blob: a2b2894370837d78251d7d0a66b65f13bdd9f0ba [file] [log] [blame]
Ulrich Weigand1f6666a2015-03-31 12:52:27 +00001//===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a TargetTransformInfo analysis pass specific to the
11// SystemZ target machine. It uses the target's detailed information to provide
12// more precise answers to certain TTI queries, while letting the target
13// independent and default TTI implementations handle the rest.
14//
15//===----------------------------------------------------------------------===//
16
17#include "SystemZTargetTransformInfo.h"
18#include "llvm/Analysis/TargetTransformInfo.h"
19#include "llvm/CodeGen/BasicTTIImpl.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000020#include "llvm/CodeGen/CostTable.h"
21#include "llvm/CodeGen/TargetLowering.h"
Ulrich Weigand1f6666a2015-03-31 12:52:27 +000022#include "llvm/IR/IntrinsicInst.h"
23#include "llvm/Support/Debug.h"
Ulrich Weigand1f6666a2015-03-31 12:52:27 +000024using namespace llvm;
25
26#define DEBUG_TYPE "systemztti"
27
28//===----------------------------------------------------------------------===//
29//
30// SystemZ cost model.
31//
32//===----------------------------------------------------------------------===//
33
Chandler Carruth93205eb2015-08-05 18:08:10 +000034int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Ulrich Weigand1f6666a2015-03-31 12:52:27 +000035 assert(Ty->isIntegerTy());
36
37 unsigned BitSize = Ty->getPrimitiveSizeInBits();
38 // There is no cost model for constants with a bit size of 0. Return TCC_Free
39 // here, so that constant hoisting will ignore this constant.
40 if (BitSize == 0)
41 return TTI::TCC_Free;
42 // No cost model for operations on integers larger than 64 bit implemented yet.
43 if (BitSize > 64)
44 return TTI::TCC_Free;
45
46 if (Imm == 0)
47 return TTI::TCC_Free;
48
49 if (Imm.getBitWidth() <= 64) {
50 // Constants loaded via lgfi.
51 if (isInt<32>(Imm.getSExtValue()))
52 return TTI::TCC_Basic;
53 // Constants loaded via llilf.
54 if (isUInt<32>(Imm.getZExtValue()))
55 return TTI::TCC_Basic;
56 // Constants loaded via llihf:
57 if ((Imm.getZExtValue() & 0xffffffff) == 0)
58 return TTI::TCC_Basic;
59
60 return 2 * TTI::TCC_Basic;
61 }
62
63 return 4 * TTI::TCC_Basic;
64}
65
Chandler Carruth93205eb2015-08-05 18:08:10 +000066int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
67 const APInt &Imm, Type *Ty) {
Ulrich Weigand1f6666a2015-03-31 12:52:27 +000068 assert(Ty->isIntegerTy());
69
70 unsigned BitSize = Ty->getPrimitiveSizeInBits();
71 // There is no cost model for constants with a bit size of 0. Return TCC_Free
72 // here, so that constant hoisting will ignore this constant.
73 if (BitSize == 0)
74 return TTI::TCC_Free;
75 // No cost model for operations on integers larger than 64 bit implemented yet.
76 if (BitSize > 64)
77 return TTI::TCC_Free;
78
79 switch (Opcode) {
80 default:
81 return TTI::TCC_Free;
82 case Instruction::GetElementPtr:
83 // Always hoist the base address of a GetElementPtr. This prevents the
84 // creation of new constants for every base constant that gets constant
85 // folded with the offset.
86 if (Idx == 0)
87 return 2 * TTI::TCC_Basic;
88 return TTI::TCC_Free;
89 case Instruction::Store:
90 if (Idx == 0 && Imm.getBitWidth() <= 64) {
91 // Any 8-bit immediate store can by implemented via mvi.
92 if (BitSize == 8)
93 return TTI::TCC_Free;
94 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
95 if (isInt<16>(Imm.getSExtValue()))
96 return TTI::TCC_Free;
97 }
98 break;
99 case Instruction::ICmp:
100 if (Idx == 1 && Imm.getBitWidth() <= 64) {
101 // Comparisons against signed 32-bit immediates implemented via cgfi.
102 if (isInt<32>(Imm.getSExtValue()))
103 return TTI::TCC_Free;
104 // Comparisons against unsigned 32-bit immediates implemented via clgfi.
