blob: 0d8d67298125c855b6f7da3ff62631fdf5f282dc [file] [log] [blame]
Chris Lattner5fae0de2001-09-14 03:56:45 +00001//===-- SparcInternals.h - Header file for Sparc backend ---------*- C++ -*--=//
2//
3// This file defines stuff that is to be private to the Sparc backend, but is
4// shared among different portions of the backend.
5//
6//===----------------------------------------------------------------------===//
7
8#ifndef SPARC_INTERNALS_H
9#define SPARC_INTERNALS_H
10
Ruchira Sasankadfc6c882001-09-18 22:52:44 +000011
12#include "SparcRegClassInfo.h"
13#include "llvm/Target/TargetMachine.h"
14#include "llvm/Target/MachineInstrInfo.h"
15
Vikram S. Adve514180e2001-09-18 13:04:24 +000016#include "llvm/Target/MachineSchedInfo.h"
Ruchira Sasanka560b0ad2001-09-30 23:19:57 +000017#include "llvm/CodeGen/RegClass.h"
Chris Lattner5fae0de2001-09-14 03:56:45 +000018#include "llvm/Type.h"
Vikram S. Adve514180e2001-09-18 13:04:24 +000019
Chris Lattner8d44b992001-09-14 16:56:32 +000020#include <sys/types.h>
Chris Lattner5fae0de2001-09-14 03:56:45 +000021
Chris Lattnerf8464e42001-09-14 04:32:55 +000022class UltraSparc;
23
Chris Lattner5fae0de2001-09-14 03:56:45 +000024// OpCodeMask definitions for the Sparc V9
25//
26const OpCodeMask Immed = 0x00002000; // immed or reg operand?
27const OpCodeMask Annul = 0x20000000; // annul delay instr?
28const OpCodeMask PredictTaken = 0x00080000; // predict branch taken?
29
30
31enum SparcInstrSchedClass {
32 SPARC_NONE, /* Instructions with no scheduling restrictions */
33 SPARC_IEUN, /* Integer class that can use IEU0 or IEU1 */
34 SPARC_IEU0, /* Integer class IEU0 */
35 SPARC_IEU1, /* Integer class IEU1 */
36 SPARC_FPM, /* FP Multiply or Divide instructions */
37 SPARC_FPA, /* All other FP instructions */
38 SPARC_CTI, /* Control-transfer instructions */
39 SPARC_LD, /* Load instructions */
40 SPARC_ST, /* Store instructions */
41 SPARC_SINGLE, /* Instructions that must issue by themselves */
42
43 SPARC_INV, /* This should stay at the end for the next value */
44 SPARC_NUM_SCHED_CLASSES = SPARC_INV
45};
46
Chris Lattner5fae0de2001-09-14 03:56:45 +000047
48//---------------------------------------------------------------------------
49// enum SparcMachineOpCode.
50// const MachineInstrDescriptor SparcMachineInstrDesc[]
51//
52// Purpose:
53// Description of UltraSparc machine instructions.
54//
55//---------------------------------------------------------------------------
56
Chris Lattner5fae0de2001-09-14 03:56:45 +000057enum SparcMachineOpCode {
Chris Lattnere86a0232001-09-19 15:56:23 +000058#define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \
59 NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \
60 ENUM,
61#include "SparcInstr.def"
Chris Lattner5fae0de2001-09-14 03:56:45 +000062
Chris Lattner5fae0de2001-09-14 03:56:45 +000063 // End-of-array marker
64 INVALID_OPCODE,
65 NUM_REAL_OPCODES = RETURN+1, // number of valid opcodes
66 NUM_TOTAL_OPCODES = INVALID_OPCODE
67};
68
Chris Lattner5fae0de2001-09-14 03:56:45 +000069
Chris Lattnere86a0232001-09-19 15:56:23 +000070// Array of machine instruction descriptions...
71extern const MachineInstrDescriptor SparcMachineInstrDesc[];
Chris Lattner5fae0de2001-09-14 03:56:45 +000072
73
74//---------------------------------------------------------------------------
75// class UltraSparcInstrInfo
76//
77// Purpose:
78// Information about individual instructions.
79// Most information is stored in the SparcMachineInstrDesc array above.
80// Other information is computed on demand, and most such functions
81// default to member functions in base class MachineInstrInfo.
82//---------------------------------------------------------------------------
83
84class UltraSparcInstrInfo : public MachineInstrInfo {
85public:
86 /*ctor*/ UltraSparcInstrInfo();
87
88 virtual bool hasResultInterlock (MachineOpCode opCode)
89 {
90 // All UltraSPARC instructions have interlocks (note that delay slots
91 // are not considered here).
92 // However, instructions that use the result of an FCMP produce a
93 // 9-cycle stall if they are issued less than 3 cycles after the FCMP.
94 // Force the compiler to insert a software interlock (i.e., gap of
95 // 2 other groups, including NOPs if necessary).
96 return (opCode == FCMPS || opCode == FCMPD || opCode == FCMPQ);
97 }
98
Ruchira Sasanka560b0ad2001-09-30 23:19:57 +000099
100
101
102
Chris Lattner5fae0de2001-09-14 03:56:45 +0000103};
104
Ruchira Sasanka7d144a82001-09-15 00:30:44 +0000105
Chris Lattner5fae0de2001-09-14 03:56:45 +0000106
107class LiveRange;
Ruchira Sasanka7d144a82001-09-15 00:30:44 +0000108class UltraSparc;
109
Chris Lattner5fae0de2001-09-14 03:56:45 +0000110
Ruchira Sasankadfc6c882001-09-18 22:52:44 +0000111
Chris Lattner5fae0de2001-09-14 03:56:45 +0000112class UltraSparcRegInfo : public MachineRegInfo
113{
114
115 private:
Ruchira Sasanka7d144a82001-09-15 00:30:44 +0000116
Ruchira Sasanka560b0ad2001-09-30 23:19:57 +0000117 // The actual register classes in the Sparc
118
Ruchira Sasanka7d144a82001-09-15 00:30:44 +0000119 enum RegClassIDs {
120 IntRegClassID,
121 FloatRegClassID,
122 IntCCRegClassID,
123 FloatCCRegClassID
124 };
125
Ruchira Sasanka560b0ad2001-09-30 23:19:57 +0000126
127 // Type of registers available in Sparc. There can be several reg types
128 // in the same class. For instace, the float reg class has Single/Double
129 // types
130 enum RegTypes {
131 IntRegType,
132 FPSingleRegType,
133 FPDoubleRegType,
134 IntCCRegType,
135 FloatCCRegType
136 };
137
138
Ruchira Sasanka7d144a82001-09-15 00:30:44 +0000139 // WARNING: If the above enum order must be changed, also modify
140 // getRegisterClassOfValue method below since it assumes this particular
141 // order for efficiency.
