blob: 7100470a0407a9d868d98ae7e648610a1c01b615 [file] [log] [blame]
Tobias Grosser75805372011-04-29 06:27:02 +00001//===------ CodeGeneration.cpp - Code generate the Scops. -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The CodeGeneration pass takes a Scop created by ScopInfo and translates it
11// back to LLVM-IR using Cloog.
12//
13// The Scop describes the high level memory behaviour of a control flow region.
14// Transformation passes can update the schedule (execution order) of statements
15// in the Scop. Cloog is used to generate an abstract syntax tree (clast) that
16// reflects the updated execution order. This clast is used to create new
17// LLVM-IR that is computational equivalent to the original control flow region,
18// but executes its code in the new execution order defined by the changed
19// scattering.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "polly-codegen"
24
25#include "polly/LinkAllPasses.h"
26#include "polly/Support/GICHelper.h"
27#include "polly/Support/ScopHelper.h"
28#include "polly/Cloog.h"
29#include "polly/Dependences.h"
30#include "polly/ScopInfo.h"
31#include "polly/TempScopInfo.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/IRBuilder.h"
35#include "llvm/Analysis/LoopInfo.h"
36#include "llvm/Analysis/ScalarEvolutionExpander.h"
Tobias Grosser8c4cfc322011-05-14 19:01:49 +000037#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Tobias Grosser75805372011-04-29 06:27:02 +000038#include "llvm/Target/TargetData.h"
39#include "llvm/Module.h"
40#include "llvm/ADT/SetVector.h"
41
42#define CLOOG_INT_GMP 1
43#include "cloog/cloog.h"
44#include "cloog/isl/cloog.h"
45
46#include <vector>
47#include <utility>
48
49using namespace polly;
50using namespace llvm;
51
52struct isl_set;
53
54namespace polly {
55
56static cl::opt<bool>
57Vector("enable-polly-vector",
58 cl::desc("Enable polly vector code generation"), cl::Hidden,
59 cl::value_desc("Vector code generation enabled if true"),
60 cl::init(false));
61
62static cl::opt<bool>
63OpenMP("enable-polly-openmp",
64 cl::desc("Generate OpenMP parallel code"), cl::Hidden,
65 cl::value_desc("OpenMP code generation enabled if true"),
66 cl::init(false));
67
68static cl::opt<bool>
69AtLeastOnce("enable-polly-atLeastOnce",
70 cl::desc("Give polly the hint, that every loop is executed at least"
71 "once"), cl::Hidden,
72 cl::value_desc("OpenMP code generation enabled if true"),
73 cl::init(false));
74
75static cl::opt<bool>
76Aligned("enable-polly-aligned",
77 cl::desc("Assumed aligned memory accesses."), cl::Hidden,
78 cl::value_desc("OpenMP code generation enabled if true"),
79 cl::init(false));
80
Tobias Grosser75805372011-04-29 06:27:02 +000081typedef DenseMap<const Value*, Value*> ValueMapT;
82typedef DenseMap<const char*, Value*> CharMapT;
83typedef std::vector<ValueMapT> VectorValueMapT;
84
85// Create a new loop.
86//
87// @param Builder The builder used to create the loop. It also defines the
88// place where to create the loop.
89// @param UB The upper bound of the loop iv.
90// @param Stride The number by which the loop iv is incremented after every
91// iteration.
92static void createLoop(IRBuilder<> *Builder, Value *LB, Value *UB, APInt Stride,
93 PHINode*& IV, BasicBlock*& AfterBB, Value*& IncrementedIV,
94 DominatorTree *DT) {
95 Function *F = Builder->GetInsertBlock()->getParent();
96 LLVMContext &Context = F->getContext();
97
98 BasicBlock *PreheaderBB = Builder->GetInsertBlock();
99 BasicBlock *HeaderBB = BasicBlock::Create(Context, "polly.loop_header", F);
100 BasicBlock *BodyBB = BasicBlock::Create(Context, "polly.loop_body", F);
101 AfterBB = BasicBlock::Create(Context, "polly.after_loop", F);
102
103 Builder->CreateBr(HeaderBB);
104 DT->addNewBlock(HeaderBB, PreheaderBB);
105
106 Builder->SetInsertPoint(BodyBB);
107
108 Builder->SetInsertPoint(HeaderBB);
109
110 // Use the type of upper and lower bound.
111 assert(LB->getType() == UB->getType()
112 && "Different types for upper and lower bound.");
113
114 const IntegerType *LoopIVType = dyn_cast<IntegerType>(UB->getType());
115 assert(LoopIVType && "UB is not integer?");
116
117 // IV
118 IV = Builder->CreatePHI(LoopIVType, 2, "polly.loopiv");
119 IV->addIncoming(LB, PreheaderBB);
120
121 // IV increment.
122 Value *StrideValue = ConstantInt::get(LoopIVType,
123 Stride.zext(LoopIVType->getBitWidth()));
124 IncrementedIV = Builder->CreateAdd(IV, StrideValue, "polly.next_loopiv");
125
126 // Exit condition.
127 if (AtLeastOnce) { // At least on iteration.
128 UB = Builder->CreateAdd(UB, Builder->getInt64(1));
129 Value *CMP = Builder->CreateICmpEQ(IV, UB);
130 Builder->CreateCondBr(CMP, AfterBB, BodyBB);
131 } else { // Maybe not executed at all.
132 Value *CMP = Builder->CreateICmpSLE(IV, UB);
133 Builder->CreateCondBr(CMP, BodyBB, AfterBB);
134 }
135 DT->addNewBlock(BodyBB, HeaderBB);
136 DT->addNewBlock(AfterBB, HeaderBB);
137
138 Builder->SetInsertPoint(BodyBB);
139}
140
141class BlockGenerator {
142 IRBuilder<> &Builder;
143 ValueMapT &VMap;
144 VectorValueMapT &ValueMaps;
145 Scop &S;
146 ScopStmt &statement;
147 isl_set *scatteringDomain;
148
149public:
150 BlockGenerator(IRBuilder<> &B, ValueMapT &vmap, VectorValueMapT &vmaps,
151 ScopStmt &Stmt, isl_set *domain)
152 : Builder(B), VMap(vmap), ValueMaps(vmaps), S(*Stmt.getParent()),
153 statement(Stmt), scatteringDomain(domain) {}
154
155 const Region &getRegion() {
156 return S.getRegion();
157 }
158
159 Value* makeVectorOperand(Value *operand, int vectorWidth) {
160 if (operand->getType()->isVectorTy())
161 return operand;
162
163 VectorType *vectorType = VectorType::get(operand->getType(), vectorWidth);
164 Value *vector = UndefValue::get(vectorType);
165 vector = Builder.CreateInsertElement(vector, operand, Builder.getInt32(0));
166
167 std::vector<Constant*> splat;
168
169 for (int i = 0; i < vectorWidth; i++)
170 splat.push_back (Builder.getInt32(0));
171
172 Constant *splatVector = ConstantVector::get(splat);
173
174 return Builder.CreateShuffleVector(vector, vector, splatVector);
175 }
176
177 Value* getOperand(const Value *OldOperand, ValueMapT &BBMap,
178 ValueMapT *VectorMap = 0) {
179 const Instruction *OpInst = dyn_cast<Instruction>(OldOperand);
180
181 if (!OpInst)
182 return const_cast<Value*>(OldOperand);
183
184 if (VectorMap && VectorMap->count(OldOperand))
185 return (*VectorMap)[OldOperand];
186
187 // IVS and Parameters.
188 if (VMap.count(OldOperand)) {
189 Value *NewOperand = VMap[OldOperand];
190
191 // Insert a cast if types are different
192 if (OldOperand->getType()->getScalarSizeInBits()
193 < NewOperand->getType()->getScalarSizeInBits())
194 NewOperand = Builder.CreateTruncOrBitCast(NewOperand,
195 OldOperand->getType());
196
197 return NewOperand;
198 }
199
200 // Instructions calculated in the current BB.
