blob: 8120736885ca158354211209f3cd3e8d7df42385 [file] [log] [blame]
Sebastian Pop59b61b92012-10-11 07:32:34 +00001//===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// DependenceAnalysis is an LLVM pass that analyses dependences between memory
11// accesses. Currently, it is an (incomplete) implementation of the approach
12// described in
13//
14// Practical Dependence Testing
15// Goff, Kennedy, Tseng
16// PLDI 1991
17//
18// There's a single entry point that analyzes the dependence between a pair
19// of memory references in a function, returning either NULL, for no dependence,
20// or a more-or-less detailed description of the dependence between them.
21//
22// Currently, the implementation cannot propagate constraints between
23// coupled RDIV subscripts and lacks a multi-subscript MIV test.
24// Both of these are conservative weaknesses;
25// that is, not a source of correctness problems.
26//
Sebastian Pop7ee14722013-11-13 22:37:58 +000027// The implementation depends on the GEP instruction to differentiate
28// subscripts. Since Clang linearizes some array subscripts, the dependence
29// analysis is using SCEV->delinearize to recover the representation of multiple
30// subscripts, and thus avoid the more expensive and less precise MIV tests. The
31// delinearization is controlled by the flag -da-delinearize.
Sebastian Pop59b61b92012-10-11 07:32:34 +000032//
33// We should pay some careful attention to the possibility of integer overflow
34// in the implementation of the various tests. This could happen with Add,
35// Subtract, or Multiply, with both APInt's and SCEV's.
36//
37// Some non-linear subscript pairs can be handled by the GCD test
38// (and perhaps other tests).
39// Should explore how often these things occur.
40//
41// Finally, it seems like certain test cases expose weaknesses in the SCEV
42// simplification, especially in the handling of sign and zero extensions.
43// It could be useful to spend time exploring these.
44//
45// Please note that this is work in progress and the interface is subject to
46// change.
47//
48//===----------------------------------------------------------------------===//
49// //
50// In memory of Ken Kennedy, 1945 - 2007 //
51// //
52//===----------------------------------------------------------------------===//
53
Sebastian Pop59b61b92012-10-11 07:32:34 +000054#include "llvm/Analysis/DependenceAnalysis.h"
55#include "llvm/ADT/Statistic.h"
Benjamin Kramer71a35122012-10-25 16:15:22 +000056#include "llvm/Analysis/AliasAnalysis.h"
57#include "llvm/Analysis/LoopInfo.h"
Benjamin Kramer71a35122012-10-25 16:15:22 +000058#include "llvm/Analysis/ScalarEvolution.h"
59#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000060#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth83948572014-03-04 10:30:26 +000061#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000062#include "llvm/IR/Operator.h"
Sebastian Popc62c6792013-11-12 22:47:20 +000063#include "llvm/Support/CommandLine.h"
Sebastian Pop59b61b92012-10-11 07:32:34 +000064#include "llvm/Support/Debug.h"
65#include "llvm/Support/ErrorHandling.h"
Benjamin Kramer71a35122012-10-25 16:15:22 +000066#include "llvm/Support/raw_ostream.h"
Sebastian Pop59b61b92012-10-11 07:32:34 +000067
68using namespace llvm;
69
Chandler Carruthf1221bd2014-04-22 02:48:03 +000070#define DEBUG_TYPE "da"
71
Sebastian Pop59b61b92012-10-11 07:32:34 +000072//===----------------------------------------------------------------------===//
73// statistics
74
75STATISTIC(TotalArrayPairs, "Array pairs tested");
76STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
77STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
78STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
79STATISTIC(ZIVapplications, "ZIV applications");
80STATISTIC(ZIVindependence, "ZIV independence");
81STATISTIC(StrongSIVapplications, "Strong SIV applications");
82STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
83STATISTIC(StrongSIVindependence, "Strong SIV independence");
84STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
85STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
86STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
87STATISTIC(ExactSIVapplications, "Exact SIV applications");
88STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
89STATISTIC(ExactSIVindependence, "Exact SIV independence");
90STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
91STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
92STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
93STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
94STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
95STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
96STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
97STATISTIC(DeltaApplications, "Delta applications");
98STATISTIC(DeltaSuccesses, "Delta successes");
99STATISTIC(DeltaIndependence, "Delta independence");
100STATISTIC(DeltaPropagations, "Delta propagations");
101STATISTIC(GCDapplications, "GCD applications");
102STATISTIC(GCDsuccesses, "GCD successes");
103STATISTIC(GCDindependence, "GCD independence");
104STATISTIC(BanerjeeApplications, "Banerjee applications");
105STATISTIC(BanerjeeIndependence, "Banerjee independence");
106STATISTIC(BanerjeeSuccesses, "Banerjee successes");
107
Sebastian Popc62c6792013-11-12 22:47:20 +0000108static cl::opt<bool>
109Delinearize("da-delinearize", cl::init(false), cl::Hidden, cl::ZeroOrMore,
110 cl::desc("Try to delinearize array references."));
111
Sebastian Pop59b61b92012-10-11 07:32:34 +0000112//===----------------------------------------------------------------------===//
113// basics
114
115INITIALIZE_PASS_BEGIN(DependenceAnalysis, "da",
116 "Dependence Analysis", true, true)
117INITIALIZE_PASS_DEPENDENCY(LoopInfo)
118INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
119INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
120INITIALIZE_PASS_END(DependenceAnalysis, "da",
121 "Dependence Analysis", true, true)
122
123char DependenceAnalysis::ID = 0;
124
125
126FunctionPass *llvm::createDependenceAnalysisPass() {
127 return new DependenceAnalysis();
128}
129
130
131bool DependenceAnalysis::runOnFunction(Function &F) {
132 this->F = &F;
133 AA = &getAnalysis<AliasAnalysis>();
134 SE = &getAnalysis<ScalarEvolution>();
135 LI = &getAnalysis<LoopInfo>();
136 return false;
137}
138
139
140void DependenceAnalysis::releaseMemory() {
141}
142
143
144void DependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
145 AU.setPreservesAll();
146 AU.addRequiredTransitive<AliasAnalysis>();
147 AU.addRequiredTransitive<ScalarEvolution>();
148 AU.addRequiredTransitive<LoopInfo>();
149}
150
151
152// Used to test the dependence analyzer.
Benjamin Kramer3eb15632012-11-13 12:12:02 +0000153// Looks through the function, noting loads and stores.
154// Calls depends() on every possible pair and prints out the result.
Sebastian Pop59b61b92012-10-11 07:32:34 +0000155// Ignores all other instructions.
156static
157void dumpExampleDependence(raw_ostream &OS, Function *F,
158 DependenceAnalysis *DA) {
159 for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F);
160 SrcI != SrcE; ++SrcI) {
Benjamin Kramer3eb15632012-11-13 12:12:02 +0000161 if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000162 for (inst_iterator DstI = SrcI, DstE = inst_end(F);
163 DstI != DstE; ++DstI) {
Benjamin Kramer3eb15632012-11-13 12:12:02 +0000164 if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000165 OS << "da analyze - ";
Dylan Noblesmith2cae60e2014-08-25 00:28:39 +0000166 if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
Sebastian Pop59b61b92012-10-11 07:32:34 +0000167 D->dump(OS);
168 for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
169 if (D->isSplitable(Level)) {
170 OS << "da analyze - split level = " << Level;
Dylan Noblesmithd96ce662014-08-25 00:28:35 +0000171 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
Sebastian Pop59b61b92012-10-11 07:32:34 +0000172 OS << "!\n";
173 }
174 }
Sebastian Pop59b61b92012-10-11 07:32:34 +0000175 }
176 else
177 OS << "none!\n";
Sebastian Pop59b61b92012-10-11 07:32:34 +0000178 }
179 }
180 }
181 }
182}
183
184
185void DependenceAnalysis::print(raw_ostream &OS, const Module*) const {
186 dumpExampleDependence(OS, F, const_cast<DependenceAnalysis *>(this));
187}
188
189//===----------------------------------------------------------------------===//
190// Dependence methods
191
192// Returns true if this is an input dependence.
193bool Dependence::isInput() const {
194 return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
195}
196
197
198// Returns true if this is an output dependence.
199bool Dependence::isOutput() const {
200 return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
201}
202
203
204// Returns true if this is an flow (aka true) dependence.
205bool Dependence::isFlow() const {
206 return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
207}
208
209
210// Returns true if this is an anti dependence.
211bool Dependence::isAnti() const {
212 return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
213}
214
215
216// Returns true if a particular level is scalar; that is,
217// if no subscript in the source or destination mention the induction
218// variable associated with the loop at this level.
219// Leave this out of line, so it will serve as a virtual method anchor
220bool Dependence::isScalar(unsigned level) const {
221 return false;
222}
223
224
225//===----------------------------------------------------------------------===//
226// FullDependence methods
227
Sebastian Pop87ce43c2012-11-20 22:28:04 +0000228FullDependence::FullDependence(Instruction *Source,
229 Instruction *Destination,
Sebastian Pop59b61b92012-10-11 07:32:34 +0000230 bool PossiblyLoopIndependent,
231 unsigned CommonLevels) :
232 Dependence(Source, Destination),
233 Levels(CommonLevels),
234 LoopIndependent(PossiblyLoopIndependent) {
235 Consistent = true;
Craig Topper9f008862014-04-15 04:59:12 +0000236 DV = CommonLevels ? new DVEntry[CommonLevels] : nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +0000237}
238
239// The rest are simple getters that hide the implementation.
240
241// getDirection - Returns the direction associated with a particular level.
242unsigned FullDependence::getDirection(unsigned Level) const {
243 assert(0 < Level && Level <= Levels && "Level out of range");
244 return DV[Level - 1].Direction;
245}
246
247
248// Returns the distance (or NULL) associated with a particular level.
249const SCEV *FullDependence::getDistance(unsigned Level) const {
250 assert(0 < Level && Level <= Levels && "Level out of range");
251 return DV[Level - 1].Distance;
252}
253
254
255// Returns true if a particular level is scalar; that is,
256// if no subscript in the source or destination mention the induction
257// variable associated with the loop at this level.
258bool FullDependence::isScalar(unsigned Level) const {
259 assert(0 < Level && Level <= Levels && "Level out of range");
260 return DV[Level - 1].Scalar;
261}
262
263
264// Returns true if peeling the first iteration from this loop
265// will break this dependence.
266bool FullDependence::isPeelFirst(unsigned Level) const {
267 assert(0 < Level && Level <= Levels && "Level out of range");
268 return DV[Level - 1].PeelFirst;
269}
270
271
272// Returns true if peeling the last iteration from this loop
273// will break this dependence.
274bool FullDependence::isPeelLast(unsigned Level) const {
275 assert(0 < Level && Level <= Levels && "Level out of range");
276 return DV[Level - 1].PeelLast;
277}
278
279
280// Returns true if splitting this loop will break the dependence.
281bool FullDependence::isSplitable(unsigned Level) const {
282 assert(0 < Level && Level <= Levels && "Level out of range");
283 return DV[Level - 1].Splitable;
284}
285
286
287//===----------------------------------------------------------------------===//
288// DependenceAnalysis::Constraint methods
289
290// If constraint is a point <X, Y>, returns X.
291// Otherwise assert.
292const SCEV *DependenceAnalysis::Constraint::getX() const {
293 assert(Kind == Point && "Kind should be Point");
294 return A;
295}
296
297
298// If constraint is a point <X, Y>, returns Y.
299// Otherwise assert.
300const SCEV *DependenceAnalysis::Constraint::getY() const {
301 assert(Kind == Point && "Kind should be Point");
302 return B;
303}
304
305
306// If constraint is a line AX + BY = C, returns A.
307// Otherwise assert.
308const SCEV *DependenceAnalysis::Constraint::getA() const {
309 assert((Kind == Line || Kind == Distance) &&
310 "Kind should be Line (or Distance)");
311 return A;
312}
313
314
315// If constraint is a line AX + BY = C, returns B.
316// Otherwise assert.
317const SCEV *DependenceAnalysis::Constraint::getB() const {
318 assert((Kind == Line || Kind == Distance) &&
319 "Kind should be Line (or Distance)");
320 return B;
321}
322
323
324// If constraint is a line AX + BY = C, returns C.
325// Otherwise assert.
326const SCEV *DependenceAnalysis::Constraint::getC() const {
327 assert((Kind == Line || Kind == Distance) &&
328 "Kind should be Line (or Distance)");
329 return C;
330}
331
332
333// If constraint is a distance, returns D.
334// Otherwise assert.
335const SCEV *DependenceAnalysis::Constraint::getD() const {
336 assert(Kind == Distance && "Kind should be Distance");
337 return SE->getNegativeSCEV(C);
338}
339
340
341// Returns the loop associated with this constraint.
342const Loop *DependenceAnalysis::Constraint::getAssociatedLoop() const {
343 assert((Kind == Distance || Kind == Line || Kind == Point) &&
344 "Kind should be Distance, Line, or Point");
345 return AssociatedLoop;
346}
347
348
349void DependenceAnalysis::Constraint::setPoint(const SCEV *X,
350 const SCEV *Y,
351 const Loop *CurLoop) {
352 Kind = Point;
353 A = X;
354 B = Y;
355 AssociatedLoop = CurLoop;
356}
357
358
359void DependenceAnalysis::Constraint::setLine(const SCEV *AA,
360 const SCEV *BB,
361 const SCEV *CC,
362 const Loop *CurLoop) {
363 Kind = Line;
364 A = AA;
365 B = BB;
366 C = CC;
367 AssociatedLoop = CurLoop;
368}
369
370
371void DependenceAnalysis::Constraint::setDistance(const SCEV *D,
372 const Loop *CurLoop) {
373 Kind = Distance;
374 A = SE->getConstant(D->getType(), 1);
375 B = SE->getNegativeSCEV(A);
376 C = SE->getNegativeSCEV(D);
377 AssociatedLoop = CurLoop;
378}
379
380
381void DependenceAnalysis::Constraint::setEmpty() {
382 Kind = Empty;
383}
384
385
386void DependenceAnalysis::Constraint::setAny(ScalarEvolution *NewSE) {
387 SE = NewSE;
388 Kind = Any;
389}
390
391
392// For debugging purposes. Dumps the constraint out to OS.
393void DependenceAnalysis::Constraint::dump(raw_ostream &OS) const {
394 if (isEmpty())
395 OS << " Empty\n";
396 else if (isAny())
397 OS << " Any\n";
398 else if (isPoint())
399 OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
400 else if (isDistance())
401 OS << " Distance is " << *getD() <<
402 " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
403 else if (isLine())
404 OS << " Line is " << *getA() << "*X + " <<
405 *getB() << "*Y = " << *getC() << "\n";
406 else
407 llvm_unreachable("unknown constraint type in Constraint::dump");
408}
409
410
411// Updates X with the intersection
412// of the Constraints X and Y. Returns true if X has changed.
413// Corresponds to Figure 4 from the paper
414//
415// Practical Dependence Testing
416// Goff, Kennedy, Tseng
417// PLDI 1991
418bool DependenceAnalysis::intersectConstraints(Constraint *X,
419 const Constraint *Y) {
420 ++DeltaApplications;
421 DEBUG(dbgs() << "\tintersect constraints\n");
422 DEBUG(dbgs() << "\t X ="; X->dump(dbgs()));
423 DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs()));
424 assert(!Y->isPoint() && "Y must not be a Point");
425 if (X->isAny()) {
426 if (Y->isAny())
427 return false;
428 *X = *Y;
429 return true;
430 }
431 if (X->isEmpty())
432 return false;
433 if (Y->isEmpty()) {
434 X->setEmpty();
435 return true;
436 }
437
438 if (X->isDistance() && Y->isDistance()) {
439 DEBUG(dbgs() << "\t intersect 2 distances\n");
440 if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
441 return false;
442 if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
443 X->setEmpty();
444 ++DeltaSuccesses;
445 return true;
446 }
447 // Hmmm, interesting situation.
448 // I guess if either is constant, keep it and ignore the other.
449 if (isa<SCEVConstant>(Y->getD())) {
450 *X = *Y;
451 return true;
452 }
453 return false;
454 }
455
456 // At this point, the pseudo-code in Figure 4 of the paper
457 // checks if (X->isPoint() && Y->isPoint()).
458 // This case can't occur in our implementation,
459 // since a Point can only arise as the result of intersecting
460 // two Line constraints, and the right-hand value, Y, is never
461 // the result of an intersection.
462 assert(!(X->isPoint() && Y->isPoint()) &&
463 "We shouldn't ever see X->isPoint() && Y->isPoint()");
464
465 if (X->isLine() && Y->isLine()) {
466 DEBUG(dbgs() << "\t intersect 2 lines\n");
467 const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
468 const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
469 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
470 // slopes are equal, so lines are parallel
471 DEBUG(dbgs() << "\t\tsame slope\n");
472 Prod1 = SE->getMulExpr(X->getC(), Y->getB());
473 Prod2 = SE->getMulExpr(X->getB(), Y->getC());
474 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
475 return false;
476 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
477 X->setEmpty();
478 ++DeltaSuccesses;
479 return true;
480 }
481 return false;
482 }
483 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
484 // slopes differ, so lines intersect
485 DEBUG(dbgs() << "\t\tdifferent slopes\n");
486 const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
487 const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
488 const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
489 const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
490 const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
491 const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
492 const SCEVConstant *C1A2_C2A1 =
493 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
494 const SCEVConstant *C1B2_C2B1 =
495 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
496 const SCEVConstant *A1B2_A2B1 =
497 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
498 const SCEVConstant *A2B1_A1B2 =
499 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
500 if (!C1B2_C2B1 || !C1A2_C2A1 ||
501 !A1B2_A2B1 || !A2B1_A1B2)
502 return false;
503 APInt Xtop = C1B2_C2B1->getValue()->getValue();
504 APInt Xbot = A1B2_A2B1->getValue()->getValue();
505 APInt Ytop = C1A2_C2A1->getValue()->getValue();
506 APInt Ybot = A2B1_A1B2->getValue()->getValue();
507 DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
508 DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
509 DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
510 DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
511 APInt Xq = Xtop; // these need to be initialized, even
512 APInt Xr = Xtop; // though they're just going to be overwritten
513 APInt::sdivrem(Xtop, Xbot, Xq, Xr);
514 APInt Yq = Ytop;
Jakub Staszak340c7802013-08-06 16:40:40 +0000515 APInt Yr = Ytop;
Sebastian Pop59b61b92012-10-11 07:32:34 +0000516 APInt::sdivrem(Ytop, Ybot, Yq, Yr);
517 if (Xr != 0 || Yr != 0) {
518 X->setEmpty();
519 ++DeltaSuccesses;
520 return true;
521 }
522 DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
523 if (Xq.slt(0) || Yq.slt(0)) {
524 X->setEmpty();
525 ++DeltaSuccesses;
526 return true;
527 }
528 if (const SCEVConstant *CUB =
529 collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
530 APInt UpperBound = CUB->getValue()->getValue();
531 DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
532 if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
533 X->setEmpty();
534 ++DeltaSuccesses;
535 return true;
536 }
537 }
538 X->setPoint(SE->getConstant(Xq),
539 SE->getConstant(Yq),
540 X->getAssociatedLoop());
541 ++DeltaSuccesses;
542 return true;
543 }
544 return false;
545 }
546
547 // if (X->isLine() && Y->isPoint()) This case can't occur.