142
Chris Lattner5fae0de2001-09-14 03:56:45 +0000143
144 // reverse pointer to get info about the ultra sparc machine
145 const UltraSparc *const UltraSparcInfo;
146
Ruchira Sasanka560b0ad2001-09-30 23:19:57 +0000147 // Both int and float rguments can be passed in 6 int regs -
148 // %o0 to %o5 (cannot be changed)
Chris Lattner5fae0de2001-09-14 03:56:45 +0000149 unsigned const NumOfIntArgRegs;
Chris Lattner5fae0de2001-09-14 03:56:45 +0000150 unsigned const NumOfFloatArgRegs;
Ruchira Sasanka5b8971f2001-10-16 01:23:19 +0000151 int const InvalidRegNum;
Chris Lattner5fae0de2001-09-14 03:56:45 +0000152
Ruchira Sasankadfc6c882001-09-18 22:52:44 +0000153 //void setCallArgColor(LiveRange *const LR, const unsigned RegNo) const;
154
155 void setCallOrRetArgCol(LiveRange *const LR, const unsigned RegNo,
156 const MachineInstr *MI,AddedInstrMapType &AIMap)const;
157
158 MachineInstr * getCopy2RegMI(const Value *SrcVal, const unsigned Reg,
159 unsigned RegClassID) const ;
160
Ruchira Sasanka086bf0f2001-10-15 16:25:28 +0000161
162 void suggestReg4RetAddr(const MachineInstr * RetMI,
163 LiveRangeInfo& LRI) const;
164
165 void suggestReg4CallAddr(const MachineInstr * CallMI) const;
166
167
Ruchira Sasanka560b0ad2001-09-30 23:19:57 +0000168 Value *getValue4ReturnAddr( const MachineInstr * MInst ) const ;
169
170 int getRegType(const LiveRange *const LR) const {
171
172 unsigned Typ;
173
174 switch( (LR->getRegClass())->getID() ) {
175
176 case IntRegClassID: return IntRegType;
177
178 case FloatRegClassID:
179 Typ = LR->getTypeID();
180 if( Typ == Type::FloatTyID )
181 return FPSingleRegType;
182 else if( Typ == Type::DoubleTyID )
183 return FPDoubleRegType;
184 else assert(0 && "Unknown type in FloatRegClass");
185
186 case IntCCRegClassID: return IntCCRegType;
187
188 case FloatCCRegClassID: return FloatCCRegType ;
189
190 default: assert( 0 && "Unknown reg class ID");
191
192 }
193
194 }
195
196 int getRegType(const Value *const Val) const {
197
198 unsigned Typ;
199
200 switch( getRegClassIDOfValue(Val) ) {
201
202 case IntRegClassID: return IntRegType;
203
204 case FloatRegClassID:
205 Typ = (Val->getType())->getPrimitiveID();
206 if( Typ == Type::FloatTyID )
207 return FPSingleRegType;
208 else if( Typ == Type::DoubleTyID )
209 return FPDoubleRegType;
210 else assert(0 && "Unknown type in FloatRegClass");
211
212 case IntCCRegClassID: return IntCCRegType;
213
214 case FloatCCRegClassID: return FloatCCRegType ;
215
216 default: assert( 0 && "Unknown reg class ID");
217
218 }
219
220 }
221
222
223
Ruchira Sasanka5b8971f2001-10-16 01:23:19 +0000224 // ***TODO: See this method is necessary
Ruchira Sasanka560b0ad2001-09-30 23:19:57 +0000225
226 MachineInstr * cpValue2RegMI(Value * Val, const unsigned DestReg,
227 const int RegType) const;
228
229
Chris Lattner5fae0de2001-09-14 03:56:45 +0000230 public:
231
Chris Lattner5fae0de2001-09-14 03:56:45 +0000232
Ruchira Sasankadfc6c882001-09-18 22:52:44 +0000233 UltraSparcRegInfo(const UltraSparc *const USI ) : UltraSparcInfo(USI),
234 NumOfIntArgRegs(6),
Ruchira Sasanka560b0ad2001-09-30 23:19:57 +0000235 NumOfFloatArgRegs(32),
236 InvalidRegNum(1000)
Ruchira Sasanka7d144a82001-09-15 00:30:44 +0000237 {
Chris Lattner5fae0de2001-09-14 03:56:45 +0000238 MachineRegClassArr.push_back( new SparcIntRegClass(IntRegClassID) );
239 MachineRegClassArr.push_back( new SparcFloatRegClass(FloatRegClassID) );
Ruchira Sasanka7d144a82001-09-15 00:30:44 +0000240 MachineRegClassArr.push_back( new SparcIntCCRegClass(IntCCRegClassID) );
241 MachineRegClassArr.push_back( new SparcFloatCCRegClass(FloatCCRegClassID));
Ruchira Sasankadfc6c882001-09-18 22:52:44 +0000242
Ruchira Sasanka560b0ad2001-09-30 23:19:57 +0000243 assert( SparcFloatRegOrder::StartOfNonVolatileRegs == 32 &&
244 "32 Float regs are used for float arg passing");
Chris Lattner5fae0de2001-09-14 03:56:45 +0000245 }
Ruchira Sasankadfc6c882001-09-18 22:52:44 +0000246
Ruchira Sasanka7d144a82001-09-15 00:30:44 +0000247 // ***** TODO Delete
248 ~UltraSparcRegInfo(void) { } // empty destructor
249
250
Chris Lattner5fae0de2001-09-14 03:56:45 +0000251 inline const UltraSparc & getUltraSparcInfo() const {
252 return *UltraSparcInfo;
253 }
254
Ruchira Sasankadfc6c882001-09-18 22:52:44 +0000255
Ruchira Sasanka7d144a82001-09-15 00:30:44 +0000256
257 inline unsigned getRegClassIDOfValue (const Value *const Val,
258 bool isCCReg = false) const {
259
Chris Lattner5fae0de2001-09-14 03:56:45 +0000260 Type::PrimitiveID ty = (Val->getType())->getPrimitiveID();
Ruchira Sasanka7d144a82001-09-15 00:30:44 +0000261
262 unsigned res;
Chris Lattner5fae0de2001-09-14 03:56:45 +0000263
Ruchira Sasanka560b0ad2001-09-30 23:19:57 +0000264 if( (ty && ty <= Type::LongTyID) || (ty == Type::LabelTyID) ||
265 (ty == Type::MethodTyID) || (ty == Type::PointerTyID) )
Ruchira Sasanka7d144a82001-09-15 00:30:44 +0000266 res = IntRegClassID; // sparc int reg (ty=0: void)
Chris Lattner5fae0de2001-09-14 03:56:45 +0000267 else if( ty <= Type::DoubleTyID)
Ruchira Sasanka7d144a82001-09-15 00:30:44 +0000268 res = FloatRegClassID; // sparc float reg class