105 if (isUInt<32>(Imm.getZExtValue()))
106 return TTI::TCC_Free;
107 }
108 break;
109 case Instruction::Add:
110 case Instruction::Sub:
111 if (Idx == 1 && Imm.getBitWidth() <= 64) {
112 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
113 if (isUInt<32>(Imm.getZExtValue()))
114 return TTI::TCC_Free;
115 // Or their negation, by swapping addition vs. subtraction.
116 if (isUInt<32>(-Imm.getSExtValue()))
117 return TTI::TCC_Free;
118 }
119 break;
120 case Instruction::Mul:
121 if (Idx == 1 && Imm.getBitWidth() <= 64) {
122 // We use msgfi to multiply by 32-bit signed immediates.
123 if (isInt<32>(Imm.getSExtValue()))
124 return TTI::TCC_Free;
125 }
126 break;
127 case Instruction::Or:
128 case Instruction::Xor:
129 if (Idx == 1 && Imm.getBitWidth() <= 64) {
130 // Masks supported by oilf/xilf.
131 if (isUInt<32>(Imm.getZExtValue()))
132 return TTI::TCC_Free;
133 // Masks supported by oihf/xihf.
134 if ((Imm.getZExtValue() & 0xffffffff) == 0)
135 return TTI::TCC_Free;
136 }
137 break;
138 case Instruction::And:
139 if (Idx == 1 && Imm.getBitWidth() <= 64) {
140 // Any 32-bit AND operation can by implemented via nilf.
141 if (BitSize <= 32)
142 return TTI::TCC_Free;
143 // 64-bit masks supported by nilf.
144 if (isUInt<32>(~Imm.getZExtValue()))
145 return TTI::TCC_Free;
146 // 64-bit masks supported by nilh.
147 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
148 return TTI::TCC_Free;
149 // Some 64-bit AND operations can be implemented via risbg.
150 const SystemZInstrInfo *TII = ST->getInstrInfo();
151 unsigned Start, End;
152 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
153 return TTI::TCC_Free;
154 }
155 break;
156 case Instruction::Shl:
157 case Instruction::LShr:
158 case Instruction::AShr:
159 // Always return TCC_Free for the shift value of a shift instruction.
160 if (Idx == 1)
161 return TTI::TCC_Free;
162 break;
163 case Instruction::UDiv:
164 case Instruction::SDiv:
165 case Instruction::URem:
166 case Instruction::SRem:
167 case Instruction::Trunc:
168 case Instruction::ZExt:
169 case Instruction::SExt:
170 case Instruction::IntToPtr:
171 case Instruction::PtrToInt:
172 case Instruction::BitCast:
173 case Instruction::PHI:
174 case Instruction::Call:
175 case Instruction::Select:
176 case Instruction::Ret:
177 case Instruction::Load:
178 break;
179 }
180
181 return SystemZTTIImpl::getIntImmCost(Imm, Ty);
182}
183
Chandler Carruth93205eb2015-08-05 18:08:10 +0000184int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
185 const APInt &Imm, Type *Ty) {
Ulrich Weigand1f6666a2015-03-31 12:52:27 +0000186 assert(Ty->isIntegerTy());
187
188 unsigned BitSize = Ty->getPrimitiveSizeInBits();
189 // There is no cost model for constants with a bit size of 0. Return TCC_Free
190 // here, so that constant hoisting will ignore this constant.
191 if (BitSize == 0)
192 return TTI::TCC_Free;
193 // No cost model for operations on integers larger than 64 bit implemented yet.
194 if (BitSize > 64)
195 return TTI::TCC_Free;
196
197 switch (IID) {
198 default:
199 return TTI::TCC_Free;
200 case Intrinsic::sadd_with_overflow:
201 case Intrinsic::uadd_with_overflow:
202 case Intrinsic::ssub_with_overflow:
203 case Intrinsic::usub_with_overflow:
204 // These get expanded to include a normal addition/subtraction.
205 if (Idx == 1 && Imm.getBitWidth() <= 64) {
206 if (isUInt<32>(Imm.getZExtValue()))
207 return TTI::TCC_Free;
208 if (isUInt<32>(-Imm.getSExtValue()))
209 return TTI::TCC_Free;
210 }
211 break;
212 case Intrinsic::smul_with_overflow:
213 case Intrinsic::umul_with_overflow:
214 // These get expanded to include a normal multiplication.
