Owen Anderson | 9b67698 | 2009-08-04 22:55:26 +0000 | [diff] [blame] | 1 | //===---------------- ConstantsContext.h - Implementation ------*- C++ -*--===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines various helper methods and classes used by |
| 11 | // LLVMContextImpl for creating and managing constants. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_CONSTANTSCONTEXT_H |
| 16 | #define LLVM_CONSTANTSCONTEXT_H |
| 17 | |
| 18 | #include "llvm/Instructions.h" |
Owen Anderson | 13234f8 | 2009-08-10 18:16:08 +0000 | [diff] [blame] | 19 | #include "llvm/Metadata.h" |
Owen Anderson | 9b67698 | 2009-08-04 22:55:26 +0000 | [diff] [blame] | 20 | #include "llvm/Operator.h" |
| 21 | #include "llvm/Support/Debug.h" |
| 22 | #include "llvm/Support/ErrorHandling.h" |
| 23 | #include "llvm/System/Mutex.h" |
| 24 | #include "llvm/System/RWMutex.h" |
| 25 | #include <map> |
| 26 | |
| 27 | namespace llvm { |
| 28 | template<class ValType> |
| 29 | struct ConstantTraits; |
| 30 | |
| 31 | /// UnaryConstantExpr - This class is private to Constants.cpp, and is used |
| 32 | /// behind the scenes to implement unary constant exprs. |
| 33 | class UnaryConstantExpr : public ConstantExpr { |
| 34 | void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| 35 | public: |
| 36 | // allocate space for exactly one operand |
| 37 | void *operator new(size_t s) { |
| 38 | return User::operator new(s, 1); |
| 39 | } |
| 40 | UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty) |
| 41 | : ConstantExpr(Ty, Opcode, &Op<0>(), 1) { |
| 42 | Op<0>() = C; |
| 43 | } |
| 44 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| 45 | }; |
| 46 | |
| 47 | /// BinaryConstantExpr - This class is private to Constants.cpp, and is used |
| 48 | /// behind the scenes to implement binary constant exprs. |
| 49 | class BinaryConstantExpr : public ConstantExpr { |
| 50 | void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| 51 | public: |
| 52 | // allocate space for exactly two operands |
| 53 | void *operator new(size_t s) { |
| 54 | return User::operator new(s, 2); |
| 55 | } |
| 56 | BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2) |
| 57 | : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) { |
| 58 | Op<0>() = C1; |
| 59 | Op<1>() = C2; |
| 60 | } |
| 61 | /// Transparently provide more efficient getOperand methods. |
| 62 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| 63 | }; |
| 64 | |
| 65 | /// SelectConstantExpr - This class is private to Constants.cpp, and is used |
| 66 | /// behind the scenes to implement select constant exprs. |
| 67 | class SelectConstantExpr : public ConstantExpr { |
| 68 | void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| 69 | public: |
| 70 | // allocate space for exactly three operands |
| 71 | void *operator new(size_t s) { |
| 72 | return User::operator new(s, 3); |
| 73 | } |
| 74 | SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3) |
| 75 | : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) { |
| 76 | Op<0>() = C1; |
| 77 | Op<1>() = C2; |
| 78 | Op<2>() = C3; |
| 79 | } |
| 80 | /// Transparently provide more efficient getOperand methods. |
| 81 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| 82 | }; |
| 83 | |
| 84 | /// ExtractElementConstantExpr - This class is private to |
| 85 | /// Constants.cpp, and is used behind the scenes to implement |
| 86 | /// extractelement constant exprs. |
| 87 | class ExtractElementConstantExpr : public ConstantExpr { |
| 88 | void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| 89 | public: |
| 90 | // allocate space for exactly two operands |
| 91 | void *operator new(size_t s) { |
| 92 | return User::operator new(s, 2); |
| 93 | } |
| 94 | ExtractElementConstantExpr(Constant *C1, Constant *C2) |
| 95 | : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(), |
| 96 | Instruction::ExtractElement, &Op<0>(), 2) { |
| 97 | Op<0>() = C1; |
| 98 | Op<1>() = C2; |
| 99 | } |
| 100 | /// Transparently provide more efficient getOperand methods. |
| 101 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| 102 | }; |
| 103 | |
| 104 | /// InsertElementConstantExpr - This class is private to |
| 105 | /// Constants.cpp, and is used behind the scenes to implement |
| 106 | /// insertelement constant exprs. |
| 107 | class InsertElementConstantExpr : public ConstantExpr { |
