Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 1 | //===-- SeparateConstOffsetFromGEP.cpp - ------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // Loop unrolling may create many similar GEPs for array accesses. |
| 11 | // e.g., a 2-level loop |
| 12 | // |
| 13 | // float a[32][32]; // global variable |
| 14 | // |
| 15 | // for (int i = 0; i < 2; ++i) { |
| 16 | // for (int j = 0; j < 2; ++j) { |
| 17 | // ... |
| 18 | // ... = a[x + i][y + j]; |
| 19 | // ... |
| 20 | // } |
| 21 | // } |
| 22 | // |
| 23 | // will probably be unrolled to: |
| 24 | // |
| 25 | // gep %a, 0, %x, %y; load |
| 26 | // gep %a, 0, %x, %y + 1; load |
| 27 | // gep %a, 0, %x + 1, %y; load |
| 28 | // gep %a, 0, %x + 1, %y + 1; load |
| 29 | // |
| 30 | // LLVM's GVN does not use partial redundancy elimination yet, and is thus |
| 31 | // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs |
| 32 | // significant slowdown in targets with limited addressing modes. For instance, |
| 33 | // because the PTX target does not support the reg+reg addressing mode, the |
| 34 | // NVPTX backend emits PTX code that literally computes the pointer address of |
| 35 | // each GEP, wasting tons of registers. It emits the following PTX for the |
| 36 | // first load and similar PTX for other loads. |
| 37 | // |
| 38 | // mov.u32 %r1, %x; |
| 39 | // mov.u32 %r2, %y; |
| 40 | // mul.wide.u32 %rl2, %r1, 128; |
| 41 | // mov.u64 %rl3, a; |
| 42 | // add.s64 %rl4, %rl3, %rl2; |
| 43 | // mul.wide.u32 %rl5, %r2, 4; |
| 44 | // add.s64 %rl6, %rl4, %rl5; |
| 45 | // ld.global.f32 %f1, [%rl6]; |
| 46 | // |
| 47 | // To reduce the register pressure, the optimization implemented in this file |
| 48 | // merges the common part of a group of GEPs, so we can compute each pointer |
| 49 | // address by adding a simple offset to the common part, saving many registers. |
| 50 | // |
| 51 | // It works by splitting each GEP into a variadic base and a constant offset. |
| 52 | // The variadic base can be computed once and reused by multiple GEPs, and the |
| 53 | // constant offsets can be nicely folded into the reg+immediate addressing mode |
| 54 | // (supported by most targets) without using any extra register. |
| 55 | // |
| 56 | // For instance, we transform the four GEPs and four loads in the above example |
| 57 | // into: |
| 58 | // |
| 59 | // base = gep a, 0, x, y |
| 60 | // load base |
| 61 | // laod base + 1 * sizeof(float) |
| 62 | // load base + 32 * sizeof(float) |
| 63 | // load base + 33 * sizeof(float) |
| 64 | // |
| 65 | // Given the transformed IR, a backend that supports the reg+immediate |
| 66 | // addressing mode can easily fold the pointer arithmetics into the loads. For |
| 67 | // example, the NVPTX backend can easily fold the pointer arithmetics into the |
| 68 | // ld.global.f32 instructions, and the resultant PTX uses much fewer registers. |
| 69 | // |
| 70 | // mov.u32 %r1, %tid.x; |
| 71 | // mov.u32 %r2, %tid.y; |
| 72 | // mul.wide.u32 %rl2, %r1, 128; |
| 73 | // mov.u64 %rl3, a; |
| 74 | // add.s64 %rl4, %rl3, %rl2; |
| 75 | // mul.wide.u32 %rl5, %r2, 4; |
| 76 | // add.s64 %rl6, %rl4, %rl5; |
| 77 | // ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX |
| 78 | // ld.global.f32 %f2, [%rl6+4]; // much better |
| 79 | // ld.global.f32 %f3, [%rl6+128]; // much better |
| 80 | // ld.global.f32 %f4, [%rl6+132]; // much better |
| 81 | // |
| 82 | //===----------------------------------------------------------------------===// |
| 83 | |
| 84 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 85 | #include "llvm/Analysis/ValueTracking.h" |
| 86 | #include "llvm/IR/Constants.h" |
| 87 | #include "llvm/IR/DataLayout.h" |
| 88 | #include "llvm/IR/Instructions.h" |
| 89 | #include "llvm/IR/LLVMContext.h" |
| 90 | #include "llvm/IR/Module.h" |
| 91 | #include "llvm/IR/Operator.h" |
| 92 | #include "llvm/Support/CommandLine.h" |
| 93 | #include "llvm/Support/raw_ostream.h" |
| 94 | #include "llvm/Transforms/Scalar.h" |
| 95 | |
| 96 | using namespace llvm; |
| 97 | |
| 98 | static cl::opt<bool> DisableSeparateConstOffsetFromGEP( |
| 99 | "disable-separate-const-offset-from-gep", cl::init(false), |
| 100 | cl::desc("Do not separate the constant offset from a GEP instruction"), |
| 101 | cl::Hidden); |
| 102 | |
| 103 | namespace { |
| 104 | |
| 105 | /// \brief A helper class for separating a constant offset from a GEP index. |
| 106 | /// |
| 107 | /// In real programs, a GEP index may be more complicated than a simple addition |
| 108 | /// of something and a constant integer which can be trivially splitted. For |
| 109 | /// example, to split ((a << 3) | 5) + b, we need to search deeper for the |
Alp Toker | beaca19 | 2014-05-15 01:52:21 +0000 | [diff] [blame] | 110 | /// constant offset, so that we can separate the index to (a << 3) + b and 5. |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 111 | /// |
| 112 | /// Therefore, this class looks into the expression that computes a given GEP |