215 if (Idx == 1 && Imm.getBitWidth() <= 64) {
216 if (isInt<32>(Imm.getSExtValue()))
217 return TTI::TCC_Free;
218 }
219 break;
220 case Intrinsic::experimental_stackmap:
221 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
222 return TTI::TCC_Free;
223 break;
224 case Intrinsic::experimental_patchpoint_void:
225 case Intrinsic::experimental_patchpoint_i64:
226 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
227 return TTI::TCC_Free;
228 break;
229 }
230 return SystemZTTIImpl::getIntImmCost(Imm, Ty);
231}
Ulrich Weigandb4012182015-03-31 12:56:33 +0000232
233TargetTransformInfo::PopcntSupportKind
234SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
235 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
236 if (ST->hasPopulationCount() && TyWidth <= 64)
237 return TTI::PSK_FastHardware;
238 return TTI::PSK_Software;
239}
240
Geoff Berry66d9bdb2017-06-28 15:53:17 +0000241void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
Jonas Paulsson58c5a7f2016-09-28 09:41:38 +0000242 TTI::UnrollingPreferences &UP) {
243 // Find out if L contains a call, what the machine instruction count
244 // estimate is, and how many stores there are.
245 bool HasCall = false;
246 unsigned NumStores = 0;
247 for (auto &BB : L->blocks())
248 for (auto &I : *BB) {
249 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
250 ImmutableCallSite CS(&I);
251 if (const Function *F = CS.getCalledFunction()) {
252 if (isLoweredToCall(F))
253 HasCall = true;
254 if (F->getIntrinsicID() == Intrinsic::memcpy ||
255 F->getIntrinsicID() == Intrinsic::memset)
256 NumStores++;
257 } else { // indirect call.
258 HasCall = true;
259 }
260 }
261 if (isa<StoreInst>(&I)) {
Jonas Paulsson58c5a7f2016-09-28 09:41:38 +0000262 Type *MemAccessTy = I.getOperand(0)->getType();
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000263 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0);
Jonas Paulsson58c5a7f2016-09-28 09:41:38 +0000264 }
265 }
266
267 // The z13 processor will run out of store tags if too many stores
268 // are fed into it too quickly. Therefore make sure there are not
269 // too many stores in the resulting unrolled loop.
270 unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX);
271
272 if (HasCall) {
273 // Only allow full unrolling if loop has any calls.
274 UP.FullUnrollMaxCount = Max;
275 UP.MaxCount = 1;
276 return;
277 }
278
279 UP.MaxCount = Max;
280 if (UP.MaxCount <= 1)
281 return;
282
283 // Allow partial and runtime trip count unrolling.
284 UP.Partial = UP.Runtime = true;
285
286 UP.PartialThreshold = 75;
287 UP.DefaultUnrollRuntimeCount = 4;
288
289 // Allow expensive instructions in the pre-header of the loop.
290 UP.AllowExpensiveTripCount = true;
291
292 UP.Force = true;
293}
294
Jonas Paulsson024e3192017-07-21 11:59:37 +0000295
296bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
297 TargetTransformInfo::LSRCost &C2) {
298 // SystemZ specific: check instruction count (first), and don't care about
299 // ImmCost, since offsets are checked explicitly.
300 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
301 C1.NumIVMuls, C1.NumBaseAdds,
302 C1.ScaleCost, C1.SetupCost) <
303 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
304 C2.NumIVMuls, C2.NumBaseAdds,
305 C2.ScaleCost, C2.SetupCost);
306}
307
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000308unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) {
309 if (!Vector)
310 // Discount the stack pointer. Also leave out %r0, since it can't
311 // be used in an address.
312 return 14;
313 if (ST->hasVector())
314 return 32;
315 return 0;
316}
317
Daniel Neilsonc0112ae2017-06-12 14:22:21 +0000318unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const {
Ulrich Weigandce4c1092015-05-05 19:25:42 +0000319 if (!Vector)
320 return 64;
321 if (ST->hasVector())
322 return 128;
323 return 0;
324}
325
Jonas Paulssone54cc1a2017-11-06 13:10:31 +0000326bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
327 EVT VT = TLI->getValueType(DL, DataType);
328 return (VT.isScalarInteger() && TLI->isTypeLegal(VT));
329}
330
Jonas Paulsson2c8b3372018-10-10 07:36:27 +0000331// Return the bit size for the scalar type or vector element
332// type. getScalarSizeInBits() returns 0 for a pointer type.
333static unsigned getScalarSizeInBits(Type *Ty) {
334 unsigned Size =
335 (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits());
336 assert(Size > 0 && "Element must have non-zero size.");
337 return Size;
338}
339
340// getNumberOfParts() calls getTypeLegalizationCost() which splits the vector
341// type until it is legal. This would e.g. return 4 for <6 x i64>, instead of
342// 3.
