blob: e698d3e5c560308cbd9a4df98882bfa303332ba8 [file] [log] [blame]
Artem Dergachevba816322016-07-26 18:13:12 +00001//===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// This file implements classes for searching and anlyzing source code clones.
11///
12//===----------------------------------------------------------------------===//
13
14#include "clang/Analysis/CloneDetection.h"
15
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/RecursiveASTVisitor.h"
18#include "clang/AST/Stmt.h"
Artem Dergachev51b9a0e2016-08-20 10:06:59 +000019#include "clang/Lex/Lexer.h"
Artem Dergachev56574862016-08-20 17:35:53 +000020#include "llvm/Support/MD5.h"
Artem Dergachev51b9a0e2016-08-20 10:06:59 +000021#include "llvm/Support/raw_ostream.h"
Leslie Zhaid91d19e2017-06-19 01:55:50 +000022#include "llvm/Support/Path.h"
Artem Dergachevba816322016-07-26 18:13:12 +000023
24using namespace clang;
Raphael Isemann983f7912017-07-09 15:56:39 +000025using namespace clang::clone_detection;
Artem Dergachevba816322016-07-26 18:13:12 +000026
Artem Dergachevda9e7182017-04-06 14:34:07 +000027StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D,
Artem Dergachevba816322016-07-26 18:13:12 +000028 unsigned StartIndex, unsigned EndIndex)
Artem Dergachevda9e7182017-04-06 14:34:07 +000029 : S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) {
Artem Dergachevba816322016-07-26 18:13:12 +000030 assert(Stmt && "Stmt must not be a nullptr");
31 assert(StartIndex < EndIndex && "Given array should not be empty");
32 assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt");
33}
34
Artem Dergachevda9e7182017-04-06 14:34:07 +000035StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D)
36 : S(Stmt), D(D), StartIndex(0), EndIndex(0) {}
Artem Dergachevba816322016-07-26 18:13:12 +000037
38StmtSequence::StmtSequence()
Artem Dergachevda9e7182017-04-06 14:34:07 +000039 : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {}
Artem Dergachevba816322016-07-26 18:13:12 +000040
41bool StmtSequence::contains(const StmtSequence &Other) const {
Artem Dergachevda9e7182017-04-06 14:34:07 +000042 // If both sequences reside in different declarations, they can never contain
43 // each other.
44 if (D != Other.D)
Artem Dergachevba816322016-07-26 18:13:12 +000045 return false;
46
Artem Dergachevda9e7182017-04-06 14:34:07 +000047 const SourceManager &SM = getASTContext().getSourceManager();
Artem Dergachevba816322016-07-26 18:13:12 +000048
49 // Otherwise check if the start and end locations of the current sequence
50 // surround the other sequence.
51 bool StartIsInBounds =
52 SM.isBeforeInTranslationUnit(getStartLoc(), Other.getStartLoc()) ||
53 getStartLoc() == Other.getStartLoc();
54 if (!StartIsInBounds)
55 return false;
56
57 bool EndIsInBounds =
58 SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) ||
59 Other.getEndLoc() == getEndLoc();
60 return EndIsInBounds;
61}
62
63StmtSequence::iterator StmtSequence::begin() const {
64 if (!holdsSequence()) {
65 return &S;
66 }
67 auto CS = cast<CompoundStmt>(S);
68 return CS->body_begin() + StartIndex;
69}
70
71StmtSequence::iterator StmtSequence::end() const {
72 if (!holdsSequence()) {
Vassil Vassilev5721e0f2016-08-09 10:00:23 +000073 return reinterpret_cast<StmtSequence::iterator>(&S) + 1;
Artem Dergachevba816322016-07-26 18:13:12 +000074 }
75 auto CS = cast<CompoundStmt>(S);
76 return CS->body_begin() + EndIndex;
77}
78
Artem Dergachevda9e7182017-04-06 14:34:07 +000079ASTContext &StmtSequence::getASTContext() const {
80 assert(D);
81 return D->getASTContext();
82}
83
Artem Dergachevba816322016-07-26 18:13:12 +000084SourceLocation StmtSequence::getStartLoc() const {
85 return front()->getLocStart();
86}
87
88SourceLocation StmtSequence::getEndLoc() const { return back()->getLocEnd(); }
89
Artem Dergachev4eca0de2016-10-08 10:54:30 +000090SourceRange StmtSequence::getSourceRange() const {
91 return SourceRange(getStartLoc(), getEndLoc());
92}
93
Artem Dergachevda9e7182017-04-06 14:34:07 +000094/// Prints the macro name that contains the given SourceLocation into the given
95/// raw_string_ostream.