Chris Lattner5fae0de2001-09-14 03:56:45 +0000269 else {
Chris Lattnerf3f1e452001-10-15 18:15:27 +0000270 cerr << "TypeID: " << ty << endl;
Chris Lattner5fae0de2001-09-14 03:56:45 +0000271 assert(0 && "Cannot resolve register class for type");
Chris Lattner5fae0de2001-09-14 03:56:45 +0000272 }
Ruchira Sasanka7d144a82001-09-15 00:30:44 +0000273
274 if(isCCReg)
275 return res + 2; // corresponidng condition code regiser
Ruchira Sasanka7d144a82001-09-15 00:30:44 +0000276 else
277 return res;
Chris Lattner5fae0de2001-09-14 03:56:45 +0000278 }
Ruchira Sasanka7d144a82001-09-15 00:30:44 +0000279
Ruchira Sasankadfc6c882001-09-18 22:52:44 +0000280 // returns the register tha contains always zero
Ruchira Sasanka560b0ad2001-09-30 23:19:57 +0000281 // this is the unified register number
Ruchira Sasankadfc6c882001-09-18 22:52:44 +0000282 inline int getZeroRegNum() const { return SparcIntRegOrder::g0; }
283
284 // returns the reg used for pushing the address when a method is called.
285 // This can be used for other purposes between calls
286 unsigned getCallAddressReg() const { return SparcIntRegOrder::o7; }
287
288
289 // and when we return from a method. It should be made sure that this
290 // register contains the return value when a return instruction is reached.
291 unsigned getReturnAddressReg() const { return SparcIntRegOrder::i7; }
292
Ruchira Sasanka560b0ad2001-09-30 23:19:57 +0000293 void suggestRegs4MethodArgs(const Method *const Meth,
294 LiveRangeInfo& LRI) const;
Chris Lattner5fae0de2001-09-14 03:56:45 +0000295
Ruchira Sasanka086bf0f2001-10-15 16:25:28 +0000296 void suggestRegs4CallArgs(const MachineInstr *const CallMI,
Ruchira Sasanka560b0ad2001-09-30 23:19:57 +0000297 LiveRangeInfo& LRI, vector<RegClass *> RCL) const;
Chris Lattner5fae0de2001-09-14 03:56:45 +0000298
Ruchira Sasanka086bf0f2001-10-15 16:25:28 +0000299 void suggestReg4RetValue(const MachineInstr *const RetMI,
300 LiveRangeInfo& LRI ) const;
Chris Lattner5fae0de2001-09-14 03:56:45 +0000301
Ruchira Sasankadfc6c882001-09-18 22:52:44 +0000302
Ruchira Sasanka560b0ad2001-09-30 23:19:57 +0000303 void colorMethodArgs(const Method *const Meth, LiveRangeInfo& LRI,
304 AddedInstrns *const FirstAI) const;
305
Ruchira Sasanka086bf0f2001-10-15 16:25:28 +0000306 void colorCallArgs(const MachineInstr *const CallMI, LiveRangeInfo& LRI,
Ruchira Sasanka560b0ad2001-09-30 23:19:57 +0000307 AddedInstrns *const CallAI) const;
308
Ruchira Sasanka086bf0f2001-10-15 16:25:28 +0000309 void colorRetValue(const MachineInstr *const RetI, LiveRangeInfo& LRI,
Ruchira Sasanka560b0ad2001-09-30 23:19:57 +0000310 AddedInstrns *const RetAI) const;
311
312
Ruchira Sasanka086bf0f2001-10-15 16:25:28 +0000313 // bool handleSpecialMInstr(const MachineInstr * MInst,
314 // LiveRangeInfo& LRI, vector<RegClass *> RCL) const;
Ruchira Sasanka560b0ad2001-09-30 23:19:57 +0000315
316
317 static void printReg(const LiveRange *const LR) ;
Ruchira Sasankadfc6c882001-09-18 22:52:44 +0000318
Chris Lattner5fae0de2001-09-14 03:56:45 +0000319 // this method provides a unique number for each register
320 inline int getUnifiedRegNum(int RegClassID, int reg) const {
321
322 if( RegClassID == IntRegClassID && reg < 32 )
323 return reg;
324 else if ( RegClassID == FloatRegClassID && reg < 64)
325 return reg + 32; // we have 32 int regs
Ruchira Sasanka7d144a82001-09-15 00:30:44 +0000326 else if( RegClassID == FloatCCRegClassID && reg < 4)
Chris Lattner5fae0de2001-09-14 03:56:45 +0000327 return reg + 32 + 64; // 32 int, 64 float
Ruchira Sasanka7d144a82001-09-15 00:30:44 +0000328 else if( RegClassID == IntCCRegClassID )
329 return 4+ 32 + 64; // only int cc reg
Ruchira Sasanka5b8971f2001-10-16 01:23:19 +0000330 else if (reg==InvalidRegNum)
331 return InvalidRegNum;
Ruchira Sasanka7d144a82001-09-15 00:30:44 +0000332 else
Chris Lattner5fae0de2001-09-14 03:56:45 +0000333 assert(0 && "Invalid register class or reg number");
334
335 }
336
337 // given the unified register number, this gives the name
338 inline const string getUnifiedRegName(int reg) const {
Chris Lattner5fae0de2001-09-14 03:56:45 +0000339 if( reg < 32 )
340 return SparcIntRegOrder::getRegName(reg);
341 else if ( reg < (64 + 32) )
342 return SparcFloatRegOrder::getRegName( reg - 32);
343 else if( reg < (64+32+4) )
Ruchira Sasanka7d144a82001-09-15 00:30:44 +0000344 return SparcFloatCCRegOrder::getRegName( reg -32 - 64);
345 else if ( reg == 64+32+4)
346 return "xcc"; // only integer cc reg
Ruchira Sasanka560b0ad2001-09-30 23:19:57 +0000347
Ruchira Sasanka5b8971f2001-10-16 01:23:19 +0000348 else if (reg== InvalidRegNum) //****** TODO: Remove
Ruchira Sasanka560b0ad2001-09-30 23:19:57 +0000349 return "<*NoReg*>";
Chris Lattner5fae0de2001-09-14 03:56:45 +0000350 else
351 assert(0 && "Invalid register number");
352 }
353
354
Ruchira Sasanka5b8971f2001-10-16 01:23:19 +0000355 MachineInstr * cpReg2RegMI(const unsigned SrcReg, const unsigned DestReg,
356 const int RegType) const;
357
358 MachineInstr * cpReg2MemMI(const unsigned SrcReg, const unsigned DestPtrReg,