548 assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
549
550 if (X->isPoint() && Y->isLine()) {
551 DEBUG(dbgs() << "\t intersect Point and Line\n");
552 const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
553 const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
554 const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
555 if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
556 return false;
557 if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
558 X->setEmpty();
559 ++DeltaSuccesses;
560 return true;
561 }
562 return false;
563 }
564
565 llvm_unreachable("shouldn't reach the end of Constraint intersection");
566 return false;
567}
568
569
570//===----------------------------------------------------------------------===//
571// DependenceAnalysis methods
572
573// For debugging purposes. Dumps a dependence to OS.
574void Dependence::dump(raw_ostream &OS) const {
575 bool Splitable = false;
576 if (isConfused())
577 OS << "confused";
578 else {
579 if (isConsistent())
580 OS << "consistent ";
581 if (isFlow())
582 OS << "flow";
583 else if (isOutput())
584 OS << "output";
585 else if (isAnti())
586 OS << "anti";
587 else if (isInput())
588 OS << "input";
589 unsigned Levels = getLevels();
Preston Briggsfd0b5c82012-11-30 00:44:47 +0000590 OS << " [";
591 for (unsigned II = 1; II <= Levels; ++II) {
592 if (isSplitable(II))
593 Splitable = true;
594 if (isPeelFirst(II))
595 OS << 'p';
596 const SCEV *Distance = getDistance(II);
597 if (Distance)
598 OS << *Distance;
599 else if (isScalar(II))
600 OS << "S";
601 else {
602 unsigned Direction = getDirection(II);
603 if (Direction == DVEntry::ALL)
604 OS << "*";
Sebastian Pop59b61b92012-10-11 07:32:34 +0000605 else {
Preston Briggsfd0b5c82012-11-30 00:44:47 +0000606 if (Direction & DVEntry::LT)
607 OS << "<";
608 if (Direction & DVEntry::EQ)
609 OS << "=";
610 if (Direction & DVEntry::GT)
611 OS << ">";
Sebastian Pop59b61b92012-10-11 07:32:34 +0000612 }
Sebastian Pop59b61b92012-10-11 07:32:34 +0000613 }
Preston Briggsfd0b5c82012-11-30 00:44:47 +0000614 if (isPeelLast(II))
615 OS << 'p';
616 if (II < Levels)
617 OS << " ";
Sebastian Pop59b61b92012-10-11 07:32:34 +0000618 }
Preston Briggsfd0b5c82012-11-30 00:44:47 +0000619 if (isLoopIndependent())
620 OS << "|<";
621 OS << "]";
622 if (Splitable)
623 OS << " splitable";
Sebastian Pop59b61b92012-10-11 07:32:34 +0000624 }
625 OS << "!\n";
626}
627
628
629
630static
631AliasAnalysis::AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
632 const Value *A,
633 const Value *B) {
634 const Value *AObj = GetUnderlyingObject(A);
635 const Value *BObj = GetUnderlyingObject(B);
636 return AA->alias(AObj, AA->getTypeStoreSize(AObj->getType()),
637 BObj, AA->getTypeStoreSize(BObj->getType()));
638}
639
640
641// Returns true if the load or store can be analyzed. Atomic and volatile
642// operations have properties which this analysis does not understand.
643static
644bool isLoadOrStore(const Instruction *I) {
645 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
646 return LI->isUnordered();
647 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
648 return SI->isUnordered();
649 return false;
650}
651
652
653static
Sebastian Pop87ce43c2012-11-20 22:28:04 +0000654Value *getPointerOperand(Instruction *I) {
655 if (LoadInst *LI = dyn_cast<LoadInst>(I))
Sebastian Pop59b61b92012-10-11 07:32:34 +0000656 return LI->getPointerOperand();
Sebastian Pop87ce43c2012-11-20 22:28:04 +0000657 if (StoreInst *SI = dyn_cast<StoreInst>(I))
Sebastian Pop59b61b92012-10-11 07:32:34 +0000658 return SI->getPointerOperand();
659 llvm_unreachable("Value is not load or store instruction");
Craig Topper9f008862014-04-15 04:59:12 +0000660 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +0000661}
662
663
664// Examines the loop nesting of the Src and Dst
665// instructions and establishes their shared loops. Sets the variables
666// CommonLevels, SrcLevels, and MaxLevels.
667// The source and destination instructions needn't be contained in the same
668// loop. The routine establishNestingLevels finds the level of most deeply
669// nested loop that contains them both, CommonLevels. An instruction that's
670// not contained in a loop is at level = 0. MaxLevels is equal to the level
671// of the source plus the level of the destination, minus CommonLevels.
672// This lets us allocate vectors MaxLevels in length, with room for every
673// distinct loop referenced in both the source and destination subscripts.
674// The variable SrcLevels is the nesting depth of the source instruction.
675// It's used to help calculate distinct loops referenced by the destination.
676// Here's the map from loops to levels:
677// 0 - unused
678// 1 - outermost common loop
679// ... - other common loops
680// CommonLevels - innermost common loop
681// ... - loops containing Src but not Dst
682// SrcLevels - innermost loop containing Src but not Dst
683// ... - loops containing Dst but not Src
684// MaxLevels - innermost loops containing Dst but not Src
685// Consider the follow code fragment:
686// for (a = ...) {
687// for (b = ...) {
688// for (c = ...) {
689// for (d = ...) {
690// A[] = ...;
691// }
692// }
693// for (e = ...) {
694// for (f = ...) {
695// for (g = ...) {
696// ... = A[];
697// }
698// }
699// }
700// }
701// }
702// If we're looking at the possibility of a dependence between the store
703// to A (the Src) and the load from A (the Dst), we'll note that they
704// have 2 loops in common, so CommonLevels will equal 2 and the direction
705// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
706// A map from loop names to loop numbers would look like
707// a - 1
708// b - 2 = CommonLevels
709// c - 3
710// d - 4 = SrcLevels
711// e - 5
712// f - 6
713// g - 7 = MaxLevels
714void DependenceAnalysis::establishNestingLevels(const Instruction *Src,
715 const Instruction *Dst) {
716 const BasicBlock *SrcBlock = Src->getParent();
717 const BasicBlock *DstBlock = Dst->getParent();
718 unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
719 unsigned DstLevel = LI->getLoopDepth(DstBlock);
720 const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
721 const Loop *DstLoop = LI->getLoopFor(DstBlock);
722 SrcLevels = SrcLevel;
723 MaxLevels = SrcLevel + DstLevel;
724 while (SrcLevel > DstLevel) {
725 SrcLoop = SrcLoop->getParentLoop();
726 SrcLevel--;
727 }
728 while (DstLevel > SrcLevel) {
729 DstLoop = DstLoop->getParentLoop();
730 DstLevel--;
731 }
732 while (SrcLoop != DstLoop) {
733 SrcLoop = SrcLoop->getParentLoop();
734 DstLoop = DstLoop->getParentLoop();
735 SrcLevel--;
736 }
737 CommonLevels = SrcLevel;
738 MaxLevels -= CommonLevels;
739}
740
741
742// Given one of the loops containing the source, return
743// its level index in our numbering scheme.
744unsigned DependenceAnalysis::mapSrcLoop(const Loop *SrcLoop) const {
745 return SrcLoop->getLoopDepth();
746}
747
748
749// Given one of the loops containing the destination,
750// return its level index in our numbering scheme.
751unsigned DependenceAnalysis::mapDstLoop(const Loop *DstLoop) const {
752 unsigned D = DstLoop->getLoopDepth();
753 if (D > CommonLevels)
754 return D - CommonLevels + SrcLevels;
755 else
756 return D;
757}
758
759
760// Returns true if Expression is loop invariant in LoopNest.
761bool DependenceAnalysis::isLoopInvariant(const SCEV *Expression,
762 const Loop *LoopNest) const {
763 if (!LoopNest)
764 return true;
765 return SE->isLoopInvariant(Expression, LoopNest) &&
766 isLoopInvariant(Expression, LoopNest->getParentLoop());
767}
768
769
770
771// Finds the set of loops from the LoopNest that
772// have a level <= CommonLevels and are referred to by the SCEV Expression.
773void DependenceAnalysis::collectCommonLoops(const SCEV *Expression,
774 const Loop *LoopNest,
775 SmallBitVector &Loops) const {
776 while (LoopNest) {
777 unsigned Level = LoopNest->getLoopDepth();
778 if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
779 Loops.set(Level);
780 LoopNest = LoopNest->getParentLoop();
781 }
782}
783
784
785// removeMatchingExtensions - Examines a subscript pair.
786// If the source and destination are identically sign (or zero)
787// extended, it strips off the extension in an effect to simplify
788// the actual analysis.
789void DependenceAnalysis::removeMatchingExtensions(Subscript *Pair) {
790 const SCEV *Src = Pair->Src;
791 const SCEV *Dst = Pair->Dst;
792 if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
793 (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
794 const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
795 const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
796 if (SrcCast->getType() == DstCast->getType()) {
797 Pair->Src = SrcCast->getOperand();
798 Pair->Dst = DstCast->getOperand();
799 }
800 }
801}
802
803
804// Examine the scev and return true iff it's linear.
805// Collect any loops mentioned in the set of "Loops".
806bool DependenceAnalysis::checkSrcSubscript(const SCEV *Src,
807 const Loop *LoopNest,
808 SmallBitVector &Loops) {
809 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
810 if (!AddRec)
811 return isLoopInvariant(Src, LoopNest);
812 const SCEV *Start = AddRec->getStart();
813 const SCEV *Step = AddRec->getStepRecurrence(*SE);
814 if (!isLoopInvariant(Step, LoopNest))
815 return false;
816 Loops.set(mapSrcLoop(AddRec->getLoop()));
817 return checkSrcSubscript(Start, LoopNest, Loops);
818}
819
820
821
822// Examine the scev and return true iff it's linear.
823// Collect any loops mentioned in the set of "Loops".
824bool DependenceAnalysis::checkDstSubscript(const SCEV *Dst,
825 const Loop *LoopNest,
826 SmallBitVector &Loops) {
827 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
828 if (!AddRec)
829 return isLoopInvariant(Dst, LoopNest);
830 const SCEV *Start = AddRec->getStart();
831 const SCEV *Step = AddRec->getStepRecurrence(*SE);
832 if (!isLoopInvariant(Step, LoopNest))
833 return false;
834 Loops.set(mapDstLoop(AddRec->getLoop()));
835 return checkDstSubscript(Start, LoopNest, Loops);
836}
837
838
839// Examines the subscript pair (the Src and Dst SCEVs)
840// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
841// Collects the associated loops in a set.
842DependenceAnalysis::Subscript::ClassificationKind
843DependenceAnalysis::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
844 const SCEV *Dst, const Loop *DstLoopNest,
845 SmallBitVector &Loops) {
846 SmallBitVector SrcLoops(MaxLevels + 1);
847 SmallBitVector DstLoops(MaxLevels + 1);
848 if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
849 return Subscript::NonLinear;
850 if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
851 return Subscript::NonLinear;
852 Loops = SrcLoops;
853 Loops |= DstLoops;
854 unsigned N = Loops.count();
855 if (N == 0)
856 return Subscript::ZIV;
857 if (N == 1)
858 return Subscript::SIV;
859 if (N == 2 && (SrcLoops.count() == 0 ||
860 DstLoops.count() == 0 ||
861 (SrcLoops.count() == 1 && DstLoops.count() == 1)))
862 return Subscript::RDIV;
863 return Subscript::MIV;
864}
865
866
867// A wrapper around SCEV::isKnownPredicate.
868// Looks for cases where we're interested in comparing for equality.
869// If both X and Y have been identically sign or zero extended,
870// it strips off the (confusing) extensions before invoking
871// SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
872// will be similarly updated.
873//
874// If SCEV::isKnownPredicate can't prove the predicate,
875// we try simple subtraction, which seems to help in some cases
876// involving symbolics.
877bool DependenceAnalysis::isKnownPredicate(ICmpInst::Predicate Pred,
878 const SCEV *X,
879 const SCEV *Y) const {
880 if (Pred == CmpInst::ICMP_EQ ||
881 Pred == CmpInst::ICMP_NE) {
882 if ((isa<SCEVSignExtendExpr>(X) &&
883 isa<SCEVSignExtendExpr>(Y)) ||
884 (isa<SCEVZeroExtendExpr>(X) &&
885 isa<SCEVZeroExtendExpr>(Y))) {
886 const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
887 const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
888 const SCEV *Xop = CX->getOperand();
889 const SCEV *Yop = CY->getOperand();
890 if (Xop->getType() == Yop->getType()) {
891 X = Xop;
892 Y = Yop;
893 }
894 }
895 }
896 if (SE->isKnownPredicate(Pred, X, Y))
897 return true;
898 // If SE->isKnownPredicate can't prove the condition,
899 // we try the brute-force approach of subtracting
900 // and testing the difference.
901 // By testing with SE->isKnownPredicate first, we avoid
902 // the possibility of overflow when the arguments are constants.
903 const SCEV *Delta = SE->getMinusSCEV(X, Y);
904 switch (Pred) {
905 case CmpInst::ICMP_EQ:
906 return Delta->isZero();
907 case CmpInst::ICMP_NE:
908 return SE->isKnownNonZero(Delta);
909 case CmpInst::ICMP_SGE:
910 return SE->isKnownNonNegative(Delta);
911 case CmpInst::ICMP_SLE:
912 return SE->isKnownNonPositive(Delta);
913 case CmpInst::ICMP_SGT:
914 return SE->isKnownPositive(Delta);
915 case CmpInst::ICMP_SLT:
916 return SE->isKnownNegative(Delta);
917 default:
918 llvm_unreachable("unexpected predicate in isKnownPredicate");
919 }
920}
921
922
923// All subscripts are all the same type.
924// Loop bound may be smaller (e.g., a char).
925// Should zero extend loop bound, since it's always >= 0.
926// This routine collects upper bound and extends if needed.
927// Return null if no bound available.
928const SCEV *DependenceAnalysis::collectUpperBound(const Loop *L,
929 Type *T) const {
930 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
931 const SCEV *UB = SE->getBackedgeTakenCount(L);
932 return SE->getNoopOrZeroExtend(UB, T);
933 }
Craig Topper9f008862014-04-15 04:59:12 +0000934 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +0000935}
936
937
938// Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
939// If the cast fails, returns NULL.
940const SCEVConstant *DependenceAnalysis::collectConstantUpperBound(const Loop *L,
941 Type *T
942 ) const {
943 if (const SCEV *UB = collectUpperBound(L, T))
944 return dyn_cast<SCEVConstant>(UB);
Craig Topper9f008862014-04-15 04:59:12 +0000945 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +0000946}
947
948
949// testZIV -
950// When we have a pair of subscripts of the form [c1] and [c2],
951// where c1 and c2 are both loop invariant, we attack it using
952// the ZIV test. Basically, we test by comparing the two values,
953// but there are actually three possible results:
954// 1) the values are equal, so there's a dependence
955// 2) the values are different, so there's no dependence
956// 3) the values might be equal, so we have to assume a dependence.
957//
958// Return true if dependence disproved.
959bool DependenceAnalysis::testZIV(const SCEV *Src,
960 const SCEV *Dst,
961 FullDependence &Result) const {
962 DEBUG(dbgs() << " src = " << *Src << "\n");
963 DEBUG(dbgs() << " dst = " << *Dst << "\n");
964 ++ZIVapplications;
965 if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
966 DEBUG(dbgs() << " provably dependent\n");
967 return false; // provably dependent
968 }
969 if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
970 DEBUG(dbgs() << " provably independent\n");
971 ++ZIVindependence;
972 return true; // provably independent
973 }
974 DEBUG(dbgs() << " possibly dependent\n");
975 Result.Consistent = false;
976 return false; // possibly dependent
977}
978
979
980// strongSIVtest -
981// From the paper, Practical Dependence Testing, Section 4.2.1
982//
983// When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
984// where i is an induction variable, c1 and c2 are loop invariant,
985// and a is a constant, we can solve it exactly using the Strong SIV test.
986//
987// Can prove independence. Failing that, can compute distance (and direction).
988// In the presence of symbolic terms, we can sometimes make progress.
989//
990// If there's a dependence,
991//
992// c1 + a*i = c2 + a*i'
993//
994// The dependence distance is
995//
996// d = i' - i = (c1 - c2)/a
997//
998// A dependence only exists if d is an integer and abs(d) <= U, where U is the
999// loop's upper bound. If a dependence exists, the dependence direction is
1000// defined as
1001//
1002// { < if d > 0
1003// direction = { = if d = 0
1004// { > if d < 0
1005//
1006// Return true if dependence disproved.
