James Molloy | a929063 | 2017-05-25 12:51:11 +0000 | [diff] [blame] | 1 | //===- GVNSink.cpp - sink expressions into successors -------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | /// \file GVNSink.cpp |
| 11 | /// This pass attempts to sink instructions into successors, reducing static |
| 12 | /// instruction count and enabling if-conversion. |
| 13 | /// |
| 14 | /// We use a variant of global value numbering to decide what can be sunk. |
| 15 | /// Consider: |
| 16 | /// |
| 17 | /// [ %a1 = add i32 %b, 1 ] [ %c1 = add i32 %d, 1 ] |
| 18 | /// [ %a2 = xor i32 %a1, 1 ] [ %c2 = xor i32 %c1, 1 ] |
| 19 | /// \ / |
| 20 | /// [ %e = phi i32 %a2, %c2 ] |
| 21 | /// [ add i32 %e, 4 ] |
| 22 | /// |
| 23 | /// |
| 24 | /// GVN would number %a1 and %c1 differently because they compute different |
| 25 | /// results - the VN of an instruction is a function of its opcode and the |
| 26 | /// transitive closure of its operands. This is the key property for hoisting |
| 27 | /// and CSE. |
| 28 | /// |
| 29 | /// What we want when sinking however is for a numbering that is a function of |
| 30 | /// the *uses* of an instruction, which allows us to answer the question "if I |
| 31 | /// replace %a1 with %c1, will it contribute in an equivalent way to all |
| 32 | /// successive instructions?". The PostValueTable class in GVN provides this |
| 33 | /// mapping. |
| 34 | /// |
| 35 | //===----------------------------------------------------------------------===// |
| 36 | |
| 37 | #include "llvm/ADT/DenseMap.h" |
| 38 | #include "llvm/ADT/DenseMapInfo.h" |
| 39 | #include "llvm/ADT/DenseSet.h" |
| 40 | #include "llvm/ADT/Hashing.h" |
| 41 | #include "llvm/ADT/Optional.h" |
| 42 | #include "llvm/ADT/PostOrderIterator.h" |
| 43 | #include "llvm/ADT/SCCIterator.h" |
| 44 | #include "llvm/ADT/SmallPtrSet.h" |
| 45 | #include "llvm/ADT/Statistic.h" |
| 46 | #include "llvm/ADT/StringExtras.h" |
| 47 | #include "llvm/Analysis/GlobalsModRef.h" |
| 48 | #include "llvm/Analysis/MemorySSA.h" |
| 49 | #include "llvm/Analysis/PostDominators.h" |
| 50 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 51 | #include "llvm/Analysis/ValueTracking.h" |
| 52 | #include "llvm/IR/Instructions.h" |
| 53 | #include "llvm/IR/Verifier.h" |
| 54 | #include "llvm/Support/MathExtras.h" |
| 55 | #include "llvm/Transforms/Scalar.h" |
| 56 | #include "llvm/Transforms/Scalar/GVN.h" |
| 57 | #include "llvm/Transforms/Scalar/GVNExpression.h" |
| 58 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 59 | #include "llvm/Transforms/Utils/Local.h" |
| 60 | #include <unordered_set> |
| 61 | using namespace llvm; |
| 62 | |
| 63 | #define DEBUG_TYPE "gvn-sink" |
| 64 | |
| 65 | STATISTIC(NumRemoved, "Number of instructions removed"); |
| 66 | |
Frederich Munch | dceb612 | 2017-06-14 19:16:22 +0000 | [diff] [blame] | 67 | namespace llvm { |
| 68 | namespace GVNExpression { |
| 69 | |
| 70 | LLVM_DUMP_METHOD void Expression::dump() const { |
| 71 | print(dbgs()); |
| 72 | dbgs() << "\n"; |
| 73 | } |
| 74 | |
| 75 | } |
| 76 | } |
| 77 | |
James Molloy | a929063 | 2017-05-25 12:51:11 +0000 | [diff] [blame] | 78 | namespace { |
| 79 | |
| 80 | static bool isMemoryInst(const Instruction *I) { |
| 81 | return isa<LoadInst>(I) || isa<StoreInst>(I) || |
| 82 | (isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) || |
| 83 | (isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory()); |
| 84 | } |
| 85 | |
| 86 | /// Iterates through instructions in a set of blocks in reverse order from the |
| 87 | /// first non-terminator. For example (assume all blocks have size n): |
| 88 | /// LockstepReverseIterator I([B1, B2, B3]); |
| 89 | /// *I-- = [B1[n], B2[n], B3[n]]; |
| 90 | /// *I-- = [B1[n-1], B2[n-1], B3[n-1]]; |
| 91 | /// *I-- = [B1[n-2], B2[n-2], B3[n-2]]; |
| 92 | /// ... |
| 93 | /// |
| 94 | /// It continues until all blocks have been exhausted. Use \c getActiveBlocks() |
| 95 | /// to |
| 96 | /// determine which blocks are still going and the order they appear in the |
| 97 | /// list returned by operator*. |
| 98 | class LockstepReverseIterator { |
| 99 | ArrayRef<BasicBlock *> Blocks; |
| 100 | SmallPtrSet<BasicBlock *, 4> ActiveBlocks; |
| 101 | SmallVector<Instruction *, 4> Insts; |
| 102 | bool Fail; |
| 103 | |
| 104 | public: |
| 105 | LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) { |
| 106 | reset(); |
| 107 | } |
| 108 | |