359 const int Offset, const int RegType) const;
360
361 MachineInstr * cpMem2RegMI(const unsigned SrcPtrReg, const int Offset,
362 const unsigned DestReg, const int RegType) const;
363
364 inline bool isRegVolatile(const int RegClassID, const int Reg) const {
365 return (MachineRegClassArr[RegClassID])->isRegVolatile(Reg);
366 }
367
368
369 inline unsigned getFramePointer() const {
370 return SparcIntRegOrder::i6;
371 }
372
373 inline unsigned getStackPointer() const {
374 return SparcIntRegOrder::o6;
375 }
376
377 inline int getInvalidRegNum() const {
378 return InvalidRegNum;
379 }
380
Chris Lattner5fae0de2001-09-14 03:56:45 +0000381};
382
383
384
Chris Lattner5fae0de2001-09-14 03:56:45 +0000385/*---------------------------------------------------------------------------
386Scheduling guidelines for SPARC IIi:
387
388I-Cache alignment rules (pg 326)
389-- Align a branch target instruction so that it's entire group is within
390 the same cache line (may be 1-4 instructions).
391** Don't let a branch that is predicted taken be the last instruction
392 on an I-cache line: delay slot will need an entire line to be fetched
393-- Make a FP instruction or a branch be the 4th instruction in a group.
394 For branches, there are tradeoffs in reordering to make this happen
395 (see pg. 327).
396** Don't put a branch in a group that crosses a 32-byte boundary!
397 An artificial branch is inserted after every 32 bytes, and having
398 another branch will force the group to be broken into 2 groups.
399
400iTLB rules:
401-- Don't let a loop span two memory pages, if possible
402
403Branch prediction performance:
404-- Don't make the branch in a delay slot the target of a branch
405-- Try not to have 2 predicted branches within a group of 4 instructions
406 (because each such group has a single branch target field).
407-- Try to align branches in slots 0, 2, 4 or 6 of a cache line (to avoid
408 the wrong prediction bits being used in some cases).
409
410D-Cache timing constraints:
411-- Signed int loads of less than 64 bits have 3 cycle latency, not 2
412-- All other loads that hit in D-Cache have 2 cycle latency
413-- All loads are returned IN ORDER, so a D-Cache miss will delay a later hit
414-- Mis-aligned loads or stores cause a trap. In particular, replace
415 mis-aligned FP double precision l/s with 2 single-precision l/s.
416-- Simulations of integer codes show increase in avg. group size of
417 33% when code (including esp. non-faulting loads) is moved across
418 one branch, and 50% across 2 branches.
419
420E-Cache timing constraints:
421-- Scheduling for E-cache (D-Cache misses) is effective (due to load buffering)
422
423Store buffer timing constraints:
424-- Stores can be executed in same cycle as instruction producing the value
425-- Stores are buffered and have lower priority for E-cache until
426 highwater mark is reached in the store buffer (5 stores)
427
428Pipeline constraints:
429-- Shifts can only use IEU0.
430-- CC setting instructions can only use IEU1.
431-- Several other instructions must only use IEU1:
432 EDGE(?), ARRAY(?), CALL, JMPL, BPr, PST, and FCMP.
433-- Two instructions cannot store to the same register file in a single cycle
434 (single write port per file).
435
436Issue and grouping constraints:
437-- FP and branch instructions must use slot 4.
438-- Shift instructions cannot be grouped with other IEU0-specific instructions.
439-- CC setting instructions cannot be grouped with other IEU1-specific instrs.
440-- Several instructions must be issued in a single-instruction group:
441 MOVcc or MOVr, MULs/x and DIVs/x, SAVE/RESTORE, many others
442-- A CALL or JMPL breaks a group, ie, is not combined with subsequent instrs.
443--
444--
445
446Branch delay slot scheduling rules:
447-- A CTI couple (two back-to-back CTI instructions in the dynamic stream)
448 has a 9-instruction penalty: the entire pipeline is flushed when the
449 second instruction reaches stage 9 (W-Writeback).
450-- Avoid putting multicycle instructions, and instructions that may cause
451 load misses, in the delay slot of an annulling branch.
452-- Avoid putting WR, SAVE..., RESTORE and RETURN instructions in the
453 delay slot of an annulling branch.
454
455 *--------------------------------------------------------------------------- */
456
457//---------------------------------------------------------------------------
458// List of CPUResources for UltraSPARC IIi.
459//---------------------------------------------------------------------------
460
461const CPUResource AllIssueSlots( "All Instr Slots", 4);
462const CPUResource IntIssueSlots( "Int Instr Slots", 3);
463const CPUResource First3IssueSlots("Instr Slots 0-3", 3);
464const CPUResource LSIssueSlots( "Load-Store Instr Slot", 1);
465const CPUResource CTIIssueSlots( "Ctrl Transfer Instr Slot", 1);
466const CPUResource FPAIssueSlots( "Int Instr Slot 1", 1);
467const CPUResource FPMIssueSlots( "Int Instr Slot 1", 1);
468
469// IEUN instructions can use either Alu and should use IAluN.