201 if (BBMap.count(OldOperand)) {
202 return BBMap[OldOperand];
203 }
204
205 // Ignore instructions that are referencing ops in the old BB. These
206 // instructions are unused. They where replace by new ones during
207 // createIndependentBlocks().
208 if (getRegion().contains(OpInst->getParent()))
209 return NULL;
210
211 return const_cast<Value*>(OldOperand);
212 }
213
214 const Type *getVectorPtrTy(const Value *V, int vectorWidth) {
215 const PointerType *pointerType = dyn_cast<PointerType>(V->getType());
216 assert(pointerType && "PointerType expected");
217
218 const Type *scalarType = pointerType->getElementType();
219 VectorType *vectorType = VectorType::get(scalarType, vectorWidth);
220
221 return PointerType::getUnqual(vectorType);
222 }
223
224 /// @brief Load a vector from a set of adjacent scalars
225 ///
226 /// In case a set of scalars is known to be next to each other in memory,
227 /// create a vector load that loads those scalars
228 ///
229 /// %vector_ptr= bitcast double* %p to <4 x double>*
230 /// %vec_full = load <4 x double>* %vector_ptr
231 ///
232 Value *generateStrideOneLoad(const LoadInst *load, ValueMapT &BBMap,
233 int size) {
234 const Value *pointer = load->getPointerOperand();
235 const Type *vectorPtrType = getVectorPtrTy(pointer, size);
236 Value *newPointer = getOperand(pointer, BBMap);
237 Value *VectorPtr = Builder.CreateBitCast(newPointer, vectorPtrType,
238 "vector_ptr");
239 LoadInst *VecLoad = Builder.CreateLoad(VectorPtr,
240 load->getNameStr()
241 + "_p_vec_full");
242 if (!Aligned)
243 VecLoad->setAlignment(8);
244
245 return VecLoad;
246 }
247
248 /// @brief Load a vector initialized from a single scalar in memory
249 ///
250 /// In case all elements of a vector are initialized to the same
251 /// scalar value, this value is loaded and shuffeled into all elements
252 /// of the vector.
253 ///
254 /// %splat_one = load <1 x double>* %p
255 /// %splat = shufflevector <1 x double> %splat_one, <1 x
256 /// double> %splat_one, <4 x i32> zeroinitializer
257 ///
258 Value *generateStrideZeroLoad(const LoadInst *load, ValueMapT &BBMap,
259 int size) {
260 const Value *pointer = load->getPointerOperand();
261 const Type *vectorPtrType = getVectorPtrTy(pointer, 1);
262 Value *newPointer = getOperand(pointer, BBMap);
263 Value *vectorPtr = Builder.CreateBitCast(newPointer, vectorPtrType,
264 load->getNameStr() + "_p_vec_p");
265 LoadInst *scalarLoad= Builder.CreateLoad(vectorPtr,
266 load->getNameStr() + "_p_splat_one");
267
268 if (!Aligned)
269 scalarLoad->setAlignment(8);
270
271 std::vector<Constant*> splat;
272
273 for (int i = 0; i < size; i++)
274 splat.push_back (Builder.getInt32(0));
275
276 Constant *splatVector = ConstantVector::get(splat);
277
278 Value *vectorLoad = Builder.CreateShuffleVector(scalarLoad, scalarLoad,
279 splatVector,
280 load->getNameStr()
281 + "_p_splat");
282 return vectorLoad;
283 }
284
285 /// @Load a vector from scalars distributed in memory
286 ///
287 /// In case some scalars a distributed randomly in memory. Create a vector
288 /// by loading each scalar and by inserting one after the other into the
289 /// vector.
290 ///
291 /// %scalar_1= load double* %p_1
292 /// %vec_1 = insertelement <2 x double> undef, double %scalar_1, i32 0
293 /// %scalar 2 = load double* %p_2
294 /// %vec_2 = insertelement <2 x double> %vec_1, double %scalar_1, i32 1
295 ///
296 Value *generateUnknownStrideLoad(const LoadInst *load,
297 VectorValueMapT &scalarMaps,
298 int size) {
299 const Value *pointer = load->getPointerOperand();
300 VectorType *vectorType = VectorType::get(
301 dyn_cast<PointerType>(pointer->getType())->getElementType(), size);
302
303 Value *vector = UndefValue::get(vectorType);
304
305 for (int i = 0; i < size; i++) {
306 Value *newPointer = getOperand(pointer, scalarMaps[i]);
307 Value *scalarLoad = Builder.CreateLoad(newPointer,
308 load->getNameStr() + "_p_scalar_");
309 vector = Builder.CreateInsertElement(vector, scalarLoad,
310 Builder.getInt32(i),
311 load->getNameStr() + "_p_vec_");
312 }
313
314 return vector;
315 }
316
317 Value *generateScalarLoad(const LoadInst *load, ValueMapT &BBMap) {
318 const Value *pointer = load->getPointerOperand();
319 Value *newPointer = getOperand(pointer, BBMap);
320 Value *scalarLoad = Builder.CreateLoad(newPointer,
321 load->getNameStr() + "_p_scalar_");
322 return scalarLoad;
323 }
324
325 /// @brief Load a value (or several values as a vector) from memory.
326 void generateLoad(const LoadInst *load, ValueMapT &vectorMap,
327 VectorValueMapT &scalarMaps, int vectorWidth) {
328
329 if (scalarMaps.size() == 1) {
330 scalarMaps[0][load] = generateScalarLoad(load, scalarMaps[0]);
331 return;
332 }
333
334 Value *newLoad;
335
336 MemoryAccess &Access = statement.getAccessFor(load);
337
338 assert(scatteringDomain && "No scattering domain available");
339
340 if (Access.isStrideZero(scatteringDomain))
341 newLoad = generateStrideZeroLoad(load, scalarMaps[0], vectorWidth);
342 else if (Access.isStrideOne(scatteringDomain))
343 newLoad = generateStrideOneLoad(load, scalarMaps[0], vectorWidth);
344 else
345 newLoad = generateUnknownStrideLoad(load, scalarMaps, vectorWidth);
346
347 vectorMap[load] = newLoad;
348 }
349
350 void copyInstruction(const Instruction *Inst, ValueMapT &BBMap,
351 ValueMapT &vectorMap, VectorValueMapT &scalarMaps,
352 int vectorDimension, int vectorWidth) {
353 // If this instruction is already in the vectorMap, a vector instruction
354 // was already issued, that calculates the values of all dimensions. No
355 // need to create any more instructions.
356 if (vectorMap.count(Inst))
357 return;
358
359 // Terminator instructions control the control flow. They are explicitally
360 // expressed in the clast and do not need to be copied.
361 if (Inst->isTerminator())
362 return;
363
364 if (const LoadInst *load = dyn_cast<LoadInst>(Inst)) {
365 generateLoad(load, vectorMap, scalarMaps, vectorWidth);
366 return;
367 }
368
369 if (const BinaryOperator *binaryInst = dyn_cast<BinaryOperator>(Inst)) {
370 Value *opZero = Inst->getOperand(0);
371 Value *opOne = Inst->getOperand(1);
372
373 // This is an old instruction that can be ignored.
374 if (!opZero && !opOne)
375 return;
376
377 bool isVectorOp = vectorMap.count(opZero) || vectorMap.count(opOne);
378
379 if (isVectorOp && vectorDimension > 0)
380 return;
381
382 Value *newOpZero, *newOpOne;
383 newOpZero = getOperand(opZero, BBMap, &vectorMap);
384 newOpOne = getOperand(opOne, BBMap, &vectorMap);
385
386
387 std::string name;
388 if (isVectorOp) {
389 newOpZero = makeVectorOperand(newOpZero, vectorWidth);
390 newOpOne = makeVectorOperand(newOpOne, vectorWidth);
391 name = Inst->getNameStr() + "p_vec";
392 } else
393 name = Inst->getNameStr() + "p_sca";
394
395 Value *newInst = Builder.CreateBinOp(binaryInst->getOpcode(), newOpZero,
396 newOpOne, name);
397 if (isVectorOp)
398 vectorMap[Inst] = newInst;
399 else
400 BBMap[Inst] = newInst;
401
402 return;
403 }
404
405 if (const StoreInst *store = dyn_cast<StoreInst>(Inst)) {
406 if (vectorMap.count(store->getValueOperand()) > 0) {
407
408 // We only need to generate one store if we are in vector mode.