| 109 | void reset() { |
| 110 | Fail = false; |
| 111 | ActiveBlocks.clear(); |
| 112 | for (BasicBlock *BB : Blocks) |
| 113 | ActiveBlocks.insert(BB); |
| 114 | Insts.clear(); |
| 115 | for (BasicBlock *BB : Blocks) { |
| 116 | if (BB->size() <= 1) { |
| 117 | // Block wasn't big enough - only contained a terminator. |
| 118 | ActiveBlocks.erase(BB); |
| 119 | continue; |
| 120 | } |
| 121 | Insts.push_back(BB->getTerminator()->getPrevNode()); |
| 122 | } |
| 123 | if (Insts.empty()) |
| 124 | Fail = true; |
| 125 | } |
| 126 | |
| 127 | bool isValid() const { return !Fail; } |
| 128 | ArrayRef<Instruction *> operator*() const { return Insts; } |
| 129 | SmallPtrSet<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; } |
| 130 | |
| 131 | void restrictToBlocks(SmallPtrSetImpl<BasicBlock *> &Blocks) { |
| 132 | for (auto II = Insts.begin(); II != Insts.end();) { |
| 133 | if (std::find(Blocks.begin(), Blocks.end(), (*II)->getParent()) == |
| 134 | Blocks.end()) { |
| 135 | ActiveBlocks.erase((*II)->getParent()); |
| 136 | II = Insts.erase(II); |
| 137 | } else { |
| 138 | ++II; |
| 139 | } |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | void operator--() { |
| 144 | if (Fail) |
| 145 | return; |
| 146 | SmallVector<Instruction *, 4> NewInsts; |
| 147 | for (auto *Inst : Insts) { |
| 148 | if (Inst == &Inst->getParent()->front()) |
| 149 | ActiveBlocks.erase(Inst->getParent()); |
| 150 | else |
| 151 | NewInsts.push_back(Inst->getPrevNode()); |
| 152 | } |
| 153 | if (NewInsts.empty()) { |
| 154 | Fail = true; |
| 155 | return; |
| 156 | } |
| 157 | Insts = NewInsts; |
| 158 | } |
| 159 | }; |
| 160 | |
| 161 | //===----------------------------------------------------------------------===// |
| 162 | |
| 163 | /// Candidate solution for sinking. There may be different ways to |
| 164 | /// sink instructions, differing in the number of instructions sunk, |
| 165 | /// the number of predecessors sunk from and the number of PHIs |
| 166 | /// required. |
| 167 | struct SinkingInstructionCandidate { |
| 168 | unsigned NumBlocks; |
| 169 | unsigned NumInstructions; |
| 170 | unsigned NumPHIs; |
| 171 | unsigned NumMemoryInsts; |
| 172 | int Cost = -1; |
| 173 | SmallVector<BasicBlock *, 4> Blocks; |
| 174 | |
| 175 | void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) { |
| 176 | unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs; |
| 177 | unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0; |
| 178 | Cost = (NumInstructions * (NumBlocks - 1)) - |
| 179 | (NumExtraPHIs * |
| 180 | NumExtraPHIs) // PHIs are expensive, so make sure they're worth it. |
| 181 | - SplitEdgeCost; |
| 182 | } |
Galina Kistanova | e128958 | 2017-06-08 17:27:40 +0000 | [diff] [blame] | 183 | bool operator>(const SinkingInstructionCandidate &Other) const { |
| 184 | return Cost > Other.Cost; |
James Molloy | a929063 | 2017-05-25 12:51:11 +0000 | [diff] [blame] | 185 | } |
| 186 | }; |
| 187 | |
James Molloy | 2a237f1 | 2017-05-25 13:11:18 +0000 | [diff] [blame] | 188 | #ifndef NDEBUG |
James Molloy | a929063 | 2017-05-25 12:51:11 +0000 | [diff] [blame] | 189 | llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, |
| 190 | const SinkingInstructionCandidate &C) { |
| 191 | OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks |
| 192 | << " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">"; |
| 193 | return OS; |
| 194 | } |
James Molloy | 2a237f1 | 2017-05-25 13:11:18 +0000 | [diff] [blame] | 195 | #endif |
James Molloy | a929063 | 2017-05-25 12:51:11 +0000 | [diff] [blame] | 196 | |
| 197 | //===----------------------------------------------------------------------===// |
| 198 | |
| 199 | /// Describes a PHI node that may or may not exist. These track the PHIs |
| 200 | /// that must be created if we sunk a sequence of instructions. It provides |
| 201 | /// a hash function for efficient equality comparisons. |
| 202 | class ModelledPHI { |
| 203 | SmallVector<Value *, 4> Values; |
| 204 | SmallVector<BasicBlock *, 4> Blocks; |
| 205 | |
| 206 | public: |
| 207 | ModelledPHI() {} |
| 208 | ModelledPHI(const PHINode *PN) { |
Daniel Berlin | 064cb68 | 2017-09-20 00:07:27 +0000 | [diff] [blame] | 209 | // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order. |
| 210 | SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops; |
James Molloy | a929063 | 2017-05-25 12:51:11 +0000 | [diff] [blame] | 211 | for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) |