| 113 | /// index, and tries to find a constant integer that can be hoisted to the |
| 114 | /// outermost level of the expression as an addition. Not every constant in an |
| 115 | /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a + |
| 116 | /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case, |
| 117 | /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15). |
| 118 | class ConstantOffsetExtractor { |
| 119 | public: |
| 120 | /// Extracts a constant offset from the given GEP index. It outputs the |
| 121 | /// numeric value of the extracted constant offset (0 if failed), and a |
| 122 | /// new index representing the remainder (equal to the original index minus |
| 123 | /// the constant offset). |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 124 | /// \p Idx The given GEP index |
| 125 | /// \p NewIdx The new index to replace (output) |
| 126 | /// \p DL The datalayout of the module |
| 127 | /// \p GEP The given GEP |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 128 | static int64_t Extract(Value *Idx, Value *&NewIdx, const DataLayout *DL, |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 129 | GetElementPtrInst *GEP); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 130 | /// Looks for a constant offset without extracting it. The meaning of the |
| 131 | /// arguments and the return value are the same as Extract. |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 132 | static int64_t Find(Value *Idx, const DataLayout *DL, GetElementPtrInst *GEP); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 133 | |
| 134 | private: |
| 135 | ConstantOffsetExtractor(const DataLayout *Layout, Instruction *InsertionPt) |
| 136 | : DL(Layout), IP(InsertionPt) {} |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 137 | /// Searches the expression that computes V for a non-zero constant C s.t. |
| 138 | /// V can be reassociated into the form V' + C. If the searching is |
| 139 | /// successful, returns C and update UserChain as a def-use chain from C to V; |
| 140 | /// otherwise, UserChain is empty. |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 141 | /// |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 142 | /// \p V The given expression |
| 143 | /// \p SignExtended Whether V will be sign-extended in the computation of the |
| 144 | /// GEP index |
| 145 | /// \p ZeroExtended Whether V will be zero-extended in the computation of the |
| 146 | /// GEP index |
| 147 | /// \p NonNegative Whether V is guaranteed to be non-negative. For example, |
| 148 | /// an index of an inbounds GEP is guaranteed to be |
| 149 | /// non-negative. Levaraging this, we can better split |
| 150 | /// inbounds GEPs. |
| 151 | APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative); |
| 152 | /// A helper function to look into both operands of a binary operator. |
| 153 | APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended, |
| 154 | bool ZeroExtended); |
| 155 | /// After finding the constant offset C from the GEP index I, we build a new |
| 156 | /// index I' s.t. I' + C = I. This function builds and returns the new |
| 157 | /// index I' according to UserChain produced by function "find". |
| 158 | /// |
| 159 | /// The building conceptually takes two steps: |
| 160 | /// 1) iteratively distribute s/zext towards the leaves of the expression tree |
| 161 | /// that computes I |
| 162 | /// 2) reassociate the expression tree to the form I' + C. |
| 163 | /// |
| 164 | /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute |
| 165 | /// sext to a, b and 5 so that we have |
| 166 | /// sext(a) + (sext(b) + 5). |
| 167 | /// Then, we reassociate it to |
| 168 | /// (sext(a) + sext(b)) + 5. |
| 169 | /// Given this form, we know I' is sext(a) + sext(b). |
| 170 | Value *rebuildWithoutConstOffset(); |
| 171 | /// After the first step of rebuilding the GEP index without the constant |
| 172 | /// offset, distribute s/zext to the operands of all operators in UserChain. |
| 173 | /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) => |
| 174 | /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))). |
| 175 | /// |
| 176 | /// The function also updates UserChain to point to new subexpressions after |
| 177 | /// distributing s/zext. e.g., the old UserChain of the above example is |
| 178 | /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)), |
| 179 | /// and the new UserChain is |
| 180 | /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) -> |
| 181 | /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5)) |
| 182 | /// |
| 183 | /// \p ChainIndex The index to UserChain. ChainIndex is initially |
| 184 | /// UserChain.size() - 1, and is decremented during |
| 185 | /// the recursion. |
| 186 | Value *distributeExtsAndCloneChain(unsigned ChainIndex); |
| 187 | /// Reassociates the GEP index to the form I' + C and returns I'. |
| 188 | Value *removeConstOffset(unsigned ChainIndex); |