470// IEU0 instructions must use Alu 1 and should use both IAluN and IAlu0.
471// IEU1 instructions must use Alu 2 and should use both IAluN and IAlu1.
472const CPUResource IAluN("Int ALU 1or2", 2);
473const CPUResource IAlu0("Int ALU 1", 1);
474const CPUResource IAlu1("Int ALU 2", 1);
475
476const CPUResource LSAluC1("Load/Store Unit Addr Cycle", 1);
477const CPUResource LSAluC2("Load/Store Unit Issue Cycle", 1);
478const CPUResource LdReturn("Load Return Unit", 1);
479
480const CPUResource FPMAluC1("FP Mul/Div Alu Cycle 1", 1);
481const CPUResource FPMAluC2("FP Mul/Div Alu Cycle 2", 1);
482const CPUResource FPMAluC3("FP Mul/Div Alu Cycle 3", 1);
483
484const CPUResource FPAAluC1("FP Other Alu Cycle 1", 1);
485const CPUResource FPAAluC2("FP Other Alu Cycle 2", 1);
486const CPUResource FPAAluC3("FP Other Alu Cycle 3", 1);
487
488const CPUResource IRegReadPorts("Int Reg ReadPorts", INT_MAX); // CHECK
489const CPUResource IRegWritePorts("Int Reg WritePorts", 2); // CHECK
490const CPUResource FPRegReadPorts("FP Reg Read Ports", INT_MAX); // CHECK
491const CPUResource FPRegWritePorts("FP Reg Write Ports", 1); // CHECK
492
493const CPUResource CTIDelayCycle( "CTI delay cycle", 1);
494const CPUResource FCMPDelayCycle("FCMP delay cycle", 1);
495
496
497//---------------------------------------------------------------------------
498// const InstrClassRUsage SparcRUsageDesc[]
499//
500// Purpose:
501// Resource usage information for instruction in each scheduling class.
502// The InstrRUsage Objects for individual classes are specified first.
503// Note that fetch and decode are decoupled from the execution pipelines
504// via an instr buffer, so they are not included in the cycles below.
505//---------------------------------------------------------------------------
506
507const InstrClassRUsage NoneClassRUsage = {
508 SPARC_NONE,
509 /*totCycles*/ 7,
510
511 /* maxIssueNum */ 4,
512 /* isSingleIssue */ false,
513 /* breaksGroup */ false,
514 /* numBubbles */ 0,
515
516 /*numSlots*/ 4,
517 /* feasibleSlots[] */ { 0, 1, 2, 3 },
518
519 /*numEntries*/ 0,
520 /* V[] */ {
521 /*Cycle G */
Ruchira Sasanka5b8971f2001-10-16 01:23:19 +0000522 /*Ccle E */
Chris Lattner5fae0de2001-09-14 03:56:45 +0000523 /*Cycle C */
524 /*Cycle N1*/
525 /*Cycle N1*/
526 /*Cycle N1*/
527 /*Cycle W */
528 }
529};
530
531const InstrClassRUsage IEUNClassRUsage = {
532 SPARC_IEUN,
533 /*totCycles*/ 7,
534
535 /* maxIssueNum */ 3,
536 /* isSingleIssue */ false,
537 /* breaksGroup */ false,
538 /* numBubbles */ 0,
539
540 /*numSlots*/ 3,
541 /* feasibleSlots[] */ { 0, 1, 2 },
542
543 /*numEntries*/ 4,
544 /* V[] */ {
545 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
546 { IntIssueSlots.rid, 0, 1 },
547 /*Cycle E */ { IAluN.rid, 1, 1 },
548 /*Cycle C */
549 /*Cycle N1*/
550 /*Cycle N1*/
551 /*Cycle N1*/
552 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
553 }
554};
555
556const InstrClassRUsage IEU0ClassRUsage = {
557 SPARC_IEU0,
558 /*totCycles*/ 7,
559
560 /* maxIssueNum */ 1,
561 /* isSingleIssue */ false,
562 /* breaksGroup */ false,
563 /* numBubbles */ 0,
564
565 /*numSlots*/ 3,
566 /* feasibleSlots[] */ { 0, 1, 2 },
567
568 /*numEntries*/ 5,
569 /* V[] */ {
570 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
571 { IntIssueSlots.rid, 0, 1 },
572 /*Cycle E */ { IAluN.rid, 1, 1 },
573 { IAlu0.rid, 1, 1 },
574 /*Cycle C */
575 /*Cycle N1*/
576 /*Cycle N1*/
577 /*Cycle N1*/
578 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
579 }
580};
581
582const InstrClassRUsage IEU1ClassRUsage = {
583 SPARC_IEU1,
584 /*totCycles*/ 7,
585
586 /* maxIssueNum */ 1,
587 /* isSingleIssue */ false,
588 /* breaksGroup */ false,
589 /* numBubbles */ 0,
590
591 /*numSlots*/ 3,
592 /* feasibleSlots[] */ { 0, 1, 2 },
593
594 /*numEntries*/ 5,
595 /* V[] */ {
596 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
597 { IntIssueSlots.rid, 0, 1 },
598 /*Cycle E */ { IAluN.rid, 1, 1 },
599 { IAlu1.rid, 1, 1 },
600 /*Cycle C */
601 /*Cycle N1*/
602 /*Cycle N1*/
603 /*Cycle N1*/
604 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
605 }
606};
607
608const InstrClassRUsage FPMClassRUsage = {
609 SPARC_FPM,
610 /*totCycles*/ 7,
611
612 /* maxIssueNum */ 1,
613 /* isSingleIssue */ false,
614 /* breaksGroup */ false,
615 /* numBubbles */ 0,
616
617 /*numSlots*/ 4,
618 /* feasibleSlots[] */ { 0, 1, 2, 3 },
619
620 /*numEntries*/ 7,
621 /* V[] */ {
622 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
623 { FPMIssueSlots.rid, 0, 1 },
624 /*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
625 /*Cycle C */ { FPMAluC1.rid, 2, 1 },
626 /*Cycle N1*/ { FPMAluC2.rid, 3, 1 },
627 /*Cycle N1*/ { FPMAluC3.rid, 4, 1 },
628 /*Cycle N1*/
629 /*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
630 }
631};
632
633const InstrClassRUsage FPAClassRUsage = {
634 SPARC_FPA,
635 /*totCycles*/ 7,
636
637 /* maxIssueNum */ 1,
638 /* isSingleIssue */ false,
639 /* breaksGroup */ false,
640 /* numBubbles */ 0,
641
642 /*numSlots*/ 4,