1007bool DependenceAnalysis::strongSIVtest(const SCEV *Coeff,
1008 const SCEV *SrcConst,
1009 const SCEV *DstConst,
1010 const Loop *CurLoop,
1011 unsigned Level,
1012 FullDependence &Result,
1013 Constraint &NewConstraint) const {
1014 DEBUG(dbgs() << "\tStrong SIV test\n");
1015 DEBUG(dbgs() << "\t Coeff = " << *Coeff);
1016 DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1017 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst);
1018 DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1019 DEBUG(dbgs() << "\t DstConst = " << *DstConst);
1020 DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1021 ++StrongSIVapplications;
1022 assert(0 < Level && Level <= CommonLevels && "level out of range");
1023 Level--;
1024
1025 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1026 DEBUG(dbgs() << "\t Delta = " << *Delta);
1027 DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1028
1029 // check that |Delta| < iteration count
1030 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1031 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound);
1032 DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1033 const SCEV *AbsDelta =
1034 SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1035 const SCEV *AbsCoeff =
1036 SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1037 const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1038 if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1039 // Distance greater than trip count - no dependence
1040 ++StrongSIVindependence;
1041 ++StrongSIVsuccesses;
1042 return true;
1043 }
1044 }
1045
1046 // Can we compute distance?
1047 if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1048 APInt ConstDelta = cast<SCEVConstant>(Delta)->getValue()->getValue();
1049 APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getValue()->getValue();
1050 APInt Distance = ConstDelta; // these need to be initialized
1051 APInt Remainder = ConstDelta;
1052 APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1053 DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1054 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1055 // Make sure Coeff divides Delta exactly
1056 if (Remainder != 0) {
1057 // Coeff doesn't divide Distance, no dependence
1058 ++StrongSIVindependence;
1059 ++StrongSIVsuccesses;
1060 return true;
1061 }
1062 Result.DV[Level].Distance = SE->getConstant(Distance);
1063 NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1064 if (Distance.sgt(0))
1065 Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1066 else if (Distance.slt(0))
1067 Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1068 else
1069 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1070 ++StrongSIVsuccesses;
1071 }
1072 else if (Delta->isZero()) {
1073 // since 0/X == 0
1074 Result.DV[Level].Distance = Delta;
1075 NewConstraint.setDistance(Delta, CurLoop);
1076 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1077 ++StrongSIVsuccesses;
1078 }
1079 else {
1080 if (Coeff->isOne()) {
1081 DEBUG(dbgs() << "\t Distance = " << *Delta << "\n");
1082 Result.DV[Level].Distance = Delta; // since X/1 == X
1083 NewConstraint.setDistance(Delta, CurLoop);
1084 }
1085 else {
1086 Result.Consistent = false;
1087 NewConstraint.setLine(Coeff,
1088 SE->getNegativeSCEV(Coeff),
1089 SE->getNegativeSCEV(Delta), CurLoop);
1090 }
1091
1092 // maybe we can get a useful direction
1093 bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
1094 bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1095 bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1096 bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1097 bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1098 // The double negatives above are confusing.
1099 // It helps to read !SE->isKnownNonZero(Delta)
1100 // as "Delta might be Zero"
1101 unsigned NewDirection = Dependence::DVEntry::NONE;
1102 if ((DeltaMaybePositive && CoeffMaybePositive) ||
1103 (DeltaMaybeNegative && CoeffMaybeNegative))
1104 NewDirection = Dependence::DVEntry::LT;
1105 if (DeltaMaybeZero)
1106 NewDirection |= Dependence::DVEntry::EQ;
1107 if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1108 (DeltaMaybePositive && CoeffMaybeNegative))
1109 NewDirection |= Dependence::DVEntry::GT;
1110 if (NewDirection < Result.DV[Level].Direction)
1111 ++StrongSIVsuccesses;
1112 Result.DV[Level].Direction &= NewDirection;
1113 }
1114 return false;
1115}
1116
1117
1118// weakCrossingSIVtest -
1119// From the paper, Practical Dependence Testing, Section 4.2.2
1120//
1121// When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1122// where i is an induction variable, c1 and c2 are loop invariant,
1123// and a is a constant, we can solve it exactly using the
1124// Weak-Crossing SIV test.
1125//
1126// Given c1 + a*i = c2 - a*i', we can look for the intersection of
1127// the two lines, where i = i', yielding
1128//
1129// c1 + a*i = c2 - a*i
1130// 2a*i = c2 - c1
1131// i = (c2 - c1)/2a
1132//
1133// If i < 0, there is no dependence.
1134// If i > upperbound, there is no dependence.
1135// If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1136// If i = upperbound, there's a dependence with distance = 0.
1137// If i is integral, there's a dependence (all directions).
1138// If the non-integer part = 1/2, there's a dependence (<> directions).
1139// Otherwise, there's no dependence.
1140//
1141// Can prove independence. Failing that,
1142// can sometimes refine the directions.
1143// Can determine iteration for splitting.
1144//
1145// Return true if dependence disproved.
1146bool DependenceAnalysis::weakCrossingSIVtest(const SCEV *Coeff,
1147 const SCEV *SrcConst,
1148 const SCEV *DstConst,
1149 const Loop *CurLoop,
1150 unsigned Level,
1151 FullDependence &Result,
1152 Constraint &NewConstraint,
1153 const SCEV *&SplitIter) const {
1154 DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1155 DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n");
1156 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1157 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1158 ++WeakCrossingSIVapplications;
1159 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1160 Level--;
1161 Result.Consistent = false;
1162 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1163 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1164 NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1165 if (Delta->isZero()) {
Sebastian Pope96232612012-10-12 02:04:32 +00001166 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1167 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
Sebastian Pop59b61b92012-10-11 07:32:34 +00001168 ++WeakCrossingSIVsuccesses;
1169 if (!Result.DV[Level].Direction) {
1170 ++WeakCrossingSIVindependence;
1171 return true;
1172 }
1173 Result.DV[Level].Distance = Delta; // = 0
1174 return false;
1175 }
1176 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1177 if (!ConstCoeff)
1178 return false;
1179
1180 Result.DV[Level].Splitable = true;
1181 if (SE->isKnownNegative(ConstCoeff)) {
1182 ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1183 assert(ConstCoeff &&
1184 "dynamic cast of negative of ConstCoeff should yield constant");
1185 Delta = SE->getNegativeSCEV(Delta);
1186 }
1187 assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1188
1189 // compute SplitIter for use by DependenceAnalysis::getSplitIteration()
1190 SplitIter =
1191 SE->getUDivExpr(SE->getSMaxExpr(SE->getConstant(Delta->getType(), 0),
1192 Delta),
1193 SE->getMulExpr(SE->getConstant(Delta->getType(), 2),
1194 ConstCoeff));
1195 DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n");
1196
1197 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1198 if (!ConstDelta)
1199 return false;
1200
1201 // We're certain that ConstCoeff > 0; therefore,
1202 // if Delta < 0, then no dependence.
1203 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1204 DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n");
1205 if (SE->isKnownNegative(Delta)) {
1206 // No dependence, Delta < 0
1207 ++WeakCrossingSIVindependence;
1208 ++WeakCrossingSIVsuccesses;
1209 return true;
1210 }
1211
1212 // We're certain that Delta > 0 and ConstCoeff > 0.
1213 // Check Delta/(2*ConstCoeff) against upper loop bound
1214 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1215 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1216 const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1217 const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1218 ConstantTwo);
1219 DEBUG(dbgs() << "\t ML = " << *ML << "\n");
1220 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1221 // Delta too big, no dependence
1222 ++WeakCrossingSIVindependence;
1223 ++WeakCrossingSIVsuccesses;
1224 return true;
1225 }
1226 if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1227 // i = i' = UB
Sebastian Pope96232612012-10-12 02:04:32 +00001228 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1229 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
Sebastian Pop59b61b92012-10-11 07:32:34 +00001230 ++WeakCrossingSIVsuccesses;
1231 if (!Result.DV[Level].Direction) {
1232 ++WeakCrossingSIVindependence;
1233 return true;
1234 }
1235 Result.DV[Level].Splitable = false;
1236 Result.DV[Level].Distance = SE->getConstant(Delta->getType(), 0);
1237 return false;
1238 }
1239 }
1240
1241 // check that Coeff divides Delta
1242 APInt APDelta = ConstDelta->getValue()->getValue();
1243 APInt APCoeff = ConstCoeff->getValue()->getValue();
1244 APInt Distance = APDelta; // these need to be initialzed
1245 APInt Remainder = APDelta;
1246 APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1247 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1248 if (Remainder != 0) {
1249 // Coeff doesn't divide Delta, no dependence
1250 ++WeakCrossingSIVindependence;
1251 ++WeakCrossingSIVsuccesses;
1252 return true;
1253 }
1254 DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1255
1256 // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1257 APInt Two = APInt(Distance.getBitWidth(), 2, true);
1258 Remainder = Distance.srem(Two);
1259 DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1260 if (Remainder != 0) {
1261 // Equal direction isn't possible
Sebastian Pope96232612012-10-12 02:04:32 +00001262 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
Sebastian Pop59b61b92012-10-11 07:32:34 +00001263 ++WeakCrossingSIVsuccesses;
1264 }
1265 return false;
1266}
1267
1268
1269// Kirch's algorithm, from
1270//
1271// Optimizing Supercompilers for Supercomputers
1272// Michael Wolfe
1273// MIT Press, 1989
1274//
1275// Program 2.1, page 29.
1276// Computes the GCD of AM and BM.
Mingjie Xing9deac1b2014-01-07 01:54:16 +00001277// Also finds a solution to the equation ax - by = gcd(a, b).
1278// Returns true if dependence disproved; i.e., gcd does not divide Delta.
Sebastian Pop59b61b92012-10-11 07:32:34 +00001279static
1280bool findGCD(unsigned Bits, APInt AM, APInt BM, APInt Delta,
1281 APInt &G, APInt &X, APInt &Y) {
1282 APInt A0(Bits, 1, true), A1(Bits, 0, true);
1283 APInt B0(Bits, 0, true), B1(Bits, 1, true);
1284 APInt G0 = AM.abs();
1285 APInt G1 = BM.abs();
1286 APInt Q = G0; // these need to be initialized
1287 APInt R = G0;
1288 APInt::sdivrem(G0, G1, Q, R);
1289 while (R != 0) {
1290 APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1291 APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1292 G0 = G1; G1 = R;
1293 APInt::sdivrem(G0, G1, Q, R);
1294 }
1295 G = G1;
1296 DEBUG(dbgs() << "\t GCD = " << G << "\n");
1297 X = AM.slt(0) ? -A1 : A1;
1298 Y = BM.slt(0) ? B1 : -B1;
1299
1300 // make sure gcd divides Delta
1301 R = Delta.srem(G);
1302 if (R != 0)
1303 return true; // gcd doesn't divide Delta, no dependence
1304 Q = Delta.sdiv(G);
1305 X *= Q;
1306 Y *= Q;
1307 return false;
1308}
1309
1310
1311static
1312APInt floorOfQuotient(APInt A, APInt B) {
1313 APInt Q = A; // these need to be initialized
1314 APInt R = A;
1315 APInt::sdivrem(A, B, Q, R);
1316 if (R == 0)
1317 return Q;
1318 if ((A.sgt(0) && B.sgt(0)) ||
1319 (A.slt(0) && B.slt(0)))
1320 return Q;
1321 else
1322 return Q - 1;
1323}
1324
1325
1326static
1327APInt ceilingOfQuotient(APInt A, APInt B) {
1328 APInt Q = A; // these need to be initialized
1329 APInt R = A;
1330 APInt::sdivrem(A, B, Q, R);
1331 if (R == 0)
1332 return Q;
1333 if ((A.sgt(0) && B.sgt(0)) ||
1334 (A.slt(0) && B.slt(0)))
1335 return Q + 1;
1336 else
1337 return Q;
1338}
1339
1340
1341static
1342APInt maxAPInt(APInt A, APInt B) {
1343 return A.sgt(B) ? A : B;
1344}
1345
1346
1347static
1348APInt minAPInt(APInt A, APInt B) {
1349 return A.slt(B) ? A : B;
1350}
1351
1352
1353// exactSIVtest -
1354// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1355// where i is an induction variable, c1 and c2 are loop invariant, and a1
1356// and a2 are constant, we can solve it exactly using an algorithm developed
1357// by Banerjee and Wolfe. See Section 2.5.3 in
1358//
1359// Optimizing Supercompilers for Supercomputers
1360// Michael Wolfe
1361// MIT Press, 1989
1362//
1363// It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1364// so use them if possible. They're also a bit better with symbolics and,
1365// in the case of the strong SIV test, can compute Distances.
1366//
1367// Return true if dependence disproved.
1368bool DependenceAnalysis::exactSIVtest(const SCEV *SrcCoeff,
1369 const SCEV *DstCoeff,
1370 const SCEV *SrcConst,
1371 const SCEV *DstConst,
1372 const Loop *CurLoop,
1373 unsigned Level,
1374 FullDependence &Result,
1375 Constraint &NewConstraint) const {
1376 DEBUG(dbgs() << "\tExact SIV test\n");
1377 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1378 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1379 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1380 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1381 ++ExactSIVapplications;
1382 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1383 Level--;
1384 Result.Consistent = false;
1385 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1386 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1387 NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1388 Delta, CurLoop);
1389 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1390 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1391 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1392 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1393 return false;
1394
1395 // find gcd
1396 APInt G, X, Y;
1397 APInt AM = ConstSrcCoeff->getValue()->getValue();
1398 APInt BM = ConstDstCoeff->getValue()->getValue();
1399 unsigned Bits = AM.getBitWidth();
1400 if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
1401 // gcd doesn't divide Delta, no dependence
1402 ++ExactSIVindependence;
1403 ++ExactSIVsuccesses;
1404 return true;
1405 }
1406
1407 DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1408
1409 // since SCEV construction normalizes, LM = 0
1410 APInt UM(Bits, 1, true);
1411 bool UMvalid = false;
1412 // UM is perhaps unavailable, let's check
1413 if (const SCEVConstant *CUB =
1414 collectConstantUpperBound(CurLoop, Delta->getType())) {
1415 UM = CUB->getValue()->getValue();
1416 DEBUG(dbgs() << "\t UM = " << UM << "\n");
1417 UMvalid = true;
1418 }
1419
1420 APInt TU(APInt::getSignedMaxValue(Bits));
1421 APInt TL(APInt::getSignedMinValue(Bits));
1422
1423 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1424 APInt TMUL = BM.sdiv(G);
1425 if (TMUL.sgt(0)) {
1426 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1427 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1428 if (UMvalid) {
1429 TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
1430 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1431 }
1432 }
1433 else {
1434 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1435 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1436 if (UMvalid) {
1437 TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
1438 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1439 }
1440 }
1441
1442 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1443 TMUL = AM.sdiv(G);
1444 if (TMUL.sgt(0)) {
1445 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1446 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1447 if (UMvalid) {
1448 TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
1449 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1450 }
1451 }
1452 else {
1453 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1454 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1455 if (UMvalid) {
1456 TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
1457 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1458 }
1459 }
1460 if (TL.sgt(TU)) {
1461 ++ExactSIVindependence;
1462 ++ExactSIVsuccesses;
1463 return true;
1464 }
1465
1466 // explore directions
1467 unsigned NewDirection = Dependence::DVEntry::NONE;
1468
1469 // less than
1470 APInt SaveTU(TU); // save these
1471 APInt SaveTL(TL);
1472 DEBUG(dbgs() << "\t exploring LT direction\n");
1473 TMUL = AM - BM;
1474 if (TMUL.sgt(0)) {
1475 TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1476 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1477 }
1478 else {
1479 TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
1480 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1481 }
1482 if (TL.sle(TU)) {
1483 NewDirection |= Dependence::DVEntry::LT;
1484 ++ExactSIVsuccesses;
1485 }
1486
1487 // equal
1488 TU = SaveTU; // restore
1489 TL = SaveTL;
1490 DEBUG(dbgs() << "\t exploring EQ direction\n");
1491 if (TMUL.sgt(0)) {
1492 TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
1493 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1494 }
1495 else {
1496 TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
1497 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1498 }
1499 TMUL = BM - AM;
1500 if (TMUL.sgt(0)) {
1501 TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
1502 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1503 }
1504 else {
1505 TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
1506 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1507 }
1508 if (TL.sle(TU)) {
1509 NewDirection |= Dependence::DVEntry::EQ;
1510 ++ExactSIVsuccesses;
1511 }
1512
1513 // greater than
1514 TU = SaveTU; // restore
1515 TL = SaveTL;
1516 DEBUG(dbgs() << "\t exploring GT direction\n");
1517 if (TMUL.sgt(0)) {
1518 TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1519 DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1520 }
1521 else {
1522 TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
1523 DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1524 }
1525 if (TL.sle(TU)) {
1526 NewDirection |= Dependence::DVEntry::GT;
1527 ++ExactSIVsuccesses;
1528 }
1529
1530 // finished
1531 Result.DV[Level].Direction &= NewDirection;
1532 if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1533 ++ExactSIVindependence;
1534 return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1535}
1536
1537
1538
1539// Return true if the divisor evenly divides the dividend.
1540static
1541bool isRemainderZero(const SCEVConstant *Dividend,
1542 const SCEVConstant *Divisor) {
1543 APInt ConstDividend = Dividend->getValue()->getValue();
1544 APInt ConstDivisor = Divisor->getValue()->getValue();
1545 return ConstDividend.srem(ConstDivisor) == 0;
1546}
1547
1548
1549// weakZeroSrcSIVtest -
1550// From the paper, Practical Dependence Testing, Section 4.2.2
1551//
1552// When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1553// where i is an induction variable, c1 and c2 are loop invariant,
1554// and a is a constant, we can solve it exactly using the
1555// Weak-Zero SIV test.
1556//
1557// Given
1558//
1559// c1 = c2 + a*i
1560//
1561// we get
1562//
1563// (c1 - c2)/a = i
1564//
1565// If i is not an integer, there's no dependence.
1566// If i < 0 or > UB, there's no dependence.
1567// If i = 0, the direction is <= and peeling the
1568// 1st iteration will break the dependence.
1569// If i = UB, the direction is >= and peeling the
1570// last iteration will break the dependence.
1571// Otherwise, the direction is *.
1572//
1573// Can prove independence. Failing that, we can sometimes refine
1574// the directions. Can sometimes show that first or last
1575// iteration carries all the dependences (so worth peeling).
1576//
1577// (see also weakZeroDstSIVtest)
1578//
1579// Return true if dependence disproved.
