blob: c122ae91306eb507179ed15ad9cc503ac8268b32 [file] [log] [blame]
Roman Lebedev1d1330c2019-03-29 14:24:27 +00001//===-- SchedClassResolution.cpp --------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "SchedClassResolution.h"
10#include "BenchmarkResult.h"
11#include "llvm/ADT/STLExtras.h"
12#include "llvm/MC/MCAsmInfo.h"
13#include "llvm/Support/FormatVariadic.h"
14#include <limits>
15#include <unordered_set>
16#include <vector>
17
18namespace llvm {
19namespace exegesis {
20
21// Return the non-redundant list of WriteProcRes used by the given sched class.
22// The scheduling model for LLVM is such that each instruction has a certain
23// number of uops which consume resources which are described by WriteProcRes
24// entries. Each entry describe how many cycles are spent on a specific ProcRes
25// kind.
26// For example, an instruction might have 3 uOps, one dispatching on P0
27// (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
28// Note that LLVM additionally denormalizes resource consumption to include
29// usage of super resources by subresources. So in practice if there exists a
30// P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
31// P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
32// by P06 are also consumed by P016. In the figure below, parenthesized cycles
33// denote implied usage of superresources by subresources:
34// P0 P06 P016
35// uOp1 1 (1) (1)
36// uOp2 1 (1)
37// uOp3 1 (1)
38// =============================
39// 1 3 3
40// Eventually we end up with three entries for the WriteProcRes of the
41// instruction:
42// {ProcResIdx=1, Cycles=1} // P0
43// {ProcResIdx=7, Cycles=3} // P06
44// {ProcResIdx=10, Cycles=3} // P016
45//
46// Note that in this case, P016 does not contribute any cycles, so it would
47// be removed by this function.
48// FIXME: Move this to MCSubtargetInfo and use it in llvm-mca.
49static llvm::SmallVector<llvm::MCWriteProcResEntry, 8>
50getNonRedundantWriteProcRes(const llvm::MCSchedClassDesc &SCDesc,
51 const llvm::MCSubtargetInfo &STI) {
52 llvm::SmallVector<llvm::MCWriteProcResEntry, 8> Result;
53 const auto &SM = STI.getSchedModel();
54 const unsigned NumProcRes = SM.getNumProcResourceKinds();
55
56 // This assumes that the ProcResDescs are sorted in topological order, which
57 // is guaranteed by the tablegen backend.
58 llvm::SmallVector<float, 32> ProcResUnitUsage(NumProcRes);
59 for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc),
60 *const WPREnd = STI.getWriteProcResEnd(&SCDesc);
61 WPR != WPREnd; ++WPR) {
62 const llvm::MCProcResourceDesc *const ProcResDesc =
63 SM.getProcResource(WPR->ProcResourceIdx);
64 if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
65 // This is a ProcResUnit.
66 Result.push_back({WPR->ProcResourceIdx, WPR->Cycles});
67 ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles;
68 } else {
69 // This is a ProcResGroup. First see if it contributes any cycles or if
70 // it has cycles just from subunits.
71 float RemainingCycles = WPR->Cycles;
72 for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
73 SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
74 ++SubResIdx) {
75 RemainingCycles -= ProcResUnitUsage[*SubResIdx];
76 }
77 if (RemainingCycles < 0.01f) {
78 // The ProcResGroup contributes no cycles of its own.
79 continue;
80 }
81 // The ProcResGroup contributes `RemainingCycles` cycles of its own.
82 Result.push_back({WPR->ProcResourceIdx,
83 static_cast<uint16_t>(std::round(RemainingCycles))});
84 // Spread the remaining cycles over all subunits.
85 for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
86 SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
87 ++SubResIdx) {
88 ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits;
89 }
90 }
91 }
92 return Result;
93}
94
95// Distributes a pressure budget as evenly as possible on the provided subunits
96// given the already existing port pressure distribution.
97//
98// The algorithm is as follows: while there is remaining pressure to
99// distribute, find the subunits with minimal pressure, and distribute
100// remaining pressure equally up to the pressure of the unit with
101// second-to-minimal pressure.
102// For example, let's assume we want to distribute 2*P1256
103// (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
104// DensePressure = P0 P1 P2 P3 P4 P5 P6 P7
105// 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5
106// RemainingPressure = 2.0
107// We sort the subunits by pressure:
108// Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
109// We'll first start by the subunits with minimal pressure, which are at
110// the beginning of the sorted array. In this example there is one (P2).
111// The subunit with second-to-minimal pressure is the next one in the
112// array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
113// from the budget.
114// Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
115// RemainingPressure = 1.9
116// We repeat this process: distribute 0.2 pressure on each of the minimal
117// P2 and P1, decrease budget by 2*0.2:
118// Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
119// RemainingPressure = 1.5
120// There are no second-to-minimal subunits so we just share the remaining
121// budget (1.5 cycles) equally:
122// Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
123// RemainingPressure = 0.0
124// We stop as there is no remaining budget to distribute.