409 if (vectorDimension > 0)
410 return;
411
412 MemoryAccess &Access = statement.getAccessFor(store);
413
414 assert(scatteringDomain && "No scattering domain available");
415
416 const Value *pointer = store->getPointerOperand();
417 Value *vector = getOperand(store->getValueOperand(), BBMap, &vectorMap);
418
419 if (Access.isStrideOne(scatteringDomain)) {
420 const Type *vectorPtrType = getVectorPtrTy(pointer, vectorWidth);
421 Value *newPointer = getOperand(pointer, BBMap, &vectorMap);
422
423 Value *VectorPtr = Builder.CreateBitCast(newPointer, vectorPtrType,
424 "vector_ptr");
425 StoreInst *Store = Builder.CreateStore(vector, VectorPtr);
426
427 if (!Aligned)
428 Store->setAlignment(8);
429 } else {
430 for (unsigned i = 0; i < scalarMaps.size(); i++) {
431 Value *scalar = Builder.CreateExtractElement(vector,
432 Builder.getInt32(i));
433 Value *newPointer = getOperand(pointer, scalarMaps[i]);
434 Builder.CreateStore(scalar, newPointer);
435 }
436 }
437
438 return;
439 }
440 }
441
442 Instruction *NewInst = Inst->clone();
443
444 // Copy the operands in temporary vector, as an in place update
445 // fails if an instruction is referencing the same operand twice.
446 std::vector<Value*> Operands(NewInst->op_begin(), NewInst->op_end());
447
448 // Replace old operands with the new ones.
449 for (std::vector<Value*>::iterator UI = Operands.begin(),
450 UE = Operands.end(); UI != UE; ++UI) {
451 Value *newOperand = getOperand(*UI, BBMap);
452
453 if (!newOperand) {
454 assert(!isa<StoreInst>(NewInst)
455 && "Store instructions are always needed!");
456 delete NewInst;
457 return;
458 }
459
460 NewInst->replaceUsesOfWith(*UI, newOperand);
461 }
462
463 Builder.Insert(NewInst);
464 BBMap[Inst] = NewInst;
465
466 if (!NewInst->getType()->isVoidTy())
467 NewInst->setName("p_" + Inst->getName());
468 }
469
470 int getVectorSize() {
471 return ValueMaps.size();
472 }
473
474 bool isVectorBlock() {
475 return getVectorSize() > 1;
476 }
477
478 // Insert a copy of a basic block in the newly generated code.
479 //
480 // @param Builder The builder used to insert the code. It also specifies
481 // where to insert the code.
482 // @param BB The basic block to copy
483 // @param VMap A map returning for any old value its new equivalent. This
484 // is used to update the operands of the statements.
485 // For new statements a relation old->new is inserted in this
486 // map.
487 void copyBB(BasicBlock *BB, DominatorTree *DT) {
488 Function *F = Builder.GetInsertBlock()->getParent();
489 LLVMContext &Context = F->getContext();
490 BasicBlock *CopyBB = BasicBlock::Create(Context,
491 "polly.stmt_" + BB->getNameStr(),
492 F);
493 Builder.CreateBr(CopyBB);
494 DT->addNewBlock(CopyBB, Builder.GetInsertBlock());
495 Builder.SetInsertPoint(CopyBB);
496
497 // Create two maps that store the mapping from the original instructions of
498 // the old basic block to their copies in the new basic block. Those maps
499 // are basic block local.
500 //
501 // As vector code generation is supported there is one map for scalar values
502 // and one for vector values.
503 //
504 // In case we just do scalar code generation, the vectorMap is not used and
505 // the scalarMap has just one dimension, which contains the mapping.
506 //
507 // In case vector code generation is done, an instruction may either appear
508 // in the vector map once (as it is calculating >vectorwidth< values at a
509 // time. Or (if the values are calculated using scalar operations), it
510 // appears once in every dimension of the scalarMap.
511 VectorValueMapT scalarBlockMap(getVectorSize());
512 ValueMapT vectorBlockMap;
513
514 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
515 II != IE; ++II)
516 for (int i = 0; i < getVectorSize(); i++) {
517 if (isVectorBlock())
518 VMap = ValueMaps[i];
519
520 copyInstruction(II, scalarBlockMap[i], vectorBlockMap,
521 scalarBlockMap, i, getVectorSize());
522 }
523 }
524};
525
526/// Class to generate LLVM-IR that calculates the value of a clast_expr.
527class ClastExpCodeGen {
528 IRBuilder<> &Builder;
529 const CharMapT *IVS;
530
531 Value *codegen(const clast_name *e, const Type *Ty) {
532 CharMapT::const_iterator I = IVS->find(e->name);
533
534 if (I != IVS->end())
535 return Builder.CreateSExtOrBitCast(I->second, Ty);
536 else
537 llvm_unreachable("Clast name not found");
538 }
539
540 Value *codegen(const clast_term *e, const Type *Ty) {
541 APInt a = APInt_from_MPZ(e->val);
542
543 Value *ConstOne = ConstantInt::get(Builder.getContext(), a);
544 ConstOne = Builder.CreateSExtOrBitCast(ConstOne, Ty);
545
546 if (e->var) {
547 Value *var = codegen(e->var, Ty);
548 return Builder.CreateMul(ConstOne, var);
549 }
550
551 return ConstOne;
552 }
553
554 Value *codegen(const clast_binary *e, const Type *Ty) {
555 Value *LHS = codegen(e->LHS, Ty);
556
557 APInt RHS_AP = APInt_from_MPZ(e->RHS);
558
559 Value *RHS = ConstantInt::get(Builder.getContext(), RHS_AP);
560 RHS = Builder.CreateSExtOrBitCast(RHS, Ty);
561
562 switch (e->type) {
563 case clast_bin_mod:
564 return Builder.CreateSRem(LHS, RHS);
565 case clast_bin_fdiv:
566 {
567 // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d
568 Value *One = ConstantInt::get(Builder.getInt1Ty(), 1);
569 Value *Zero = ConstantInt::get(Builder.getInt1Ty(), 0);
570 One = Builder.CreateZExtOrBitCast(One, Ty);
571 Zero = Builder.CreateZExtOrBitCast(Zero, Ty);
572 Value *Sum1 = Builder.CreateSub(LHS, RHS);
573 Value *Sum2 = Builder.CreateAdd(Sum1, One);
574 Value *isNegative = Builder.CreateICmpSLT(LHS, Zero);
575 Value *Dividend = Builder.CreateSelect(isNegative, Sum2, LHS);
576 return Builder.CreateSDiv(Dividend, RHS);
577 }
578 case clast_bin_cdiv:
579 {
580 // ceild(n,d) ((n < 0) ? n : (n + d - 1)) / d
581 Value *One = ConstantInt::get(Builder.getInt1Ty(), 1);
582 Value *Zero = ConstantInt::get(Builder.getInt1Ty(), 0);
583 One = Builder.CreateZExtOrBitCast(One, Ty);
584 Zero = Builder.CreateZExtOrBitCast(Zero, Ty);
585 Value *Sum1 = Builder.CreateAdd(LHS, RHS);
586 Value *Sum2 = Builder.CreateSub(Sum1, One);
587 Value *isNegative = Builder.CreateICmpSLT(LHS, Zero);
588 Value *Dividend = Builder.CreateSelect(isNegative, LHS, Sum2);
589 return Builder.CreateSDiv(Dividend, RHS);
590 }
591 case clast_bin_div:
592 return Builder.CreateSDiv(LHS, RHS);
593 default:
594 llvm_unreachable("Unknown clast binary expression type");
595 };
596 }
597
598 Value *codegen(const clast_reduction *r, const Type *Ty) {
599 assert(( r->type == clast_red_min
600 || r->type == clast_red_max
601 || r->type == clast_red_sum)
602 && "Clast reduction type not supported");
603 Value *old = codegen(r->elts[0], Ty);
604
605 for (int i=1; i < r->n; ++i) {
606 Value *exprValue = codegen(r->elts[i], Ty);
607
608 switch (r->type) {
609 case clast_red_min:
610 {
611 Value *cmp = Builder.CreateICmpSLT(old, exprValue);
612 old = Builder.CreateSelect(cmp, old, exprValue);
613 break;
614 }
615 case clast_red_max:
616 {
617 Value *cmp = Builder.CreateICmpSGT(old, exprValue);
618 old = Builder.CreateSelect(cmp, old, exprValue);
619 break;
620 }
621 case clast_red_sum:
622 old = Builder.CreateAdd(old, exprValue);
623 break;
624 default:
625 llvm_unreachable("Clast unknown reduction type");
626 }
627 }
628
629 return old;
630 }
631
632public:
633
634 // A generator for clast expressions.