1580bool DependenceAnalysis::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1581 const SCEV *SrcConst,
1582 const SCEV *DstConst,
1583 const Loop *CurLoop,
1584 unsigned Level,
1585 FullDependence &Result,
1586 Constraint &NewConstraint) const {
1587 // For the WeakSIV test, it's possible the loop isn't common to
1588 // the Src and Dst loops. If it isn't, then there's no need to
1589 // record a direction.
1590 DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1591 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n");
1592 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1593 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1594 ++WeakZeroSIVapplications;
1595 assert(0 < Level && Level <= MaxLevels && "Level out of range");
1596 Level--;
1597 Result.Consistent = false;
1598 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1599 NewConstraint.setLine(SE->getConstant(Delta->getType(), 0),
1600 DstCoeff, Delta, CurLoop);
1601 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1602 if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1603 if (Level < CommonLevels) {
1604 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1605 Result.DV[Level].PeelFirst = true;
1606 ++WeakZeroSIVsuccesses;
1607 }
1608 return false; // dependences caused by first iteration
1609 }
1610 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1611 if (!ConstCoeff)
1612 return false;
1613 const SCEV *AbsCoeff =
1614 SE->isKnownNegative(ConstCoeff) ?
1615 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1616 const SCEV *NewDelta =
1617 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1618
1619 // check that Delta/SrcCoeff < iteration count
1620 // really check NewDelta < count*AbsCoeff
1621 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1622 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1623 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1624 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1625 ++WeakZeroSIVindependence;
1626 ++WeakZeroSIVsuccesses;
1627 return true;
1628 }
1629 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1630 // dependences caused by last iteration
1631 if (Level < CommonLevels) {
1632 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1633 Result.DV[Level].PeelLast = true;
1634 ++WeakZeroSIVsuccesses;
1635 }
1636 return false;
1637 }
1638 }
1639
1640 // check that Delta/SrcCoeff >= 0
1641 // really check that NewDelta >= 0
1642 if (SE->isKnownNegative(NewDelta)) {
1643 // No dependence, newDelta < 0
1644 ++WeakZeroSIVindependence;
1645 ++WeakZeroSIVsuccesses;
1646 return true;
1647 }
1648
1649 // if SrcCoeff doesn't divide Delta, then no dependence
1650 if (isa<SCEVConstant>(Delta) &&
1651 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1652 ++WeakZeroSIVindependence;
1653 ++WeakZeroSIVsuccesses;
1654 return true;
1655 }
1656 return false;
1657}
1658
1659
1660// weakZeroDstSIVtest -
1661// From the paper, Practical Dependence Testing, Section 4.2.2
1662//
1663// When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1664// where i is an induction variable, c1 and c2 are loop invariant,
1665// and a is a constant, we can solve it exactly using the
1666// Weak-Zero SIV test.
1667//
1668// Given
1669//
1670// c1 + a*i = c2
1671//
1672// we get
1673//
1674// i = (c2 - c1)/a
1675//
1676// If i is not an integer, there's no dependence.
1677// If i < 0 or > UB, there's no dependence.
1678// If i = 0, the direction is <= and peeling the
1679// 1st iteration will break the dependence.
1680// If i = UB, the direction is >= and peeling the
1681// last iteration will break the dependence.
1682// Otherwise, the direction is *.
1683//
1684// Can prove independence. Failing that, we can sometimes refine
1685// the directions. Can sometimes show that first or last
1686// iteration carries all the dependences (so worth peeling).
1687//
1688// (see also weakZeroSrcSIVtest)
1689//
1690// Return true if dependence disproved.
1691bool DependenceAnalysis::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1692 const SCEV *SrcConst,
1693 const SCEV *DstConst,
1694 const Loop *CurLoop,
1695 unsigned Level,
1696 FullDependence &Result,
1697 Constraint &NewConstraint) const {
1698 // For the WeakSIV test, it's possible the loop isn't common to the
1699 // Src and Dst loops. If it isn't, then there's no need to record a direction.
1700 DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1701 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n");
1702 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1703 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1704 ++WeakZeroSIVapplications;
1705 assert(0 < Level && Level <= SrcLevels && "Level out of range");
1706 Level--;
1707 Result.Consistent = false;
1708 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1709 NewConstraint.setLine(SrcCoeff, SE->getConstant(Delta->getType(), 0),
1710 Delta, CurLoop);
1711 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1712 if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1713 if (Level < CommonLevels) {
1714 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1715 Result.DV[Level].PeelFirst = true;
1716 ++WeakZeroSIVsuccesses;
1717 }
1718 return false; // dependences caused by first iteration
1719 }
1720 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1721 if (!ConstCoeff)
1722 return false;
1723 const SCEV *AbsCoeff =
1724 SE->isKnownNegative(ConstCoeff) ?
1725 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1726 const SCEV *NewDelta =
1727 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1728
1729 // check that Delta/SrcCoeff < iteration count
1730 // really check NewDelta < count*AbsCoeff
1731 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1732 DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1733 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1734 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1735 ++WeakZeroSIVindependence;
1736 ++WeakZeroSIVsuccesses;
1737 return true;
1738 }
1739 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1740 // dependences caused by last iteration
1741 if (Level < CommonLevels) {
1742 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1743 Result.DV[Level].PeelLast = true;
1744 ++WeakZeroSIVsuccesses;
1745 }
1746 return false;
1747 }
1748 }
1749
1750 // check that Delta/SrcCoeff >= 0
1751 // really check that NewDelta >= 0
1752 if (SE->isKnownNegative(NewDelta)) {
1753 // No dependence, newDelta < 0
1754 ++WeakZeroSIVindependence;
1755 ++WeakZeroSIVsuccesses;
1756 return true;
1757 }
1758
1759 // if SrcCoeff doesn't divide Delta, then no dependence
1760 if (isa<SCEVConstant>(Delta) &&
1761 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1762 ++WeakZeroSIVindependence;
1763 ++WeakZeroSIVsuccesses;
1764 return true;
1765 }
1766 return false;
1767}
1768
1769
1770// exactRDIVtest - Tests the RDIV subscript pair for dependence.
1771// Things of the form [c1 + a*i] and [c2 + b*j],
1772// where i and j are induction variable, c1 and c2 are loop invariant,
1773// and a and b are constants.
1774// Returns true if any possible dependence is disproved.
Benjamin Kramerc914ab62012-10-31 11:25:32 +00001775// Marks the result as inconsistent.
Sebastian Pop59b61b92012-10-11 07:32:34 +00001776// Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1777bool DependenceAnalysis::exactRDIVtest(const SCEV *SrcCoeff,
1778 const SCEV *DstCoeff,
1779 const SCEV *SrcConst,
1780 const SCEV *DstConst,
1781 const Loop *SrcLoop,
1782 const Loop *DstLoop,
1783 FullDependence &Result) const {
1784 DEBUG(dbgs() << "\tExact RDIV test\n");
1785 DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1786 DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1787 DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1788 DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1789 ++ExactRDIVapplications;
1790 Result.Consistent = false;
1791 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1792 DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1793 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1794 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1795 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1796 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1797 return false;
1798
1799 // find gcd
1800 APInt G, X, Y;
1801 APInt AM = ConstSrcCoeff->getValue()->getValue();
1802 APInt BM = ConstDstCoeff->getValue()->getValue();
1803 unsigned Bits = AM.getBitWidth();
1804 if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
1805 // gcd doesn't divide Delta, no dependence
1806 ++ExactRDIVindependence;
1807 return true;
1808 }
1809
1810 DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1811
1812 // since SCEV construction seems to normalize, LM = 0
1813 APInt SrcUM(Bits, 1, true);
1814 bool SrcUMvalid = false;
1815 // SrcUM is perhaps unavailable, let's check
1816 if (const SCEVConstant *UpperBound =
1817 collectConstantUpperBound(SrcLoop, Delta->getType())) {
1818 SrcUM = UpperBound->getValue()->getValue();
1819 DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n");
1820 SrcUMvalid = true;
1821 }
1822
1823 APInt DstUM(Bits, 1, true);
1824 bool DstUMvalid = false;
1825 // UM is perhaps unavailable, let's check
1826 if (const SCEVConstant *UpperBound =
1827 collectConstantUpperBound(DstLoop, Delta->getType())) {
1828 DstUM = UpperBound->getValue()->getValue();
1829 DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n");
1830 DstUMvalid = true;
1831 }
1832
1833 APInt TU(APInt::getSignedMaxValue(Bits));
1834 APInt TL(APInt::getSignedMinValue(Bits));
1835
1836 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1837 APInt TMUL = BM.sdiv(G);
1838 if (TMUL.sgt(0)) {
1839 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1840 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1841 if (SrcUMvalid) {
1842 TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
1843 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1844 }
1845 }
1846 else {
1847 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1848 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1849 if (SrcUMvalid) {
1850 TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1851 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1852 }
1853 }
1854
1855 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1856 TMUL = AM.sdiv(G);
1857 if (TMUL.sgt(0)) {
1858 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1859 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1860 if (DstUMvalid) {
1861 TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
1862 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1863 }
1864 }
1865 else {
1866 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1867 DEBUG(dbgs() << "\t TU = " << TU << "\n");
1868 if (DstUMvalid) {
1869 TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1870 DEBUG(dbgs() << "\t TL = " << TL << "\n");
1871 }
1872 }
1873 if (TL.sgt(TU))
1874 ++ExactRDIVindependence;
1875 return TL.sgt(TU);
1876}
1877
1878
1879// symbolicRDIVtest -
1880// In Section 4.5 of the Practical Dependence Testing paper,the authors
1881// introduce a special case of Banerjee's Inequalities (also called the
1882// Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1883// particularly cases with symbolics. Since it's only able to disprove
1884// dependence (not compute distances or directions), we'll use it as a
1885// fall back for the other tests.
1886//
1887// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1888// where i and j are induction variables and c1 and c2 are loop invariants,
1889// we can use the symbolic tests to disprove some dependences, serving as a
1890// backup for the RDIV test. Note that i and j can be the same variable,
1891// letting this test serve as a backup for the various SIV tests.
1892//
1893// For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1894// 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
1895// loop bounds for the i and j loops, respectively. So, ...
1896//
1897// c1 + a1*i = c2 + a2*j
1898// a1*i - a2*j = c2 - c1
1899//
1900// To test for a dependence, we compute c2 - c1 and make sure it's in the
1901// range of the maximum and minimum possible values of a1*i - a2*j.
1902// Considering the signs of a1 and a2, we have 4 possible cases:
1903//
1904// 1) If a1 >= 0 and a2 >= 0, then
1905// a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
1906// -a2*N2 <= c2 - c1 <= a1*N1
1907//
1908// 2) If a1 >= 0 and a2 <= 0, then
1909// a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
1910// 0 <= c2 - c1 <= a1*N1 - a2*N2
1911//
1912// 3) If a1 <= 0 and a2 >= 0, then
1913// a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
1914// a1*N1 - a2*N2 <= c2 - c1 <= 0
1915//
1916// 4) If a1 <= 0 and a2 <= 0, then
1917// a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
1918// a1*N1 <= c2 - c1 <= -a2*N2
1919//
1920// return true if dependence disproved
1921bool DependenceAnalysis::symbolicRDIVtest(const SCEV *A1,
1922 const SCEV *A2,
1923 const SCEV *C1,
1924 const SCEV *C2,
1925 const Loop *Loop1,
1926 const Loop *Loop2) const {
1927 ++SymbolicRDIVapplications;
1928 DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
1929 DEBUG(dbgs() << "\t A1 = " << *A1);
1930 DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
1931 DEBUG(dbgs() << "\t A2 = " << *A2 << "\n");
1932 DEBUG(dbgs() << "\t C1 = " << *C1 << "\n");
1933 DEBUG(dbgs() << "\t C2 = " << *C2 << "\n");
1934 const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
1935 const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
1936 DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n");
1937 DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n");
1938 const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
1939 const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
1940 DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n");
1941 DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n");
1942 if (SE->isKnownNonNegative(A1)) {
1943 if (SE->isKnownNonNegative(A2)) {
1944 // A1 >= 0 && A2 >= 0
1945 if (N1) {
1946 // make sure that c2 - c1 <= a1*N1
1947 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1948 DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
1949 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
1950 ++SymbolicRDIVindependence;
1951 return true;
1952 }
1953 }
1954 if (N2) {
1955 // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
1956 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1957 DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
1958 if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
1959 ++SymbolicRDIVindependence;
1960 return true;
1961 }
1962 }
1963 }
1964 else if (SE->isKnownNonPositive(A2)) {
1965 // a1 >= 0 && a2 <= 0
1966 if (N1 && N2) {
1967 // make sure that c2 - c1 <= a1*N1 - a2*N2
1968 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1969 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1970 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
1971 DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
1972 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
1973 ++SymbolicRDIVindependence;
1974 return true;
1975 }
1976 }
1977 // make sure that 0 <= c2 - c1
1978 if (SE->isKnownNegative(C2_C1)) {
1979 ++SymbolicRDIVindependence;
1980 return true;
1981 }
1982 }
1983 }
1984 else if (SE->isKnownNonPositive(A1)) {
1985 if (SE->isKnownNonNegative(A2)) {
1986 // a1 <= 0 && a2 >= 0
1987 if (N1 && N2) {
1988 // make sure that a1*N1 - a2*N2 <= c2 - c1
1989 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1990 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1991 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
1992 DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
1993 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
1994 ++SymbolicRDIVindependence;
1995 return true;
1996 }
1997 }
1998 // make sure that c2 - c1 <= 0
1999 if (SE->isKnownPositive(C2_C1)) {
2000 ++SymbolicRDIVindependence;
2001 return true;
2002 }
2003 }
2004 else if (SE->isKnownNonPositive(A2)) {
2005 // a1 <= 0 && a2 <= 0
2006 if (N1) {
2007 // make sure that a1*N1 <= c2 - c1
2008 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2009 DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2010 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2011 ++SymbolicRDIVindependence;
2012 return true;
2013 }
2014 }
2015 if (N2) {
2016 // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2017 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2018 DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2019 if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2020 ++SymbolicRDIVindependence;
2021 return true;
2022 }
2023 }
2024 }
2025 }
2026 return false;
2027}
2028
2029
2030// testSIV -
2031// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2032// where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2033// a2 are constant, we attack it with an SIV test. While they can all be
2034// solved with the Exact SIV test, it's worthwhile to use simpler tests when
2035// they apply; they're cheaper and sometimes more precise.
2036//
2037// Return true if dependence disproved.
2038bool DependenceAnalysis::testSIV(const SCEV *Src,
2039 const SCEV *Dst,
2040 unsigned &Level,
2041 FullDependence &Result,
2042 Constraint &NewConstraint,
2043 const SCEV *&SplitIter) const {
2044 DEBUG(dbgs() << " src = " << *Src << "\n");
2045 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2046 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2047 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2048 if (SrcAddRec && DstAddRec) {
2049 const SCEV *SrcConst = SrcAddRec->getStart();
2050 const SCEV *DstConst = DstAddRec->getStart();
2051 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2052 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2053 const Loop *CurLoop = SrcAddRec->getLoop();
2054 assert(CurLoop == DstAddRec->getLoop() &&
2055 "both loops in SIV should be same");
2056 Level = mapSrcLoop(CurLoop);
2057 bool disproven;
2058 if (SrcCoeff == DstCoeff)
2059 disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2060 Level, Result, NewConstraint);
2061 else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2062 disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2063 Level, Result, NewConstraint, SplitIter);
2064 else
2065 disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2066 Level, Result, NewConstraint);
2067 return disproven ||
2068 gcdMIVtest(Src, Dst, Result) ||
2069 symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2070 }
2071 if (SrcAddRec) {
2072 const SCEV *SrcConst = SrcAddRec->getStart();
2073 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2074 const SCEV *DstConst = Dst;
2075 const Loop *CurLoop = SrcAddRec->getLoop();
2076 Level = mapSrcLoop(CurLoop);
2077 return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2078 Level, Result, NewConstraint) ||
2079 gcdMIVtest(Src, Dst, Result);
2080 }
2081 if (DstAddRec) {
2082 const SCEV *DstConst = DstAddRec->getStart();
2083 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2084 const SCEV *SrcConst = Src;
2085 const Loop *CurLoop = DstAddRec->getLoop();
2086 Level = mapDstLoop(CurLoop);
2087 return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2088 CurLoop, Level, Result, NewConstraint) ||
2089 gcdMIVtest(Src, Dst, Result);
2090 }
2091 llvm_unreachable("SIV test expected at least one AddRec");
2092 return false;
2093}
2094
2095
2096// testRDIV -
2097// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2098// where i and j are induction variables, c1 and c2 are loop invariant,
2099// and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2100// of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2101// It doesn't make sense to talk about distance or direction in this case,
2102// so there's no point in making special versions of the Strong SIV test or
2103// the Weak-crossing SIV test.
2104//
2105// With minor algebra, this test can also be used for things like
2106// [c1 + a1*i + a2*j][c2].
2107//
2108// Return true if dependence disproved.