| 189 | /// A helper function to apply ExtInsts, a list of s/zext, to value V. |
| 190 | /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function |
| 191 | /// returns "sext i32 (zext i16 V to i32) to i64". |
| 192 | Value *applyExts(Value *V); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 193 | |
| 194 | /// Returns true if LHS and RHS have no bits in common, i.e., LHS | RHS == 0. |
| 195 | bool NoCommonBits(Value *LHS, Value *RHS) const; |
| 196 | /// Computes which bits are known to be one or zero. |
| 197 | /// \p KnownOne Mask of all bits that are known to be one. |
| 198 | /// \p KnownZero Mask of all bits that are known to be zero. |
| 199 | void ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const; |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 200 | /// A helper function that returns whether we can trace into the operands |
| 201 | /// of binary operator BO for a constant offset. |
| 202 | /// |
| 203 | /// \p SignExtended Whether BO is surrounded by sext |
| 204 | /// \p ZeroExtended Whether BO is surrounded by zext |
| 205 | /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound |
| 206 | /// array index. |
| 207 | bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO, |
| 208 | bool NonNegative); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 209 | |
| 210 | /// The path from the constant offset to the old GEP index. e.g., if the GEP |
| 211 | /// index is "a * b + (c + 5)". After running function find, UserChain[0] will |
| 212 | /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and |
| 213 | /// UserChain[2] will be the entire expression "a * b + (c + 5)". |
| 214 | /// |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 215 | /// This path helps to rebuild the new GEP index. |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 216 | SmallVector<User *, 8> UserChain; |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 217 | /// A data structure used in rebuildWithoutConstOffset. Contains all |
| 218 | /// sext/zext instructions along UserChain. |
| 219 | SmallVector<CastInst *, 16> ExtInsts; |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 220 | /// The data layout of the module. Used in ComputeKnownBits. |
| 221 | const DataLayout *DL; |
| 222 | Instruction *IP; /// Insertion position of cloned instructions. |
| 223 | }; |
| 224 | |
| 225 | /// \brief A pass that tries to split every GEP in the function into a variadic |
Alp Toker | beaca19 | 2014-05-15 01:52:21 +0000 | [diff] [blame] | 226 | /// base and a constant offset. It is a FunctionPass because searching for the |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 227 | /// constant offset may inspect other basic blocks. |
| 228 | class SeparateConstOffsetFromGEP : public FunctionPass { |
| 229 | public: |
| 230 | static char ID; |
| 231 | SeparateConstOffsetFromGEP() : FunctionPass(ID) { |
| 232 | initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry()); |
| 233 | } |
| 234 | |
| 235 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 236 | AU.addRequired<DataLayoutPass>(); |
| 237 | AU.addRequired<TargetTransformInfo>(); |
| 238 | } |
| 239 | bool runOnFunction(Function &F) override; |
| 240 | |
| 241 | private: |
| 242 | /// Tries to split the given GEP into a variadic base and a constant offset, |
| 243 | /// and returns true if the splitting succeeds. |
| 244 | bool splitGEP(GetElementPtrInst *GEP); |
| 245 | /// Finds the constant offset within each index, and accumulates them. This |
| 246 | /// function only inspects the GEP without changing it. The output |
| 247 | /// NeedsExtraction indicates whether we can extract a non-zero constant |
| 248 | /// offset from any index. |
| 249 | int64_t accumulateByteOffset(GetElementPtrInst *GEP, const DataLayout *DL, |
| 250 | bool &NeedsExtraction); |
| 251 | }; |
| 252 | } // anonymous namespace |
| 253 | |
| 254 | char SeparateConstOffsetFromGEP::ID = 0; |
| 255 | INITIALIZE_PASS_BEGIN( |
| 256 | SeparateConstOffsetFromGEP, "separate-const-offset-from-gep", |
| 257 | "Split GEPs to a variadic base and a constant offset for better CSE", false, |
| 258 | false) |
| 259 | INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) |
| 260 | INITIALIZE_PASS_DEPENDENCY(DataLayoutPass) |
| 261 | INITIALIZE_PASS_END( |
| 262 | SeparateConstOffsetFromGEP, "separate-const-offset-from-gep", |
| 263 | "Split GEPs to a variadic base and a constant offset for better CSE", false, |
| 264 | false) |
| 265 | |
| 266 | FunctionPass *llvm::createSeparateConstOffsetFromGEPPass() { |
| 267 | return new SeparateConstOffsetFromGEP(); |
| 268 | } |
| 269 | |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 270 | bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended, |
| 271 | bool ZeroExtended, |
| 272 | BinaryOperator *BO, |
| 273 | bool NonNegative) { |
| 274 | // We only consider ADD, SUB and OR, because a non-zero constant found in |
| 275 | // expressions composed of these operations can be easily hoisted as a |