Artem Dergachev51b9a0e2016-08-20 10:06:59 +000096static void printMacroName(llvm::raw_string_ostream &MacroStack,
97 ASTContext &Context, SourceLocation Loc) {
98 MacroStack << Lexer::getImmediateMacroName(Loc, Context.getSourceManager(),
99 Context.getLangOpts());
100
101 // Add an empty space at the end as a padding to prevent
102 // that macro names concatenate to the names of other macros.
103 MacroStack << " ";
104}
105
Raphael Isemann983f7912017-07-09 15:56:39 +0000106std::string clone_detection::getMacroStack(SourceLocation Loc,
107 ASTContext &Context) {
Artem Dergachev51b9a0e2016-08-20 10:06:59 +0000108 std::string MacroStack;
109 llvm::raw_string_ostream MacroStackStream(MacroStack);
110 SourceManager &SM = Context.getSourceManager();
111
112 // Iterate over all macros that expanded into the given SourceLocation.
113 while (Loc.isMacroID()) {
114 // Add the macro name to the stream.
115 printMacroName(MacroStackStream, Context, Loc);
116 Loc = SM.getImmediateMacroCallerLoc(Loc);
117 }
118 MacroStackStream.flush();
119 return MacroStack;
120}
121
Artem Dergachevba816322016-07-26 18:13:12 +0000122void CloneDetector::analyzeCodeBody(const Decl *D) {
123 assert(D);
124 assert(D->hasBody());
Artem Dergachevda9e7182017-04-06 14:34:07 +0000125
126 Sequences.push_back(StmtSequence(D->getBody(), D));
Artem Dergachevba816322016-07-26 18:13:12 +0000127}
128
Artem Dergachevda9e7182017-04-06 14:34:07 +0000129/// Returns true if and only if \p Stmt contains at least one other
Artem Dergachevba816322016-07-26 18:13:12 +0000130/// sequence in the \p Group.
Artem Dergachevda9e7182017-04-06 14:34:07 +0000131static bool containsAnyInGroup(StmtSequence &Seq,
132 CloneDetector::CloneGroup &Group) {
133 for (StmtSequence &GroupSeq : Group) {
134 if (Seq.contains(GroupSeq))
Artem Dergachevba816322016-07-26 18:13:12 +0000135 return true;
136 }
137 return false;
138}
139
Artem Dergachevda9e7182017-04-06 14:34:07 +0000140/// Returns true if and only if all sequences in \p OtherGroup are
Artem Dergachevba816322016-07-26 18:13:12 +0000141/// contained by a sequence in \p Group.
Artem Dergachevda9e7182017-04-06 14:34:07 +0000142static bool containsGroup(CloneDetector::CloneGroup &Group,
143 CloneDetector::CloneGroup &OtherGroup) {
Artem Dergachevba816322016-07-26 18:13:12 +0000144 // We have less sequences in the current group than we have in the other,
145 // so we will never fulfill the requirement for returning true. This is only
146 // possible because we know that a sequence in Group can contain at most
147 // one sequence in OtherGroup.
Artem Dergachevda9e7182017-04-06 14:34:07 +0000148 if (Group.size() < OtherGroup.size())
Artem Dergachevba816322016-07-26 18:13:12 +0000149 return false;
150
Artem Dergachevda9e7182017-04-06 14:34:07 +0000151 for (StmtSequence &Stmt : Group) {
Artem Dergachevba816322016-07-26 18:13:12 +0000152 if (!containsAnyInGroup(Stmt, OtherGroup))
153 return false;
154 }
155 return true;
156}
Artem Dergachevba816322016-07-26 18:13:12 +0000157
Artem Dergachevda9e7182017-04-06 14:34:07 +0000158void OnlyLargestCloneConstraint::constrain(
159 std::vector<CloneDetector::CloneGroup> &Result) {
Artem Dergachevba816322016-07-26 18:13:12 +0000160 std::vector<unsigned> IndexesToRemove;
161
162 // Compare every group in the result with the rest. If one groups contains
163 // another group, we only need to return the bigger group.