635 //
636 // @param B The IRBuilder that defines where the code to calculate the
637 // clast expressions should be inserted.
638 // @param IVMAP A Map that translates strings describing the induction
639 // variables to the Values* that represent these variables
640 // on the LLVM side.
641 ClastExpCodeGen(IRBuilder<> &B, CharMapT *IVMap) : Builder(B), IVS(IVMap) {}
642
643 // Generates code to calculate a given clast expression.
644 //
645 // @param e The expression to calculate.
646 // @return The Value that holds the result.
647 Value *codegen(const clast_expr *e, const Type *Ty) {
648 switch(e->type) {
649 case clast_expr_name:
650 return codegen((const clast_name *)e, Ty);
651 case clast_expr_term:
652 return codegen((const clast_term *)e, Ty);
653 case clast_expr_bin:
654 return codegen((const clast_binary *)e, Ty);
655 case clast_expr_red:
656 return codegen((const clast_reduction *)e, Ty);
657 default:
658 llvm_unreachable("Unknown clast expression!");
659 }
660 }
661
662 // @brief Reset the CharMap.
663 //
664 // This function is called to reset the CharMap to new one, while generating
665 // OpenMP code.
666 void setIVS(CharMapT *IVSNew) {
667 IVS = IVSNew;
668 }
669
670};
671
672class ClastStmtCodeGen {
673 // The Scop we code generate.
674 Scop *S;
675 ScalarEvolution &SE;
Tobias Grosser75805372011-04-29 06:27:02 +0000676 DominatorTree *DT;
Hongbin Zheng94c5df12011-05-06 02:38:20 +0000677 ScopDetection *SD;
Tobias Grosser75805372011-04-29 06:27:02 +0000678 Dependences *DP;
679 TargetData *TD;
680
681 // The Builder specifies the current location to code generate at.
682 IRBuilder<> &Builder;
683
684 // Map the Values from the old code to their counterparts in the new code.
685 ValueMapT ValueMap;
686
687 // clastVars maps from the textual representation of a clast variable to its
688 // current *Value. clast variables are scheduling variables, original
689 // induction variables or parameters. They are used either in loop bounds or
690 // to define the statement instance that is executed.
691 //
692 // for (s = 0; s < n + 3; ++i)
693 // for (t = s; t < m; ++j)
694 // Stmt(i = s + 3 * m, j = t);
695 //
696 // {s,t,i,j,n,m} is the set of clast variables in this clast.
697 CharMapT *clastVars;
698
699 // Codegenerator for clast expressions.
700 ClastExpCodeGen ExpGen;
701
702 // Do we currently generate parallel code?
703 bool parallelCodeGeneration;
704
705 std::vector<std::string> parallelLoops;
706
707public:
708
709 const std::vector<std::string> &getParallelLoops() {
710 return parallelLoops;
711 }
712
713 protected:
714 void codegen(const clast_assignment *a) {
715 (*clastVars)[a->LHS] = ExpGen.codegen(a->RHS,
716 TD->getIntPtrType(Builder.getContext()));
717 }
718
719 void codegen(const clast_assignment *a, ScopStmt *Statement,
720 unsigned Dimension, int vectorDim,
721 std::vector<ValueMapT> *VectorVMap = 0) {
722 Value *RHS = ExpGen.codegen(a->RHS,
723 TD->getIntPtrType(Builder.getContext()));
724
725 assert(!a->LHS && "Statement assignments do not have left hand side");
726 const PHINode *PN;
727 PN = Statement->getInductionVariableForDimension(Dimension);
728 const Value *V = PN;
729
730 if (PN->getNumOperands() == 2)
731 V = *(PN->use_begin());
732
733 if (VectorVMap)
734 (*VectorVMap)[vectorDim][V] = RHS;
735
736 ValueMap[V] = RHS;
737 }
738
739 void codegenSubstitutions(const clast_stmt *Assignment,
740 ScopStmt *Statement, int vectorDim = 0,
741 std::vector<ValueMapT> *VectorVMap = 0) {
742 int Dimension = 0;
743
744 while (Assignment) {
745 assert(CLAST_STMT_IS_A(Assignment, stmt_ass)
746 && "Substitions are expected to be assignments");
747 codegen((const clast_assignment *)Assignment, Statement, Dimension,
748 vectorDim, VectorVMap);
749 Assignment = Assignment->next;
750 Dimension++;
751 }
752 }
753
754 void codegen(const clast_user_stmt *u, std::vector<Value*> *IVS = NULL,
755 const char *iterator = NULL, isl_set *scatteringDomain = 0) {
756 ScopStmt *Statement = (ScopStmt *)u->statement->usr;
757 BasicBlock *BB = Statement->getBasicBlock();
758
759 if (u->substitutions)
760 codegenSubstitutions(u->substitutions, Statement);
761
762 int vectorDimensions = IVS ? IVS->size() : 1;
763
764 VectorValueMapT VectorValueMap(vectorDimensions);
765
766 if (IVS) {
767 assert (u->substitutions && "Substitutions expected!");
768 int i = 0;
769 for (std::vector<Value*>::iterator II = IVS->begin(), IE = IVS->end();
770 II != IE; ++II) {
771 (*clastVars)[iterator] = *II;
772 codegenSubstitutions(u->substitutions, Statement, i, &VectorValueMap);
773 i++;
774 }
775 }
776
777 BlockGenerator Generator(Builder, ValueMap, VectorValueMap, *Statement,
778 scatteringDomain);
779 Generator.copyBB(BB, DT);
780 }
781
782 void codegen(const clast_block *b) {
783 if (b->body)
784 codegen(b->body);
785 }
786
787 /// @brief Create a classical sequential loop.
788 void codegenForSequential(const clast_for *f, Value *lowerBound = 0,
789 Value *upperBound = 0) {
790 APInt Stride = APInt_from_MPZ(f->stride);
791 PHINode *IV;
792 Value *IncrementedIV;
793 BasicBlock *AfterBB;
794 // The value of lowerbound and upperbound will be supplied, if this
795 // function is called while generating OpenMP code. Otherwise get
796 // the values.
797 assert(((lowerBound && upperBound) || (!lowerBound && !upperBound))
798 && "Either give both bounds or none");
799 if (lowerBound == 0 || upperBound == 0) {
800 lowerBound = ExpGen.codegen(f->LB,
801 TD->getIntPtrType(Builder.getContext()));
802 upperBound = ExpGen.codegen(f->UB,
803 TD->getIntPtrType(Builder.getContext()));
804 }
805 createLoop(&Builder, lowerBound, upperBound, Stride, IV, AfterBB,
806 IncrementedIV, DT);
807
808 // Add loop iv to symbols.
809 (*clastVars)[f->iterator] = IV;
810
811 if (f->body)
812 codegen(f->body);
813
814 // Loop is finished, so remove its iv from the live symbols.
815 clastVars->erase(f->iterator);
816
817 BasicBlock *HeaderBB = *pred_begin(AfterBB);
818 BasicBlock *LastBodyBB = Builder.GetInsertBlock();
819 Builder.CreateBr(HeaderBB);
820 IV->addIncoming(IncrementedIV, LastBodyBB);
821 Builder.SetInsertPoint(AfterBB);
822 }
823
Tobias Grosser75805372011-04-29 06:27:02 +0000824 /// @brief Add a new definition of an openmp subfunction.