| 108 | void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| 109 | public: |
| 110 | // allocate space for exactly three operands |
| 111 | void *operator new(size_t s) { |
| 112 | return User::operator new(s, 3); |
| 113 | } |
| 114 | InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3) |
| 115 | : ConstantExpr(C1->getType(), Instruction::InsertElement, |
| 116 | &Op<0>(), 3) { |
| 117 | Op<0>() = C1; |
| 118 | Op<1>() = C2; |
| 119 | Op<2>() = C3; |
| 120 | } |
| 121 | /// Transparently provide more efficient getOperand methods. |
| 122 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| 123 | }; |
| 124 | |
| 125 | /// ShuffleVectorConstantExpr - This class is private to |
| 126 | /// Constants.cpp, and is used behind the scenes to implement |
| 127 | /// shufflevector constant exprs. |
| 128 | class ShuffleVectorConstantExpr : public ConstantExpr { |
| 129 | void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| 130 | public: |
| 131 | // allocate space for exactly three operands |
| 132 | void *operator new(size_t s) { |
| 133 | return User::operator new(s, 3); |
| 134 | } |
| 135 | ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3) |
| 136 | : ConstantExpr(VectorType::get( |
| 137 | cast<VectorType>(C1->getType())->getElementType(), |
| 138 | cast<VectorType>(C3->getType())->getNumElements()), |
| 139 | Instruction::ShuffleVector, |
| 140 | &Op<0>(), 3) { |
| 141 | Op<0>() = C1; |
| 142 | Op<1>() = C2; |
| 143 | Op<2>() = C3; |
| 144 | } |
| 145 | /// Transparently provide more efficient getOperand methods. |
| 146 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| 147 | }; |
| 148 | |
| 149 | /// ExtractValueConstantExpr - This class is private to |
| 150 | /// Constants.cpp, and is used behind the scenes to implement |
| 151 | /// extractvalue constant exprs. |
| 152 | class ExtractValueConstantExpr : public ConstantExpr { |
| 153 | void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| 154 | public: |
| 155 | // allocate space for exactly one operand |
| 156 | void *operator new(size_t s) { |
| 157 | return User::operator new(s, 1); |
| 158 | } |
| 159 | ExtractValueConstantExpr(Constant *Agg, |
| 160 | const SmallVector<unsigned, 4> &IdxList, |
| 161 | const Type *DestTy) |
| 162 | : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1), |
| 163 | Indices(IdxList) { |
| 164 | Op<0>() = Agg; |
| 165 | } |
| 166 | |
| 167 | /// Indices - These identify which value to extract. |
| 168 | const SmallVector<unsigned, 4> Indices; |
| 169 | |
| 170 | /// Transparently provide more efficient getOperand methods. |
| 171 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| 172 | }; |
| 173 | |
| 174 | /// InsertValueConstantExpr - This class is private to |
| 175 | /// Constants.cpp, and is used behind the scenes to implement |
| 176 | /// insertvalue constant exprs. |
| 177 | class InsertValueConstantExpr : public ConstantExpr { |
| 178 | void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| 179 | public: |
| 180 | // allocate space for exactly one operand |
| 181 | void *operator new(size_t s) { |
| 182 | return User::operator new(s, 2); |
| 183 | } |
| 184 | InsertValueConstantExpr(Constant *Agg, Constant *Val, |
| 185 | const SmallVector<unsigned, 4> &IdxList, |
| 186 | const Type *DestTy) |
| 187 | : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2), |
| 188 | Indices(IdxList) { |
| 189 | Op<0>() = Agg; |
| 190 | Op<1>() = Val; |
| 191 | } |
| 192 | |
| 193 | /// Indices - These identify the position for the insertion. |
| 194 | const SmallVector<unsigned, 4> Indices; |
| 195 | |
| 196 | /// Transparently provide more efficient getOperand methods. |
| 197 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| 198 | }; |
| 199 | |
| 200 | |
| 201 | /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is |
| 202 | /// used behind the scenes to implement getelementpr constant exprs. |
| 203 | class GetElementPtrConstantExpr : public ConstantExpr { |
| 204 | GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList, |
| 205 | const Type *DestTy); |
| 206 | public: |
| 207 | static GetElementPtrConstantExpr *Create(Constant *C, |
| 208 | const std::vector<Constant*>&IdxList, |
| 209 | const Type *DestTy) { |
| 210 | return |
| 211 | new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy); |
| 212 | } |
| 213 | /// Transparently provide more efficient getOperand methods. |