164 // Note: This doesn't scale well, so if possible avoid calling any heavy
165 // function from this loop to minimize the performance impact.
166 for (unsigned i = 0; i < Result.size(); ++i) {
167 for (unsigned j = 0; j < Result.size(); ++j) {
168 // Don't compare a group with itself.
169 if (i == j)
170 continue;
171
172 if (containsGroup(Result[j], Result[i])) {
173 IndexesToRemove.push_back(i);
174 break;
175 }
176 }
177 }
178
179 // Erasing a list of indexes from the vector should be done with decreasing
180 // indexes. As IndexesToRemove is constructed with increasing values, we just
181 // reverse iterate over it to get the desired order.
182 for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) {
183 Result.erase(Result.begin() + *I);
184 }
185}
Artem Dergachev2fc19852016-08-18 12:29:41 +0000186
Leslie Zhai104b6fe2017-06-20 06:44:46 +0000187bool FilenamePatternConstraint::isAutoGenerated(const CloneDetector::CloneGroup &Group) {
Leslie Zhaid91d19e2017-06-19 01:55:50 +0000188 std::string Error;
189 if (IgnoredFilesPattern.empty() || Group.empty() ||
190 !IgnoredFilesRegex->isValid(Error))
191 return false;
192
193 for (const StmtSequence &S : Group) {
194 const SourceManager &SM = S.getASTContext().getSourceManager();
195 StringRef Filename = llvm::sys::path::filename(SM.getFilename(
196 S.getContainingDecl()->getLocation()));
197 if (IgnoredFilesRegex->match(Filename))
198 return true;
199 }
200
201 return false;
202}
203
Artem Dergachevda9e7182017-04-06 14:34:07 +0000204static size_t createHash(llvm::MD5 &Hash) {
205 size_t HashCode;
Artem Dergachev2fc19852016-08-18 12:29:41 +0000206
Artem Dergachevda9e7182017-04-06 14:34:07 +0000207 // Create the final hash code for the current Stmt.
208 llvm::MD5::MD5Result HashResult;
209 Hash.final(HashResult);
Artem Dergachev2fc19852016-08-18 12:29:41 +0000210
Artem Dergachevda9e7182017-04-06 14:34:07 +0000211 // Copy as much as possible of the generated hash code to the Stmt's hash
212 // code.
213 std::memcpy(&HashCode, &HashResult,
214 std::min(sizeof(HashCode), sizeof(HashResult)));
Artem Dergachev2fc19852016-08-18 12:29:41 +0000215
Artem Dergachevda9e7182017-04-06 14:34:07 +0000216 return HashCode;
217}
218
219size_t RecursiveCloneTypeIIConstraint::saveHash(
220 const Stmt *S, const Decl *D,
221 std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) {
222 llvm::MD5 Hash;
223 ASTContext &Context = D->getASTContext();
224
225 StmtDataCollector<llvm::MD5>(S, Context, Hash);
226
227 auto CS = dyn_cast<CompoundStmt>(S);
228 SmallVector<size_t, 8> ChildHashes;
229
230 for (const Stmt *Child : S->children()) {
231 if (Child == nullptr) {
232 ChildHashes.push_back(0);
233 continue;
234 }
235 size_t ChildHash = saveHash(Child, D, StmtsByHash);
236 Hash.update(
237 StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
238 ChildHashes.push_back(ChildHash);
239 }
240
241 if (CS) {
242 for (unsigned Length = 2; Length <= CS->size(); ++Length) {
243 for (unsigned Pos = 0; Pos <= CS->size() - Length; ++Pos) {
244 llvm::MD5 Hash;
245 for (unsigned i = Pos; i < Pos + Length; ++i) {
246 size_t ChildHash = ChildHashes[i];
247 Hash.update(StringRef(reinterpret_cast<char *>(&ChildHash),
248 sizeof(ChildHash)));
Artem Dergachevf8b4fc32017-04-05 14:17:36 +0000249 }
Artem Dergachevda9e7182017-04-06 14:34:07 +0000250 StmtsByHash.push_back(std::make_pair(
251 createHash(Hash), StmtSequence(CS, D, Pos, Pos + Length)));
Artem Dergachevf8b4fc32017-04-05 14:17:36 +0000252 }
Artem Dergachevf8b4fc32017-04-05 14:17:36 +0000253 }
254 }
Artem Dergachevda9e7182017-04-06 14:34:07 +0000255
256 size_t HashCode = createHash(Hash);
257 StmtsByHash.push_back(std::make_pair(HashCode, StmtSequence(S, D)));
258 return HashCode;
259}
260
261namespace {
262/// Wrapper around FoldingSetNodeID that it can be used as the template
263/// argument of the StmtDataCollector.