Daniel Berlin | 064cb68 | 2017-09-20 00:07:27 +0000 | [diff] [blame] | 212 | Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)}); |
| 213 | std::sort(Ops.begin(), Ops.end()); |
| 214 | for (auto &P : Ops) { |
| 215 | Blocks.push_back(P.first); |
| 216 | Values.push_back(P.second); |
| 217 | } |
James Molloy | a929063 | 2017-05-25 12:51:11 +0000 | [diff] [blame] | 218 | } |
| 219 | /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI |
| 220 | /// without the same ID. |
| 221 | /// \note This is specifically for DenseMapInfo - do not use this! |
James Molloy | dc2d64b | 2017-05-25 13:14:10 +0000 | [diff] [blame] | 222 | static ModelledPHI createDummy(size_t ID) { |
James Molloy | a929063 | 2017-05-25 12:51:11 +0000 | [diff] [blame] | 223 | ModelledPHI M; |
| 224 | M.Values.push_back(reinterpret_cast<Value*>(ID)); |
| 225 | return M; |
| 226 | } |
| 227 | |
| 228 | /// Create a PHI from an array of incoming values and incoming blocks. |
| 229 | template <typename VArray, typename BArray> |
| 230 | ModelledPHI(const VArray &V, const BArray &B) { |
| 231 | std::copy(V.begin(), V.end(), std::back_inserter(Values)); |
| 232 | std::copy(B.begin(), B.end(), std::back_inserter(Blocks)); |
| 233 | } |
| 234 | |
| 235 | /// Create a PHI from [I[OpNum] for I in Insts]. |
| 236 | template <typename BArray> |
| 237 | ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) { |
| 238 | std::copy(B.begin(), B.end(), std::back_inserter(Blocks)); |
| 239 | for (auto *I : Insts) |
| 240 | Values.push_back(I->getOperand(OpNum)); |
| 241 | } |
| 242 | |
| 243 | /// Restrict the PHI's contents down to only \c NewBlocks. |
| 244 | /// \c NewBlocks must be a subset of \c this->Blocks. |
| 245 | void restrictToBlocks(const SmallPtrSetImpl<BasicBlock *> &NewBlocks) { |
| 246 | auto BI = Blocks.begin(); |
| 247 | auto VI = Values.begin(); |
| 248 | while (BI != Blocks.end()) { |
| 249 | assert(VI != Values.end()); |
| 250 | if (std::find(NewBlocks.begin(), NewBlocks.end(), *BI) == |
| 251 | NewBlocks.end()) { |
| 252 | BI = Blocks.erase(BI); |
| 253 | VI = Values.erase(VI); |
| 254 | } else { |
| 255 | ++BI; |
| 256 | ++VI; |
| 257 | } |
| 258 | } |
| 259 | assert(Blocks.size() == NewBlocks.size()); |
| 260 | } |
| 261 | |
| 262 | ArrayRef<Value *> getValues() const { return Values; } |
| 263 | |
| 264 | bool areAllIncomingValuesSame() const { |
| 265 | return all_of(Values, [&](Value *V) { return V == Values[0]; }); |
| 266 | } |
| 267 | bool areAllIncomingValuesSameType() const { |
| 268 | return all_of( |
| 269 | Values, [&](Value *V) { return V->getType() == Values[0]->getType(); }); |
| 270 | } |
| 271 | bool areAnyIncomingValuesConstant() const { |
| 272 | return any_of(Values, [&](Value *V) { return isa<Constant>(V); }); |
| 273 | } |
| 274 | // Hash functor |
| 275 | unsigned hash() const { |
| 276 | return (unsigned)hash_combine_range(Values.begin(), Values.end()); |
| 277 | } |
| 278 | bool operator==(const ModelledPHI &Other) const { |
| 279 | return Values == Other.Values && Blocks == Other.Blocks; |
| 280 | } |
| 281 | }; |
| 282 | |
| 283 | template <typename ModelledPHI> struct DenseMapInfo { |
| 284 | static inline ModelledPHI &getEmptyKey() { |
| 285 | static ModelledPHI Dummy = ModelledPHI::createDummy(0); |
| 286 | return Dummy; |
| 287 | } |
| 288 | static inline ModelledPHI &getTombstoneKey() { |
| 289 | static ModelledPHI Dummy = ModelledPHI::createDummy(1); |
| 290 | return Dummy; |
| 291 | } |
| 292 | static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); } |
| 293 | static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) { |
| 294 | return LHS == RHS; |
| 295 | } |
| 296 | }; |
| 297 | |
| 298 | typedef DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>> ModelledPHISet; |
| 299 | |
| 300 | //===----------------------------------------------------------------------===// |
| 301 | // ValueTable |
| 302 | //===----------------------------------------------------------------------===// |
| 303 | // This is a value number table where the value number is a function of the |
| 304 | // *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know |
| 305 | // that the program would be equivalent if we replaced A with PHI(A, B). |
| 306 | //===----------------------------------------------------------------------===// |
| 307 | |
| 308 | /// A GVN expression describing how an instruction is used. The operands |