| 214 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| 215 | }; |
| 216 | |
| 217 | // CompareConstantExpr - This class is private to Constants.cpp, and is used |
| 218 | // behind the scenes to implement ICmp and FCmp constant expressions. This is |
| 219 | // needed in order to store the predicate value for these instructions. |
| 220 | struct CompareConstantExpr : public ConstantExpr { |
| 221 | void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| 222 | // allocate space for exactly two operands |
| 223 | void *operator new(size_t s) { |
| 224 | return User::operator new(s, 2); |
| 225 | } |
| 226 | unsigned short predicate; |
| 227 | CompareConstantExpr(const Type *ty, Instruction::OtherOps opc, |
| 228 | unsigned short pred, Constant* LHS, Constant* RHS) |
| 229 | : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) { |
| 230 | Op<0>() = LHS; |
| 231 | Op<1>() = RHS; |
| 232 | } |
| 233 | /// Transparently provide more efficient getOperand methods. |
| 234 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| 235 | }; |
| 236 | |
| 237 | template <> |
| 238 | struct OperandTraits<UnaryConstantExpr> : FixedNumOperandTraits<1> { |
| 239 | }; |
| 240 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value) |
| 241 | |
| 242 | template <> |
| 243 | struct OperandTraits<BinaryConstantExpr> : FixedNumOperandTraits<2> { |
| 244 | }; |
| 245 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value) |
| 246 | |
| 247 | template <> |
| 248 | struct OperandTraits<SelectConstantExpr> : FixedNumOperandTraits<3> { |
| 249 | }; |
| 250 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value) |
| 251 | |
| 252 | template <> |
| 253 | struct OperandTraits<ExtractElementConstantExpr> : FixedNumOperandTraits<2> { |
| 254 | }; |
| 255 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value) |
| 256 | |
| 257 | template <> |
| 258 | struct OperandTraits<InsertElementConstantExpr> : FixedNumOperandTraits<3> { |
| 259 | }; |
| 260 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value) |
| 261 | |
| 262 | template <> |
| 263 | struct OperandTraits<ShuffleVectorConstantExpr> : FixedNumOperandTraits<3> { |
| 264 | }; |
| 265 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value) |
| 266 | |
| 267 | template <> |
| 268 | struct OperandTraits<ExtractValueConstantExpr> : FixedNumOperandTraits<1> { |
| 269 | }; |
| 270 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value) |
| 271 | |
| 272 | template <> |
| 273 | struct OperandTraits<InsertValueConstantExpr> : FixedNumOperandTraits<2> { |
| 274 | }; |
| 275 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value) |
| 276 | |
| 277 | template <> |
| 278 | struct OperandTraits<GetElementPtrConstantExpr> : VariadicOperandTraits<1> { |
| 279 | }; |
| 280 | |
| 281 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value) |
| 282 | |
| 283 | |
| 284 | template <> |
| 285 | struct OperandTraits<CompareConstantExpr> : FixedNumOperandTraits<2> { |
| 286 | }; |
| 287 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value) |
| 288 | |
| 289 | struct ExprMapKeyType { |
| 290 | typedef SmallVector<unsigned, 4> IndexList; |
| 291 | |
| 292 | ExprMapKeyType(unsigned opc, |
| 293 | const std::vector<Constant*> &ops, |
| 294 | unsigned short pred = 0, |
| 295 | const IndexList &inds = IndexList()) |
| 296 | : opcode(opc), predicate(pred), operands(ops), indices(inds) {} |
| 297 | uint16_t opcode; |
| 298 | uint16_t predicate; |
| 299 | std::vector<Constant*> operands; |
| 300 | IndexList indices; |
| 301 | bool operator==(const ExprMapKeyType& that) const { |
| 302 | return this->opcode == that.opcode && |
| 303 | this->predicate == that.predicate && |
| 304 | this->operands == that.operands && |
| 305 | this->indices == that.indices; |
| 306 | } |
| 307 | bool operator<(const ExprMapKeyType & that) const { |
| 308 | return this->opcode < that.opcode || |
| 309 | (this->opcode == that.opcode && this->predicate < that.predicate) || |
| 310 | (this->opcode == that.opcode && this->predicate == that.predicate && |
| 311 | this->operands < that.operands) || |
| 312 | (this->opcode == that.opcode && this->predicate == that.predicate && |
| 313 | this->operands == that.operands && this->indices < that.indices); |
| 314 | } |
| 315 | |
| 316 | bool operator!=(const ExprMapKeyType& that) const { |