264class FoldingSetNodeIDWrapper {
265
266 llvm::FoldingSetNodeID &FS;
267
268public:
269 FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {}
270
271 void update(StringRef Str) { FS.AddString(Str); }
272};
273} // end anonymous namespace
274
275/// Writes the relevant data from all statements and child statements
276/// in the given StmtSequence into the given FoldingSetNodeID.
277static void CollectStmtSequenceData(const StmtSequence &Sequence,
278 FoldingSetNodeIDWrapper &OutputData) {
279 for (const Stmt *S : Sequence) {
280 StmtDataCollector<FoldingSetNodeIDWrapper>(S, Sequence.getASTContext(),
281 OutputData);
282
283 for (const Stmt *Child : S->children()) {
284 if (!Child)
285 continue;
286
287 CollectStmtSequenceData(StmtSequence(Child, Sequence.getContainingDecl()),
288 OutputData);
289 }
290 }
291}
292
293/// Returns true if both sequences are clones of each other.
294static bool areSequencesClones(const StmtSequence &LHS,
295 const StmtSequence &RHS) {
296 // We collect the data from all statements in the sequence as we did before
297 // when generating a hash value for each sequence. But this time we don't
298 // hash the collected data and compare the whole data set instead. This
299 // prevents any false-positives due to hash code collisions.
300 llvm::FoldingSetNodeID DataLHS, DataRHS;
301 FoldingSetNodeIDWrapper LHSWrapper(DataLHS);
302 FoldingSetNodeIDWrapper RHSWrapper(DataRHS);
303
304 CollectStmtSequenceData(LHS, LHSWrapper);
305 CollectStmtSequenceData(RHS, RHSWrapper);
306
307 return DataLHS == DataRHS;
308}
309
310void RecursiveCloneTypeIIConstraint::constrain(
311 std::vector<CloneDetector::CloneGroup> &Sequences) {
312 // FIXME: Maybe we can do this in-place and don't need this additional vector.
313 std::vector<CloneDetector::CloneGroup> Result;
314
315 for (CloneDetector::CloneGroup &Group : Sequences) {
316 // We assume in the following code that the Group is non-empty, so we
317 // skip all empty groups.
318 if (Group.empty())
319 continue;
320
321 std::vector<std::pair<size_t, StmtSequence>> StmtsByHash;
322
323 // Generate hash codes for all children of S and save them in StmtsByHash.
324 for (const StmtSequence &S : Group) {
325 saveHash(S.front(), S.getContainingDecl(), StmtsByHash);
326 }
327
328 // Sort hash_codes in StmtsByHash.
329 std::stable_sort(StmtsByHash.begin(), StmtsByHash.end(),
Ivan Krasin1e1acbc2017-04-06 17:42:05 +0000330 [](std::pair<size_t, StmtSequence> LHS,
Artem Dergachevda9e7182017-04-06 14:34:07 +0000331 std::pair<size_t, StmtSequence> RHS) {
332 return LHS.first < RHS.first;
333 });
334
335 // Check for each StmtSequence if its successor has the same hash value.
336 // We don't check the last StmtSequence as it has no successor.
337 // Note: The 'size - 1 ' in the condition is safe because we check for an
338 // empty Group vector at the beginning of this function.
339 for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) {
340 const auto Current = StmtsByHash[i];
341
342 // It's likely that we just found an sequence of StmtSequences that
343 // represent a CloneGroup, so we create a new group and start checking and
344 // adding the StmtSequences in this sequence.
345 CloneDetector::CloneGroup NewGroup;
346
347 size_t PrototypeHash = Current.first;
348
349 for (; i < StmtsByHash.size(); ++i) {
350 // A different hash value means we have reached the end of the sequence.
351 if (PrototypeHash != StmtsByHash[i].first ||
352 !areSequencesClones(StmtsByHash[i].second, Current.second)) {
353 // The current sequence could be the start of a new CloneGroup. So we
354 // decrement i so that we visit it again in the outer loop.
355 // Note: i can never be 0 at this point because we are just comparing
356 // the hash of the Current StmtSequence with itself in the 'if' above.