125static void distributePressure(float RemainingPressure,
126 llvm::SmallVector<uint16_t, 32> Subunits,
127 llvm::SmallVector<float, 32> &DensePressure) {
128 // Find the number of subunits with minimal pressure (they are at the
129 // front).
130 llvm::sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) {
131 return DensePressure[A] < DensePressure[B];
132 });
133 const auto getPressureForSubunit = [&DensePressure,
134 &Subunits](size_t I) -> float & {
135 return DensePressure[Subunits[I]];
136 };
137 size_t NumMinimalSU = 1;
138 while (NumMinimalSU < Subunits.size() &&
139 getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) {
140 ++NumMinimalSU;
141 }
142 while (RemainingPressure > 0.0f) {
143 if (NumMinimalSU == Subunits.size()) {
144 // All units are minimal, just distribute evenly and be done.
145 for (size_t I = 0; I < NumMinimalSU; ++I) {
146 getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
147 }
148 return;
149 }
150 // Distribute the remaining pressure equally.
151 const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1);
152 const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU);
153 assert(MinimalPressure < SecondToMinimalPressure);
154 const float Increment = SecondToMinimalPressure - MinimalPressure;
155 if (RemainingPressure <= NumMinimalSU * Increment) {
156 // There is not enough remaining pressure.
157 for (size_t I = 0; I < NumMinimalSU; ++I) {
158 getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
159 }
160 return;
161 }
162 // Bump all minimal pressure subunits to `SecondToMinimalPressure`.
163 for (size_t I = 0; I < NumMinimalSU; ++I) {
164 getPressureForSubunit(I) = SecondToMinimalPressure;
165 RemainingPressure -= SecondToMinimalPressure;
166 }
167 while (NumMinimalSU < Subunits.size() &&
168 getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) {
169 ++NumMinimalSU;
170 }
171 }
172}
173
174std::vector<std::pair<uint16_t, float>> computeIdealizedProcResPressure(
175 const llvm::MCSchedModel &SM,
176 llvm::SmallVector<llvm::MCWriteProcResEntry, 8> WPRS) {
177 // DensePressure[I] is the port pressure for Proc Resource I.
178 llvm::SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds());
179 llvm::sort(WPRS, [](const llvm::MCWriteProcResEntry &A,
180 const llvm::MCWriteProcResEntry &B) {
181 return A.ProcResourceIdx < B.ProcResourceIdx;
182 });
183 for (const llvm::MCWriteProcResEntry &WPR : WPRS) {
184 // Get units for the entry.
185 const llvm::MCProcResourceDesc *const ProcResDesc =
186 SM.getProcResource(WPR.ProcResourceIdx);
187 if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
188 // This is a ProcResUnit.
189 DensePressure[WPR.ProcResourceIdx] += WPR.Cycles;
190 } else {
191 // This is a ProcResGroup.
192 llvm::SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin,
193 ProcResDesc->SubUnitsIdxBegin +
194 ProcResDesc->NumUnits);
195 distributePressure(WPR.Cycles, Subunits, DensePressure);
196 }
197 }
198 // Turn dense pressure into sparse pressure by removing zero entries.
199 std::vector<std::pair<uint16_t, float>> Pressure;
200 for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) {
201 if (DensePressure[I] > 0.0f)
202 Pressure.emplace_back(I, DensePressure[I]);
203 }
204 return Pressure;
205}
206
207ResolvedSchedClass::ResolvedSchedClass(const llvm::MCSubtargetInfo &STI,
208 unsigned ResolvedSchedClassId,
209 bool WasVariant)
210 : SchedClassId(ResolvedSchedClassId),
211 SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)),
212 WasVariant(WasVariant),
213 NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)),
214 IdealizedProcResPressure(computeIdealizedProcResPressure(
215 STI.getSchedModel(), NonRedundantWriteProcRes)) {
216 assert((SCDesc == nullptr || !SCDesc->isVariant()) &&
217 "ResolvedSchedClass should never be variant");
218}
219
220static unsigned ResolveVariantSchedClassId(const llvm::MCSubtargetInfo &STI,
221 unsigned SchedClassId,
222 const llvm::MCInst &MCI) {
223 const auto &SM = STI.getSchedModel();
224 while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant())
225 SchedClassId =
226 STI.resolveVariantSchedClass(SchedClassId, &MCI, SM.getProcessorID());
227 return SchedClassId;
228}
229
230std::pair<unsigned /*SchedClassId*/, bool /*WasVariant*/>
231ResolvedSchedClass::resolveSchedClassId(
232 const llvm::MCSubtargetInfo &SubtargetInfo,
233 const llvm::MCInstrInfo &InstrInfo, const llvm::MCInst &MCI) {
234 unsigned SchedClassId = InstrInfo.get(MCI.getOpcode()).getSchedClass();
235 const bool WasVariant = SchedClassId && SubtargetInfo.getSchedModel()
236 .getSchedClassDesc(SchedClassId)
237 ->isVariant();
238 SchedClassId = ResolveVariantSchedClassId(SubtargetInfo, SchedClassId, MCI);
239 return std::make_pair(SchedClassId, WasVariant);
240}
241
242} // namespace exegesis
243} // namespace llvm