| 317 | return !(*this == that); |
| 318 | } |
| 319 | }; |
| 320 | |
| 321 | // The number of operands for each ConstantCreator::create method is |
| 322 | // determined by the ConstantTraits template. |
| 323 | // ConstantCreator - A class that is used to create constants by |
| 324 | // ValueMap*. This class should be partially specialized if there is |
| 325 | // something strange that needs to be done to interface to the ctor for the |
| 326 | // constant. |
| 327 | // |
| 328 | template<typename T, typename Alloc> |
| 329 | struct ConstantTraits< std::vector<T, Alloc> > { |
| 330 | static unsigned uses(const std::vector<T, Alloc>& v) { |
| 331 | return v.size(); |
| 332 | } |
| 333 | }; |
| 334 | |
| 335 | template<class ConstantClass, class TypeClass, class ValType> |
| 336 | struct ConstantCreator { |
| 337 | static ConstantClass *create(const TypeClass *Ty, const ValType &V) { |
| 338 | return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V); |
| 339 | } |
| 340 | }; |
| 341 | |
| 342 | template<class ConstantClass, class TypeClass> |
Daniel Dunbar | 009ac1a | 2009-08-10 20:56:46 +0000 | [diff] [blame] | 343 | struct ConvertConstant { |
Owen Anderson | 9b67698 | 2009-08-04 22:55:26 +0000 | [diff] [blame] | 344 | static void convert(ConstantClass *OldC, const TypeClass *NewTy) { |
| 345 | llvm_unreachable("This type cannot be converted!"); |
| 346 | } |
| 347 | }; |
| 348 | |
| 349 | template<> |
| 350 | struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> { |
| 351 | static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V, |
| 352 | unsigned short pred = 0) { |
| 353 | if (Instruction::isCast(V.opcode)) |
| 354 | return new UnaryConstantExpr(V.opcode, V.operands[0], Ty); |
| 355 | if ((V.opcode >= Instruction::BinaryOpsBegin && |
| 356 | V.opcode < Instruction::BinaryOpsEnd)) |
| 357 | return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]); |
| 358 | if (V.opcode == Instruction::Select) |
| 359 | return new SelectConstantExpr(V.operands[0], V.operands[1], |
| 360 | V.operands[2]); |
| 361 | if (V.opcode == Instruction::ExtractElement) |
| 362 | return new ExtractElementConstantExpr(V.operands[0], V.operands[1]); |
| 363 | if (V.opcode == Instruction::InsertElement) |
| 364 | return new InsertElementConstantExpr(V.operands[0], V.operands[1], |
| 365 | V.operands[2]); |
| 366 | if (V.opcode == Instruction::ShuffleVector) |
| 367 | return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1], |
| 368 | V.operands[2]); |
| 369 | if (V.opcode == Instruction::InsertValue) |
| 370 | return new InsertValueConstantExpr(V.operands[0], V.operands[1], |
| 371 | V.indices, Ty); |
| 372 | if (V.opcode == Instruction::ExtractValue) |
| 373 | return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty); |
| 374 | if (V.opcode == Instruction::GetElementPtr) { |
| 375 | std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end()); |
| 376 | return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty); |
| 377 | } |
| 378 | |
| 379 | // The compare instructions are weird. We have to encode the predicate |
| 380 | // value and it is combined with the instruction opcode by multiplying |
| 381 | // the opcode by one hundred. We must decode this to get the predicate. |
| 382 | if (V.opcode == Instruction::ICmp) |
| 383 | return new CompareConstantExpr(Ty, Instruction::ICmp, V.predicate, |
| 384 | V.operands[0], V.operands[1]); |
| 385 | if (V.opcode == Instruction::FCmp) |
| 386 | return new CompareConstantExpr(Ty, Instruction::FCmp, V.predicate, |
| 387 | V.operands[0], V.operands[1]); |
| 388 | llvm_unreachable("Invalid ConstantExpr!"); |
| 389 | return 0; |
| 390 | } |
| 391 | }; |
| 392 | |
| 393 | template<> |
Daniel Dunbar | 009ac1a | 2009-08-10 20:56:46 +0000 | [diff] [blame] | 394 | struct ConvertConstant<ConstantExpr, Type> { |
Owen Anderson | 9b67698 | 2009-08-04 22:55:26 +0000 | [diff] [blame] | 395 | static void convert(ConstantExpr *OldC, const Type *NewTy) { |
| 396 | Constant *New; |
| 397 | switch (OldC->getOpcode()) { |
| 398 | case Instruction::Trunc: |
| 399 | case Instruction::ZExt: |
| 400 | case Instruction::SExt: |
| 401 | case Instruction::FPTrunc: |
| 402 | case Instruction::FPExt: |
| 403 | case Instruction::UIToFP: |
| 404 | case Instruction::SIToFP: |
| 405 | case Instruction::FPToUI: |
| 406 | case Instruction::FPToSI: |