2109bool DependenceAnalysis::testRDIV(const SCEV *Src,
2110 const SCEV *Dst,
2111 FullDependence &Result) const {
2112 // we have 3 possible situations here:
2113 // 1) [a*i + b] and [c*j + d]
2114 // 2) [a*i + c*j + b] and [d]
2115 // 3) [b] and [a*i + c*j + d]
2116 // We need to find what we've got and get organized
2117
2118 const SCEV *SrcConst, *DstConst;
2119 const SCEV *SrcCoeff, *DstCoeff;
2120 const Loop *SrcLoop, *DstLoop;
2121
2122 DEBUG(dbgs() << " src = " << *Src << "\n");
2123 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2124 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2125 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2126 if (SrcAddRec && DstAddRec) {
2127 SrcConst = SrcAddRec->getStart();
2128 SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2129 SrcLoop = SrcAddRec->getLoop();
2130 DstConst = DstAddRec->getStart();
2131 DstCoeff = DstAddRec->getStepRecurrence(*SE);
2132 DstLoop = DstAddRec->getLoop();
2133 }
2134 else if (SrcAddRec) {
2135 if (const SCEVAddRecExpr *tmpAddRec =
2136 dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2137 SrcConst = tmpAddRec->getStart();
2138 SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2139 SrcLoop = tmpAddRec->getLoop();
2140 DstConst = Dst;
2141 DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2142 DstLoop = SrcAddRec->getLoop();
2143 }
2144 else
2145 llvm_unreachable("RDIV reached by surprising SCEVs");
2146 }
2147 else if (DstAddRec) {
2148 if (const SCEVAddRecExpr *tmpAddRec =
2149 dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2150 DstConst = tmpAddRec->getStart();
2151 DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2152 DstLoop = tmpAddRec->getLoop();
2153 SrcConst = Src;
2154 SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2155 SrcLoop = DstAddRec->getLoop();
2156 }
2157 else
2158 llvm_unreachable("RDIV reached by surprising SCEVs");
2159 }
2160 else
2161 llvm_unreachable("RDIV expected at least one AddRec");
2162 return exactRDIVtest(SrcCoeff, DstCoeff,
2163 SrcConst, DstConst,
2164 SrcLoop, DstLoop,
2165 Result) ||
2166 gcdMIVtest(Src, Dst, Result) ||
2167 symbolicRDIVtest(SrcCoeff, DstCoeff,
2168 SrcConst, DstConst,
2169 SrcLoop, DstLoop);
2170}
2171
2172
2173// Tests the single-subscript MIV pair (Src and Dst) for dependence.
2174// Return true if dependence disproved.
2175// Can sometimes refine direction vectors.
2176bool DependenceAnalysis::testMIV(const SCEV *Src,
2177 const SCEV *Dst,
2178 const SmallBitVector &Loops,
2179 FullDependence &Result) const {
2180 DEBUG(dbgs() << " src = " << *Src << "\n");
2181 DEBUG(dbgs() << " dst = " << *Dst << "\n");
2182 Result.Consistent = false;
2183 return gcdMIVtest(Src, Dst, Result) ||
2184 banerjeeMIVtest(Src, Dst, Loops, Result);
2185}
2186
2187
2188// Given a product, e.g., 10*X*Y, returns the first constant operand,
2189// in this case 10. If there is no constant part, returns NULL.
2190static
2191const SCEVConstant *getConstantPart(const SCEVMulExpr *Product) {
2192 for (unsigned Op = 0, Ops = Product->getNumOperands(); Op < Ops; Op++) {
2193 if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Product->getOperand(Op)))
2194 return Constant;
2195 }
Craig Topper9f008862014-04-15 04:59:12 +00002196 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00002197}
2198
2199
2200//===----------------------------------------------------------------------===//
2201// gcdMIVtest -
2202// Tests an MIV subscript pair for dependence.
2203// Returns true if any possible dependence is disproved.
Benjamin Kramerc914ab62012-10-31 11:25:32 +00002204// Marks the result as inconsistent.
Sebastian Pop59b61b92012-10-11 07:32:34 +00002205// Can sometimes disprove the equal direction for 1 or more loops,
2206// as discussed in Michael Wolfe's book,
2207// High Performance Compilers for Parallel Computing, page 235.
2208//
2209// We spend some effort (code!) to handle cases like
2210// [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2211// but M and N are just loop-invariant variables.
2212// This should help us handle linearized subscripts;
2213// also makes this test a useful backup to the various SIV tests.
2214//
2215// It occurs to me that the presence of loop-invariant variables
2216// changes the nature of the test from "greatest common divisor"
Preston Briggs4eb7ee52012-11-29 04:30:52 +00002217// to "a common divisor".
Sebastian Pop59b61b92012-10-11 07:32:34 +00002218bool DependenceAnalysis::gcdMIVtest(const SCEV *Src,
2219 const SCEV *Dst,
2220 FullDependence &Result) const {
2221 DEBUG(dbgs() << "starting gcd\n");
2222 ++GCDapplications;
Preston Briggs3ad39492012-11-21 23:50:04 +00002223 unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
Sebastian Pop59b61b92012-10-11 07:32:34 +00002224 APInt RunningGCD = APInt::getNullValue(BitWidth);
2225
2226 // Examine Src coefficients.
2227 // Compute running GCD and record source constant.
2228 // Because we're looking for the constant at the end of the chain,
2229 // we can't quit the loop just because the GCD == 1.
2230 const SCEV *Coefficients = Src;
2231 while (const SCEVAddRecExpr *AddRec =
2232 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2233 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2234 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
2235 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2236 // If the coefficient is the product of a constant and other stuff,
2237 // we can use the constant in the GCD computation.
2238 Constant = getConstantPart(Product);
2239 if (!Constant)
2240 return false;
2241 APInt ConstCoeff = Constant->getValue()->getValue();
2242 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2243 Coefficients = AddRec->getStart();
2244 }
2245 const SCEV *SrcConst = Coefficients;
2246
2247 // Examine Dst coefficients.
2248 // Compute running GCD and record destination constant.
2249 // Because we're looking for the constant at the end of the chain,
2250 // we can't quit the loop just because the GCD == 1.
2251 Coefficients = Dst;
2252 while (const SCEVAddRecExpr *AddRec =
2253 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2254 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2255 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
2256 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2257 // If the coefficient is the product of a constant and other stuff,
2258 // we can use the constant in the GCD computation.
2259 Constant = getConstantPart(Product);
2260 if (!Constant)
2261 return false;
2262 APInt ConstCoeff = Constant->getValue()->getValue();
2263 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2264 Coefficients = AddRec->getStart();
2265 }
2266 const SCEV *DstConst = Coefficients;
2267
2268 APInt ExtraGCD = APInt::getNullValue(BitWidth);
2269 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2270 DEBUG(dbgs() << " Delta = " << *Delta << "\n");
2271 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2272 if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2273 // If Delta is a sum of products, we may be able to make further progress.
2274 for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2275 const SCEV *Operand = Sum->getOperand(Op);
2276 if (isa<SCEVConstant>(Operand)) {
2277 assert(!Constant && "Surprised to find multiple constants");
2278 Constant = cast<SCEVConstant>(Operand);
2279 }
Benjamin Kramer24c643b2012-10-31 09:20:38 +00002280 else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00002281 // Search for constant operand to participate in GCD;
2282 // If none found; return false.
Benjamin Kramer24c643b2012-10-31 09:20:38 +00002283 const SCEVConstant *ConstOp = getConstantPart(Product);
2284 if (!ConstOp)
2285 return false;
Sebastian Pop59b61b92012-10-11 07:32:34 +00002286 APInt ConstOpValue = ConstOp->getValue()->getValue();
2287 ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2288 ConstOpValue.abs());
2289 }
2290 else
2291 return false;
2292 }
2293 }
2294 if (!Constant)
2295 return false;
2296 APInt ConstDelta = cast<SCEVConstant>(Constant)->getValue()->getValue();
2297 DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n");
2298 if (ConstDelta == 0)
2299 return false;
2300 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2301 DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n");
2302 APInt Remainder = ConstDelta.srem(RunningGCD);
2303 if (Remainder != 0) {
2304 ++GCDindependence;
2305 return true;
2306 }
2307
2308 // Try to disprove equal directions.
2309 // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2310 // the code above can't disprove the dependence because the GCD = 1.
2311 // So we consider what happen if i = i' and what happens if j = j'.
2312 // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2313 // which is infeasible, so we can disallow the = direction for the i level.
2314 // Setting j = j' doesn't help matters, so we end up with a direction vector
2315 // of [<>, *]
2316 //
2317 // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2318 // we need to remember that the constant part is 5 and the RunningGCD should
2319 // be initialized to ExtraGCD = 30.
2320 DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n');
2321
2322 bool Improved = false;
2323 Coefficients = Src;
2324 while (const SCEVAddRecExpr *AddRec =
2325 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2326 Coefficients = AddRec->getStart();
2327 const Loop *CurLoop = AddRec->getLoop();
2328 RunningGCD = ExtraGCD;
2329 const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2330 const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2331 const SCEV *Inner = Src;
2332 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2333 AddRec = cast<SCEVAddRecExpr>(Inner);
2334 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2335 if (CurLoop == AddRec->getLoop())
2336 ; // SrcCoeff == Coeff
2337 else {
2338 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2339 // If the coefficient is the product of a constant and other stuff,
2340 // we can use the constant in the GCD computation.
2341 Constant = getConstantPart(Product);
2342 else
2343 Constant = cast<SCEVConstant>(Coeff);
2344 APInt ConstCoeff = Constant->getValue()->getValue();
2345 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2346 }
2347 Inner = AddRec->getStart();
2348 }
2349 Inner = Dst;
2350 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2351 AddRec = cast<SCEVAddRecExpr>(Inner);
2352 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2353 if (CurLoop == AddRec->getLoop())
2354 DstCoeff = Coeff;
2355 else {
2356 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2357 // If the coefficient is the product of a constant and other stuff,
2358 // we can use the constant in the GCD computation.
2359 Constant = getConstantPart(Product);
2360 else
2361 Constant = cast<SCEVConstant>(Coeff);
2362 APInt ConstCoeff = Constant->getValue()->getValue();
2363 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2364 }
2365 Inner = AddRec->getStart();
2366 }
2367 Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2368 if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Delta))
2369 // If the coefficient is the product of a constant and other stuff,
2370 // we can use the constant in the GCD computation.
2371 Constant = getConstantPart(Product);
2372 else if (isa<SCEVConstant>(Delta))
2373 Constant = cast<SCEVConstant>(Delta);
2374 else {
2375 // The difference of the two coefficients might not be a product
2376 // or constant, in which case we give up on this direction.
2377 continue;
2378 }
2379 APInt ConstCoeff = Constant->getValue()->getValue();
2380 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2381 DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2382 if (RunningGCD != 0) {
2383 Remainder = ConstDelta.srem(RunningGCD);
2384 DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2385 if (Remainder != 0) {
2386 unsigned Level = mapSrcLoop(CurLoop);
Sebastian Pope96232612012-10-12 02:04:32 +00002387 Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
Sebastian Pop59b61b92012-10-11 07:32:34 +00002388 Improved = true;
2389 }
2390 }
2391 }
2392 if (Improved)
2393 ++GCDsuccesses;
2394 DEBUG(dbgs() << "all done\n");
2395 return false;
2396}
2397
2398
2399//===----------------------------------------------------------------------===//
2400// banerjeeMIVtest -
2401// Use Banerjee's Inequalities to test an MIV subscript pair.
2402// (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2403// Generally follows the discussion in Section 2.5.2 of
2404//
2405// Optimizing Supercompilers for Supercomputers
2406// Michael Wolfe
2407//
2408// The inequalities given on page 25 are simplified in that loops are
2409// normalized so that the lower bound is always 0 and the stride is always 1.
2410// For example, Wolfe gives
2411//
2412// LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2413//
2414// where A_k is the coefficient of the kth index in the source subscript,
2415// B_k is the coefficient of the kth index in the destination subscript,
2416// U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2417// index, and N_k is the stride of the kth index. Since all loops are normalized
2418// by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2419// equation to
2420//
2421// LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2422// = (A^-_k - B_k)^- (U_k - 1) - B_k
2423//
2424// Similar simplifications are possible for the other equations.
2425//
2426// When we can't determine the number of iterations for a loop,
2427// we use NULL as an indicator for the worst case, infinity.
2428// When computing the upper bound, NULL denotes +inf;
2429// for the lower bound, NULL denotes -inf.
2430//
2431// Return true if dependence disproved.
2432bool DependenceAnalysis::banerjeeMIVtest(const SCEV *Src,
2433 const SCEV *Dst,
2434 const SmallBitVector &Loops,
2435 FullDependence &Result) const {
2436 DEBUG(dbgs() << "starting Banerjee\n");
2437 ++BanerjeeApplications;
2438 DEBUG(dbgs() << " Src = " << *Src << '\n');
2439 const SCEV *A0;
Dylan Noblesmith3ecd22f2014-08-25 00:28:43 +00002440 auto AOwner = collectCoeffInfo(Src, true, A0);
2441 auto A = AOwner.get();
Sebastian Pop59b61b92012-10-11 07:32:34 +00002442 DEBUG(dbgs() << " Dst = " << *Dst << '\n');
2443 const SCEV *B0;
Dylan Noblesmith3ecd22f2014-08-25 00:28:43 +00002444 auto BOwner = collectCoeffInfo(Dst, false, B0);
2445 auto B = BOwner.get();
2446 auto BoundOwner = make_unique<BoundInfo[]>(MaxLevels + 1);
2447 auto Bound = BoundOwner.get();
Sebastian Pop59b61b92012-10-11 07:32:34 +00002448 const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2449 DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2450
2451 // Compute bounds for all the * directions.
2452 DEBUG(dbgs() << "\tBounds[*]\n");
2453 for (unsigned K = 1; K <= MaxLevels; ++K) {
2454 Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2455 Bound[K].Direction = Dependence::DVEntry::ALL;
2456 Bound[K].DirSet = Dependence::DVEntry::NONE;
2457 findBoundsALL(A, B, Bound, K);
2458#ifndef NDEBUG
2459 DEBUG(dbgs() << "\t " << K << '\t');
2460 if (Bound[K].Lower[Dependence::DVEntry::ALL])
2461 DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2462 else
2463 DEBUG(dbgs() << "-inf\t");
2464 if (Bound[K].Upper[Dependence::DVEntry::ALL])
2465 DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2466 else
2467 DEBUG(dbgs() << "+inf\n");
2468#endif
2469 }
2470
2471 // Test the *, *, *, ... case.
2472 bool Disproved = false;
2473 if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2474 // Explore the direction vector hierarchy.
2475 unsigned DepthExpanded = 0;
2476 unsigned NewDeps = exploreDirections(1, A, B, Bound,
2477 Loops, DepthExpanded, Delta);
2478 if (NewDeps > 0) {
2479 bool Improved = false;
2480 for (unsigned K = 1; K <= CommonLevels; ++K) {
2481 if (Loops[K]) {
2482 unsigned Old = Result.DV[K - 1].Direction;
2483 Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2484 Improved |= Old != Result.DV[K - 1].Direction;
2485 if (!Result.DV[K - 1].Direction) {
2486 Improved = false;
2487 Disproved = true;
2488 break;
2489 }
2490 }
2491 }
2492 if (Improved)
2493 ++BanerjeeSuccesses;
2494 }
2495 else {
2496 ++BanerjeeIndependence;
2497 Disproved = true;
2498 }
2499 }
2500 else {
2501 ++BanerjeeIndependence;
2502 Disproved = true;
2503 }
Sebastian Pop59b61b92012-10-11 07:32:34 +00002504 return Disproved;
2505}
2506
2507
2508// Hierarchically expands the direction vector
2509// search space, combining the directions of discovered dependences
2510// in the DirSet field of Bound. Returns the number of distinct
2511// dependences discovered. If the dependence is disproved,
2512// it will return 0.
2513unsigned DependenceAnalysis::exploreDirections(unsigned Level,
2514 CoefficientInfo *A,
2515 CoefficientInfo *B,
2516 BoundInfo *Bound,
2517 const SmallBitVector &Loops,
2518 unsigned &DepthExpanded,
2519 const SCEV *Delta) const {
2520 if (Level > CommonLevels) {
2521 // record result
2522 DEBUG(dbgs() << "\t[");
2523 for (unsigned K = 1; K <= CommonLevels; ++K) {
2524 if (Loops[K]) {
2525 Bound[K].DirSet |= Bound[K].Direction;
2526#ifndef NDEBUG
2527 switch (Bound[K].Direction) {
2528 case Dependence::DVEntry::LT:
2529 DEBUG(dbgs() << " <");
2530 break;
2531 case Dependence::DVEntry::EQ:
2532 DEBUG(dbgs() << " =");
2533 break;
2534 case Dependence::DVEntry::GT:
2535 DEBUG(dbgs() << " >");
2536 break;
2537 case Dependence::DVEntry::ALL:
2538 DEBUG(dbgs() << " *");
2539 break;
2540 default:
2541 llvm_unreachable("unexpected Bound[K].Direction");
2542 }
2543#endif
2544 }
2545 }
2546 DEBUG(dbgs() << " ]\n");
2547 return 1;
2548 }
2549 if (Loops[Level]) {
2550 if (Level > DepthExpanded) {
2551 DepthExpanded = Level;
2552 // compute bounds for <, =, > at current level
2553 findBoundsLT(A, B, Bound, Level);
2554 findBoundsGT(A, B, Bound, Level);
2555 findBoundsEQ(A, B, Bound, Level);
2556#ifndef NDEBUG
2557 DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2558 DEBUG(dbgs() << "\t <\t");
2559 if (Bound[Level].Lower[Dependence::DVEntry::LT])
2560 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] << '\t');
2561 else
2562 DEBUG(dbgs() << "-inf\t");
2563 if (Bound[Level].Upper[Dependence::DVEntry::LT])
2564 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] << '\n');
2565 else
2566 DEBUG(dbgs() << "+inf\n");
2567 DEBUG(dbgs() << "\t =\t");
2568 if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2569 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] << '\t');
2570 else
2571 DEBUG(dbgs() << "-inf\t");
2572 if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2573 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] << '\n');
2574 else
2575 DEBUG(dbgs() << "+inf\n");
2576 DEBUG(dbgs() << "\t >\t");
2577 if (Bound[Level].Lower[Dependence::DVEntry::GT])
2578 DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] << '\t');
2579 else
2580 DEBUG(dbgs() << "-inf\t");
2581 if (Bound[Level].Upper[Dependence::DVEntry::GT])
2582 DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] << '\n');
2583 else
2584 DEBUG(dbgs() << "+inf\n");
2585#endif
2586 }
2587
2588 unsigned NewDeps = 0;
2589
2590 // test bounds for <, *, *, ...
2591 if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2592 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2593 Loops, DepthExpanded, Delta);
2594
2595 // Test bounds for =, *, *, ...
2596 if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2597 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2598 Loops, DepthExpanded, Delta);
2599
2600 // test bounds for >, *, *, ...
2601 if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2602 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2603 Loops, DepthExpanded, Delta);
2604
2605 Bound[Level].Direction = Dependence::DVEntry::ALL;
2606 return NewDeps;
2607 }
2608 else
2609 return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2610}
2611
2612
2613// Returns true iff the current bounds are plausible.