| 276 | // constant offset by reassociation. |
| 277 | if (BO->getOpcode() != Instruction::Add && |
| 278 | BO->getOpcode() != Instruction::Sub && |
| 279 | BO->getOpcode() != Instruction::Or) { |
| 280 | return false; |
| 281 | } |
| 282 | |
| 283 | Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1); |
| 284 | // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS |
| 285 | // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS). |
| 286 | if (BO->getOpcode() == Instruction::Or && !NoCommonBits(LHS, RHS)) |
| 287 | return false; |
| 288 | |
| 289 | // In addition, tracing into BO requires that its surrounding s/zext (if |
| 290 | // any) is distributable to both operands. |
| 291 | // |
| 292 | // Suppose BO = A op B. |
| 293 | // SignExtended | ZeroExtended | Distributable? |
| 294 | // --------------+--------------+---------------------------------- |
| 295 | // 0 | 0 | true because no s/zext exists |
| 296 | // 0 | 1 | zext(BO) == zext(A) op zext(B) |
| 297 | // 1 | 0 | sext(BO) == sext(A) op sext(B) |
| 298 | // 1 | 1 | zext(sext(BO)) == |
| 299 | // | | zext(sext(A)) op zext(sext(B)) |
| 300 | if (BO->getOpcode() == Instruction::Add && NonNegative) { |
| 301 | // If a + b >= 0 and (a >= 0 or b >= 0), then |
| 302 | // s/zext(a + b) = s/zext(a) + s/zext(b) |
| 303 | // even if the addition is not marked nsw. |
| 304 | // |
| 305 | // Leveraging this invarient, we can trace into an sext'ed inbound GEP |
| 306 | // index if the constant offset is non-negative. |
| 307 | // |
| 308 | // Verified in @sext_add in split-gep.ll. |
| 309 | if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) { |
| 310 | if (!ConstLHS->isNegative()) |
| 311 | return true; |
| 312 | } |
| 313 | if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) { |
| 314 | if (!ConstRHS->isNegative()) |
| 315 | return true; |
| 316 | } |
| 317 | } |
Jingyue Wu | 80a738d | 2014-05-27 18:00:00 +0000 | [diff] [blame] | 318 | |
| 319 | // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B) |
| 320 | // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B) |
| 321 | if (BO->getOpcode() == Instruction::Add || |
| 322 | BO->getOpcode() == Instruction::Sub) { |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 323 | if (SignExtended && !BO->hasNoSignedWrap()) |
| 324 | return false; |
| 325 | if (ZeroExtended && !BO->hasNoUnsignedWrap()) |
| 326 | return false; |
Jingyue Wu | 80a738d | 2014-05-27 18:00:00 +0000 | [diff] [blame] | 327 | } |
| 328 | |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 329 | return true; |
Jingyue Wu | 80a738d | 2014-05-27 18:00:00 +0000 | [diff] [blame] | 330 | } |
| 331 | |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 332 | APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO, |
| 333 | bool SignExtended, |
| 334 | bool ZeroExtended) { |
| 335 | // BO being non-negative does not shed light on whether its operands are |
| 336 | // non-negative. Clear the NonNegative flag here. |
| 337 | APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended, |
| 338 | /* NonNegative */ false); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 339 | // If we found a constant offset in the left operand, stop and return that. |
| 340 | // This shortcut might cause us to miss opportunities of combining the |
| 341 | // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9. |
| 342 | // However, such cases are probably already handled by -instcombine, |
| 343 | // given this pass runs after the standard optimizations. |
| 344 | if (ConstantOffset != 0) return ConstantOffset; |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 345 | ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended, |
| 346 | /* NonNegative */ false); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 347 | // If U is a sub operator, negate the constant offset found in the right |
| 348 | // operand. |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 349 | if (BO->getOpcode() == Instruction::Sub) |
| 350 | ConstantOffset = -ConstantOffset; |
| 351 | return ConstantOffset; |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 352 | } |
| 353 | |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 354 | APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended, |
| 355 | bool ZeroExtended, bool NonNegative) { |
| 356 | // TODO(jingyue): We could trace into integer/pointer casts, such as |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 357 | // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only |
| 358 | // integers because it gives good enough results for our benchmarks. |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 359 | unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 360 | |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 361 | // We cannot do much with Values that are not a User, such as an Argument. |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 362 | User *U = dyn_cast<User>(V); |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 363 | if (U == nullptr) return APInt(BitWidth, 0); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 364 | |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 365 | APInt ConstantOffset(BitWidth, 0); |