357 assert(i != 0);
358 --i;
359 break;
360 }
361 // Same hash value means we should add the StmtSequence to the current
362 // group.
363 NewGroup.push_back(StmtsByHash[i].second);
364 }
365
366 // We created a new clone group with matching hash codes and move it to
367 // the result vector.
368 Result.push_back(NewGroup);
369 }
370 }
371 // Sequences is the output parameter, so we copy our result into it.
372 Sequences = Result;
373}
374
375size_t MinComplexityConstraint::calculateStmtComplexity(
376 const StmtSequence &Seq, const std::string &ParentMacroStack) {
377 if (Seq.empty())
378 return 0;
379
380 size_t Complexity = 1;
381
382 ASTContext &Context = Seq.getASTContext();
383
384 // Look up what macros expanded into the current statement.
385 std::string StartMacroStack = getMacroStack(Seq.getStartLoc(), Context);
386 std::string EndMacroStack = getMacroStack(Seq.getEndLoc(), Context);
387
388 // First, check if ParentMacroStack is not empty which means we are currently
389 // dealing with a parent statement which was expanded from a macro.
390 // If this parent statement was expanded from the same macros as this
391 // statement, we reduce the initial complexity of this statement to zero.
392 // This causes that a group of statements that were generated by a single
393 // macro expansion will only increase the total complexity by one.
394 // Note: This is not the final complexity of this statement as we still
395 // add the complexity of the child statements to the complexity value.
396 if (!ParentMacroStack.empty() && (StartMacroStack == ParentMacroStack &&
397 EndMacroStack == ParentMacroStack)) {
398 Complexity = 0;
399 }
400
401 // Iterate over the Stmts in the StmtSequence and add their complexity values
402 // to the current complexity value.
403 if (Seq.holdsSequence()) {
404 for (const Stmt *S : Seq) {
405 Complexity += calculateStmtComplexity(
406 StmtSequence(S, Seq.getContainingDecl()), StartMacroStack);
407 }
408 } else {
409 for (const Stmt *S : Seq.front()->children()) {
410 Complexity += calculateStmtComplexity(
411 StmtSequence(S, Seq.getContainingDecl()), StartMacroStack);
412 }
413 }
414 return Complexity;
415}
416
417void MatchingVariablePatternConstraint::constrain(
418 std::vector<CloneDetector::CloneGroup> &CloneGroups) {
419 CloneConstraint::splitCloneGroups(
420 CloneGroups, [](const StmtSequence &A, const StmtSequence &B) {
421 VariablePattern PatternA(A);
422 VariablePattern PatternB(B);
423 return PatternA.countPatternDifferences(PatternB) == 0;
424 });
425}
426
427void CloneConstraint::splitCloneGroups(
428 std::vector<CloneDetector::CloneGroup> &CloneGroups,
429 std::function<bool(const StmtSequence &, const StmtSequence &)> Compare) {
430 std::vector<CloneDetector::CloneGroup> Result;
431 for (auto &HashGroup : CloneGroups) {
432 // Contains all indexes in HashGroup that were already added to a
433 // CloneGroup.
434 std::vector<char> Indexes;
435 Indexes.resize(HashGroup.size());
436
437 for (unsigned i = 0; i < HashGroup.size(); ++i) {
438 // Skip indexes that are already part of a CloneGroup.
439 if (Indexes[i])
440 continue;
441
442 // Pick the first unhandled StmtSequence and consider it as the
443 // beginning
444 // of a new CloneGroup for now.
445 // We don't add i to Indexes because we never iterate back.
446 StmtSequence Prototype = HashGroup[i];
447 CloneDetector::CloneGroup PotentialGroup = {Prototype};
448 ++Indexes[i];
449
450 // Check all following StmtSequences for clones.
451 for (unsigned j = i + 1; j < HashGroup.size(); ++j) {
452 // Skip indexes that are already part of a CloneGroup.
453 if (Indexes[j])
454 continue;
455
Raphael Isemann676b4572017-06-21 05:41:39 +0000456 // If a following StmtSequence belongs to our CloneGroup, we add it.
Artem Dergachevda9e7182017-04-06 14:34:07 +0000457 const StmtSequence &Candidate = HashGroup[j];
458
459 if (!Compare(Prototype, Candidate))
460 continue;
461
462 PotentialGroup.push_back(Candidate);
463 // Make sure we never visit this StmtSequence again.