| 309 | /// field of BasicExpression is used to store uses, not operands. |
| 310 | /// |
| 311 | /// This class also contains fields for discriminators used when determining |
| 312 | /// equivalence of instructions with sideeffects. |
| 313 | class InstructionUseExpr : public GVNExpression::BasicExpression { |
| 314 | unsigned MemoryUseOrder = -1; |
| 315 | bool Volatile = false; |
| 316 | |
| 317 | public: |
| 318 | InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R, |
| 319 | BumpPtrAllocator &A) |
| 320 | : GVNExpression::BasicExpression(I->getNumUses()) { |
| 321 | allocateOperands(R, A); |
| 322 | setOpcode(I->getOpcode()); |
| 323 | setType(I->getType()); |
| 324 | |
| 325 | for (auto &U : I->uses()) |
| 326 | op_push_back(U.getUser()); |
| 327 | std::sort(op_begin(), op_end()); |
| 328 | } |
| 329 | void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; } |
| 330 | void setVolatile(bool V) { Volatile = V; } |
| 331 | |
| 332 | virtual hash_code getHashValue() const { |
| 333 | return hash_combine(GVNExpression::BasicExpression::getHashValue(), |
| 334 | MemoryUseOrder, Volatile); |
| 335 | } |
| 336 | |
| 337 | template <typename Function> hash_code getHashValue(Function MapFn) { |
| 338 | hash_code H = |
| 339 | hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile); |
| 340 | for (auto *V : operands()) |
| 341 | H = hash_combine(H, MapFn(V)); |
| 342 | return H; |
| 343 | } |
| 344 | }; |
| 345 | |
| 346 | class ValueTable { |
| 347 | DenseMap<Value *, uint32_t> ValueNumbering; |
| 348 | DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering; |
| 349 | DenseMap<size_t, uint32_t> HashNumbering; |
| 350 | BumpPtrAllocator Allocator; |
| 351 | ArrayRecycler<Value *> Recycler; |
| 352 | uint32_t nextValueNumber; |
| 353 | |
| 354 | /// Create an expression for I based on its opcode and its uses. If I |
| 355 | /// touches or reads memory, the expression is also based upon its memory |
| 356 | /// order - see \c getMemoryUseOrder(). |
| 357 | InstructionUseExpr *createExpr(Instruction *I) { |
| 358 | InstructionUseExpr *E = |
| 359 | new (Allocator) InstructionUseExpr(I, Recycler, Allocator); |
| 360 | if (isMemoryInst(I)) |
| 361 | E->setMemoryUseOrder(getMemoryUseOrder(I)); |
| 362 | |
| 363 | if (CmpInst *C = dyn_cast<CmpInst>(I)) { |
| 364 | CmpInst::Predicate Predicate = C->getPredicate(); |
| 365 | E->setOpcode((C->getOpcode() << 8) | Predicate); |
| 366 | } |
| 367 | return E; |
| 368 | } |
| 369 | |
| 370 | /// Helper to compute the value number for a memory instruction |
| 371 | /// (LoadInst/StoreInst), including checking the memory ordering and |
| 372 | /// volatility. |
| 373 | template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) { |
| 374 | if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic()) |
| 375 | return nullptr; |
| 376 | InstructionUseExpr *E = createExpr(I); |
| 377 | E->setVolatile(I->isVolatile()); |
| 378 | return E; |
| 379 | } |
| 380 | |
| 381 | public: |
| 382 | /// Returns the value number for the specified value, assigning |
| 383 | /// it a new number if it did not have one before. |
| 384 | uint32_t lookupOrAdd(Value *V) { |
| 385 | auto VI = ValueNumbering.find(V); |
| 386 | if (VI != ValueNumbering.end()) |
| 387 | return VI->second; |
| 388 | |
| 389 | if (!isa<Instruction>(V)) { |
| 390 | ValueNumbering[V] = nextValueNumber; |
| 391 | return nextValueNumber++; |
| 392 | } |
| 393 | |
| 394 | Instruction *I = cast<Instruction>(V); |
| 395 | InstructionUseExpr *exp = nullptr; |
| 396 | switch (I->getOpcode()) { |
| 397 | case Instruction::Load: |
| 398 | exp = createMemoryExpr(cast<LoadInst>(I)); |
| 399 | break; |
| 400 | case Instruction::Store: |
| 401 | exp = createMemoryExpr(cast<StoreInst>(I)); |
| 402 | break; |
| 403 | case Instruction::Call: |
| 404 | case Instruction::Invoke: |
| 405 | case Instruction::Add: |
| 406 | case Instruction::FAdd: |
| 407 | case Instruction::Sub: |
| 408 | case Instruction::FSub: |
| 409 | case Instruction::Mul: |
| 410 | case Instruction::FMul: |
| 411 | case Instruction::UDiv: |
| 412 | case Instruction::SDiv: |
| 413 | case Instruction::FDiv: |
| 414 | case Instruction::URem: |
| 415 | case Instruction::SRem: |
| 416 | case Instruction::FRem: |
| 417 | case Instruction::Shl: |
| 418 | case Instruction::LShr: |
| 419 | case Instruction::AShr: |
| 420 | case Instruction::And: |