825 Function* addOpenMPSubfunction(Module *M) {
826 Function *F = Builder.GetInsertBlock()->getParent();
827 const std::string &Name = F->getNameStr() + ".omp_subfn";
828
829 std::vector<const Type*> Arguments(1, Builder.getInt8PtrTy());
830 FunctionType *FT = FunctionType::get(Builder.getVoidTy(), Arguments, false);
831 Function *FN = Function::Create(FT, Function::InternalLinkage, Name, M);
Hongbin Zheng94c5df12011-05-06 02:38:20 +0000832 // Do not run any polly pass on the new function.
833 SD->markFunctionAsInvalid(FN);
Tobias Grosser75805372011-04-29 06:27:02 +0000834
835 Function::arg_iterator AI = FN->arg_begin();
836 AI->setName("omp.userContext");
837
838 return FN;
839 }
840
841 /// @brief Add values to the OpenMP structure.
842 ///
843 /// Create the subfunction structure and add the values from the list.
844 Value *addValuesToOpenMPStruct(SetVector<Value*> OMPDataVals,
845 Function *SubFunction) {
846 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
847 std::vector<const Type*> structMembers;
848
849 // Create the structure.
850 for (unsigned i = 0; i < OMPDataVals.size(); i++)
851 structMembers.push_back(OMPDataVals[i]->getType());
852
853 const std::string &Name = SubFunction->getNameStr() + ".omp.userContext";
854 StructType *structTy = StructType::get(Builder.getContext(),
855 structMembers);
856 M->addTypeName(Name, structTy);
857
858 // Store the values into the structure.
859 Value *structData = Builder.CreateAlloca(structTy, 0, "omp.userContext");
860 for (unsigned i = 0; i < OMPDataVals.size(); i++) {
861 Value *storeAddr = Builder.CreateStructGEP(structData, i);
862 Builder.CreateStore(OMPDataVals[i], storeAddr);
863 }
864
865 return structData;
866 }
867
868 /// @brief Create OpenMP structure values.
869 ///
870 /// Create a list of values that has to be stored into the subfuncition
871 /// structure.
872 SetVector<Value*> createOpenMPStructValues() {
873 SetVector<Value*> OMPDataVals;
874
875 // Push the clast variables available in the clastVars.
876 for (CharMapT::iterator I = clastVars->begin(), E = clastVars->end();
877 I != E; I++)
878 OMPDataVals.insert(I->second);
879
880 // Push the base addresses of memory references.
881 for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) {
882 ScopStmt *Stmt = *SI;
883 for (SmallVector<MemoryAccess*, 8>::iterator I = Stmt->memacc_begin(),
884 E = Stmt->memacc_end(); I != E; ++I) {
885 Value *BaseAddr = const_cast<Value*>((*I)->getBaseAddr());
886 OMPDataVals.insert((BaseAddr));
887 }
888 }
889
890 return OMPDataVals;
891 }
892
893 /// @brief Extract the values from the subfunction parameter.
894 ///
895 /// Extract the values from the subfunction parameter and update the clast
896 /// variables to point to the new values.
897 void extractValuesFromOpenMPStruct(CharMapT *clastVarsOMP,
898 SetVector<Value*> OMPDataVals,
899 Value *userContext) {
900 // Extract the clast variables.
901 unsigned i = 0;
902 for (CharMapT::iterator I = clastVars->begin(), E = clastVars->end();
903 I != E; I++) {
904 Value *loadAddr = Builder.CreateStructGEP(userContext, i);
905 (*clastVarsOMP)[I->first] = Builder.CreateLoad(loadAddr);
906 i++;
907 }
908
909 // Extract the base addresses of memory references.
910 for (unsigned j = i; j < OMPDataVals.size(); j++) {
911 Value *loadAddr = Builder.CreateStructGEP(userContext, j);
912 Value *baseAddr = OMPDataVals[j];
913 ValueMap[baseAddr] = Builder.CreateLoad(loadAddr);
914 }
915
916 }
917
918 /// @brief Add body to the subfunction.
919 void addOpenMPSubfunctionBody(Function *FN, const clast_for *f,
920 Value *structData,
921 SetVector<Value*> OMPDataVals) {
922 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
923 LLVMContext &Context = FN->getContext();
924 const IntegerType *intPtrTy = TD->getIntPtrType(Context);
925
926 // Store the previous basic block.
927 BasicBlock *PrevBB = Builder.GetInsertBlock();
928
929 // Create basic blocks.
930 BasicBlock *HeaderBB = BasicBlock::Create(Context, "omp.setup", FN);
931 BasicBlock *ExitBB = BasicBlock::Create(Context, "omp.exit", FN);
932 BasicBlock *checkNextBB = BasicBlock::Create(Context, "omp.checkNext", FN);
933 BasicBlock *loadIVBoundsBB = BasicBlock::Create(Context, "omp.loadIVBounds",
934 FN);
935
936 DT->addNewBlock(HeaderBB, PrevBB);
937 DT->addNewBlock(ExitBB, HeaderBB);
938 DT->addNewBlock(checkNextBB, HeaderBB);
939 DT->addNewBlock(loadIVBoundsBB, HeaderBB);
940
941 // Fill up basic block HeaderBB.
942 Builder.SetInsertPoint(HeaderBB);
943 Value *lowerBoundPtr = Builder.CreateAlloca(intPtrTy, 0,
944 "omp.lowerBoundPtr");
945 Value *upperBoundPtr = Builder.CreateAlloca(intPtrTy, 0,
946 "omp.upperBoundPtr");
947 Value *userContext = Builder.CreateBitCast(FN->arg_begin(),
948 structData->getType(),
949 "omp.userContext");
950
951 CharMapT clastVarsOMP;
952 extractValuesFromOpenMPStruct(&clastVarsOMP, OMPDataVals, userContext);
953
954 Builder.CreateBr(checkNextBB);
955
956 // Add code to check if another set of iterations will be executed.
957 Builder.SetInsertPoint(checkNextBB);
958 Function *runtimeNextFunction = M->getFunction("GOMP_loop_runtime_next");
959 Value *ret1 = Builder.CreateCall2(runtimeNextFunction,
960 lowerBoundPtr, upperBoundPtr);
961 Value *hasNextSchedule = Builder.CreateTrunc(ret1, Builder.getInt1Ty(),
962 "omp.hasNextScheduleBlock");
963 Builder.CreateCondBr(hasNextSchedule, loadIVBoundsBB, ExitBB);
964
965 // Add code to to load the iv bounds for this set of iterations.
966 Builder.SetInsertPoint(loadIVBoundsBB);
967 Value *lowerBound = Builder.CreateLoad(lowerBoundPtr, "omp.lowerBound");
968 Value *upperBound = Builder.CreateLoad(upperBoundPtr, "omp.upperBound");
969
970 // Subtract one as the upper bound provided by openmp is a < comparison
971 // whereas the codegenForSequential function creates a <= comparison.
972 upperBound = Builder.CreateSub(upperBound, ConstantInt::get(intPtrTy, 1),
973 "omp.upperBoundAdjusted");
974
975 // Use clastVarsOMP during code generation of the OpenMP subfunction.
976 CharMapT *oldClastVars = clastVars;
977 clastVars = &clastVarsOMP;
978 ExpGen.setIVS(&clastVarsOMP);
979
980 codegenForSequential(f, lowerBound, upperBound);
981
982 // Restore the old clastVars.
983 clastVars = oldClastVars;
984 ExpGen.setIVS(oldClastVars);
985
986 Builder.CreateBr(checkNextBB);
987
988 // Add code to terminate this openmp subfunction.
989 Builder.SetInsertPoint(ExitBB);
990 Function *endnowaitFunction = M->getFunction("GOMP_loop_end_nowait");
991 Builder.CreateCall(endnowaitFunction);
992 Builder.CreateRetVoid();
993
994 // Restore the builder back to previous basic block.