| 407 | case Instruction::PtrToInt: |
| 408 | case Instruction::IntToPtr: |
| 409 | case Instruction::BitCast: |
| 410 | New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0), |
| 411 | NewTy); |
| 412 | break; |
| 413 | case Instruction::Select: |
| 414 | New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0), |
| 415 | OldC->getOperand(1), |
| 416 | OldC->getOperand(2)); |
| 417 | break; |
| 418 | default: |
| 419 | assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin && |
| 420 | OldC->getOpcode() < Instruction::BinaryOpsEnd); |
| 421 | New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0), |
| 422 | OldC->getOperand(1)); |
| 423 | break; |
| 424 | case Instruction::GetElementPtr: |
| 425 | // Make everyone now use a constant of the new type... |
| 426 | std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end()); |
| 427 | New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), |
| 428 | &Idx[0], Idx.size()); |
| 429 | break; |
| 430 | } |
| 431 | |
| 432 | assert(New != OldC && "Didn't replace constant??"); |
| 433 | OldC->uncheckedReplaceAllUsesWith(New); |
| 434 | OldC->destroyConstant(); // This constant is now dead, destroy it. |
| 435 | } |
| 436 | }; |
| 437 | |
| 438 | // ConstantAggregateZero does not take extra "value" argument... |
| 439 | template<class ValType> |
| 440 | struct ConstantCreator<ConstantAggregateZero, Type, ValType> { |
| 441 | static ConstantAggregateZero *create(const Type *Ty, const ValType &V){ |
| 442 | return new ConstantAggregateZero(Ty); |
| 443 | } |
| 444 | }; |
| 445 | |
| 446 | template<> |
Owen Anderson | 13234f8 | 2009-08-10 18:16:08 +0000 | [diff] [blame] | 447 | struct ConstantCreator<MDNode, Type, std::vector<Value*> > { |
| 448 | static MDNode *create(const Type* Ty, const std::vector<Value*> &V) { |
Owen Anderson | 55f1c09 | 2009-08-13 21:58:54 +0000 | [diff] [blame] | 449 | return new MDNode(Ty->getContext(), &V[0], V.size()); |
Owen Anderson | 13234f8 | 2009-08-10 18:16:08 +0000 | [diff] [blame] | 450 | } |
| 451 | }; |
| 452 | |
| 453 | template<> |
Daniel Dunbar | 009ac1a | 2009-08-10 20:56:46 +0000 | [diff] [blame] | 454 | struct ConvertConstant<ConstantVector, VectorType> { |
Owen Anderson | 9b67698 | 2009-08-04 22:55:26 +0000 | [diff] [blame] | 455 | static void convert(ConstantVector *OldC, const VectorType *NewTy) { |
| 456 | // Make everyone now use a constant of the new type... |
| 457 | std::vector<Constant*> C; |
| 458 | for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) |
| 459 | C.push_back(cast<Constant>(OldC->getOperand(i))); |
| 460 | Constant *New = ConstantVector::get(NewTy, C); |
| 461 | assert(New != OldC && "Didn't replace constant??"); |
| 462 | OldC->uncheckedReplaceAllUsesWith(New); |
| 463 | OldC->destroyConstant(); // This constant is now dead, destroy it. |
| 464 | } |
| 465 | }; |
| 466 | |
| 467 | template<> |
Daniel Dunbar | 009ac1a | 2009-08-10 20:56:46 +0000 | [diff] [blame] | 468 | struct ConvertConstant<ConstantAggregateZero, Type> { |
Owen Anderson | 9b67698 | 2009-08-04 22:55:26 +0000 | [diff] [blame] | 469 | static void convert(ConstantAggregateZero *OldC, const Type *NewTy) { |
| 470 | // Make everyone now use a constant of the new type... |
| 471 | Constant *New = ConstantAggregateZero::get(NewTy); |
| 472 | assert(New != OldC && "Didn't replace constant??"); |
| 473 | OldC->uncheckedReplaceAllUsesWith(New); |
| 474 | OldC->destroyConstant(); // This constant is now dead, destroy it. |
| 475 | } |
| 476 | }; |
| 477 | |
| 478 | template<> |
Daniel Dunbar | 009ac1a | 2009-08-10 20:56:46 +0000 | [diff] [blame] | 479 | struct ConvertConstant<ConstantArray, ArrayType> { |
Owen Anderson | 9b67698 | 2009-08-04 22:55:26 +0000 | [diff] [blame] | 480 | static void convert(ConstantArray *OldC, const ArrayType *NewTy) { |
| 481 | // Make everyone now use a constant of the new type... |
| 482 | std::vector<Constant*> C; |
| 483 | for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) |
| 484 | C.push_back(cast<Constant>(OldC->getOperand(i))); |
| 485 | Constant *New = ConstantArray::get(NewTy, C); |
| 486 | assert(New != OldC && "Didn't replace constant??"); |
| 487 | OldC->uncheckedReplaceAllUsesWith(New); |
| 488 | OldC->destroyConstant(); // This constant is now dead, destroy it. |
| 489 | } |
| 490 | }; |
| 491 | |
| 492 | template<> |