343static unsigned getNumVectorRegs(Type *Ty) {
344 assert(Ty->isVectorTy() && "Expected vector type");
345 unsigned WideBits = getScalarSizeInBits(Ty) * Ty->getVectorNumElements();
346 assert(WideBits > 0 && "Could not compute size of vector");
347 return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
348}
349
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000350int SystemZTTIImpl::getArithmeticInstrCost(
Fangrui Songf78650a2018-07-30 19:41:25 +0000351 unsigned Opcode, Type *Ty,
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000352 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
353 TTI::OperandValueProperties Opd1PropInfo,
354 TTI::OperandValueProperties Opd2PropInfo,
355 ArrayRef<const Value *> Args) {
356
357 // TODO: return a good value for BB-VECTORIZER that includes the
358 // immediate loads, which we do not want to count for the loop
359 // vectorizer, since they are hopefully hoisted out of the loop. This
360 // would require a new parameter 'InLoop', but not sure if constant
361 // args are common enough to motivate this.
362
363 unsigned ScalarBits = Ty->getScalarSizeInBits();
364
Jonas Paulsson46457112018-10-25 21:47:22 +0000365 // There are thre cases of division and remainder: Dividing with a register
366 // needs a divide instruction. A divisor which is a power of two constant
367 // can be implemented with a sequence of shifts. Any other constant needs a
368 // multiply and shifts.
369 const unsigned DivInstrCost = 20;
370 const unsigned DivMulSeqCost = 10;
371 const unsigned SDivPow2Cost = 4;
372
373 bool SignedDivRem =
374 Opcode == Instruction::SDiv || Opcode == Instruction::SRem;
375 bool UnsignedDivRem =
376 Opcode == Instruction::UDiv || Opcode == Instruction::URem;
377
378 // Check for a constant divisor.
379 bool DivRemConst = false;
380 bool DivRemConstPow2 = false;
381 if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) {
Jonas Paulsson8722ade2017-05-17 12:46:26 +0000382 if (const Constant *C = dyn_cast<Constant>(Args[1])) {
Jonas Paulsson46457112018-10-25 21:47:22 +0000383 const ConstantInt *CVal =
384 (C->getType()->isVectorTy()
385 ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue())
386 : dyn_cast<const ConstantInt>(C));
387 if (CVal != nullptr &&
388 (CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2()))
389 DivRemConstPow2 = true;
Jonas Paulsson8722ade2017-05-17 12:46:26 +0000390 else
Jonas Paulsson46457112018-10-25 21:47:22 +0000391 DivRemConst = true;
Jonas Paulsson8722ade2017-05-17 12:46:26 +0000392 }
393 }
394
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000395 if (Ty->isVectorTy()) {
Jonas Paulsson2b280ea2018-10-25 22:53:27 +0000396 assert(ST->hasVector() &&
397 "getArithmeticInstrCost() called with vector type.");
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000398 unsigned VF = Ty->getVectorNumElements();
Jonas Paulsson2c8b3372018-10-10 07:36:27 +0000399 unsigned NumVectors = getNumVectorRegs(Ty);
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000400
401 // These vector operations are custom handled, but are still supported
402 // with one instruction per vector, regardless of element size.
403 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
Jonas Paulsson46457112018-10-25 21:47:22 +0000404 Opcode == Instruction::AShr) {
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000405 return NumVectors;
406 }
407
Jonas Paulsson46457112018-10-25 21:47:22 +0000408 if (DivRemConstPow2)
409 return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1));
410 if (DivRemConst)
411 return VF * DivMulSeqCost + getScalarizationOverhead(Ty, Args);
412 if ((SignedDivRem || UnsignedDivRem) && VF > 4)
413 // Temporary hack: disable high vectorization factors with integer
414 // division/remainder, which will get scalarized and handled with
415 // GR128 registers. The mischeduler is not clever enough to avoid
416 // spilling yet.
Jonas Paulssonbf66f382018-10-10 09:30:29 +0000417 return 1000;
418
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000419 // These FP operations are supported with a single vector instruction for
420 // double (base implementation assumes float generally costs 2). For
421 // FP128, the scalar cost is 1, and there is no overhead since the values
422 // are already in scalar registers.
423 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
424 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
425 switch (ScalarBits) {
426 case 32: {
Ulrich Weigand33435c42017-07-17 17:42:48 +0000427 // The vector enhancements facility 1 provides v4f32 instructions.
428 if (ST->hasVectorEnhancements1())
429 return NumVectors;
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000430 // Return the cost of multiple scalar invocation plus the cost of
431 // inserting and extracting the values.