| 421 | case Instruction::Or: |
| 422 | case Instruction::Xor: |
| 423 | case Instruction::ICmp: |
| 424 | case Instruction::FCmp: |
| 425 | case Instruction::Trunc: |
| 426 | case Instruction::ZExt: |
| 427 | case Instruction::SExt: |
| 428 | case Instruction::FPToUI: |
| 429 | case Instruction::FPToSI: |
| 430 | case Instruction::UIToFP: |
| 431 | case Instruction::SIToFP: |
| 432 | case Instruction::FPTrunc: |
| 433 | case Instruction::FPExt: |
| 434 | case Instruction::PtrToInt: |
| 435 | case Instruction::IntToPtr: |
| 436 | case Instruction::BitCast: |
| 437 | case Instruction::Select: |
| 438 | case Instruction::ExtractElement: |
| 439 | case Instruction::InsertElement: |
| 440 | case Instruction::ShuffleVector: |
| 441 | case Instruction::InsertValue: |
| 442 | case Instruction::GetElementPtr: |
| 443 | exp = createExpr(I); |
| 444 | break; |
| 445 | default: |
| 446 | break; |
| 447 | } |
| 448 | |
| 449 | if (!exp) { |
| 450 | ValueNumbering[V] = nextValueNumber; |
| 451 | return nextValueNumber++; |
| 452 | } |
| 453 | |
| 454 | uint32_t e = ExpressionNumbering[exp]; |
| 455 | if (!e) { |
| 456 | hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); }); |
| 457 | auto I = HashNumbering.find(H); |
| 458 | if (I != HashNumbering.end()) { |
| 459 | e = I->second; |
| 460 | } else { |
| 461 | e = nextValueNumber++; |
| 462 | HashNumbering[H] = e; |
| 463 | ExpressionNumbering[exp] = e; |
| 464 | } |
| 465 | } |
| 466 | ValueNumbering[V] = e; |
| 467 | return e; |
| 468 | } |
| 469 | |
| 470 | /// Returns the value number of the specified value. Fails if the value has |
| 471 | /// not yet been numbered. |
| 472 | uint32_t lookup(Value *V) const { |
| 473 | auto VI = ValueNumbering.find(V); |
| 474 | assert(VI != ValueNumbering.end() && "Value not numbered?"); |
| 475 | return VI->second; |
| 476 | } |
| 477 | |
| 478 | /// Removes all value numberings and resets the value table. |
| 479 | void clear() { |
| 480 | ValueNumbering.clear(); |
| 481 | ExpressionNumbering.clear(); |
| 482 | HashNumbering.clear(); |
| 483 | Recycler.clear(Allocator); |
| 484 | nextValueNumber = 1; |
| 485 | } |
| 486 | |
| 487 | ValueTable() : nextValueNumber(1) {} |
| 488 | |
| 489 | /// \c Inst uses or touches memory. Return an ID describing the memory state |
| 490 | /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2), |
| 491 | /// the exact same memory operations happen after I1 and I2. |
| 492 | /// |
| 493 | /// This is a very hard problem in general, so we use domain-specific |
| 494 | /// knowledge that we only ever check for equivalence between blocks sharing a |
| 495 | /// single immediate successor that is common, and when determining if I1 == |
| 496 | /// I2 we will have already determined that next(I1) == next(I2). This |
| 497 | /// inductive property allows us to simply return the value number of the next |
| 498 | /// instruction that defines memory. |
| 499 | uint32_t getMemoryUseOrder(Instruction *Inst) { |
| 500 | auto *BB = Inst->getParent(); |
| 501 | for (auto I = std::next(Inst->getIterator()), E = BB->end(); |
| 502 | I != E && !I->isTerminator(); ++I) { |
| 503 | if (!isMemoryInst(&*I)) |
| 504 | continue; |
| 505 | if (isa<LoadInst>(&*I)) |
| 506 | continue; |
| 507 | CallInst *CI = dyn_cast<CallInst>(&*I); |
| 508 | if (CI && CI->onlyReadsMemory()) |
| 509 | continue; |
| 510 | InvokeInst *II = dyn_cast<InvokeInst>(&*I); |
| 511 | if (II && II->onlyReadsMemory()) |
| 512 | continue; |
| 513 | return lookupOrAdd(&*I); |
| 514 | } |
| 515 | return 0; |
| 516 | } |
| 517 | }; |
| 518 | |
| 519 | //===----------------------------------------------------------------------===// |
| 520 | |
| 521 | class GVNSink { |
| 522 | public: |
| 523 | GVNSink() : VN() {} |
| 524 | bool run(Function &F) { |
| 525 | DEBUG(dbgs() << "GVNSink: running on function @" << F.getName() << "\n"); |
| 526 | |
| 527 | unsigned NumSunk = 0; |
| 528 | ReversePostOrderTraversal<Function*> RPOT(&F); |
| 529 | for (auto *N : RPOT) |
| 530 | NumSunk += sinkBB(N); |
| 531 | |
| 532 | return NumSunk > 0; |
| 533 | } |
| 534 | |
| 535 | private: |
| 536 | ValueTable VN; |
| 537 | |
| 538 | bool isInstructionBlacklisted(Instruction *I) { |
| 539 | // These instructions may change or break semantics if moved. |
| 540 | if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || |
| 541 | I->getType()->isTokenTy()) |
| 542 | return true; |
| 543 | return false; |