Daniel Dunbar | 009ac1a | 2009-08-10 20:56:46 +0000 | [diff] [blame] | 493 | struct ConvertConstant<ConstantStruct, StructType> { |
Owen Anderson | 9b67698 | 2009-08-04 22:55:26 +0000 | [diff] [blame] | 494 | static void convert(ConstantStruct *OldC, const StructType *NewTy) { |
| 495 | // Make everyone now use a constant of the new type... |
| 496 | std::vector<Constant*> C; |
| 497 | for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) |
| 498 | C.push_back(cast<Constant>(OldC->getOperand(i))); |
| 499 | Constant *New = ConstantStruct::get(NewTy, C); |
| 500 | assert(New != OldC && "Didn't replace constant??"); |
| 501 | |
| 502 | OldC->uncheckedReplaceAllUsesWith(New); |
| 503 | OldC->destroyConstant(); // This constant is now dead, destroy it. |
| 504 | } |
| 505 | }; |
| 506 | |
| 507 | // ConstantPointerNull does not take extra "value" argument... |
| 508 | template<class ValType> |
| 509 | struct ConstantCreator<ConstantPointerNull, PointerType, ValType> { |
| 510 | static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){ |
| 511 | return new ConstantPointerNull(Ty); |
| 512 | } |
| 513 | }; |
| 514 | |
| 515 | template<> |
Daniel Dunbar | 009ac1a | 2009-08-10 20:56:46 +0000 | [diff] [blame] | 516 | struct ConvertConstant<ConstantPointerNull, PointerType> { |
Owen Anderson | 9b67698 | 2009-08-04 22:55:26 +0000 | [diff] [blame] | 517 | static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) { |
| 518 | // Make everyone now use a constant of the new type... |
| 519 | Constant *New = ConstantPointerNull::get(NewTy); |
| 520 | assert(New != OldC && "Didn't replace constant??"); |
| 521 | OldC->uncheckedReplaceAllUsesWith(New); |
| 522 | OldC->destroyConstant(); // This constant is now dead, destroy it. |
| 523 | } |
| 524 | }; |
| 525 | |
| 526 | // UndefValue does not take extra "value" argument... |
| 527 | template<class ValType> |
| 528 | struct ConstantCreator<UndefValue, Type, ValType> { |
| 529 | static UndefValue *create(const Type *Ty, const ValType &V) { |
| 530 | return new UndefValue(Ty); |
| 531 | } |
| 532 | }; |
| 533 | |
| 534 | template<> |
Daniel Dunbar | 009ac1a | 2009-08-10 20:56:46 +0000 | [diff] [blame] | 535 | struct ConvertConstant<UndefValue, Type> { |
Owen Anderson | 9b67698 | 2009-08-04 22:55:26 +0000 | [diff] [blame] | 536 | static void convert(UndefValue *OldC, const Type *NewTy) { |
| 537 | // Make everyone now use a constant of the new type. |
| 538 | Constant *New = UndefValue::get(NewTy); |
| 539 | assert(New != OldC && "Didn't replace constant??"); |
| 540 | OldC->uncheckedReplaceAllUsesWith(New); |
| 541 | OldC->destroyConstant(); // This constant is now dead, destroy it. |
| 542 | } |
| 543 | }; |
| 544 | |
| 545 | template<class ValType, class TypeClass, class ConstantClass, |
| 546 | bool HasLargeKey = false /*true for arrays and structs*/ > |
| 547 | class ValueMap : public AbstractTypeUser { |
| 548 | public: |
| 549 | typedef std::pair<const Type*, ValType> MapKey; |
Owen Anderson | 13234f8 | 2009-08-10 18:16:08 +0000 | [diff] [blame] | 550 | typedef std::map<MapKey, Value *> MapTy; |
| 551 | typedef std::map<Value*, typename MapTy::iterator> InverseMapTy; |
Owen Anderson | 9b67698 | 2009-08-04 22:55:26 +0000 | [diff] [blame] | 552 | typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy; |
| 553 | private: |
| 554 | /// Map - This is the main map from the element descriptor to the Constants. |
| 555 | /// This is the primary way we avoid creating two of the same shape |
| 556 | /// constant. |
| 557 | MapTy Map; |
| 558 | |
| 559 | /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping |
| 560 | /// from the constants to their element in Map. This is important for |
| 561 | /// removal of constants from the array, which would otherwise have to scan |
| 562 | /// through the map with very large keys. |
| 563 | InverseMapTy InverseMap; |
| 564 | |
| 565 | /// AbstractTypeMap - Map for abstract type constants. |
| 566 | /// |
| 567 | AbstractTypeMapTy AbstractTypeMap; |
| 568 | |
| 569 | /// ValueMapLock - Mutex for this map. |
| 570 | sys::SmartMutex<true> ValueMapLock; |
| 571 | |
| 572 | public: |
| 573 | // NOTE: This function is not locked. It is the caller's responsibility |
| 574 | // to enforce proper synchronization. |
Devang Patel | c5aa8c6 | 2009-08-11 06:31:57 +0000 | [diff] [blame] | 575 | typename MapTy::iterator map_begin() { return Map.begin(); } |