| 366 | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 367 | // Hooray, we found it! |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 368 | ConstantOffset = CI->getValue(); |
| 369 | } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) { |
| 370 | // Trace into subexpressions for more hoisting opportunities. |
| 371 | if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) { |
| 372 | ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 373 | } |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 374 | } else if (isa<SExtInst>(V)) { |
| 375 | ConstantOffset = find(U->getOperand(0), /* SignExtended */ true, |
| 376 | ZeroExtended, NonNegative).sext(BitWidth); |
| 377 | } else if (isa<ZExtInst>(V)) { |
| 378 | // As an optimization, we can clear the SignExtended flag because |
| 379 | // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll. |
| 380 | // |
| 381 | // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0. |
| 382 | // TODO: if zext(a) < 2 ^ (bitwidth(a) - 1), we can prove a >= 0. |
| 383 | ConstantOffset = |
| 384 | find(U->getOperand(0), /* SignExtended */ false, |
| 385 | /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 386 | } |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 387 | |
| 388 | // If we found a non-zero constant offset, add it to the path for |
| 389 | // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't |
| 390 | // help this optimization. |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 391 | if (ConstantOffset != 0) |
| 392 | UserChain.push_back(U); |
| 393 | return ConstantOffset; |
| 394 | } |
| 395 | |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 396 | Value *ConstantOffsetExtractor::applyExts(Value *V) { |
| 397 | Value *Current = V; |
| 398 | // ExtInsts is built in the use-def order. Therefore, we apply them to V |
| 399 | // in the reversed order. |
| 400 | for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) { |
| 401 | if (Constant *C = dyn_cast<Constant>(Current)) { |
| 402 | // If Current is a constant, apply s/zext using ConstantExpr::getCast. |
| 403 | // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt. |
| 404 | Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType()); |
| 405 | } else { |
| 406 | Instruction *Ext = (*I)->clone(); |
| 407 | Ext->setOperand(0, Current); |
| 408 | Ext->insertBefore(IP); |
| 409 | Current = Ext; |
| 410 | } |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 411 | } |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 412 | return Current; |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 413 | } |
| 414 | |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 415 | Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() { |
| 416 | distributeExtsAndCloneChain(UserChain.size() - 1); |
| 417 | // Remove all nullptrs (used to be s/zext) from UserChain. |
| 418 | unsigned NewSize = 0; |
| 419 | for (auto I = UserChain.begin(), E = UserChain.end(); I != E; ++I) { |
| 420 | if (*I != nullptr) { |
| 421 | UserChain[NewSize] = *I; |
| 422 | NewSize++; |
| 423 | } |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 424 | } |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 425 | UserChain.resize(NewSize); |
| 426 | return removeConstOffset(UserChain.size() - 1); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 427 | } |
| 428 | |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 429 | Value * |
| 430 | ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) { |
| 431 | User *U = UserChain[ChainIndex]; |
| 432 | if (ChainIndex == 0) { |
| 433 | assert(isa<ConstantInt>(U)); |
| 434 | // If U is a ConstantInt, applyExts will return a ConstantInt as well. |
| 435 | return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U)); |
| 436 | } |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 437 | |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 438 | if (CastInst *Cast = dyn_cast<CastInst>(U)) { |
| 439 | assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) && |
| 440 | "We only traced into two types of CastInst: sext and zext"); |
| 441 | ExtInsts.push_back(Cast); |
| 442 | UserChain[ChainIndex] = nullptr; |
| 443 | return distributeExtsAndCloneChain(ChainIndex - 1); |
| 444 | } |
| 445 | |
| 446 | // Function find only trace into BinaryOperator and CastInst. |
| 447 | BinaryOperator *BO = cast<BinaryOperator>(U); |
| 448 | // OpNo = which operand of BO is UserChain[ChainIndex - 1] |
| 449 | unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1); |
| 450 | Value *TheOther = applyExts(BO->getOperand(1 - OpNo)); |
| 451 | Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1); |
| 452 | |
| 453 | BinaryOperator *NewBO = nullptr; |
| 454 | if (OpNo == 0) { |
| 455 | NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther, |