2614bool DependenceAnalysis::testBounds(unsigned char DirKind,
2615 unsigned Level,
2616 BoundInfo *Bound,
2617 const SCEV *Delta) const {
2618 Bound[Level].Direction = DirKind;
2619 if (const SCEV *LowerBound = getLowerBound(Bound))
2620 if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2621 return false;
2622 if (const SCEV *UpperBound = getUpperBound(Bound))
2623 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2624 return false;
2625 return true;
2626}
2627
2628
2629// Computes the upper and lower bounds for level K
2630// using the * direction. Records them in Bound.
2631// Wolfe gives the equations
2632//
2633// LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2634// UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2635//
2636// Since we normalize loops, we can simplify these equations to
2637//
2638// LB^*_k = (A^-_k - B^+_k)U_k
2639// UB^*_k = (A^+_k - B^-_k)U_k
2640//
2641// We must be careful to handle the case where the upper bound is unknown.
2642// Note that the lower bound is always <= 0
2643// and the upper bound is always >= 0.
2644void DependenceAnalysis::findBoundsALL(CoefficientInfo *A,
2645 CoefficientInfo *B,
2646 BoundInfo *Bound,
2647 unsigned K) const {
Craig Topper9f008862014-04-15 04:59:12 +00002648 Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2649 Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
Sebastian Pop59b61b92012-10-11 07:32:34 +00002650 if (Bound[K].Iterations) {
2651 Bound[K].Lower[Dependence::DVEntry::ALL] =
2652 SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2653 Bound[K].Iterations);
2654 Bound[K].Upper[Dependence::DVEntry::ALL] =
2655 SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2656 Bound[K].Iterations);
2657 }
2658 else {
2659 // If the difference is 0, we won't need to know the number of iterations.
2660 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2661 Bound[K].Lower[Dependence::DVEntry::ALL] =
2662 SE->getConstant(A[K].Coeff->getType(), 0);
2663 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2664 Bound[K].Upper[Dependence::DVEntry::ALL] =
2665 SE->getConstant(A[K].Coeff->getType(), 0);
2666 }
2667}
2668
2669
2670// Computes the upper and lower bounds for level K
2671// using the = direction. Records them in Bound.
2672// Wolfe gives the equations
2673//
2674// LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2675// UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2676//
2677// Since we normalize loops, we can simplify these equations to
2678//
2679// LB^=_k = (A_k - B_k)^- U_k
2680// UB^=_k = (A_k - B_k)^+ U_k
2681//
2682// We must be careful to handle the case where the upper bound is unknown.
2683// Note that the lower bound is always <= 0
2684// and the upper bound is always >= 0.
2685void DependenceAnalysis::findBoundsEQ(CoefficientInfo *A,
2686 CoefficientInfo *B,
2687 BoundInfo *Bound,
2688 unsigned K) const {
Craig Topper9f008862014-04-15 04:59:12 +00002689 Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2690 Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
Sebastian Pop59b61b92012-10-11 07:32:34 +00002691 if (Bound[K].Iterations) {
2692 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2693 const SCEV *NegativePart = getNegativePart(Delta);
2694 Bound[K].Lower[Dependence::DVEntry::EQ] =
2695 SE->getMulExpr(NegativePart, Bound[K].Iterations);
2696 const SCEV *PositivePart = getPositivePart(Delta);
2697 Bound[K].Upper[Dependence::DVEntry::EQ] =
2698 SE->getMulExpr(PositivePart, Bound[K].Iterations);
2699 }
2700 else {
2701 // If the positive/negative part of the difference is 0,
2702 // we won't need to know the number of iterations.
2703 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2704 const SCEV *NegativePart = getNegativePart(Delta);
2705 if (NegativePart->isZero())
2706 Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2707 const SCEV *PositivePart = getPositivePart(Delta);
2708 if (PositivePart->isZero())
2709 Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2710 }
2711}
2712
2713
2714// Computes the upper and lower bounds for level K
2715// using the < direction. Records them in Bound.
2716// Wolfe gives the equations
2717//
2718// LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2719// UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2720//
2721// Since we normalize loops, we can simplify these equations to
2722//
2723// LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2724// UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2725//
2726// We must be careful to handle the case where the upper bound is unknown.
2727void DependenceAnalysis::findBoundsLT(CoefficientInfo *A,
2728 CoefficientInfo *B,
2729 BoundInfo *Bound,
2730 unsigned K) const {
Craig Topper9f008862014-04-15 04:59:12 +00002731 Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2732 Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
Sebastian Pop59b61b92012-10-11 07:32:34 +00002733 if (Bound[K].Iterations) {
2734 const SCEV *Iter_1 =
2735 SE->getMinusSCEV(Bound[K].Iterations,
2736 SE->getConstant(Bound[K].Iterations->getType(), 1));
2737 const SCEV *NegPart =
2738 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2739 Bound[K].Lower[Dependence::DVEntry::LT] =
2740 SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2741 const SCEV *PosPart =
2742 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2743 Bound[K].Upper[Dependence::DVEntry::LT] =
2744 SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2745 }
2746 else {
2747 // If the positive/negative part of the difference is 0,
2748 // we won't need to know the number of iterations.
2749 const SCEV *NegPart =
2750 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2751 if (NegPart->isZero())
2752 Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2753 const SCEV *PosPart =
2754 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2755 if (PosPart->isZero())
2756 Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2757 }
2758}
2759
2760
2761// Computes the upper and lower bounds for level K
2762// using the > direction. Records them in Bound.
2763// Wolfe gives the equations
2764//
2765// LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2766// UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2767//
2768// Since we normalize loops, we can simplify these equations to
2769//
2770// LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2771// UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2772//
2773// We must be careful to handle the case where the upper bound is unknown.
2774void DependenceAnalysis::findBoundsGT(CoefficientInfo *A,
2775 CoefficientInfo *B,
2776 BoundInfo *Bound,
2777 unsigned K) const {
Craig Topper9f008862014-04-15 04:59:12 +00002778 Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2779 Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
Sebastian Pop59b61b92012-10-11 07:32:34 +00002780 if (Bound[K].Iterations) {
2781 const SCEV *Iter_1 =
2782 SE->getMinusSCEV(Bound[K].Iterations,
2783 SE->getConstant(Bound[K].Iterations->getType(), 1));
2784 const SCEV *NegPart =
2785 getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2786 Bound[K].Lower[Dependence::DVEntry::GT] =
2787 SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2788 const SCEV *PosPart =
2789 getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2790 Bound[K].Upper[Dependence::DVEntry::GT] =
2791 SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2792 }
2793 else {
2794 // If the positive/negative part of the difference is 0,
2795 // we won't need to know the number of iterations.
2796 const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2797 if (NegPart->isZero())
2798 Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2799 const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2800 if (PosPart->isZero())
2801 Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2802 }
2803}
2804
2805
2806// X^+ = max(X, 0)
2807const SCEV *DependenceAnalysis::getPositivePart(const SCEV *X) const {
2808 return SE->getSMaxExpr(X, SE->getConstant(X->getType(), 0));
2809}
2810
2811
2812// X^- = min(X, 0)
2813const SCEV *DependenceAnalysis::getNegativePart(const SCEV *X) const {
2814 return SE->getSMinExpr(X, SE->getConstant(X->getType(), 0));
2815}
2816
2817
2818// Walks through the subscript,
2819// collecting each coefficient, the associated loop bounds,
2820// and recording its positive and negative parts for later use.
Dylan Noblesmith3ecd22f2014-08-25 00:28:43 +00002821std::unique_ptr<DependenceAnalysis::CoefficientInfo[]>
Sebastian Pop59b61b92012-10-11 07:32:34 +00002822DependenceAnalysis::collectCoeffInfo(const SCEV *Subscript,
2823 bool SrcFlag,
2824 const SCEV *&Constant) const {
2825 const SCEV *Zero = SE->getConstant(Subscript->getType(), 0);
Dylan Noblesmith3ecd22f2014-08-25 00:28:43 +00002826 auto CI = make_unique<CoefficientInfo[]>(MaxLevels + 1);
Sebastian Pop59b61b92012-10-11 07:32:34 +00002827 for (unsigned K = 1; K <= MaxLevels; ++K) {
2828 CI[K].Coeff = Zero;
2829 CI[K].PosPart = Zero;
2830 CI[K].NegPart = Zero;
Craig Topper9f008862014-04-15 04:59:12 +00002831 CI[K].Iterations = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00002832 }
2833 while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2834 const Loop *L = AddRec->getLoop();
2835 unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2836 CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2837 CI[K].PosPart = getPositivePart(CI[K].Coeff);
2838 CI[K].NegPart = getNegativePart(CI[K].Coeff);
2839 CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2840 Subscript = AddRec->getStart();
2841 }
2842 Constant = Subscript;
2843#ifndef NDEBUG
2844 DEBUG(dbgs() << "\tCoefficient Info\n");
2845 for (unsigned K = 1; K <= MaxLevels; ++K) {
2846 DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff);
2847 DEBUG(dbgs() << "\tPos Part = ");
2848 DEBUG(dbgs() << *CI[K].PosPart);
2849 DEBUG(dbgs() << "\tNeg Part = ");
2850 DEBUG(dbgs() << *CI[K].NegPart);
2851 DEBUG(dbgs() << "\tUpper Bound = ");
2852 if (CI[K].Iterations)
2853 DEBUG(dbgs() << *CI[K].Iterations);
2854 else
2855 DEBUG(dbgs() << "+inf");
2856 DEBUG(dbgs() << '\n');
2857 }
2858 DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n');
2859#endif
2860 return CI;
2861}
2862
2863
2864// Looks through all the bounds info and
2865// computes the lower bound given the current direction settings
2866// at each level. If the lower bound for any level is -inf,
2867// the result is -inf.
2868const SCEV *DependenceAnalysis::getLowerBound(BoundInfo *Bound) const {
2869 const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2870 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2871 if (Bound[K].Lower[Bound[K].Direction])
2872 Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2873 else
Craig Topper9f008862014-04-15 04:59:12 +00002874 Sum = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00002875 }
2876 return Sum;
2877}
2878
2879
2880// Looks through all the bounds info and
2881// computes the upper bound given the current direction settings
2882// at each level. If the upper bound at any level is +inf,
2883// the result is +inf.
2884const SCEV *DependenceAnalysis::getUpperBound(BoundInfo *Bound) const {
2885 const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2886 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2887 if (Bound[K].Upper[Bound[K].Direction])
2888 Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2889 else
Craig Topper9f008862014-04-15 04:59:12 +00002890 Sum = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00002891 }
2892 return Sum;
2893}
2894
2895
2896//===----------------------------------------------------------------------===//
2897// Constraint manipulation for Delta test.
2898
2899// Given a linear SCEV,
2900// return the coefficient (the step)
2901// corresponding to the specified loop.
2902// If there isn't one, return 0.
2903// For example, given a*i + b*j + c*k, zeroing the coefficient
2904// corresponding to the j loop would yield b.
2905const SCEV *DependenceAnalysis::findCoefficient(const SCEV *Expr,
2906 const Loop *TargetLoop) const {
2907 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2908 if (!AddRec)
2909 return SE->getConstant(Expr->getType(), 0);
2910 if (AddRec->getLoop() == TargetLoop)
2911 return AddRec->getStepRecurrence(*SE);
2912 return findCoefficient(AddRec->getStart(), TargetLoop);
2913}
2914
2915
2916// Given a linear SCEV,
2917// return the SCEV given by zeroing out the coefficient
2918// corresponding to the specified loop.
2919// For example, given a*i + b*j + c*k, zeroing the coefficient
2920// corresponding to the j loop would yield a*i + c*k.
2921const SCEV *DependenceAnalysis::zeroCoefficient(const SCEV *Expr,
2922 const Loop *TargetLoop) const {
2923 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2924 if (!AddRec)
2925 return Expr; // ignore
2926 if (AddRec->getLoop() == TargetLoop)
2927 return AddRec->getStart();
2928 return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
2929 AddRec->getStepRecurrence(*SE),
2930 AddRec->getLoop(),
2931 AddRec->getNoWrapFlags());
2932}
2933
2934
2935// Given a linear SCEV Expr,
2936// return the SCEV given by adding some Value to the
2937// coefficient corresponding to the specified TargetLoop.
2938// For example, given a*i + b*j + c*k, adding 1 to the coefficient
2939// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
2940const SCEV *DependenceAnalysis::addToCoefficient(const SCEV *Expr,
2941 const Loop *TargetLoop,
2942 const SCEV *Value) const {
2943 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2944 if (!AddRec) // create a new addRec
2945 return SE->getAddRecExpr(Expr,
2946 Value,
2947 TargetLoop,
2948 SCEV::FlagAnyWrap); // Worst case, with no info.
2949 if (AddRec->getLoop() == TargetLoop) {
2950 const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
2951 if (Sum->isZero())
2952 return AddRec->getStart();
2953 return SE->getAddRecExpr(AddRec->getStart(),
2954 Sum,
2955 AddRec->getLoop(),
2956 AddRec->getNoWrapFlags());
2957 }
Preston Briggs6c286b62013-06-28 18:44:48 +00002958 if (SE->isLoopInvariant(AddRec, TargetLoop))
2959 return SE->getAddRecExpr(AddRec,
2960 Value,
2961 TargetLoop,
2962 SCEV::FlagAnyWrap);
Sebastian Pop59b61b92012-10-11 07:32:34 +00002963 return SE->getAddRecExpr(addToCoefficient(AddRec->getStart(),
2964 TargetLoop, Value),
2965 AddRec->getStepRecurrence(*SE),
2966 AddRec->getLoop(),
2967 AddRec->getNoWrapFlags());
2968}
2969
2970
2971// Review the constraints, looking for opportunities
2972// to simplify a subscript pair (Src and Dst).
2973// Return true if some simplification occurs.
2974// If the simplification isn't exact (that is, if it is conservative
2975// in terms of dependence), set consistent to false.
2976// Corresponds to Figure 5 from the paper
2977//
2978// Practical Dependence Testing
2979// Goff, Kennedy, Tseng
2980// PLDI 1991
2981bool DependenceAnalysis::propagate(const SCEV *&Src,
2982 const SCEV *&Dst,
2983 SmallBitVector &Loops,
Craig Topperb94011f2013-07-14 04:42:23 +00002984 SmallVectorImpl<Constraint> &Constraints,
Sebastian Pop59b61b92012-10-11 07:32:34 +00002985 bool &Consistent) {
2986 bool Result = false;
2987 for (int LI = Loops.find_first(); LI >= 0; LI = Loops.find_next(LI)) {
2988 DEBUG(dbgs() << "\t Constraint[" << LI << "] is");
2989 DEBUG(Constraints[LI].dump(dbgs()));
2990 if (Constraints[LI].isDistance())
2991 Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
2992 else if (Constraints[LI].isLine())
2993 Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
2994 else if (Constraints[LI].isPoint())
2995 Result |= propagatePoint(Src, Dst, Constraints[LI]);
2996 }
2997 return Result;
2998}
2999
3000
3001// Attempt to propagate a distance
3002// constraint into a subscript pair (Src and Dst).
3003// Return true if some simplification occurs.
3004// If the simplification isn't exact (that is, if it is conservative
3005// in terms of dependence), set consistent to false.
3006bool DependenceAnalysis::propagateDistance(const SCEV *&Src,
3007 const SCEV *&Dst,
3008 Constraint &CurConstraint,
3009 bool &Consistent) {
3010 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3011 DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3012 const SCEV *A_K = findCoefficient(Src, CurLoop);
3013 if (A_K->isZero())
3014 return false;
3015 const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3016 Src = SE->getMinusSCEV(Src, DA_K);
3017 Src = zeroCoefficient(Src, CurLoop);
3018 DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3019 DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3020 Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3021 DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3022 if (!findCoefficient(Dst, CurLoop)->isZero())
3023 Consistent = false;
3024 return true;
3025}
3026
3027
3028// Attempt to propagate a line
3029// constraint into a subscript pair (Src and Dst).
3030// Return true if some simplification occurs.
3031// If the simplification isn't exact (that is, if it is conservative
3032// in terms of dependence), set consistent to false.
3033bool DependenceAnalysis::propagateLine(const SCEV *&Src,
3034 const SCEV *&Dst,
3035 Constraint &CurConstraint,
3036 bool &Consistent) {
3037 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3038 const SCEV *A = CurConstraint.getA();
3039 const SCEV *B = CurConstraint.getB();
3040 const SCEV *C = CurConstraint.getC();
3041 DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C << "\n");
3042 DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3043 DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3044 if (A->isZero()) {
3045 const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3046 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3047 if (!Bconst || !Cconst) return false;
3048 APInt Beta = Bconst->getValue()->getValue();
3049 APInt Charlie = Cconst->getValue()->getValue();
3050 APInt CdivB = Charlie.sdiv(Beta);
3051 assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3052 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3053 // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3054 Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3055 Dst = zeroCoefficient(Dst, CurLoop);
3056 if (!findCoefficient(Src, CurLoop)->isZero())
3057 Consistent = false;
3058 }
3059 else if (B->isZero()) {
3060 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3061 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3062 if (!Aconst || !Cconst) return false;
3063 APInt Alpha = Aconst->getValue()->getValue();
3064 APInt Charlie = Cconst->getValue()->getValue();
3065 APInt CdivA = Charlie.sdiv(Alpha);
3066 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3067 const SCEV *A_K = findCoefficient(Src, CurLoop);
3068 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3069 Src = zeroCoefficient(Src, CurLoop);
3070 if (!findCoefficient(Dst, CurLoop)->isZero())
3071 Consistent = false;
3072 }
3073 else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3074 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3075 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3076 if (!Aconst || !Cconst) return false;
3077 APInt Alpha = Aconst->getValue()->getValue();
3078 APInt Charlie = Cconst->getValue()->getValue();
3079 APInt CdivA = Charlie.sdiv(Alpha);
3080 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3081 const SCEV *A_K = findCoefficient(Src, CurLoop);
3082 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3083 Src = zeroCoefficient(Src, CurLoop);
3084 Dst = addToCoefficient(Dst, CurLoop, A_K);
3085 if (!findCoefficient(Dst, CurLoop)->isZero())
3086 Consistent = false;
3087 }
3088 else {
3089 // paper is incorrect here, or perhaps just misleading
3090 const SCEV *A_K = findCoefficient(Src, CurLoop);
3091 Src = SE->getMulExpr(Src, A);
3092 Dst = SE->getMulExpr(Dst, A);
3093 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3094 Src = zeroCoefficient(Src, CurLoop);
3095 Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3096 if (!findCoefficient(Dst, CurLoop)->isZero())
3097 Consistent = false;
3098 }
3099 DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3100 DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3101 return true;
3102}
3103
3104
3105// Attempt to propagate a point
3106// constraint into a subscript pair (Src and Dst).