643 /* feasibleSlots[] */ { 0, 1, 2, 3 },
644
645 /*numEntries*/ 7,
646 /* V[] */ {
647 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
648 { FPAIssueSlots.rid, 0, 1 },
649 /*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
650 /*Cycle C */ { FPAAluC1.rid, 2, 1 },
651 /*Cycle N1*/ { FPAAluC2.rid, 3, 1 },
652 /*Cycle N1*/ { FPAAluC3.rid, 4, 1 },
653 /*Cycle N1*/
654 /*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
655 }
656};
657
658const InstrClassRUsage LDClassRUsage = {
659 SPARC_LD,
660 /*totCycles*/ 7,
661
662 /* maxIssueNum */ 1,
663 /* isSingleIssue */ false,
664 /* breaksGroup */ false,
665 /* numBubbles */ 0,
666
667 /*numSlots*/ 3,
668 /* feasibleSlots[] */ { 0, 1, 2, },
669
670 /*numEntries*/ 6,
671 /* V[] */ {
672 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
673 { First3IssueSlots.rid, 0, 1 },
674 { LSIssueSlots.rid, 0, 1 },
675 /*Cycle E */ { LSAluC1.rid, 1, 1 },
676 /*Cycle C */ { LSAluC2.rid, 2, 1 },
677 { LdReturn.rid, 2, 1 },
678 /*Cycle N1*/
679 /*Cycle N1*/
680 /*Cycle N1*/
681 /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
682 }
683};
684
685const InstrClassRUsage STClassRUsage = {
686 SPARC_ST,
687 /*totCycles*/ 7,
688
689 /* maxIssueNum */ 1,
690 /* isSingleIssue */ false,
691 /* breaksGroup */ false,
692 /* numBubbles */ 0,
693
694 /*numSlots*/ 3,
695 /* feasibleSlots[] */ { 0, 1, 2 },
696
697 /*numEntries*/ 4,
698 /* V[] */ {
699 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
700 { First3IssueSlots.rid, 0, 1 },
701 { LSIssueSlots.rid, 0, 1 },
702 /*Cycle E */ { LSAluC1.rid, 1, 1 },
703 /*Cycle C */ { LSAluC2.rid, 2, 1 }
704 /*Cycle N1*/
705 /*Cycle N1*/
706 /*Cycle N1*/
707 /*Cycle W */
708 }
709};
710
711const InstrClassRUsage CTIClassRUsage = {
712 SPARC_CTI,
713 /*totCycles*/ 7,
714
715 /* maxIssueNum */ 1,
716 /* isSingleIssue */ false,
717 /* breaksGroup */ false,
718 /* numBubbles */ 0,
719
720 /*numSlots*/ 4,
721 /* feasibleSlots[] */ { 0, 1, 2, 3 },
722
723 /*numEntries*/ 4,
724 /* V[] */ {
725 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
726 { CTIIssueSlots.rid, 0, 1 },
727 /*Cycle E */ { IAlu0.rid, 1, 1 },
728 /*Cycles E-C */ { CTIDelayCycle.rid, 1, 2 }
729 /*Cycle C */
730 /*Cycle N1*/
731 /*Cycle N1*/
732 /*Cycle N1*/
733 /*Cycle W */
734 }
735};
736
737const InstrClassRUsage SingleClassRUsage = {
738 SPARC_SINGLE,
739 /*totCycles*/ 7,
740
741 /* maxIssueNum */ 1,
742 /* isSingleIssue */ true,
743 /* breaksGroup */ false,
744 /* numBubbles */ 0,
745
746 /*numSlots*/ 1,
747 /* feasibleSlots[] */ { 0 },
748
749 /*numEntries*/ 5,
750 /* V[] */ {
751 /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
752 { AllIssueSlots.rid, 0, 1 },
753 { AllIssueSlots.rid, 0, 1 },
754 { AllIssueSlots.rid, 0, 1 },
755 /*Cycle E */ { IAlu0.rid, 1, 1 }
756 /*Cycle C */
757 /*Cycle N1*/
758 /*Cycle N1*/
759 /*Cycle N1*/
760 /*Cycle W */
761 }
762};
763
764
765const InstrClassRUsage SparcRUsageDesc[] = {
766 NoneClassRUsage,
767 IEUNClassRUsage,
768 IEU0ClassRUsage,
769 IEU1ClassRUsage,
770 FPMClassRUsage,
771 FPAClassRUsage,
772 CTIClassRUsage,
773 LDClassRUsage,
774 STClassRUsage,
775 SingleClassRUsage
776};
777
778
779//---------------------------------------------------------------------------
780// const InstrIssueDelta SparcInstrIssueDeltas[]
781//
782// Purpose:
783// Changes to issue restrictions information in InstrClassRUsage for
784// instructions that differ from other instructions in their class.
785//---------------------------------------------------------------------------
786
787const InstrIssueDelta SparcInstrIssueDeltas[] = {
788
789 // opCode, isSingleIssue, breaksGroup, numBubbles
790
791 // Special cases for single-issue only
792 // Other single issue cases are below.
793//{ LDDA, true, true, 0 },
794//{ STDA, true, true, 0 },
795//{ LDDF, true, true, 0 },
796//{ LDDFA, true, true, 0 },
797 { ADDC, true, true, 0 },
798 { ADDCcc, true, true, 0 },
799 { SUBC, true, true, 0 },
800 { SUBCcc, true, true, 0 },
801//{ SAVE, true, true, 0 },
802//{ RESTORE, true, true, 0 },
803//{ LDSTUB, true, true, 0 },
804//{ SWAP, true, true, 0 },
805//{ SWAPA, true, true, 0 },
806//{ CAS, true, true, 0 },
807//{ CASA, true, true, 0 },
808//{ CASX, true, true, 0 },
809//{ CASXA, true, true, 0 },
810//{ LDFSR, true, true, 0 },
811//{ LDFSRA, true, true, 0 },
812//{ LDXFSR, true, true, 0 },
813//{ LDXFSRA, true, true, 0 },
814//{ STFSR, true, true, 0 },
815//{ STFSRA, true, true, 0 },
816//{ STXFSR, true, true, 0 },
817//{ STXFSRA, true, true, 0 },
818//{ SAVED, true, true, 0 },
819//{ RESTORED, true, true, 0 },
820//{ FLUSH, true, true, 9 },
821//{ FLUSHW, true, true, 9 },
822//{ ALIGNADDR, true, true, 0 },
823 { RETURN, true, true, 0 },
824//{ DONE, true, true, 0 },
825//{ RETRY, true, true, 0 },
826//{ WR, true, true, 0 },
827//{ WRPR, true, true, 4 },
828//{ RD, true, true, 0 },
829//{ RDPR, true, true, 0 },
830//{ TCC, true, true, 0 },
831//{ SHUTDOWN, true, true, 0 },
832
833 // Special cases for breaking group *before*
834 // CURRENTLY NOT SUPPORTED!