| 456 | BO->getName(), IP); |
| 457 | } else { |
| 458 | NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain, |
| 459 | BO->getName(), IP); |
| 460 | } |
| 461 | return UserChain[ChainIndex] = NewBO; |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 462 | } |
| 463 | |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 464 | Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) { |
| 465 | if (ChainIndex == 0) { |
| 466 | assert(isa<ConstantInt>(UserChain[ChainIndex])); |
| 467 | return ConstantInt::getNullValue(UserChain[ChainIndex]->getType()); |
| 468 | } |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 469 | |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 470 | BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]); |
| 471 | unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1); |
| 472 | assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]); |
| 473 | Value *NextInChain = removeConstOffset(ChainIndex - 1); |
| 474 | Value *TheOther = BO->getOperand(1 - OpNo); |
| 475 | |
| 476 | // If NextInChain is 0 and not the LHS of a sub, we can simplify the |
| 477 | // sub-expression to be just TheOther. |
| 478 | if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) { |
| 479 | if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0)) |
| 480 | return TheOther; |
| 481 | } |
| 482 | |
| 483 | if (BO->getOpcode() == Instruction::Or) { |
| 484 | // Rebuild "or" as "add", because "or" may be invalid for the new |
| 485 | // epxression. |
| 486 | // |
| 487 | // For instance, given |
| 488 | // a | (b + 5) where a and b + 5 have no common bits, |
| 489 | // we can extract 5 as the constant offset. |
| 490 | // |
| 491 | // However, reusing the "or" in the new index would give us |
| 492 | // (a | b) + 5 |
| 493 | // which does not equal a | (b + 5). |
| 494 | // |
| 495 | // Replacing the "or" with "add" is fine, because |
| 496 | // a | (b + 5) = a + (b + 5) = (a + b) + 5 |
| 497 | return BinaryOperator::CreateAdd(BO->getOperand(0), BO->getOperand(1), |
| 498 | BO->getName(), IP); |
| 499 | } |
| 500 | |
| 501 | // We can reuse BO in this case, because the new expression shares the same |
| 502 | // instruction type and BO is used at most once. |
| 503 | assert(BO->getNumUses() <= 1 && |
| 504 | "distributeExtsAndCloneChain clones each BinaryOperator in " |
| 505 | "UserChain, so no one should be used more than " |
| 506 | "once"); |
| 507 | BO->setOperand(OpNo, NextInChain); |
| 508 | BO->setHasNoSignedWrap(false); |
| 509 | BO->setHasNoUnsignedWrap(false); |
| 510 | // Make sure it appears after all instructions we've inserted so far. |
| 511 | BO->moveBefore(IP); |
| 512 | return BO; |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 513 | } |
| 514 | |
| 515 | int64_t ConstantOffsetExtractor::Extract(Value *Idx, Value *&NewIdx, |
| 516 | const DataLayout *DL, |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 517 | GetElementPtrInst *GEP) { |
| 518 | ConstantOffsetExtractor Extractor(DL, GEP); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 519 | // Find a non-zero constant offset first. |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 520 | APInt ConstantOffset = |
| 521 | Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false, |
| 522 | GEP->isInBounds()); |
| 523 | if (ConstantOffset != 0) { |
| 524 | // Separates the constant offset from the GEP index. |
| 525 | NewIdx = Extractor.rebuildWithoutConstOffset(); |
| 526 | } |
| 527 | return ConstantOffset.getSExtValue(); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 528 | } |
| 529 | |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 530 | int64_t ConstantOffsetExtractor::Find(Value *Idx, const DataLayout *DL, |
| 531 | GetElementPtrInst *GEP) { |
| 532 | // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative. |
| 533 | return ConstantOffsetExtractor(DL, GEP) |
| 534 | .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false, |
| 535 | GEP->isInBounds()) |
| 536 | .getSExtValue(); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 537 | } |
| 538 | |
| 539 | void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne, |
| 540 | APInt &KnownZero) const { |
| 541 | IntegerType *IT = cast<IntegerType>(V->getType()); |
| 542 | KnownOne = APInt(IT->getBitWidth(), 0); |
| 543 | KnownZero = APInt(IT->getBitWidth(), 0); |
Jay Foad | a0653a3 | 2014-05-14 21:14:37 +0000 | [diff] [blame] | 544 | llvm::computeKnownBits(V, KnownZero, KnownOne, DL, 0); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 545 | } |
| 546 | |
| 547 | bool ConstantOffsetExtractor::NoCommonBits(Value *LHS, Value *RHS) const { |
| 548 | assert(LHS->getType() == RHS->getType() && |
| 549 | "LHS and RHS should have the same type"); |
| 550 | APInt LHSKnownOne, LHSKnownZero, RHSKnownOne, RHSKnownZero; |
| 551 | ComputeKnownBits(LHS, LHSKnownOne, LHSKnownZero); |
| 552 | ComputeKnownBits(RHS, RHSKnownOne, RHSKnownZero); |
| 553 | return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); |