| 544 | } |
| 545 | |
| 546 | /// The main heuristic function. Analyze the set of instructions pointed to by |
| 547 | /// LRI and return a candidate solution if these instructions can be sunk, or |
| 548 | /// None otherwise. |
| 549 | Optional<SinkingInstructionCandidate> analyzeInstructionForSinking( |
| 550 | LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum, |
| 551 | ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents); |
| 552 | |
| 553 | /// Create a ModelledPHI for each PHI in BB, adding to PHIs. |
| 554 | void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs, |
| 555 | SmallPtrSetImpl<Value *> &PHIContents) { |
| 556 | for (auto &I : *BB) { |
| 557 | auto *PN = dyn_cast<PHINode>(&I); |
| 558 | if (!PN) |
| 559 | return; |
| 560 | |
| 561 | auto MPHI = ModelledPHI(PN); |
| 562 | PHIs.insert(MPHI); |
| 563 | for (auto *V : MPHI.getValues()) |
| 564 | PHIContents.insert(V); |
| 565 | } |
| 566 | } |
| 567 | |
| 568 | /// The main instruction sinking driver. Set up state and try and sink |
| 569 | /// instructions into BBEnd from its predecessors. |
| 570 | unsigned sinkBB(BasicBlock *BBEnd); |
| 571 | |
| 572 | /// Perform the actual mechanics of sinking an instruction from Blocks into |
| 573 | /// BBEnd, which is their only successor. |
| 574 | void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd); |
| 575 | |
| 576 | /// Remove PHIs that all have the same incoming value. |
| 577 | void foldPointlessPHINodes(BasicBlock *BB) { |
| 578 | auto I = BB->begin(); |
| 579 | while (PHINode *PN = dyn_cast<PHINode>(I++)) { |
| 580 | if (!all_of(PN->incoming_values(), |
| 581 | [&](const Value *V) { return V == PN->getIncomingValue(0); })) |
| 582 | continue; |
| 583 | if (PN->getIncomingValue(0) != PN) |
| 584 | PN->replaceAllUsesWith(PN->getIncomingValue(0)); |
| 585 | else |
| 586 | PN->replaceAllUsesWith(UndefValue::get(PN->getType())); |
| 587 | PN->eraseFromParent(); |
| 588 | } |
| 589 | } |
| 590 | }; |
| 591 | |
| 592 | Optional<SinkingInstructionCandidate> GVNSink::analyzeInstructionForSinking( |
| 593 | LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum, |
| 594 | ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents) { |
| 595 | auto Insts = *LRI; |
| 596 | DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I |
| 597 | : Insts) { |
| 598 | I->dump(); |
| 599 | } dbgs() << " ]\n";); |
| 600 | |
| 601 | DenseMap<uint32_t, unsigned> VNums; |
| 602 | for (auto *I : Insts) { |
| 603 | uint32_t N = VN.lookupOrAdd(I); |
| 604 | DEBUG(dbgs() << " VN=" << utohexstr(N) << " for" << *I << "\n"); |
| 605 | if (N == ~0U) |
| 606 | return None; |
| 607 | VNums[N]++; |
| 608 | } |
| 609 | unsigned VNumToSink = |
| 610 | std::max_element(VNums.begin(), VNums.end(), |
| 611 | [](const std::pair<uint32_t, unsigned> &I, |
| 612 | const std::pair<uint32_t, unsigned> &J) { |
| 613 | return I.second < J.second; |
| 614 | }) |
| 615 | ->first; |
| 616 | |
| 617 | if (VNums[VNumToSink] == 1) |
| 618 | // Can't sink anything! |
| 619 | return None; |
| 620 | |
| 621 | // Now restrict the number of incoming blocks down to only those with |
| 622 | // VNumToSink. |
| 623 | auto &ActivePreds = LRI.getActiveBlocks(); |
| 624 | unsigned InitialActivePredSize = ActivePreds.size(); |
| 625 | SmallVector<Instruction *, 4> NewInsts; |
| 626 | for (auto *I : Insts) { |
| 627 | if (VN.lookup(I) != VNumToSink) |
| 628 | ActivePreds.erase(I->getParent()); |
| 629 | else |
| 630 | NewInsts.push_back(I); |
| 631 | } |
| 632 | for (auto *I : NewInsts) |
| 633 | if (isInstructionBlacklisted(I)) |
| 634 | return None; |
| 635 | |
| 636 | // If we've restricted the incoming blocks, restrict all needed PHIs also |
| 637 | // to that set. |
| 638 | bool RecomputePHIContents = false; |
| 639 | if (ActivePreds.size() != InitialActivePredSize) { |
| 640 | ModelledPHISet NewNeededPHIs; |
| 641 | for (auto P : NeededPHIs) { |
| 642 | P.restrictToBlocks(ActivePreds); |
| 643 | NewNeededPHIs.insert(P); |
| 644 | } |
| 645 | NeededPHIs = NewNeededPHIs; |
| 646 | LRI.restrictToBlocks(ActivePreds); |
| 647 | RecomputePHIContents = true; |
| 648 | } |
| 649 | |
| 650 | // The sunk instruction's results. |
| 651 | ModelledPHI NewPHI(NewInsts, ActivePreds); |
| 652 | |
| 653 | // Does sinking this instruction render previous PHIs redundant? |
| 654 | if (NeededPHIs.find(NewPHI) != NeededPHIs.end()) { |
| 655 | NeededPHIs.erase(NewPHI); |
