostream &Out) {
3677 // <special-name> ::= T <call-offset> <base encoding>
3678 // # base is the nominal target function of thunk
3679 CXXNameMangler Mangler(*this, Out, DD, Type);
3680 Mangler.getStream() << "_ZT";
3681
3682 // Mangle the 'this' pointer adjustment.
3683 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3684 ThisAdjustment.VCallOffsetOffset);
3685
3686 Mangler.mangleFunctionEncoding(DD);
3687}
3688
3689/// mangleGuardVariable - Returns the mangled name for a guard variable
3690/// for the passed in VarDecl.
3691void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
3692 raw_ostream &Out) {
3693 // <special-name> ::= GV <object name> # Guard variable for one-time
3694 // # initialization
3695 CXXNameMangler Mangler(*this, Out);
3696 Mangler.getStream() << "_ZGV";
3697 Mangler.mangleName(D);
3698}
3699
Richard Smith2fd1d7a2013-04-19 16:42:07 +00003700void ItaniumMangleContext::mangleItaniumThreadLocalInit(const VarDecl *D,
3701 raw_ostream &Out) {
3702 // <special-name> ::= TH <object name>
3703 CXXNameMangler Mangler(*this, Out);
3704 Mangler.getStream() << "_ZTH";
3705 Mangler.mangleName(D);
3706}
3707
3708void ItaniumMangleContext::mangleItaniumThreadLocalWrapper(const VarDecl *D,
3709 raw_ostream &Out) {
3710 // <special-name> ::= TW <object name>
3711 CXXNameMangler Mangler(*this, Out);
3712 Mangler.getStream() << "_ZTW";
3713 Mangler.mangleName(D);
3714}
3715
Guy Benyei11169dd2012-12-18 14:30:41 +00003716void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
3717 raw_ostream &Out) {
3718 // We match the GCC mangling here.
3719 // <special-name> ::= GR <object name>
3720 CXXNameMangler Mangler(*this, Out);
3721 Mangler.getStream() << "_ZGR";
3722 Mangler.mangleName(D);
3723}
3724
3725void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
3726 raw_ostream &Out) {
3727 // <special-name> ::= TV <type> # virtual table
3728 CXXNameMangler Mangler(*this, Out);
3729 Mangler.getStream() << "_ZTV";
3730 Mangler.mangleNameOrStandardSubstitution(RD);
3731}
3732
3733void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
3734 raw_ostream &Out) {
3735 // <special-name> ::= TT <type> # VTT structure
3736 CXXNameMangler Mangler(*this, Out);
3737 Mangler.getStream() << "_ZTT";
3738 Mangler.mangleNameOrStandardSubstitution(RD);
3739}
3740
Reid Kleckner7810af02013-06-19 15:20:38 +00003741void
3742ItaniumMangleContext::mangleCXXVBTable(const CXXRecordDecl *Derived,
3743 ArrayRef<const CXXRecordDecl *> BasePath,
3744 raw_ostream &Out) {
3745 llvm_unreachable("The Itanium C++ ABI does not have virtual base tables!");
3746}
3747
Guy Benyei11169dd2012-12-18 14:30:41 +00003748void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3749 int64_t Offset,
3750 const CXXRecordDecl *Type,
3751 raw_ostream &Out) {
3752 // <special-name> ::= TC <type> <offset number> _ <base type>
3753 CXXNameMangler Mangler(*this, Out);
3754 Mangler.getStream() << "_ZTC";
3755 Mangler.mangleNameOrStandardSubstitution(RD);
3756 Mangler.getStream() << Offset;
3757 Mangler.getStream() << '_';
3758 Mangler.mangleNameOrStandardSubstitution(Type);
3759}
3760
3761void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
3762 raw_ostream &Out) {
3763 // <special-name> ::= TI <type> # typeinfo structure
3764 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3765 CXXNameMangler Mangler(*this, Out);
3766 Mangler.getStream() << "_ZTI";
3767 Mangler.mangleType(Ty);
3768}
3769
3770void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
3771 raw_ostream &Out) {
3772 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
3773 CXXNameMangler Mangler(*this, Out);
3774 Mangler.getStream() << "_ZTS";
3775 Mangler.mangleType(Ty);
3776}
3777
3778MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
3779 DiagnosticsEngine &Diags) {
3780 return new ItaniumMangleContext(Context, Diags);
3781}