| 554 | } |
| 555 | |
| 556 | int64_t SeparateConstOffsetFromGEP::accumulateByteOffset( |
| 557 | GetElementPtrInst *GEP, const DataLayout *DL, bool &NeedsExtraction) { |
| 558 | NeedsExtraction = false; |
| 559 | int64_t AccumulativeByteOffset = 0; |
| 560 | gep_type_iterator GTI = gep_type_begin(*GEP); |
| 561 | for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { |
| 562 | if (isa<SequentialType>(*GTI)) { |
| 563 | // Tries to extract a constant offset from this GEP index. |
| 564 | int64_t ConstantOffset = |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 565 | ConstantOffsetExtractor::Find(GEP->getOperand(I), DL, GEP); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 566 | if (ConstantOffset != 0) { |
| 567 | NeedsExtraction = true; |
| 568 | // A GEP may have multiple indices. We accumulate the extracted |
| 569 | // constant offset to a byte offset, and later offset the remainder of |
| 570 | // the original GEP with this byte offset. |
| 571 | AccumulativeByteOffset += |
| 572 | ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType()); |
| 573 | } |
| 574 | } |
| 575 | } |
| 576 | return AccumulativeByteOffset; |
| 577 | } |
| 578 | |
| 579 | bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) { |
| 580 | // Skip vector GEPs. |
| 581 | if (GEP->getType()->isVectorTy()) |
| 582 | return false; |
| 583 | |
| 584 | // The backend can already nicely handle the case where all indices are |
| 585 | // constant. |
| 586 | if (GEP->hasAllConstantIndices()) |
| 587 | return false; |
| 588 | |
| 589 | bool Changed = false; |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 590 | // Canonicalize array indices to pointer-size integers. This helps to simplify |
| 591 | // the logic of splitting a GEP. For example, if a + b is a pointer-size |
| 592 | // integer, we have |
| 593 | // gep base, a + b = gep (gep base, a), b |
| 594 | // However, this equality may not hold if the size of a + b is smaller than |
| 595 | // the pointer size, because LLVM conceptually sign-extends GEP indices to |
| 596 | // pointer size before computing the address |
| 597 | // (http://llvm.org/docs/LangRef.html#id181). |
| 598 | // |
| 599 | // This canonicalization is very likely already done in clang and instcombine. |
| 600 | // Therefore, the program will probably remain the same. |
| 601 | // |
| 602 | // Verified in @i32_add in split-gep.ll |
| 603 | const DataLayout *DL = &getAnalysis<DataLayoutPass>().getDataLayout(); |
| 604 | Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); |
| 605 | gep_type_iterator GTI = gep_type_begin(*GEP); |
| 606 | for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); |
| 607 | I != E; ++I, ++GTI) { |
| 608 | if (isa<SequentialType>(*GTI)) { |
| 609 | if ((*I)->getType() != IntPtrTy) { |
| 610 | *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP); |
| 611 | Changed = true; |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 612 | } |
| 613 | } |
| 614 | } |
| 615 | |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 616 | bool NeedsExtraction; |
| 617 | int64_t AccumulativeByteOffset = |
| 618 | accumulateByteOffset(GEP, DL, NeedsExtraction); |
| 619 | |
| 620 | if (!NeedsExtraction) |
| 621 | return Changed; |
| 622 | // Before really splitting the GEP, check whether the backend supports the |
| 623 | // addressing mode we are about to produce. If no, this splitting probably |
| 624 | // won't be beneficial. |
| 625 | TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>(); |
| 626 | if (!TTI.isLegalAddressingMode(GEP->getType()->getElementType(), |
| 627 | /*BaseGV=*/nullptr, AccumulativeByteOffset, |
| 628 | /*HasBaseReg=*/true, /*Scale=*/0)) { |
| 629 | return Changed; |
| 630 | } |
| 631 | |
| 632 | // Remove the constant offset in each GEP index. The resultant GEP computes |
| 633 | // the variadic base. |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 634 | GTI = gep_type_begin(*GEP); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 635 | for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { |
| 636 | if (isa<SequentialType>(*GTI)) { |
| 637 | Value *NewIdx = nullptr; |
| 638 | // Tries to extract a constant offset from this GEP index. |
| 639 | int64_t ConstantOffset = |
| 640 | ConstantOffsetExtractor::Extract(GEP->getOperand(I), NewIdx, DL, GEP); |
| 641 | if (ConstantOffset != 0) { |
Jingyue Wu | bbb6e4a | 2014-05-23 18:39:40 +0000 | [diff] [blame] | 642 | assert(NewIdx != nullptr && |
| 643 | "ConstantOffset != 0 implies NewIdx is set"); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 644 | GEP->setOperand(I, NewIdx); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 645 | } |
| 646 | } |
| 647 | } |
Jingyue Wu | 8446547 | 2014-06-05 22:07:33 +0000 | [diff] [blame] | 648 | // Clear the inbounds attribute because the new index may be off-bound. |
| 649 | // e.g., |
| 650 | // |
| 651 | // b = add i64 a, 5 |
| 652 | // addr = gep inbounds float* p, i64 b |