995 Builder.SetInsertPoint(PrevBB);
996 }
997
998 /// @brief Create an OpenMP parallel for loop.
999 ///
1000 /// This loop reflects a loop as if it would have been created by an OpenMP
1001 /// statement.
1002 void codegenForOpenMP(const clast_for *f) {
1003 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1004 const IntegerType *intPtrTy = TD->getIntPtrType(Builder.getContext());
1005
1006 Function *SubFunction = addOpenMPSubfunction(M);
1007 SetVector<Value*> OMPDataVals = createOpenMPStructValues();
1008 Value *structData = addValuesToOpenMPStruct(OMPDataVals, SubFunction);
1009
1010 addOpenMPSubfunctionBody(SubFunction, f, structData, OMPDataVals);
1011
1012 // Create call for GOMP_parallel_loop_runtime_start.
1013 Value *subfunctionParam = Builder.CreateBitCast(structData,
1014 Builder.getInt8PtrTy(),
1015 "omp_data");
1016
1017 Value *numberOfThreads = Builder.getInt32(0);
1018 Value *lowerBound = ExpGen.codegen(f->LB, intPtrTy);
1019 Value *upperBound = ExpGen.codegen(f->UB, intPtrTy);
1020
1021 // Add one as the upper bound provided by openmp is a < comparison
1022 // whereas the codegenForSequential function creates a <= comparison.
1023 upperBound = Builder.CreateAdd(upperBound, ConstantInt::get(intPtrTy, 1));
1024 APInt APStride = APInt_from_MPZ(f->stride);
1025 Value *stride = ConstantInt::get(intPtrTy,
1026 APStride.zext(intPtrTy->getBitWidth()));
1027
1028 SmallVector<Value *, 6> Arguments;
1029 Arguments.push_back(SubFunction);
1030 Arguments.push_back(subfunctionParam);
1031 Arguments.push_back(numberOfThreads);
1032 Arguments.push_back(lowerBound);
1033 Arguments.push_back(upperBound);
1034 Arguments.push_back(stride);
1035
1036 Function *parallelStartFunction =
1037 M->getFunction("GOMP_parallel_loop_runtime_start");
1038 Builder.CreateCall(parallelStartFunction, Arguments.begin(),
1039 Arguments.end());
1040
1041 // Create call to the subfunction.
1042 Builder.CreateCall(SubFunction, subfunctionParam);
1043
1044 // Create call for GOMP_parallel_end.
1045 Function *FN = M->getFunction("GOMP_parallel_end");
1046 Builder.CreateCall(FN);
1047 }
1048
1049 bool isInnermostLoop(const clast_for *f) {
1050 const clast_stmt *stmt = f->body;
1051
1052 while (stmt) {
1053 if (!CLAST_STMT_IS_A(stmt, stmt_user))
1054 return false;
1055
1056 stmt = stmt->next;
1057 }
1058
1059 return true;
1060 }
1061
1062 /// @brief Get the number of loop iterations for this loop.
1063 /// @param f The clast for loop to check.
1064 int getNumberOfIterations(const clast_for *f) {
1065 isl_set *loopDomain = isl_set_copy(isl_set_from_cloog_domain(f->domain));
1066 isl_set *tmp = isl_set_copy(loopDomain);
1067
1068 // Calculate a map similar to the identity map, but with the last input
1069 // and output dimension not related.
1070 // [i0, i1, i2, i3] -> [i0, i1, i2, o0]
1071 isl_dim *dim = isl_set_get_dim(loopDomain);
1072 dim = isl_dim_drop_outputs(dim, isl_set_n_dim(loopDomain) - 2, 1);
1073 dim = isl_dim_map_from_set(dim);
1074 isl_map *identity = isl_map_identity(dim);
1075 identity = isl_map_add_dims(identity, isl_dim_in, 1);
1076 identity = isl_map_add_dims(identity, isl_dim_out, 1);
1077
1078 isl_map *map = isl_map_from_domain_and_range(tmp, loopDomain);
1079 map = isl_map_intersect(map, identity);
1080
1081 isl_map *lexmax = isl_map_lexmax(isl_map_copy(map));
1082 isl_map *lexmin = isl_map_lexmin(isl_map_copy(map));
1083 isl_map *sub = isl_map_sum(lexmax, isl_map_neg(lexmin));
1084
1085 isl_set *elements = isl_map_range(sub);
1086
1087 if (!isl_set_is_singleton(elements))
1088 return -1;
1089
1090 isl_point *p = isl_set_sample_point(elements);
1091
1092 isl_int v;
1093 isl_int_init(v);
1094 isl_point_get_coordinate(p, isl_dim_set, isl_set_n_dim(loopDomain) - 1, &v);
1095 int numberIterations = isl_int_get_si(v);
1096 isl_int_clear(v);
1097
1098 return (numberIterations) / isl_int_get_si(f->stride) + 1;
1099 }
1100
1101 /// @brief Create vector instructions for this loop.
1102 void codegenForVector(const clast_for *f) {
1103 DEBUG(dbgs() << "Vectorizing loop '" << f->iterator << "'\n";);
1104 int vectorWidth = getNumberOfIterations(f);
1105
1106 Value *LB = ExpGen.codegen(f->LB,
1107 TD->getIntPtrType(Builder.getContext()));
1108
1109 APInt Stride = APInt_from_MPZ(f->stride);
1110 const IntegerType *LoopIVType = dyn_cast<IntegerType>(LB->getType());
1111 Stride = Stride.zext(LoopIVType->getBitWidth());
1112 Value *StrideValue = ConstantInt::get(LoopIVType, Stride);
1113
1114 std::vector<Value*> IVS(vectorWidth);
1115 IVS[0] = LB;
1116
1117 for (int i = 1; i < vectorWidth; i++)
1118 IVS[i] = Builder.CreateAdd(IVS[i-1], StrideValue, "p_vector_iv");
1119
1120 isl_set *scatteringDomain = isl_set_from_cloog_domain(f->domain);
1121
1122 // Add loop iv to symbols.
1123 (*clastVars)[f->iterator] = LB;
1124
1125 const clast_stmt *stmt = f->body;
1126
1127 while (stmt) {
1128 codegen((const clast_user_stmt *)stmt, &IVS, f->iterator,
1129 scatteringDomain);
1130 stmt = stmt->next;
1131 }
1132
1133 // Loop is finished, so remove its iv from the live symbols.