Owen Anderson | 9b67698 | 2009-08-04 22:55:26 +0000 | [diff] [blame] | 576 | typename MapTy::iterator map_end() { return Map.end(); } |
| 577 | |
| 578 | /// InsertOrGetItem - Return an iterator for the specified element. |
| 579 | /// If the element exists in the map, the returned iterator points to the |
| 580 | /// entry and Exists=true. If not, the iterator points to the newly |
| 581 | /// inserted entry and returns Exists=false. Newly inserted entries have |
| 582 | /// I->second == 0, and should be filled in. |
| 583 | /// NOTE: This function is not locked. It is the caller's responsibility |
| 584 | // to enforce proper synchronization. |
| 585 | typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *> |
| 586 | &InsertVal, |
| 587 | bool &Exists) { |
| 588 | std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal); |
| 589 | Exists = !IP.second; |
| 590 | return IP.first; |
| 591 | } |
| 592 | |
| 593 | private: |
| 594 | typename MapTy::iterator FindExistingElement(ConstantClass *CP) { |
| 595 | if (HasLargeKey) { |
| 596 | typename InverseMapTy::iterator IMI = InverseMap.find(CP); |
| 597 | assert(IMI != InverseMap.end() && IMI->second != Map.end() && |
| 598 | IMI->second->second == CP && |
| 599 | "InverseMap corrupt!"); |
| 600 | return IMI->second; |
| 601 | } |
| 602 | |
| 603 | typename MapTy::iterator I = |
| 604 | Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()), |
| 605 | getValType(CP))); |
| 606 | if (I == Map.end() || I->second != CP) { |
| 607 | // FIXME: This should not use a linear scan. If this gets to be a |
| 608 | // performance problem, someone should look at this. |
| 609 | for (I = Map.begin(); I != Map.end() && I->second != CP; ++I) |
| 610 | /* empty */; |
| 611 | } |
| 612 | return I; |
| 613 | } |
| 614 | |
| 615 | ConstantClass* Create(const TypeClass *Ty, const ValType &V, |
| 616 | typename MapTy::iterator I) { |
| 617 | ConstantClass* Result = |
| 618 | ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V); |
| 619 | |
| 620 | assert(Result->getType() == Ty && "Type specified is not correct!"); |
| 621 | I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result)); |
| 622 | |
| 623 | if (HasLargeKey) // Remember the reverse mapping if needed. |
| 624 | InverseMap.insert(std::make_pair(Result, I)); |
| 625 | |
| 626 | // If the type of the constant is abstract, make sure that an entry |
| 627 | // exists for it in the AbstractTypeMap. |
| 628 | if (Ty->isAbstract()) { |
| 629 | typename AbstractTypeMapTy::iterator TI = |
| 630 | AbstractTypeMap.find(Ty); |
| 631 | |
| 632 | if (TI == AbstractTypeMap.end()) { |
| 633 | // Add ourselves to the ATU list of the type. |
| 634 | cast<DerivedType>(Ty)->addAbstractTypeUser(this); |
| 635 | |
| 636 | AbstractTypeMap.insert(TI, std::make_pair(Ty, I)); |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | return Result; |
| 641 | } |
| 642 | public: |
| 643 | |
| 644 | /// getOrCreate - Return the specified constant from the map, creating it if |
| 645 | /// necessary. |
| 646 | ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) { |
| 647 | sys::SmartScopedLock<true> Lock(ValueMapLock); |
| 648 | MapKey Lookup(Ty, V); |
| 649 | ConstantClass* Result = 0; |
| 650 | |
| 651 | typename MapTy::iterator I = Map.find(Lookup); |
| 652 | // Is it in the map? |
| 653 | if (I != Map.end()) |
| 654 | Result = static_cast<ConstantClass *>(I->second); |
| 655 | |
| 656 | if (!Result) { |
| 657 | // If no preexisting value, create one now... |
| 658 | Result = Create(Ty, V, I); |
| 659 | } |
| 660 | |
| 661 | return Result; |
| 662 | } |
| 663 | |
| 664 | void remove(ConstantClass *CP) { |
| 665 | sys::SmartScopedLock<true> Lock(ValueMapLock); |
| 666 | typename MapTy::iterator I = FindExistingElement(CP); |
| 667 | assert(I != Map.end() && "Constant not found in constant table!"); |
| 668 | assert(I->second == CP && "Didn't find correct element?"); |
| 669 | |
| 670 | if (HasLargeKey) // Remember the reverse mapping if needed. |
| 671 | InverseMap.erase(CP); |
| 672 | |
| 673 | // Now that we found the entry, make sure this isn't the entry that |
| 674 | // the AbstractTypeMap points to. |
| 675 | const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first); |
| 676 | if (Ty->isAbstract()) { |
| 677 | assert(AbstractTypeMap.count(Ty) && |
| 678 | "Abstract type not in AbstractTypeMap?"); |