| 653 | // |
| 654 | // is transformed to: |
| 655 | // |
| 656 | // addr2 = gep float* p, i64 a |
| 657 | // addr = gep float* addr2, i64 5 |
| 658 | // |
| 659 | // If a is -4, although the old index b is in bounds, the new index a is |
| 660 | // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the |
| 661 | // inbounds keyword is not present, the offsets are added to the base |
| 662 | // address with silently-wrapping two's complement arithmetic". |
| 663 | // Therefore, the final code will be a semantically equivalent. |
| 664 | // |
| 665 | // TODO(jingyue): do some range analysis to keep as many inbounds as |
| 666 | // possible. GEPs with inbounds are more friendly to alias analysis. |
| 667 | GEP->setIsInBounds(false); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 668 | |
| 669 | // Offsets the base with the accumulative byte offset. |
| 670 | // |
| 671 | // %gep ; the base |
| 672 | // ... %gep ... |
| 673 | // |
| 674 | // => add the offset |
| 675 | // |
| 676 | // %gep2 ; clone of %gep |
Jingyue Wu | bbb6e4a | 2014-05-23 18:39:40 +0000 | [diff] [blame] | 677 | // %new.gep = gep %gep2, <offset / sizeof(*%gep)> |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 678 | // %gep ; will be removed |
| 679 | // ... %gep ... |
| 680 | // |
| 681 | // => replace all uses of %gep with %new.gep and remove %gep |
| 682 | // |
| 683 | // %gep2 ; clone of %gep |
Jingyue Wu | bbb6e4a | 2014-05-23 18:39:40 +0000 | [diff] [blame] | 684 | // %new.gep = gep %gep2, <offset / sizeof(*%gep)> |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 685 | // ... %new.gep ... |
| 686 | // |
Jingyue Wu | bbb6e4a | 2014-05-23 18:39:40 +0000 | [diff] [blame] | 687 | // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an |
| 688 | // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep): |
| 689 | // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the |
| 690 | // type of %gep. |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 691 | // |
Jingyue Wu | bbb6e4a | 2014-05-23 18:39:40 +0000 | [diff] [blame] | 692 | // %gep2 ; clone of %gep |
| 693 | // %0 = bitcast %gep2 to i8* |
| 694 | // %uglygep = gep %0, <offset> |
| 695 | // %new.gep = bitcast %uglygep to <type of %gep> |
| 696 | // ... %new.gep ... |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 697 | Instruction *NewGEP = GEP->clone(); |
| 698 | NewGEP->insertBefore(GEP); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 699 | |
Jingyue Wu | bbb6e4a | 2014-05-23 18:39:40 +0000 | [diff] [blame] | 700 | uint64_t ElementTypeSizeOfGEP = |
| 701 | DL->getTypeAllocSize(GEP->getType()->getElementType()); |
| 702 | if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) { |
| 703 | // Very likely. As long as %gep is natually aligned, the byte offset we |
| 704 | // extracted should be a multiple of sizeof(*%gep). |
| 705 | // Per ANSI C standard, signed / unsigned = unsigned. Therefore, we |
| 706 | // cast ElementTypeSizeOfGEP to signed. |
| 707 | int64_t Index = |
| 708 | AccumulativeByteOffset / static_cast<int64_t>(ElementTypeSizeOfGEP); |
| 709 | NewGEP = GetElementPtrInst::Create( |
| 710 | NewGEP, ConstantInt::get(IntPtrTy, Index, true), GEP->getName(), GEP); |
| 711 | } else { |
| 712 | // Unlikely but possible. For example, |
| 713 | // #pragma pack(1) |
| 714 | // struct S { |
| 715 | // int a[3]; |
| 716 | // int64 b[8]; |
| 717 | // }; |
| 718 | // #pragma pack() |
| 719 | // |
| 720 | // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After |
| 721 | // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is |
| 722 | // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of |
| 723 | // sizeof(int64). |
| 724 | // |
| 725 | // Emit an uglygep in this case. |
| 726 | Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(), |
| 727 | GEP->getPointerAddressSpace()); |
| 728 | NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP); |
| 729 | NewGEP = GetElementPtrInst::Create( |
| 730 | NewGEP, ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), |
| 731 | "uglygep", GEP); |
| 732 | if (GEP->getType() != I8PtrTy) |
| 733 | NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP); |
| 734 | } |
| 735 | |
| 736 | GEP->replaceAllUsesWith(NewGEP); |
Eli Bendersky | a108a65 | 2014-05-01 18:38:36 +0000 | [diff] [blame] | 737 | GEP->eraseFromParent(); |
| 738 | |
| 739 | return true; |
| 740 | } |
| 741 | |
| 742 | bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) { |
| 743 | if (DisableSeparateConstOffsetFromGEP) |
| 744 | return false; |
| 745 | |
| 746 | bool Changed = false; |
| 747 | for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) { |
| 748 | for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ) { |
| 749 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++)) { |
| 750 | Changed |= splitGEP(GEP); |
| 751 | } |
| 752 | // No need to split GEP ConstantExprs because all its indices are constant |
| 753 | // already. |
| 754 | } |
| 755 | } |
| 756 | return Changed; |
| 757 | } |