1134 clastVars->erase(f->iterator);
1135 }
1136
1137 void codegen(const clast_for *f) {
Hongbin Zhengdbdebe22011-05-03 13:46:58 +00001138 if (Vector && isInnermostLoop(f) && DP->isParallelFor(f)
Tobias Grosser75805372011-04-29 06:27:02 +00001139 && (-1 != getNumberOfIterations(f))
1140 && (getNumberOfIterations(f) <= 16)) {
1141 codegenForVector(f);
Hongbin Zhengdbdebe22011-05-03 13:46:58 +00001142 } else if (OpenMP && !parallelCodeGeneration && DP->isParallelFor(f)) {
Tobias Grosser75805372011-04-29 06:27:02 +00001143 parallelCodeGeneration = true;
1144 parallelLoops.push_back(f->iterator);
1145 codegenForOpenMP(f);
1146 parallelCodeGeneration = false;
1147 } else
1148 codegenForSequential(f);
1149 }
1150
1151 Value *codegen(const clast_equation *eq) {
1152 Value *LHS = ExpGen.codegen(eq->LHS,
1153 TD->getIntPtrType(Builder.getContext()));
1154 Value *RHS = ExpGen.codegen(eq->RHS,
1155 TD->getIntPtrType(Builder.getContext()));
1156 CmpInst::Predicate P;
1157
1158 if (eq->sign == 0)
1159 P = ICmpInst::ICMP_EQ;
1160 else if (eq->sign > 0)
1161 P = ICmpInst::ICMP_SGE;
1162 else
1163 P = ICmpInst::ICMP_SLE;
1164
1165 return Builder.CreateICmp(P, LHS, RHS);
1166 }
1167
1168 void codegen(const clast_guard *g) {
1169 Function *F = Builder.GetInsertBlock()->getParent();
1170 LLVMContext &Context = F->getContext();
1171 BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F);
1172 BasicBlock *MergeBB = BasicBlock::Create(Context, "polly.merge", F);
1173 DT->addNewBlock(ThenBB, Builder.GetInsertBlock());
1174 DT->addNewBlock(MergeBB, Builder.GetInsertBlock());
1175
1176 Value *Predicate = codegen(&(g->eq[0]));
1177
1178 for (int i = 1; i < g->n; ++i) {
1179 Value *TmpPredicate = codegen(&(g->eq[i]));
1180 Predicate = Builder.CreateAnd(Predicate, TmpPredicate);
1181 }
1182
1183 Builder.CreateCondBr(Predicate, ThenBB, MergeBB);
1184 Builder.SetInsertPoint(ThenBB);
1185
1186 codegen(g->then);
1187
1188 Builder.CreateBr(MergeBB);
1189 Builder.SetInsertPoint(MergeBB);
1190 }
1191
1192 void codegen(const clast_stmt *stmt) {
1193 if (CLAST_STMT_IS_A(stmt, stmt_root))
1194 assert(false && "No second root statement expected");
1195 else if (CLAST_STMT_IS_A(stmt, stmt_ass))
1196 codegen((const clast_assignment *)stmt);
1197 else if (CLAST_STMT_IS_A(stmt, stmt_user))
1198 codegen((const clast_user_stmt *)stmt);
1199 else if (CLAST_STMT_IS_A(stmt, stmt_block))
1200 codegen((const clast_block *)stmt);
1201 else if (CLAST_STMT_IS_A(stmt, stmt_for))
1202 codegen((const clast_for *)stmt);
1203 else if (CLAST_STMT_IS_A(stmt, stmt_guard))
1204 codegen((const clast_guard *)stmt);
1205
1206 if (stmt->next)
1207 codegen(stmt->next);
1208 }
1209
1210 void addParameters(const CloogNames *names) {
1211 SCEVExpander Rewriter(SE);
1212
1213 // Create an instruction that specifies the location where the parameters
1214 // are expanded.
1215 CastInst::CreateIntegerCast(ConstantInt::getTrue(Builder.getContext()),
1216 Builder.getInt16Ty(), false, "insertInst",
1217 Builder.GetInsertBlock());
1218
1219 int i = 0;
1220 for (Scop::param_iterator PI = S->param_begin(), PE = S->param_end();
1221 PI != PE; ++PI) {
1222 assert(i < names->nb_parameters && "Not enough parameter names");
1223
1224 const SCEV *Param = *PI;
1225 const Type *Ty = Param->getType();
1226
1227 Instruction *insertLocation = --(Builder.GetInsertBlock()->end());
1228 Value *V = Rewriter.expandCodeFor(Param, Ty, insertLocation);
1229 (*clastVars)[names->parameters[i]] = V;
1230
1231 ++i;
1232 }
1233 }
1234
1235 public:
1236 void codegen(const clast_root *r) {
1237 clastVars = new CharMapT();
1238 addParameters(r->names);
1239 ExpGen.setIVS(clastVars);
1240
1241 parallelCodeGeneration = false;
1242
1243 const clast_stmt *stmt = (const clast_stmt*) r;
1244 if (stmt->next)
1245 codegen(stmt->next);
1246
1247 delete clastVars;
1248 }
1249
1250 ClastStmtCodeGen(Scop *scop, ScalarEvolution &se, DominatorTree *dt,
Hongbin Zheng94c5df12011-05-06 02:38:20 +00001251 ScopDetection *sd, Dependences *dp, TargetData *td,
1252 IRBuilder<> &B) :
1253 S(scop), SE(se), DT(dt), SD(sd), DP(dp), TD(td), Builder(B),
1254 ExpGen(Builder, NULL) {}
Tobias Grosser75805372011-04-29 06:27:02 +00001255
1256};
1257}
1258
1259namespace {
1260class CodeGeneration : public ScopPass {
1261 Region *region;
1262 Scop *S;
1263 DominatorTree *DT;
1264 ScalarEvolution *SE;
1265 ScopDetection *SD;
Tobias Grosser75805372011-04-29 06:27:02 +00001266 LoopInfo *LI;
1267 TargetData *TD;
Tobias Grosser8c4cfc322011-05-14 19:01:49 +00001268 RegionInfo *RI;
Tobias Grosser75805372011-04-29 06:27:02 +00001269
1270 std::vector<std::string> parallelLoops;
1271
1272 public:
1273 static char ID;
1274
1275 CodeGeneration() : ScopPass(ID) {}
1276
Tobias Grosser75805372011-04-29 06:27:02 +00001277 // Adding prototypes required if OpenMP is enabled.
1278 void addOpenMPDefinitions(IRBuilder<> &Builder)
1279 {
1280 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
1281 LLVMContext &Context = Builder.getContext();
1282 const IntegerType *intPtrTy = TD->getIntPtrType(Context);
1283
1284 if (!M->getFunction("GOMP_parallel_end")) {
1285 FunctionType *FT = FunctionType::get(Type::getVoidTy(Context), false);
1286 Function::Create(FT, Function::ExternalLinkage, "GOMP_parallel_end", M);
1287 }
1288
1289 if (!M->getFunction("GOMP_parallel_loop_runtime_start")) {
1290 // Type of first argument.
1291 std::vector<const Type*> Arguments(1, Builder.getInt8PtrTy());
1292 FunctionType *FnArgTy = FunctionType::get(Builder.getVoidTy(), Arguments,
1293 false);
1294 PointerType *FnPtrTy = PointerType::getUnqual(FnArgTy);
1295
1296 std::vector<const Type*> args;
1297 args.push_back(FnPtrTy);
1298 args.push_back(Builder.getInt8PtrTy());
1299 args.push_back(Builder.getInt32Ty());
1300 args.push_back(intPtrTy);
1301 args.push_back(intPtrTy);
1302 args.push_back(intPtrTy);
1303
1304 FunctionType *type = FunctionType::get(Builder.getVoidTy(), args, false);
1305 Function::Create(type, Function::ExternalLinkage,
1306 "GOMP_parallel_loop_runtime_start", M);
1307 }
1308
1309 if (!M->getFunction("GOMP_loop_runtime_next")) {
1310 PointerType *intLongPtrTy = PointerType::getUnqual(intPtrTy);
1311
1312 std::vector<const Type*> args;
1313 args.push_back(intLongPtrTy);
1314 args.push_back(intLongPtrTy);
1315
1316 FunctionType *type = FunctionType::get(Builder.getInt8Ty(), args, false);
1317 Function::Create(type, Function::ExternalLinkage,
1318 "GOMP_loop_runtime_next", M);
1319 }
1320
1321 if (!M->getFunction("GOMP_loop_end_nowait")) {
1322 FunctionType *FT = FunctionType::get(Builder.getVoidTy(),
1323 std::vector<const Type*>(), false);
1324 Function::Create(FT, Function::ExternalLinkage,
1325 "GOMP_loop_end_nowait", M);
1326 }
1327 }
1328
Tobias Grosser8c4cfc322011-05-14 19:01:49 +00001329 // Split the entry edge of the region and generate a new basic block on this
1330 // edge. This function also updates ScopInfo and RegionInfo.
1331 //
1332 // @param region The region where the entry edge will be splitted.
1333 BasicBlock *splitEdgeAdvanced(Region *region) {
1334 BasicBlock *newBlock;
1335 BasicBlock *splitBlock;
1336
1337 newBlock = SplitEdge(region->getEnteringBlock(), region->getEntry(), this);
1338
1339 if (DT->dominates(region->getEntry(), newBlock)) {
1340 // Update ScopInfo.
1341 for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI)
1342 if ((*SI)->getBasicBlock() == newBlock) {
1343 (*SI)->setBasicBlock(newBlock);
1344 break;
1345 }
1346
1347 // Update RegionInfo.