| 656 | RecomputePHIContents = true; |
| 657 | } |
| 658 | |
| 659 | if (RecomputePHIContents) { |
| 660 | // The needed PHIs have changed, so recompute the set of all needed |
| 661 | // values. |
| 662 | PHIContents.clear(); |
| 663 | for (auto &PHI : NeededPHIs) |
| 664 | PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); |
| 665 | } |
| 666 | |
| 667 | // Is this instruction required by a later PHI that doesn't match this PHI? |
| 668 | // if so, we can't sink this instruction. |
| 669 | for (auto *V : NewPHI.getValues()) |
| 670 | if (PHIContents.count(V)) |
| 671 | // V exists in this PHI, but the whole PHI is different to NewPHI |
| 672 | // (else it would have been removed earlier). We cannot continue |
| 673 | // because this isn't representable. |
| 674 | return None; |
| 675 | |
| 676 | // Which operands need PHIs? |
| 677 | // FIXME: If any of these fail, we should partition up the candidates to |
| 678 | // try and continue making progress. |
| 679 | Instruction *I0 = NewInsts[0]; |
| 680 | for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) { |
| 681 | ModelledPHI PHI(NewInsts, OpNum, ActivePreds); |
| 682 | if (PHI.areAllIncomingValuesSame()) |
| 683 | continue; |
| 684 | if (!canReplaceOperandWithVariable(I0, OpNum)) |
| 685 | // We can 't create a PHI from this instruction! |
| 686 | return None; |
| 687 | if (NeededPHIs.count(PHI)) |
| 688 | continue; |
| 689 | if (!PHI.areAllIncomingValuesSameType()) |
| 690 | return None; |
| 691 | // Don't create indirect calls! The called value is the final operand. |
| 692 | if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 && |
| 693 | PHI.areAnyIncomingValuesConstant()) |
| 694 | return None; |
| 695 | |
| 696 | NeededPHIs.reserve(NeededPHIs.size()); |
| 697 | NeededPHIs.insert(PHI); |
| 698 | PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); |
| 699 | } |
| 700 | |
| 701 | if (isMemoryInst(NewInsts[0])) |
| 702 | ++MemoryInstNum; |
| 703 | |
| 704 | SinkingInstructionCandidate Cand; |
| 705 | Cand.NumInstructions = ++InstNum; |
| 706 | Cand.NumMemoryInsts = MemoryInstNum; |
| 707 | Cand.NumBlocks = ActivePreds.size(); |
| 708 | Cand.NumPHIs = NeededPHIs.size(); |
| 709 | for (auto *C : ActivePreds) |
| 710 | Cand.Blocks.push_back(C); |
| 711 | |
| 712 | return Cand; |
| 713 | } |
| 714 | |
| 715 | unsigned GVNSink::sinkBB(BasicBlock *BBEnd) { |
| 716 | DEBUG(dbgs() << "GVNSink: running on basic block "; |
| 717 | BBEnd->printAsOperand(dbgs()); dbgs() << "\n"); |
| 718 | SmallVector<BasicBlock *, 4> Preds; |
| 719 | for (auto *B : predecessors(BBEnd)) { |
| 720 | auto *T = B->getTerminator(); |
| 721 | if (isa<BranchInst>(T) || isa<SwitchInst>(T)) |
| 722 | Preds.push_back(B); |
| 723 | else |
| 724 | return 0; |
| 725 | } |
| 726 | if (Preds.size() < 2) |
| 727 | return 0; |
| 728 | std::sort(Preds.begin(), Preds.end()); |
| 729 | |
| 730 | unsigned NumOrigPreds = Preds.size(); |
| 731 | // We can only sink instructions through unconditional branches. |
| 732 | for (auto I = Preds.begin(); I != Preds.end();) { |
| 733 | if ((*I)->getTerminator()->getNumSuccessors() != 1) |
| 734 | I = Preds.erase(I); |
| 735 | else |
| 736 | ++I; |
| 737 | } |
| 738 | |
| 739 | LockstepReverseIterator LRI(Preds); |
| 740 | SmallVector<SinkingInstructionCandidate, 4> Candidates; |
| 741 | unsigned InstNum = 0, MemoryInstNum = 0; |
| 742 | ModelledPHISet NeededPHIs; |
| 743 | SmallPtrSet<Value *, 4> PHIContents; |
| 744 | analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents); |
| 745 | unsigned NumOrigPHIs = NeededPHIs.size(); |
| 746 | |
| 747 | while (LRI.isValid()) { |
| 748 | auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum, |
| 749 | NeededPHIs, PHIContents); |
| 750 | if (!Cand) |
| 751 | break; |
| 752 | Cand->calculateCost(NumOrigPHIs, Preds.size()); |
| 753 | Candidates.emplace_back(*Cand); |
| 754 | --LRI; |
| 755 | } |
| 756 | |
| 757 | std::stable_sort( |
| 758 | Candidates.begin(), Candidates.end(), |
| 759 | [](const SinkingInstructionCandidate &A, |
Galina Kistanova | e128958 | 2017-06-08 17:27:40 +0000 | [diff] [blame] | 760 | const SinkingInstructionCandidate &B) { return A > B; }); |
James Molloy | a929063 | 2017-05-25 12:51:11 +0000 | [diff] [blame] | 761 | DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C |
| 762 | : Candidates) dbgs() |
| 763 | << " " << C << "\n";); |
| 764 | |
| 765 | // Pick the top candidate, as long it is positive! |