835 { CALL, false, false, 0 },
836 { JMPL, false, false, 0 },
837
838 // Special cases for breaking the group *after*
839 { MULX, true, true, (4+34)/2 },
840 { FDIVS, false, true, 0 },
841 { FDIVD, false, true, 0 },
842 { FDIVQ, false, true, 0 },
843 { FSQRTS, false, true, 0 },
844 { FSQRTD, false, true, 0 },
845 { FSQRTQ, false, true, 0 },
846//{ FCMP{LE,GT,NE,EQ}, false, true, 0 },
847
848 // Instructions that introduce bubbles
849//{ MULScc, true, true, 2 },
850//{ SMULcc, true, true, (4+18)/2 },
851//{ UMULcc, true, true, (4+19)/2 },
852 { SDIVX, true, true, 68 },
853 { UDIVX, true, true, 68 },
854//{ SDIVcc, true, true, 36 },
855//{ UDIVcc, true, true, 37 },
856//{ WR, false, false, 4 },
857//{ WRPR, false, false, 4 },
858};
859
860
861//---------------------------------------------------------------------------
862// const InstrRUsageDelta SparcInstrUsageDeltas[]
863//
864// Purpose:
865// Changes to resource usage information in InstrClassRUsage for
866// instructions that differ from other instructions in their class.
867//---------------------------------------------------------------------------
868
869const InstrRUsageDelta SparcInstrUsageDeltas[] = {
870
871 // MachineOpCode, Resource, Start cycle, Num cycles
872
873 //
874 // JMPL counts as a load/store instruction for issue!
875 //
876 { JMPL, LSIssueSlots.rid, 0, 1 },
877
878 //
879 // Many instructions cannot issue for the next 2 cycles after an FCMP
880 // We model that with a fake resource FCMPDelayCycle.
881 //
882 { FCMPS, FCMPDelayCycle.rid, 1, 3 },
883 { FCMPD, FCMPDelayCycle.rid, 1, 3 },
884 { FCMPQ, FCMPDelayCycle.rid, 1, 3 },
885
886 { MULX, FCMPDelayCycle.rid, 1, 1 },
887 { SDIVX, FCMPDelayCycle.rid, 1, 1 },
888 { UDIVX, FCMPDelayCycle.rid, 1, 1 },
889//{ SMULcc, FCMPDelayCycle.rid, 1, 1 },
890//{ UMULcc, FCMPDelayCycle.rid, 1, 1 },
891//{ SDIVcc, FCMPDelayCycle.rid, 1, 1 },
892//{ UDIVcc, FCMPDelayCycle.rid, 1, 1 },
893 { STD, FCMPDelayCycle.rid, 1, 1 },
894 { FMOVRSZ, FCMPDelayCycle.rid, 1, 1 },
895 { FMOVRSLEZ,FCMPDelayCycle.rid, 1, 1 },
896 { FMOVRSLZ, FCMPDelayCycle.rid, 1, 1 },
897 { FMOVRSNZ, FCMPDelayCycle.rid, 1, 1 },
898 { FMOVRSGZ, FCMPDelayCycle.rid, 1, 1 },
899 { FMOVRSGEZ,FCMPDelayCycle.rid, 1, 1 },
900
901 //
902 // Some instructions are stalled in the GROUP stage if a CTI is in
903 // the E or C stage
904 //
905 { LDD, CTIDelayCycle.rid, 1, 1 },
906//{ LDDA, CTIDelayCycle.rid, 1, 1 },
907//{ LDDSTUB, CTIDelayCycle.rid, 1, 1 },
908//{ LDDSTUBA, CTIDelayCycle.rid, 1, 1 },
909//{ SWAP, CTIDelayCycle.rid, 1, 1 },
910//{ SWAPA, CTIDelayCycle.rid, 1, 1 },
911//{ CAS, CTIDelayCycle.rid, 1, 1 },
912//{ CASA, CTIDelayCycle.rid, 1, 1 },
913//{ CASX, CTIDelayCycle.rid, 1, 1 },
914//{ CASXA, CTIDelayCycle.rid, 1, 1 },
915
916 //
917 // Signed int loads of less than dword size return data in cycle N1 (not C)
918 // and put all loads in consecutive cycles into delayed load return mode.
919 //
920 { LDSB, LdReturn.rid, 2, -1 },
921 { LDSB, LdReturn.rid, 3, 1 },
922
923 { LDSH, LdReturn.rid, 2, -1 },
924 { LDSH, LdReturn.rid, 3, 1 },
925
926 { LDSW, LdReturn.rid, 2, -1 },
927 { LDSW, LdReturn.rid, 3, 1 },
928
929
930#undef EXPLICIT_BUBBLES_NEEDED
931#ifdef EXPLICIT_BUBBLES_NEEDED
932 //
933 // MULScc inserts one bubble.
934 // This means it breaks the current group (captured in UltraSparcSchedInfo)
935 // *and occupies all issue slots for the next cycle
936 //
937//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
938//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
939//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
940//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
941
942 //
943 // SMULcc inserts between 4 and 18 bubbles, depending on #leading 0s in rs1.
944 // We just model this with a simple average.
945 //
946//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
947//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
948//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
949//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
950
951 // SMULcc inserts between 4 and 19 bubbles, depending on #leading 0s in rs1.
952//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
953//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
954//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
955//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
956
957 //
958 // MULX inserts between 4 and 34 bubbles, depending on #leading 0s in rs1.
959 //
960 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
961 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
962 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
963 { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
964
965 //
966 // SDIVcc inserts 36 bubbles.