464 ++Indexes[j];
465 }
466
467 // Otherwise, add it to the result and continue searching for more
468 // groups.
469 Result.push_back(PotentialGroup);
470 }
471
472 assert(std::all_of(Indexes.begin(), Indexes.end(),
473 [](char c) { return c == 1; }));
474 }
475 CloneGroups = Result;
476}
477
478void VariablePattern::addVariableOccurence(const VarDecl *VarDecl,
479 const Stmt *Mention) {
480 // First check if we already reference this variable
481 for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) {
482 if (Variables[KindIndex] == VarDecl) {
483 // If yes, add a new occurence that points to the existing entry in
484 // the Variables vector.
485 Occurences.emplace_back(KindIndex, Mention);
486 return;
487 }
488 }
489 // If this variable wasn't already referenced, add it to the list of
490 // referenced variables and add a occurence that points to this new entry.
491 Occurences.emplace_back(Variables.size(), Mention);
492 Variables.push_back(VarDecl);
493}
494
495void VariablePattern::addVariables(const Stmt *S) {
496 // Sometimes we get a nullptr (such as from IfStmts which often have nullptr
497 // children). We skip such statements as they don't reference any
498 // variables.
499 if (!S)
500 return;
501
502 // Check if S is a reference to a variable. If yes, add it to the pattern.
503 if (auto D = dyn_cast<DeclRefExpr>(S)) {
504 if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl()))
505 addVariableOccurence(VD, D);
506 }
507
508 // Recursively check all children of the given statement.
509 for (const Stmt *Child : S->children()) {
510 addVariables(Child);
511 }
512}
513
514unsigned VariablePattern::countPatternDifferences(
515 const VariablePattern &Other,
516 VariablePattern::SuspiciousClonePair *FirstMismatch) {
517 unsigned NumberOfDifferences = 0;
518
519 assert(Other.Occurences.size() == Occurences.size());
520 for (unsigned i = 0; i < Occurences.size(); ++i) {
521 auto ThisOccurence = Occurences[i];
522 auto OtherOccurence = Other.Occurences[i];
523 if (ThisOccurence.KindID == OtherOccurence.KindID)
524 continue;
525
526 ++NumberOfDifferences;
527
528 // If FirstMismatch is not a nullptr, we need to store information about
529 // the first difference between the two patterns.
530 if (FirstMismatch == nullptr)
531 continue;
532
533 // Only proceed if we just found the first difference as we only store
534 // information about the first difference.
535 if (NumberOfDifferences != 1)
536 continue;
537
538 const VarDecl *FirstSuggestion = nullptr;
539 // If there is a variable available in the list of referenced variables
540 // which wouldn't break the pattern if it is used in place of the
541 // current variable, we provide this variable as the suggested fix.
542 if (OtherOccurence.KindID < Variables.size())
543 FirstSuggestion = Variables[OtherOccurence.KindID];
544
545 // Store information about the first clone.
546 FirstMismatch->FirstCloneInfo =
547 VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
548 Variables[ThisOccurence.KindID], ThisOccurence.Mention,
549 FirstSuggestion);
550
551 // Same as above but with the other clone. We do this for both clones as
552 // we don't know which clone is the one containing the unintended
553 // pattern error.
554 const VarDecl *SecondSuggestion = nullptr;
555 if (ThisOccurence.KindID < Other.Variables.size())
556 SecondSuggestion = Other.Variables[ThisOccurence.KindID];
557
558 // Store information about the second clone.
559 FirstMismatch->SecondCloneInfo =
560 VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
561 Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention,
562 SecondSuggestion);
563
564 // SuspiciousClonePair guarantees that the first clone always has a
565 // suggested variable associated with it. As we know that one of the two
566 // clones in the pair always has suggestion, we swap the two clones
567 // in case the first clone has no suggested variable which means that
568 // the second clone has a suggested variable and should be first.
569 if (!FirstMismatch->FirstCloneInfo.Suggestion)
570 std::swap(FirstMismatch->FirstCloneInfo, FirstMismatch->SecondCloneInfo);
571
572 // This ensures that we always have at least one suggestion in a pair.
573 assert(FirstMismatch->FirstCloneInfo.Suggestion);
574 }
575
576 return NumberOfDifferences;
Artem Dergachev2fc19852016-08-18 12:29:41 +0000577}