3107// Return true if some simplification occurs.
3108bool DependenceAnalysis::propagatePoint(const SCEV *&Src,
3109 const SCEV *&Dst,
3110 Constraint &CurConstraint) {
3111 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3112 const SCEV *A_K = findCoefficient(Src, CurLoop);
3113 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3114 const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3115 const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3116 DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3117 Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3118 Src = zeroCoefficient(Src, CurLoop);
3119 DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3120 DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3121 Dst = zeroCoefficient(Dst, CurLoop);
3122 DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3123 return true;
3124}
3125
3126
3127// Update direction vector entry based on the current constraint.
3128void DependenceAnalysis::updateDirection(Dependence::DVEntry &Level,
3129 const Constraint &CurConstraint
3130 ) const {
3131 DEBUG(dbgs() << "\tUpdate direction, constraint =");
3132 DEBUG(CurConstraint.dump(dbgs()));
3133 if (CurConstraint.isAny())
3134 ; // use defaults
3135 else if (CurConstraint.isDistance()) {
3136 // this one is consistent, the others aren't
3137 Level.Scalar = false;
3138 Level.Distance = CurConstraint.getD();
3139 unsigned NewDirection = Dependence::DVEntry::NONE;
3140 if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3141 NewDirection = Dependence::DVEntry::EQ;
3142 if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3143 NewDirection |= Dependence::DVEntry::LT;
3144 if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3145 NewDirection |= Dependence::DVEntry::GT;
3146 Level.Direction &= NewDirection;
3147 }
3148 else if (CurConstraint.isLine()) {
3149 Level.Scalar = false;
Craig Topper9f008862014-04-15 04:59:12 +00003150 Level.Distance = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003151 // direction should be accurate
3152 }
3153 else if (CurConstraint.isPoint()) {
3154 Level.Scalar = false;
Craig Topper9f008862014-04-15 04:59:12 +00003155 Level.Distance = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003156 unsigned NewDirection = Dependence::DVEntry::NONE;
3157 if (!isKnownPredicate(CmpInst::ICMP_NE,
3158 CurConstraint.getY(),
3159 CurConstraint.getX()))
3160 // if X may be = Y
3161 NewDirection |= Dependence::DVEntry::EQ;
3162 if (!isKnownPredicate(CmpInst::ICMP_SLE,
3163 CurConstraint.getY(),
3164 CurConstraint.getX()))
3165 // if Y may be > X
3166 NewDirection |= Dependence::DVEntry::LT;
3167 if (!isKnownPredicate(CmpInst::ICMP_SGE,
3168 CurConstraint.getY(),
3169 CurConstraint.getX()))
3170 // if Y may be < X
3171 NewDirection |= Dependence::DVEntry::GT;
3172 Level.Direction &= NewDirection;
3173 }
3174 else
3175 llvm_unreachable("constraint has unexpected kind");
3176}
3177
Sebastian Popc62c6792013-11-12 22:47:20 +00003178/// Check if we can delinearize the subscripts. If the SCEVs representing the
3179/// source and destination array references are recurrences on a nested loop,
Alp Tokercb402912014-01-24 17:20:08 +00003180/// this function flattens the nested recurrences into separate recurrences
Sebastian Popc62c6792013-11-12 22:47:20 +00003181/// for each loop level.
Sebastian Popa6e58602014-05-27 22:41:45 +00003182bool DependenceAnalysis::tryDelinearize(const SCEV *SrcSCEV,
3183 const SCEV *DstSCEV,
3184 SmallVectorImpl<Subscript> &Pair,
3185 const SCEV *ElementSize) const {
Sebastian Pop28e6b972014-05-27 22:41:51 +00003186 const SCEVUnknown *SrcBase =
3187 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcSCEV));
3188 const SCEVUnknown *DstBase =
3189 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstSCEV));
3190
3191 if (!SrcBase || !DstBase || SrcBase != DstBase)
3192 return false;
3193
3194 SrcSCEV = SE->getMinusSCEV(SrcSCEV, SrcBase);
3195 DstSCEV = SE->getMinusSCEV(DstSCEV, DstBase);
3196
Sebastian Popc62c6792013-11-12 22:47:20 +00003197 const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3198 const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3199 if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3200 return false;
3201
Sebastian Pop448712b2014-05-07 18:01:20 +00003202 // First step: collect parametric terms in both array references.
3203 SmallVector<const SCEV *, 4> Terms;
3204 SrcAR->collectParametricTerms(*SE, Terms);
3205 DstAR->collectParametricTerms(*SE, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00003206
Sebastian Pop448712b2014-05-07 18:01:20 +00003207 // Second step: find subscript sizes.
3208 SmallVector<const SCEV *, 4> Sizes;
Sebastian Popa6e58602014-05-27 22:41:45 +00003209 SE->findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop448712b2014-05-07 18:01:20 +00003210
3211 // Third step: compute the access functions for each subscript.
3212 SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
Sebastian Pop28e6b972014-05-27 22:41:51 +00003213 SrcAR->computeAccessFunctions(*SE, SrcSubscripts, Sizes);
3214 DstAR->computeAccessFunctions(*SE, DstSubscripts, Sizes);
Sebastian Pop448712b2014-05-07 18:01:20 +00003215
Sebastian Pop5133d2e2014-02-21 18:15:07 +00003216 // Fail when there is only a subscript: that's a linearized access function.
Sebastian Pop448712b2014-05-07 18:01:20 +00003217 if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3218 SrcSubscripts.size() != DstSubscripts.size())
Sebastian Popc62c6792013-11-12 22:47:20 +00003219 return false;
3220
Sebastian Pop448712b2014-05-07 18:01:20 +00003221 int size = SrcSubscripts.size();
Sebastian Pop29026d32014-02-21 18:15:11 +00003222
Sebastian Pop448712b2014-05-07 18:01:20 +00003223 DEBUG({
3224 dbgs() << "\nSrcSubscripts: ";
3225 for (int i = 0; i < size; i++)
3226 dbgs() << *SrcSubscripts[i];
3227 dbgs() << "\nDstSubscripts: ";
3228 for (int i = 0; i < size; i++)
3229 dbgs() << *DstSubscripts[i];
3230 });
Sebastian Popc62c6792013-11-12 22:47:20 +00003231
Sebastian Pop7ee14722013-11-13 22:37:58 +00003232 // The delinearization transforms a single-subscript MIV dependence test into
3233 // a multi-subscript SIV dependence test that is easier to compute. So we
3234 // resize Pair to contain as many pairs of subscripts as the delinearization
3235 // has found, and then initialize the pairs following the delinearization.
Sebastian Popc62c6792013-11-12 22:47:20 +00003236 Pair.resize(size);
3237 for (int i = 0; i < size; ++i) {
3238 Pair[i].Src = SrcSubscripts[i];
3239 Pair[i].Dst = DstSubscripts[i];
Sebastian Pop7ee14722013-11-13 22:37:58 +00003240
3241 // FIXME: we should record the bounds SrcSizes[i] and DstSizes[i] that the
3242 // delinearization has found, and add these constraints to the dependence
3243 // check to avoid memory accesses overflow from one dimension into another.
3244 // This is related to the problem of determining the existence of data
3245 // dependences in array accesses using a different number of subscripts: in
3246 // C one can access an array A[100][100]; as A[0][9999], *A[9999], etc.
Sebastian Popc62c6792013-11-12 22:47:20 +00003247 }
3248
3249 return true;
3250}
Sebastian Pop59b61b92012-10-11 07:32:34 +00003251
3252//===----------------------------------------------------------------------===//
3253
3254#ifndef NDEBUG
3255// For debugging purposes, dump a small bit vector to dbgs().
3256static void dumpSmallBitVector(SmallBitVector &BV) {
3257 dbgs() << "{";
3258 for (int VI = BV.find_first(); VI >= 0; VI = BV.find_next(VI)) {
3259 dbgs() << VI;
3260 if (BV.find_next(VI) >= 0)
3261 dbgs() << ' ';
3262 }
3263 dbgs() << "}\n";
3264}
3265#endif
3266
3267
3268// depends -
3269// Returns NULL if there is no dependence.
3270// Otherwise, return a Dependence with as many details as possible.
3271// Corresponds to Section 3.1 in the paper
3272//
3273// Practical Dependence Testing
3274// Goff, Kennedy, Tseng
3275// PLDI 1991
3276//
Preston Briggs3ad39492012-11-21 23:50:04 +00003277// Care is required to keep the routine below, getSplitIteration(),
3278// up to date with respect to this routine.
Dylan Noblesmith2cae60e2014-08-25 00:28:39 +00003279std::unique_ptr<Dependence>
3280DependenceAnalysis::depends(Instruction *Src, Instruction *Dst,
3281 bool PossiblyLoopIndependent) {
Preston Briggs1084fa22012-11-27 06:41:46 +00003282 if (Src == Dst)
3283 PossiblyLoopIndependent = false;
3284
Sebastian Pop59b61b92012-10-11 07:32:34 +00003285 if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
3286 (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
3287 // if both instructions don't reference memory, there's no dependence
Craig Topper9f008862014-04-15 04:59:12 +00003288 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003289
Preston Briggs3ad39492012-11-21 23:50:04 +00003290 if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
Sebastian Pop59b61b92012-10-11 07:32:34 +00003291 // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
Preston Briggs3ad39492012-11-21 23:50:04 +00003292 DEBUG(dbgs() << "can only handle simple loads and stores\n");
Dylan Noblesmith2cae60e2014-08-25 00:28:39 +00003293 return make_unique<Dependence>(Src, Dst);
Preston Briggs3ad39492012-11-21 23:50:04 +00003294 }
Sebastian Pop59b61b92012-10-11 07:32:34 +00003295
Sebastian Pop87ce43c2012-11-20 22:28:04 +00003296 Value *SrcPtr = getPointerOperand(Src);
3297 Value *DstPtr = getPointerOperand(Dst);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003298
3299 switch (underlyingObjectsAlias(AA, DstPtr, SrcPtr)) {
3300 case AliasAnalysis::MayAlias:
3301 case AliasAnalysis::PartialAlias:
3302 // cannot analyse objects if we don't understand their aliasing.
Preston Briggs3ad39492012-11-21 23:50:04 +00003303 DEBUG(dbgs() << "can't analyze may or partial alias\n");
Dylan Noblesmith2cae60e2014-08-25 00:28:39 +00003304 return make_unique<Dependence>(Src, Dst);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003305 case AliasAnalysis::NoAlias:
3306 // If the objects noalias, they are distinct, accesses are independent.
Preston Briggs3ad39492012-11-21 23:50:04 +00003307 DEBUG(dbgs() << "no alias\n");
Craig Topper9f008862014-04-15 04:59:12 +00003308 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003309 case AliasAnalysis::MustAlias:
3310 break; // The underlying objects alias; test accesses for dependence.
3311 }
3312
Sebastian Pop59b61b92012-10-11 07:32:34 +00003313 // establish loop nesting levels
3314 establishNestingLevels(Src, Dst);
3315 DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n");
3316 DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n");
3317
3318 FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3319 ++TotalArrayPairs;
3320
Preston Briggs3ad39492012-11-21 23:50:04 +00003321 // See if there are GEPs we can use.
3322 bool UsefulGEP = false;
3323 GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3324 GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3325 if (SrcGEP && DstGEP &&
3326 SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
3327 const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
3328 const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
3329 DEBUG(dbgs() << " SrcPtrSCEV = " << *SrcPtrSCEV << "\n");
3330 DEBUG(dbgs() << " DstPtrSCEV = " << *DstPtrSCEV << "\n");
3331
3332 UsefulGEP =
3333 isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
3334 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent()));
Sebastian Pop59b61b92012-10-11 07:32:34 +00003335 }
Preston Briggs3ad39492012-11-21 23:50:04 +00003336 unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3337 SmallVector<Subscript, 4> Pair(Pairs);
3338 if (UsefulGEP) {
3339 DEBUG(dbgs() << " using GEPs\n");
3340 unsigned P = 0;
3341 for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3342 SrcEnd = SrcGEP->idx_end(),
3343 DstIdx = DstGEP->idx_begin();
3344 SrcIdx != SrcEnd;
3345 ++SrcIdx, ++DstIdx, ++P) {
3346 Pair[P].Src = SE->getSCEV(*SrcIdx);
3347 Pair[P].Dst = SE->getSCEV(*DstIdx);
3348 }
3349 }
3350 else {
3351 DEBUG(dbgs() << " ignoring GEPs\n");
3352 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3353 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3354 DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n");
3355 DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n");
3356 Pair[0].Src = SrcSCEV;
3357 Pair[0].Dst = DstSCEV;
3358 }
3359
Sebastian Popc62c6792013-11-12 22:47:20 +00003360 if (Delinearize && Pairs == 1 && CommonLevels > 1 &&
Sebastian Popa6e58602014-05-27 22:41:45 +00003361 tryDelinearize(Pair[0].Src, Pair[0].Dst, Pair, SE->getElementSize(Src))) {
Sebastian Popc62c6792013-11-12 22:47:20 +00003362 DEBUG(dbgs() << " delinerized GEP\n");
3363 Pairs = Pair.size();
3364 }
3365
Preston Briggs3ad39492012-11-21 23:50:04 +00003366 for (unsigned P = 0; P < Pairs; ++P) {
3367 Pair[P].Loops.resize(MaxLevels + 1);
3368 Pair[P].GroupLoops.resize(MaxLevels + 1);
3369 Pair[P].Group.resize(Pairs);
3370 removeMatchingExtensions(&Pair[P]);
3371 Pair[P].Classification =
3372 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3373 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3374 Pair[P].Loops);
3375 Pair[P].GroupLoops = Pair[P].Loops;
3376 Pair[P].Group.set(P);
3377 DEBUG(dbgs() << " subscript " << P << "\n");
3378 DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3379 DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3380 DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
Sebastian Pop59b61b92012-10-11 07:32:34 +00003381 DEBUG(dbgs() << "\tloops = ");
Preston Briggs3ad39492012-11-21 23:50:04 +00003382 DEBUG(dumpSmallBitVector(Pair[P].Loops));
Sebastian Pop59b61b92012-10-11 07:32:34 +00003383 }
3384
3385 SmallBitVector Separable(Pairs);
3386 SmallBitVector Coupled(Pairs);
3387
3388 // Partition subscripts into separable and minimally-coupled groups
3389 // Algorithm in paper is algorithmically better;
3390 // this may be faster in practice. Check someday.
3391 //
3392 // Here's an example of how it works. Consider this code:
3393 //
3394 // for (i = ...) {
3395 // for (j = ...) {
3396 // for (k = ...) {
3397 // for (l = ...) {
3398 // for (m = ...) {
3399 // A[i][j][k][m] = ...;
3400 // ... = A[0][j][l][i + j];
3401 // }
3402 // }
3403 // }
3404 // }
3405 // }
3406 //
3407 // There are 4 subscripts here:
3408 // 0 [i] and [0]
3409 // 1 [j] and [j]
3410 // 2 [k] and [l]
3411 // 3 [m] and [i + j]
3412 //
3413 // We've already classified each subscript pair as ZIV, SIV, etc.,
3414 // and collected all the loops mentioned by pair P in Pair[P].Loops.
3415 // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3416 // and set Pair[P].Group = {P}.
3417 //
3418 // Src Dst Classification Loops GroupLoops Group
3419 // 0 [i] [0] SIV {1} {1} {0}
3420 // 1 [j] [j] SIV {2} {2} {1}
3421 // 2 [k] [l] RDIV {3,4} {3,4} {2}
3422 // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
3423 //
3424 // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3425 // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3426 //
3427 // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3428 // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3429 // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3430 // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3431 // to either Separable or Coupled).
3432 //
3433 // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3434 // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
3435 // so Pair[3].Group = {0, 1, 3} and Done = false.
3436 //
3437 // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3438 // Since Done remains true, we add 2 to the set of Separable pairs.
3439 //
3440 // Finally, we consider 3. There's nothing to compare it with,
3441 // so Done remains true and we add it to the Coupled set.
3442 // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3443 //
3444 // In the end, we've got 1 separable subscript and 1 coupled group.