1348 splitBlock = region->getEntry();
1349 region->replaceEntry(newBlock);
Tobias Grosser7a16c892011-05-14 19:01:55 +00001350 RI->setRegionFor(newBlock, region);
Tobias Grosser8c4cfc322011-05-14 19:01:49 +00001351 } else {
1352 RI->setRegionFor(newBlock, region->getParent());
1353 splitBlock = newBlock;
1354 }
1355
1356 return splitBlock;
1357 }
1358
1359 // Create a split block that branches either to the old code or to a new basic
1360 // block where the new code can be inserted.
1361 //
1362 // @param builder A builder that will be set to point to a basic block, where
1363 // the new code can be generated.
1364 // @return The split basic block.
1365 BasicBlock *addSplitAndStartBlock(IRBuilder<> *builder) {
1366 BasicBlock *splitBlock = splitEdgeAdvanced(region);
1367
1368 splitBlock->setName("polly.enterScop");
1369
1370 Function *function = splitBlock->getParent();
1371 BasicBlock *startBlock = BasicBlock::Create(function->getContext(),
1372 "polly.start", function);
1373 splitBlock->getTerminator()->eraseFromParent();
1374 builder->SetInsertPoint(splitBlock);
1375 builder->CreateCondBr(builder->getTrue(), startBlock, region->getEntry());
1376 DT->addNewBlock(startBlock, splitBlock);
1377
1378 // Start code generation here.
1379 builder->SetInsertPoint(startBlock);
1380 return splitBlock;
1381 }
1382
1383 // Merge the control flow of the newly generated code with the existing code.
1384 //
1385 // @param splitBlock The basic block where the control flow was split between
1386 // old and new version of the Scop.
1387 // @param builder An IRBuilder that points to the last instruction of the
1388 // newly generated code.
1389 void mergeControlFlow(BasicBlock *splitBlock, IRBuilder<> *builder) {
1390 BasicBlock *mergeBlock;
1391 Region *R = region;
1392
1393 if (R->getExit()->getSinglePredecessor())
1394 // No splitEdge required. A block with a single predecessor cannot have
1395 // PHI nodes that would complicate life.
1396 mergeBlock = R->getExit();
1397 else {
1398 mergeBlock = SplitEdge(R->getExitingBlock(), R->getExit(), this);
1399 // SplitEdge will never split R->getExit(), as R->getExit() has more than
1400 // one predecessor. Hence, mergeBlock is always a newly generated block.
1401 mergeBlock->setName("polly.finalMerge");
1402 R->replaceExit(mergeBlock);
1403 }
1404
1405 builder->CreateBr(mergeBlock);
1406
1407 if (DT->dominates(splitBlock, mergeBlock))
1408 DT->changeImmediateDominator(mergeBlock, splitBlock);
1409 }
1410
Tobias Grosser75805372011-04-29 06:27:02 +00001411 bool runOnScop(Scop &scop) {
1412 S = &scop;
1413 region = &S->getRegion();
Tobias Grosser75805372011-04-29 06:27:02 +00001414 DT = &getAnalysis<DominatorTree>();
1415 Dependences *DP = &getAnalysis<Dependences>();
1416 SE = &getAnalysis<ScalarEvolution>();
1417 LI = &getAnalysis<LoopInfo>();
Tobias Grosser75805372011-04-29 06:27:02 +00001418 SD = &getAnalysis<ScopDetection>();
1419 TD = &getAnalysis<TargetData>();
Tobias Grosser8c4cfc322011-05-14 19:01:49 +00001420 RI = &getAnalysis<RegionInfo>();
Tobias Grosser75805372011-04-29 06:27:02 +00001421
1422 parallelLoops.clear();
1423
Tobias Grosser8c4cfc322011-05-14 19:01:49 +00001424 assert(region->isSimple() && "Only simple regions are supported");
Tobias Grosser76d7c522011-05-14 19:01:37 +00001425
Tobias Grosser8c4cfc322011-05-14 19:01:49 +00001426 // In the CFG and we generate next to original code of the Scop the
1427 // optimized version. Both the new and the original version of the code
1428 // remain in the CFG. A branch statement decides which version is executed.
1429 // At the moment, we always execute the newly generated version (the old one
1430 // is dead code eliminated by the cleanup passes). Later we may decide to
1431 // execute the new version only under certain conditions. This will be the
1432 // case if we support constructs for which we cannot prove all assumptions
1433 // at compile time.
1434 //
1435 // Before transformation:
1436 //
1437 // bb0
1438 // |
1439 // orig_scop
1440 // |
1441 // bb1
1442 //
1443 // After transformation:
1444 // bb0
1445 // |
1446 // polly.splitBlock
1447 // / \
1448 // | startBlock
1449 // | |
1450 // orig_scop new_scop
1451 // \ /
1452 // \ /
1453 // bb1 (joinBlock)
1454 IRBuilder<> builder(region->getEntry());
Tobias Grosser75805372011-04-29 06:27:02 +00001455
Tobias Grosser8c4cfc322011-05-14 19:01:49 +00001456 // The builder will be set to startBlock.
1457 BasicBlock *splitBlock = addSplitAndStartBlock(&builder);
Tobias Grosser75805372011-04-29 06:27:02 +00001458
1459 if (OpenMP)
Tobias Grosser8c4cfc322011-05-14 19:01:49 +00001460 addOpenMPDefinitions(builder);
Tobias Grosser75805372011-04-29 06:27:02 +00001461
Tobias Grosser8c4cfc322011-05-14 19:01:49 +00001462 ClastStmtCodeGen CodeGen(S, *SE, DT, SD, DP, TD, builder);
Tobias Grosser3fdecae2011-05-14 19:02:39 +00001463 CloogInfo &C = getAnalysis<CloogInfo>();
1464 CodeGen.codegen(C.getClast());
Tobias Grosser75805372011-04-29 06:27:02 +00001465
Tobias Grosser75805372011-04-29 06:27:02 +00001466 parallelLoops.insert(parallelLoops.begin(),
1467 CodeGen.getParallelLoops().begin(),
1468 CodeGen.getParallelLoops().end());
1469
Tobias Grosser8c4cfc322011-05-14 19:01:49 +00001470 mergeControlFlow(splitBlock, &builder);
Tobias Grosser75805372011-04-29 06:27:02 +00001471
Tobias Grosserabb6dcd2011-05-14 19:02:34 +00001472 return true;
Tobias Grosser75805372011-04-29 06:27:02 +00001473 }
1474
1475 virtual void printScop(raw_ostream &OS) const {
1476 for (std::vector<std::string>::const_iterator PI = parallelLoops.begin(),
1477 PE = parallelLoops.end(); PI != PE; ++PI)
1478 OS << "Parallel loop with iterator '" << *PI << "' generated\n";
1479 }
1480
1481 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1482 AU.addRequired<CloogInfo>();
1483 AU.addRequired<Dependences>();
1484 AU.addRequired<DominatorTree>();
1485 AU.addRequired<ScalarEvolution>();
1486 AU.addRequired<LoopInfo>();
1487 AU.addRequired<RegionInfo>();
1488 AU.addRequired<ScopDetection>();
1489 AU.addRequired<ScopInfo>();
1490 AU.addRequired<TargetData>();
1491
1492 AU.addPreserved<CloogInfo>();
1493 AU.addPreserved<Dependences>();
1494 AU.addPreserved<LoopInfo>();
1495 AU.addPreserved<DominatorTree>();
Tobias Grosser75805372011-04-29 06:27:02 +00001496 AU.addPreserved<ScopDetection>();
1497 AU.addPreserved<ScalarEvolution>();
1498 AU.addPreserved<RegionInfo>();
1499 AU.addPreserved<TempScopInfo>();
1500 AU.addPreserved<ScopInfo>();
1501 AU.addPreservedID(IndependentBlocksID);
1502 }
1503};
1504}
1505
1506char CodeGeneration::ID = 1;
1507
1508static RegisterPass<CodeGeneration>
1509Z("polly-codegen", "Polly - Create LLVM-IR from the polyhedral information");
1510
1511Pass* polly::createCodeGenerationPass() {
1512 return new CodeGeneration();
1513}