967 //
968//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
969//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
970//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
971//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
972
973 // UDIVcc inserts 37 bubbles.
974//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
975//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
976//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
977//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
978
979 //
980 // SDIVX inserts 68 bubbles.
981 //
982 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
983 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
984 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
985 { SDIVX, AllIssueSlots.rid, 2, 68-1 },
986
987 //
988 // UDIVX inserts 68 bubbles.
989 //
990 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
991 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
992 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
993 { UDIVX, AllIssueSlots.rid, 2, 68-1 },
994
995 //
996 // WR inserts 4 bubbles.
997 //
998//{ WR, AllIssueSlots.rid, 2, 68-1 },
999//{ WR, AllIssueSlots.rid, 2, 68-1 },
1000//{ WR, AllIssueSlots.rid, 2, 68-1 },
1001//{ WR, AllIssueSlots.rid, 2, 68-1 },
1002
1003 //
1004 // WRPR inserts 4 bubbles.
1005 //
1006//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1007//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1008//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1009//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
1010
1011 //
1012 // DONE inserts 9 bubbles.
1013 //
1014//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1015//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1016//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1017//{ DONE, AllIssueSlots.rid, 2, 9-1 },
1018
1019 //
1020 // RETRY inserts 9 bubbles.
1021 //
1022//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1023//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1024//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1025//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
1026
Chris Lattner8deb9e52001-10-13 06:54:54 +00001027#endif /*EXPLICIT_BUBBLES_NEEDED */
Chris Lattner5fae0de2001-09-14 03:56:45 +00001028};
1029
1030
1031
1032// Additional delays to be captured in code:
1033// 1. RDPR from several state registers (page 349)
1034// 2. RD from *any* register (page 349)
1035// 3. Writes to TICK, PSTATE, TL registers and FLUSH{W} instr (page 349)
1036// 4. Integer store can be in same group as instr producing value to store.
1037// 5. BICC and BPICC can be in the same group as instr producing CC (pg 350)
1038// 6. FMOVr cannot be in the same or next group as an IEU instr (pg 351).
1039// 7. The second instr. of a CTI group inserts 9 bubbles (pg 351)
1040// 8. WR{PR}, SVAE, SAVED, RESTORE, RESTORED, RETURN, RETRY, and DONE that
1041// follow an annulling branch cannot be issued in the same group or in
1042// the 3 groups following the branch.
1043// 9. A predicted annulled load does not stall dependent instructions.
1044// Other annulled delay slot instructions *do* stall dependents, so
1045// nothing special needs to be done for them during scheduling.
1046//10. Do not put a load use that may be annulled in the same group as the
1047// branch. The group will stall until the load returns.
1048//11. Single-prec. FP loads lock 2 registers, for dependency checking.
1049//
1050//
1051// Additional delays we cannot or will not capture:
1052// 1. If DCTI is last word of cache line, it is delayed until next line can be
1053// fetched. Also, other DCTI alignment-related delays (pg 352)
1054// 2. Load-after-store is delayed by 7 extra cycles if load hits in D-Cache.
1055// Also, several other store-load and load-store conflicts (pg 358)
1056// 3. MEMBAR, LD{X}FSR, LDD{A} and a bunch of other load stalls (pg 358)
1057// 4. There can be at most 8 outstanding buffered store instructions
1058// (including some others like MEMBAR, LDSTUB, CAS{AX}, and FLUSH)
1059
1060
1061
1062//---------------------------------------------------------------------------
1063// class UltraSparcSchedInfo
1064//
1065// Purpose:
1066// Interface to instruction scheduling information for UltraSPARC.
1067// The parameter values above are based on UltraSPARC IIi.
1068//---------------------------------------------------------------------------
1069
1070
1071class UltraSparcSchedInfo: public MachineSchedInfo {
1072public:
1073 /*ctor*/ UltraSparcSchedInfo (const MachineInstrInfo* mii);
1074 /*dtor*/ virtual ~UltraSparcSchedInfo () {}
1075protected:
1076 virtual void initializeResources ();
1077};
1078
Chris Lattnerf8464e42001-09-14 04:32:55 +00001079
1080//---------------------------------------------------------------------------
1081// class UltraSparcMachine
1082//
1083// Purpose:
1084// Primary interface to machine description for the UltraSPARC.
1085// Primarily just initializes machine-dependent parameters in
1086// class TargetMachine, and creates machine-dependent subclasses
Vikram S. Adve514180e2001-09-18 13:04:24 +00001087// for classes such as InstrInfo, SchedInfo and RegInfo.
Chris Lattnerf8464e42001-09-14 04:32:55 +00001088//---------------------------------------------------------------------------
1089
1090class UltraSparc : public TargetMachine {
Vikram S. Adve514180e2001-09-18 13:04:24 +00001091private:
1092 UltraSparcInstrInfo instrInfo;
1093 UltraSparcSchedInfo schedInfo;
1094 UltraSparcRegInfo regInfo;
Chris Lattnerf8464e42001-09-14 04:32:55 +00001095public:
1096 UltraSparc();
1097 virtual ~UltraSparc() {}
Vikram S. Adve514180e2001-09-18 13:04:24 +00001098
Chris Lattner518da4f2001-09-19 13:47:12 +00001099 virtual const MachineInstrInfo &getInstrInfo() const { return instrInfo; }
1100 virtual const MachineSchedInfo &getSchedInfo() const { return schedInfo; }
1101 virtual const MachineRegInfo &getRegInfo() const { return regInfo; }
Vikram S. Adve514180e2001-09-18 13:04:24 +00001102
Chris Lattnerf8464e42001-09-14 04:32:55 +00001103 // compileMethod - For the sparc, we do instruction selection, followed by
1104 // delay slot scheduling, then register allocation.
1105 //
1106 virtual bool compileMethod(Method *M);
Chris Lattner518da4f2001-09-19 13:47:12 +00001107
1108 //
1109 // emitAssembly - Output assembly language code (a .s file) for the specified
1110 // module. The specified module must have been compiled before this may be
1111 // used.
1112 //
Chris Lattner02b67132001-10-15 15:54:43 +00001113 virtual void emitAssembly(const Module *M, ostream &OutStr) const;
Chris Lattnerf8464e42001-09-14 04:32:55 +00001114};
1115
1116
Chris Lattner5fae0de2001-09-14 03:56:45 +00001117#endif