3445 for (unsigned SI = 0; SI < Pairs; ++SI) {
3446 if (Pair[SI].Classification == Subscript::NonLinear) {
3447 // ignore these, but collect loops for later
3448 ++NonlinearSubscriptPairs;
3449 collectCommonLoops(Pair[SI].Src,
3450 LI->getLoopFor(Src->getParent()),
3451 Pair[SI].Loops);
3452 collectCommonLoops(Pair[SI].Dst,
3453 LI->getLoopFor(Dst->getParent()),
3454 Pair[SI].Loops);
3455 Result.Consistent = false;
3456 }
3457 else if (Pair[SI].Classification == Subscript::ZIV) {
3458 // always separable
3459 Separable.set(SI);
3460 }
3461 else {
3462 // SIV, RDIV, or MIV, so check for coupled group
3463 bool Done = true;
3464 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3465 SmallBitVector Intersection = Pair[SI].GroupLoops;
3466 Intersection &= Pair[SJ].GroupLoops;
3467 if (Intersection.any()) {
3468 // accumulate set of all the loops in group
3469 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3470 // accumulate set of all subscripts in group
3471 Pair[SJ].Group |= Pair[SI].Group;
3472 Done = false;
3473 }
3474 }
3475 if (Done) {
3476 if (Pair[SI].Group.count() == 1) {
3477 Separable.set(SI);
3478 ++SeparableSubscriptPairs;
3479 }
3480 else {
3481 Coupled.set(SI);
3482 ++CoupledSubscriptPairs;
3483 }
3484 }
3485 }
3486 }
3487
3488 DEBUG(dbgs() << " Separable = ");
3489 DEBUG(dumpSmallBitVector(Separable));
3490 DEBUG(dbgs() << " Coupled = ");
3491 DEBUG(dumpSmallBitVector(Coupled));
3492
3493 Constraint NewConstraint;
3494 NewConstraint.setAny(SE);
3495
3496 // test separable subscripts
3497 for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3498 DEBUG(dbgs() << "testing subscript " << SI);
3499 switch (Pair[SI].Classification) {
3500 case Subscript::ZIV:
3501 DEBUG(dbgs() << ", ZIV\n");
3502 if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
Craig Topper9f008862014-04-15 04:59:12 +00003503 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003504 break;
3505 case Subscript::SIV: {
3506 DEBUG(dbgs() << ", SIV\n");
3507 unsigned Level;
Craig Topper9f008862014-04-15 04:59:12 +00003508 const SCEV *SplitIter = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003509 if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3510 Result, NewConstraint, SplitIter))
Craig Topper9f008862014-04-15 04:59:12 +00003511 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003512 break;
3513 }
3514 case Subscript::RDIV:
3515 DEBUG(dbgs() << ", RDIV\n");
3516 if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
Craig Topper9f008862014-04-15 04:59:12 +00003517 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003518 break;
3519 case Subscript::MIV:
3520 DEBUG(dbgs() << ", MIV\n");
3521 if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
Craig Topper9f008862014-04-15 04:59:12 +00003522 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003523 break;
3524 default:
3525 llvm_unreachable("subscript has unexpected classification");
3526 }
3527 }
3528
3529 if (Coupled.count()) {
3530 // test coupled subscript groups
3531 DEBUG(dbgs() << "starting on coupled subscripts\n");
3532 DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3533 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3534 for (unsigned II = 0; II <= MaxLevels; ++II)
3535 Constraints[II].setAny(SE);
3536 for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3537 DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3538 SmallBitVector Group(Pair[SI].Group);
3539 SmallBitVector Sivs(Pairs);
3540 SmallBitVector Mivs(Pairs);
3541 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3542 for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3543 DEBUG(dbgs() << SJ << " ");
3544 if (Pair[SJ].Classification == Subscript::SIV)
3545 Sivs.set(SJ);
3546 else
3547 Mivs.set(SJ);
3548 }
3549 DEBUG(dbgs() << "}\n");
3550 while (Sivs.any()) {
3551 bool Changed = false;
3552 for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3553 DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3554 // SJ is an SIV subscript that's part of the current coupled group
3555 unsigned Level;
Craig Topper9f008862014-04-15 04:59:12 +00003556 const SCEV *SplitIter = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003557 DEBUG(dbgs() << "SIV\n");
3558 if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3559 Result, NewConstraint, SplitIter))
Craig Topper9f008862014-04-15 04:59:12 +00003560 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003561 ConstrainedLevels.set(Level);
3562 if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3563 if (Constraints[Level].isEmpty()) {
3564 ++DeltaIndependence;
Craig Topper9f008862014-04-15 04:59:12 +00003565 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003566 }
3567 Changed = true;
3568 }
3569 Sivs.reset(SJ);
3570 }
3571 if (Changed) {
3572 // propagate, possibly creating new SIVs and ZIVs
3573 DEBUG(dbgs() << " propagating\n");
3574 DEBUG(dbgs() << "\tMivs = ");
3575 DEBUG(dumpSmallBitVector(Mivs));
3576 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3577 // SJ is an MIV subscript that's part of the current coupled group
3578 DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3579 if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3580 Constraints, Result.Consistent)) {
3581 DEBUG(dbgs() << "\t Changed\n");
3582 ++DeltaPropagations;
3583 Pair[SJ].Classification =
3584 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3585 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3586 Pair[SJ].Loops);
3587 switch (Pair[SJ].Classification) {
3588 case Subscript::ZIV:
3589 DEBUG(dbgs() << "ZIV\n");
3590 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
Craig Topper9f008862014-04-15 04:59:12 +00003591 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003592 Mivs.reset(SJ);
3593 break;
3594 case Subscript::SIV:
3595 Sivs.set(SJ);
3596 Mivs.reset(SJ);
3597 break;
3598 case Subscript::RDIV:
3599 case Subscript::MIV:
3600 break;
3601 default:
3602 llvm_unreachable("bad subscript classification");
3603 }
3604 }
3605 }
3606 }
3607 }
3608
3609 // test & propagate remaining RDIVs
3610 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3611 if (Pair[SJ].Classification == Subscript::RDIV) {
3612 DEBUG(dbgs() << "RDIV test\n");
3613 if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
Craig Topper9f008862014-04-15 04:59:12 +00003614 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003615 // I don't yet understand how to propagate RDIV results
3616 Mivs.reset(SJ);
3617 }
3618 }
3619
3620 // test remaining MIVs
3621 // This code is temporary.
3622 // Better to somehow test all remaining subscripts simultaneously.
3623 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3624 if (Pair[SJ].Classification == Subscript::MIV) {
3625 DEBUG(dbgs() << "MIV test\n");
3626 if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
Craig Topper9f008862014-04-15 04:59:12 +00003627 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003628 }
3629 else
3630 llvm_unreachable("expected only MIV subscripts at this point");
3631 }
3632
3633 // update Result.DV from constraint vector
3634 DEBUG(dbgs() << " updating\n");
3635 for (int SJ = ConstrainedLevels.find_first();
3636 SJ >= 0; SJ = ConstrainedLevels.find_next(SJ)) {
3637 updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3638 if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
Craig Topper9f008862014-04-15 04:59:12 +00003639 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003640 }
3641 }
3642 }
3643
Preston Briggs4eb7ee52012-11-29 04:30:52 +00003644 // Make sure the Scalar flags are set correctly.
Sebastian Pop59b61b92012-10-11 07:32:34 +00003645 SmallBitVector CompleteLoops(MaxLevels + 1);
3646 for (unsigned SI = 0; SI < Pairs; ++SI)
3647 CompleteLoops |= Pair[SI].Loops;
3648 for (unsigned II = 1; II <= CommonLevels; ++II)
3649 if (CompleteLoops[II])
3650 Result.DV[II - 1].Scalar = false;
3651
Sebastian Pop59b61b92012-10-11 07:32:34 +00003652 if (PossiblyLoopIndependent) {
Preston Briggs5cb8cfa2012-11-27 19:12:26 +00003653 // Make sure the LoopIndependent flag is set correctly.
3654 // All directions must include equal, otherwise no
3655 // loop-independent dependence is possible.
Sebastian Pop59b61b92012-10-11 07:32:34 +00003656 for (unsigned II = 1; II <= CommonLevels; ++II) {
3657 if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3658 Result.LoopIndependent = false;
3659 break;
3660 }
3661 }
3662 }
Preston Briggs5cb8cfa2012-11-27 19:12:26 +00003663 else {
3664 // On the other hand, if all directions are equal and there's no
3665 // loop-independent dependence possible, then no dependence exists.
3666 bool AllEqual = true;
3667 for (unsigned II = 1; II <= CommonLevels; ++II) {
3668 if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
Preston Briggs4eb7ee52012-11-29 04:30:52 +00003669 AllEqual = false;
3670 break;
Preston Briggs5cb8cfa2012-11-27 19:12:26 +00003671 }
3672 }
3673 if (AllEqual)
Craig Topper9f008862014-04-15 04:59:12 +00003674 return nullptr;
Preston Briggs5cb8cfa2012-11-27 19:12:26 +00003675 }
Sebastian Pop59b61b92012-10-11 07:32:34 +00003676
Dylan Noblesmith2cae60e2014-08-25 00:28:39 +00003677 std::unique_ptr<Dependence> Final;
3678 Final.reset(new FullDependence(Result));
Craig Topper9f008862014-04-15 04:59:12 +00003679 Result.DV = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003680 return Final;
3681}
3682
3683
3684
3685//===----------------------------------------------------------------------===//
3686// getSplitIteration -
3687// Rather than spend rarely-used space recording the splitting iteration
3688// during the Weak-Crossing SIV test, we re-compute it on demand.
3689// The re-computation is basically a repeat of the entire dependence test,
3690// though simplified since we know that the dependence exists.
3691// It's tedious, since we must go through all propagations, etc.
3692//
Preston Briggs3ad39492012-11-21 23:50:04 +00003693// Care is required to keep this code up to date with respect to the routine
3694// above, depends().
Sebastian Pop59b61b92012-10-11 07:32:34 +00003695//
3696// Generally, the dependence analyzer will be used to build
3697// a dependence graph for a function (basically a map from instructions
3698// to dependences). Looking for cycles in the graph shows us loops
3699// that cannot be trivially vectorized/parallelized.
3700//
3701// We can try to improve the situation by examining all the dependences
3702// that make up the cycle, looking for ones we can break.
3703// Sometimes, peeling the first or last iteration of a loop will break
3704// dependences, and we've got flags for those possibilities.
3705// Sometimes, splitting a loop at some other iteration will do the trick,
3706// and we've got a flag for that case. Rather than waste the space to
3707// record the exact iteration (since we rarely know), we provide
3708// a method that calculates the iteration. It's a drag that it must work
3709// from scratch, but wonderful in that it's possible.
3710//
3711// Here's an example:
3712//
3713// for (i = 0; i < 10; i++)
3714// A[i] = ...
3715// ... = A[11 - i]
3716//
3717// There's a loop-carried flow dependence from the store to the load,
3718// found by the weak-crossing SIV test. The dependence will have a flag,
3719// indicating that the dependence can be broken by splitting the loop.
3720// Calling getSplitIteration will return 5.
3721// Splitting the loop breaks the dependence, like so:
3722//
3723// for (i = 0; i <= 5; i++)
3724// A[i] = ...
3725// ... = A[11 - i]
3726// for (i = 6; i < 10; i++)
3727// A[i] = ...
3728// ... = A[11 - i]
3729//
3730// breaks the dependence and allows us to vectorize/parallelize
3731// both loops.
Dylan Noblesmithd96ce662014-08-25 00:28:35 +00003732const SCEV *DependenceAnalysis::getSplitIteration(const Dependence &Dep,
Sebastian Pop59b61b92012-10-11 07:32:34 +00003733 unsigned SplitLevel) {
Dylan Noblesmithd96ce662014-08-25 00:28:35 +00003734 assert(Dep.isSplitable(SplitLevel) &&
Sebastian Pop59b61b92012-10-11 07:32:34 +00003735 "Dep should be splitable at SplitLevel");
Dylan Noblesmithd96ce662014-08-25 00:28:35 +00003736 Instruction *Src = Dep.getSrc();
3737 Instruction *Dst = Dep.getDst();
Sebastian Pop59b61b92012-10-11 07:32:34 +00003738 assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3739 assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3740 assert(isLoadOrStore(Src));
3741 assert(isLoadOrStore(Dst));
Preston Briggs3ad39492012-11-21 23:50:04 +00003742 Value *SrcPtr = getPointerOperand(Src);
3743 Value *DstPtr = getPointerOperand(Dst);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003744 assert(underlyingObjectsAlias(AA, DstPtr, SrcPtr) ==
3745 AliasAnalysis::MustAlias);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003746
3747 // establish loop nesting levels
3748 establishNestingLevels(Src, Dst);
3749
3750 FullDependence Result(Src, Dst, false, CommonLevels);
3751
Preston Briggs3ad39492012-11-21 23:50:04 +00003752 // See if there are GEPs we can use.
3753 bool UsefulGEP = false;
3754 GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3755 GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3756 if (SrcGEP && DstGEP &&
3757 SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
3758 const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
3759 const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
3760 UsefulGEP =
3761 isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
3762 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent()));
Sebastian Pop59b61b92012-10-11 07:32:34 +00003763 }
Preston Briggs3ad39492012-11-21 23:50:04 +00003764 unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3765 SmallVector<Subscript, 4> Pair(Pairs);
3766 if (UsefulGEP) {
3767 unsigned P = 0;
3768 for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3769 SrcEnd = SrcGEP->idx_end(),
3770 DstIdx = DstGEP->idx_begin();
3771 SrcIdx != SrcEnd;
3772 ++SrcIdx, ++DstIdx, ++P) {
3773 Pair[P].Src = SE->getSCEV(*SrcIdx);
3774 Pair[P].Dst = SE->getSCEV(*DstIdx);
3775 }
3776 }
3777 else {
3778 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3779 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3780 Pair[0].Src = SrcSCEV;
3781 Pair[0].Dst = DstSCEV;
3782 }
3783
Sebastian Popc62c6792013-11-12 22:47:20 +00003784 if (Delinearize && Pairs == 1 && CommonLevels > 1 &&
Sebastian Popa6e58602014-05-27 22:41:45 +00003785 tryDelinearize(Pair[0].Src, Pair[0].Dst, Pair, SE->getElementSize(Src))) {
Sebastian Popc62c6792013-11-12 22:47:20 +00003786 DEBUG(dbgs() << " delinerized GEP\n");
3787 Pairs = Pair.size();
3788 }
3789
Preston Briggs3ad39492012-11-21 23:50:04 +00003790 for (unsigned P = 0; P < Pairs; ++P) {
3791 Pair[P].Loops.resize(MaxLevels + 1);
3792 Pair[P].GroupLoops.resize(MaxLevels + 1);
3793 Pair[P].Group.resize(Pairs);
3794 removeMatchingExtensions(&Pair[P]);
3795 Pair[P].Classification =
3796 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3797 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3798 Pair[P].Loops);
3799 Pair[P].GroupLoops = Pair[P].Loops;
3800 Pair[P].Group.set(P);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003801 }
3802
3803 SmallBitVector Separable(Pairs);
3804 SmallBitVector Coupled(Pairs);
3805
3806 // partition subscripts into separable and minimally-coupled groups
3807 for (unsigned SI = 0; SI < Pairs; ++SI) {
3808 if (Pair[SI].Classification == Subscript::NonLinear) {
3809 // ignore these, but collect loops for later
3810 collectCommonLoops(Pair[SI].Src,
3811 LI->getLoopFor(Src->getParent()),
3812 Pair[SI].Loops);
3813 collectCommonLoops(Pair[SI].Dst,
3814 LI->getLoopFor(Dst->getParent()),
3815 Pair[SI].Loops);
3816 Result.Consistent = false;
3817 }
3818 else if (Pair[SI].Classification == Subscript::ZIV)
3819 Separable.set(SI);
3820 else {
3821 // SIV, RDIV, or MIV, so check for coupled group
3822 bool Done = true;
3823 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3824 SmallBitVector Intersection = Pair[SI].GroupLoops;
3825 Intersection &= Pair[SJ].GroupLoops;
3826 if (Intersection.any()) {
3827 // accumulate set of all the loops in group
3828 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3829 // accumulate set of all subscripts in group
3830 Pair[SJ].Group |= Pair[SI].Group;
3831 Done = false;
3832 }
3833 }
3834 if (Done) {
3835 if (Pair[SI].Group.count() == 1)
3836 Separable.set(SI);
3837 else
3838 Coupled.set(SI);
3839 }
3840 }
3841 }
3842
3843 Constraint NewConstraint;
3844 NewConstraint.setAny(SE);
3845
3846 // test separable subscripts
3847 for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3848 switch (Pair[SI].Classification) {
3849 case Subscript::SIV: {
3850 unsigned Level;
Craig Topper9f008862014-04-15 04:59:12 +00003851 const SCEV *SplitIter = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003852 (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3853 Result, NewConstraint, SplitIter);
3854 if (Level == SplitLevel) {
Craig Topper9f008862014-04-15 04:59:12 +00003855 assert(SplitIter != nullptr);
Sebastian Pop59b61b92012-10-11 07:32:34 +00003856 return SplitIter;
3857 }
3858 break;
3859 }
3860 case Subscript::ZIV:
3861 case Subscript::RDIV:
3862 case Subscript::MIV:
3863 break;
3864 default:
3865 llvm_unreachable("subscript has unexpected classification");
3866 }
3867 }
3868
3869 if (Coupled.count()) {
3870 // test coupled subscript groups
3871 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3872 for (unsigned II = 0; II <= MaxLevels; ++II)
3873 Constraints[II].setAny(SE);
3874 for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3875 SmallBitVector Group(Pair[SI].Group);
3876 SmallBitVector Sivs(Pairs);
3877 SmallBitVector Mivs(Pairs);
3878 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3879 for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3880 if (Pair[SJ].Classification == Subscript::SIV)
3881 Sivs.set(SJ);
3882 else
3883 Mivs.set(SJ);
3884 }
3885 while (Sivs.any()) {
3886 bool Changed = false;
3887 for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3888 // SJ is an SIV subscript that's part of the current coupled group
3889 unsigned Level;
Craig Topper9f008862014-04-15 04:59:12 +00003890 const SCEV *SplitIter = nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003891 (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3892 Result, NewConstraint, SplitIter);
3893 if (Level == SplitLevel && SplitIter)
3894 return SplitIter;
3895 ConstrainedLevels.set(Level);
3896 if (intersectConstraints(&Constraints[Level], &NewConstraint))
3897 Changed = true;
3898 Sivs.reset(SJ);
3899 }
3900 if (Changed) {
3901 // propagate, possibly creating new SIVs and ZIVs
3902 for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3903 // SJ is an MIV subscript that's part of the current coupled group
3904 if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
3905 Pair[SJ].Loops, Constraints, Result.Consistent)) {
3906 Pair[SJ].Classification =
3907 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3908 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3909 Pair[SJ].Loops);
3910 switch (Pair[SJ].Classification) {
3911 case Subscript::ZIV:
3912 Mivs.reset(SJ);
3913 break;
3914 case Subscript::SIV:
3915 Sivs.set(SJ);
3916 Mivs.reset(SJ);
3917 break;
3918 case Subscript::RDIV:
3919 case Subscript::MIV:
3920 break;
3921 default:
3922 llvm_unreachable("bad subscript classification");
3923 }
3924 }
3925 }
3926 }
3927 }
3928 }
3929 }
3930 llvm_unreachable("somehow reached end of routine");
Craig Topper9f008862014-04-15 04:59:12 +00003931 return nullptr;
Sebastian Pop59b61b92012-10-11 07:32:34 +00003932}