| 766 | if (Candidates.empty() || Candidates.front().Cost <= 0) |
| 767 | return 0; |
| 768 | auto C = Candidates.front(); |
| 769 | |
| 770 | DEBUG(dbgs() << " -- Sinking: " << C << "\n"); |
| 771 | BasicBlock *InsertBB = BBEnd; |
| 772 | if (C.Blocks.size() < NumOrigPreds) { |
| 773 | DEBUG(dbgs() << " -- Splitting edge to "; BBEnd->printAsOperand(dbgs()); |
| 774 | dbgs() << "\n"); |
| 775 | InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split"); |
| 776 | if (!InsertBB) { |
| 777 | DEBUG(dbgs() << " -- FAILED to split edge!\n"); |
| 778 | // Edge couldn't be split. |
| 779 | return 0; |
| 780 | } |
| 781 | } |
| 782 | |
| 783 | for (unsigned I = 0; I < C.NumInstructions; ++I) |
| 784 | sinkLastInstruction(C.Blocks, InsertBB); |
| 785 | |
| 786 | return C.NumInstructions; |
| 787 | } |
| 788 | |
| 789 | void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, |
| 790 | BasicBlock *BBEnd) { |
| 791 | SmallVector<Instruction *, 4> Insts; |
| 792 | for (BasicBlock *BB : Blocks) |
| 793 | Insts.push_back(BB->getTerminator()->getPrevNode()); |
| 794 | Instruction *I0 = Insts.front(); |
| 795 | |
| 796 | SmallVector<Value *, 4> NewOperands; |
| 797 | for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { |
| 798 | bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { |
| 799 | return I->getOperand(O) != I0->getOperand(O); |
| 800 | }); |
| 801 | if (!NeedPHI) { |
| 802 | NewOperands.push_back(I0->getOperand(O)); |
| 803 | continue; |
| 804 | } |
| 805 | |
| 806 | // Create a new PHI in the successor block and populate it. |
| 807 | auto *Op = I0->getOperand(O); |
| 808 | assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); |
| 809 | auto *PN = PHINode::Create(Op->getType(), Insts.size(), |
| 810 | Op->getName() + ".sink", &BBEnd->front()); |
| 811 | for (auto *I : Insts) |
| 812 | PN->addIncoming(I->getOperand(O), I->getParent()); |
| 813 | NewOperands.push_back(PN); |
| 814 | } |
| 815 | |
| 816 | // Arbitrarily use I0 as the new "common" instruction; remap its operands |
| 817 | // and move it to the start of the successor block. |
| 818 | for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) |
| 819 | I0->getOperandUse(O).set(NewOperands[O]); |
| 820 | I0->moveBefore(&*BBEnd->getFirstInsertionPt()); |
| 821 | |
| 822 | // Update metadata and IR flags. |
| 823 | for (auto *I : Insts) |
| 824 | if (I != I0) { |
| 825 | combineMetadataForCSE(I0, I); |
| 826 | I0->andIRFlags(I); |
| 827 | } |
| 828 | |
| 829 | for (auto *I : Insts) |
| 830 | if (I != I0) |
| 831 | I->replaceAllUsesWith(I0); |
| 832 | foldPointlessPHINodes(BBEnd); |
| 833 | |
| 834 | // Finally nuke all instructions apart from the common instruction. |
| 835 | for (auto *I : Insts) |
| 836 | if (I != I0) |
| 837 | I->eraseFromParent(); |
| 838 | |
| 839 | NumRemoved += Insts.size() - 1; |
| 840 | } |
| 841 | |
| 842 | //////////////////////////////////////////////////////////////////////////////// |
| 843 | // Pass machinery / boilerplate |
| 844 | |
| 845 | class GVNSinkLegacyPass : public FunctionPass { |
| 846 | public: |
| 847 | static char ID; |
| 848 | |
| 849 | GVNSinkLegacyPass() : FunctionPass(ID) { |
| 850 | initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry()); |
| 851 | } |
| 852 | |
| 853 | bool runOnFunction(Function &F) override { |
| 854 | if (skipFunction(F)) |
| 855 | return false; |
| 856 | GVNSink G; |
| 857 | return G.run(F); |
| 858 | } |
| 859 | |
| 860 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 861 | AU.addPreserved<GlobalsAAWrapperPass>(); |
| 862 | } |
| 863 | }; |
| 864 | } // namespace |
| 865 | |
| 866 | PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) { |
| 867 | GVNSink G; |
| 868 | if (!G.run(F)) |
| 869 | return PreservedAnalyses::all(); |
| 870 | |
| 871 | PreservedAnalyses PA; |
| 872 | PA.preserve<GlobalsAA>(); |
| 873 | return PA; |
| 874 | } |
| 875 | |
| 876 | char GVNSinkLegacyPass::ID = 0; |
| 877 | INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink", |
| 878 | "Early GVN sinking of Expressions", false, false) |
| 879 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 880 | INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) |
| 881 | INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink", |
| 882 | "Early GVN sinking of Expressions", false, false) |
| 883 | |
| 884 | FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); } |