| 679 | typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty]; |
| 680 | if (ATMEntryIt == I) { |
| 681 | // Yes, we are removing the representative entry for this type. |
| 682 | // See if there are any other entries of the same type. |
| 683 | typename MapTy::iterator TmpIt = ATMEntryIt; |
| 684 | |
| 685 | // First check the entry before this one... |
| 686 | if (TmpIt != Map.begin()) { |
| 687 | --TmpIt; |
| 688 | if (TmpIt->first.first != Ty) // Not the same type, move back... |
| 689 | ++TmpIt; |
| 690 | } |
| 691 | |
| 692 | // If we didn't find the same type, try to move forward... |
| 693 | if (TmpIt == ATMEntryIt) { |
| 694 | ++TmpIt; |
| 695 | if (TmpIt == Map.end() || TmpIt->first.first != Ty) |
| 696 | --TmpIt; // No entry afterwards with the same type |
| 697 | } |
| 698 | |
| 699 | // If there is another entry in the map of the same abstract type, |
| 700 | // update the AbstractTypeMap entry now. |
| 701 | if (TmpIt != ATMEntryIt) { |
| 702 | ATMEntryIt = TmpIt; |
| 703 | } else { |
| 704 | // Otherwise, we are removing the last instance of this type |
| 705 | // from the table. Remove from the ATM, and from user list. |
| 706 | cast<DerivedType>(Ty)->removeAbstractTypeUser(this); |
| 707 | AbstractTypeMap.erase(Ty); |
| 708 | } |
| 709 | } |
| 710 | } |
| 711 | |
| 712 | Map.erase(I); |
| 713 | } |
| 714 | |
| 715 | |
| 716 | /// MoveConstantToNewSlot - If we are about to change C to be the element |
| 717 | /// specified by I, update our internal data structures to reflect this |
| 718 | /// fact. |
| 719 | /// NOTE: This function is not locked. It is the responsibility of the |
| 720 | /// caller to enforce proper synchronization if using this method. |
| 721 | void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) { |
| 722 | // First, remove the old location of the specified constant in the map. |
| 723 | typename MapTy::iterator OldI = FindExistingElement(C); |
| 724 | assert(OldI != Map.end() && "Constant not found in constant table!"); |
| 725 | assert(OldI->second == C && "Didn't find correct element?"); |
| 726 | |
| 727 | // If this constant is the representative element for its abstract type, |
| 728 | // update the AbstractTypeMap so that the representative element is I. |
| 729 | if (C->getType()->isAbstract()) { |
| 730 | typename AbstractTypeMapTy::iterator ATI = |
| 731 | AbstractTypeMap.find(C->getType()); |
| 732 | assert(ATI != AbstractTypeMap.end() && |
| 733 | "Abstract type not in AbstractTypeMap?"); |
| 734 | if (ATI->second == OldI) |
| 735 | ATI->second = I; |
| 736 | } |
| 737 | |
| 738 | // Remove the old entry from the map. |
| 739 | Map.erase(OldI); |
| 740 | |
| 741 | // Update the inverse map so that we know that this constant is now |
| 742 | // located at descriptor I. |
| 743 | if (HasLargeKey) { |
| 744 | assert(I->second == C && "Bad inversemap entry!"); |
| 745 | InverseMap[C] = I; |
| 746 | } |
| 747 | } |
| 748 | |
| 749 | void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { |
| 750 | sys::SmartScopedLock<true> Lock(ValueMapLock); |
| 751 | typename AbstractTypeMapTy::iterator I = |
| 752 | AbstractTypeMap.find(cast<Type>(OldTy)); |
| 753 | |
| 754 | assert(I != AbstractTypeMap.end() && |
| 755 | "Abstract type not in AbstractTypeMap?"); |
| 756 | |
| 757 | // Convert a constant at a time until the last one is gone. The last one |
| 758 | // leaving will remove() itself, causing the AbstractTypeMapEntry to be |
| 759 | // eliminated eventually. |
| 760 | do { |
Daniel Dunbar | 009ac1a | 2009-08-10 20:56:46 +0000 | [diff] [blame] | 761 | ConvertConstant<ConstantClass, TypeClass>::convert( |
Owen Anderson | 9b67698 | 2009-08-04 22:55:26 +0000 | [diff] [blame] | 762 | static_cast<ConstantClass *>(I->second->second), |
| 763 | cast<TypeClass>(NewTy)); |
| 764 | |
| 765 | I = AbstractTypeMap.find(cast<Type>(OldTy)); |
| 766 | } while (I != AbstractTypeMap.end()); |
| 767 | } |
| 768 | |
| 769 | // If the type became concrete without being refined to any other existing |
| 770 | // type, we just remove ourselves from the ATU list. |
| 771 | void typeBecameConcrete(const DerivedType *AbsTy) { |
| 772 | AbsTy->removeAbstractTypeUser(this); |
| 773 | } |
| 774 | |
| 775 | void dump() const { |
| 776 | DOUT << "Constant.cpp: ValueMap\n"; |
| 777 | } |
| 778 | }; |
| 779 | |
| 780 | } |
| 781 | |
| 782 | #endif |