Jonas Paulsson2b280ea2018-10-25 22:53:27 +0000432 unsigned ScalarCost =
433 getArithmeticInstrCost(Opcode, Ty->getScalarType());
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000434 unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args);
435 // FIXME: VF 2 for these FP operations are currently just as
436 // expensive as for VF 4.
437 if (VF == 2)
438 Cost *= 2;
439 return Cost;
440 }
441 case 64:
442 case 128:
443 return NumVectors;
444 default:
445 break;
446 }
447 }
448
449 // There is no native support for FRem.
450 if (Opcode == Instruction::FRem) {
451 unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args);
452 // FIXME: VF 2 for float is currently just as expensive as for VF 4.
453 if (VF == 2 && ScalarBits == 32)
454 Cost *= 2;
455 return Cost;
456 }
457 }
458 else { // Scalar:
459 // These FP operations are supported with a dedicated instruction for
460 // float, double and fp128 (base implementation assumes float generally
461 // costs 2).
462 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
463 Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
464 return 1;
465
466 // There is no native support for FRem.
467 if (Opcode == Instruction::FRem)
468 return LIBCALL_COST;
469
470 if (Opcode == Instruction::LShr || Opcode == Instruction::AShr)
471 return (ScalarBits >= 32 ? 1 : 2 /*ext*/);
472
473 // Or requires one instruction, although it has custom handling for i64.
474 if (Opcode == Instruction::Or)
475 return 1;
476
Jonas Paulsson77df2f22018-09-14 06:46:55 +0000477 if (Opcode == Instruction::Xor && ScalarBits == 1) {
478 if (ST->hasLoadStoreOnCond2())
479 return 5; // 2 * (li 0; loc 1); xor
480 return 7; // 2 * ipm sequences ; xor ; shift ; compare
481 }
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000482
Jonas Paulsson46457112018-10-25 21:47:22 +0000483 if (DivRemConstPow2)
484 return (SignedDivRem ? SDivPow2Cost : 1);
485 if (DivRemConst)
486 return DivMulSeqCost;
487 if (SignedDivRem)
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000488 // sext of op(s) for narrow types
Jonas Paulsson46457112018-10-25 21:47:22 +0000489 return DivInstrCost + (ScalarBits < 32 ? 3 : (ScalarBits == 32 ? 1 : 0));
490 if (UnsignedDivRem)
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000491 // Clearing of low 64 bit reg + sext of op(s) for narrow types + dl[g]r
Jonas Paulsson46457112018-10-25 21:47:22 +0000492 return DivInstrCost + (ScalarBits < 32 ? 3 : 1);
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000493 }
494
495 // Fallback to the default implementation.
496 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
497 Opd1PropInfo, Opd2PropInfo, Args);
498}
499
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000500int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
501 Type *SubTp) {
502 assert (Tp->isVectorTy());
503 assert (ST->hasVector() && "getShuffleCost() called.");
Jonas Paulsson2c8b3372018-10-10 07:36:27 +0000504 unsigned NumVectors = getNumVectorRegs(Tp);
Fangrui Songf78650a2018-07-30 19:41:25 +0000505
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000506 // TODO: Since fp32 is expanded, the shuffle cost should always be 0.
507
508 // FP128 values are always in scalar registers, so there is no work
509 // involved with a shuffle, except for broadcast. In that case register
510 // moves are done with a single instruction per element.
511 if (Tp->getScalarType()->isFP128Ty())
512 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
513
514 switch (Kind) {
515 case TargetTransformInfo::SK_ExtractSubvector:
516 // ExtractSubvector Index indicates start offset.
517
518 // Extracting a subvector from first index is a noop.
519 return (Index == 0 ? 0 : NumVectors);
520
521 case TargetTransformInfo::SK_Broadcast:
522 // Loop vectorizer calls here to figure out the extra cost of
523 // broadcasting a loaded value to all elements of a vector. Since vlrep
524 // loads and replicates with a single instruction, adjust the returned
525 // value.
526 return NumVectors - 1;
527
528 default:
529
530 // SystemZ supports single instruction permutation / replication.
531 return NumVectors;
532 }
533
534 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
535}
536
537// Return the log2 difference of the element sizes of the two vector types.
538static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
539 unsigned Bits0 = Ty0->getScalarSizeInBits();
540 unsigned Bits1 = Ty1->getScalarSizeInBits();
541
542 if (Bits1 > Bits0)
543 return (Log2_32(Bits1) - Log2_32(Bits0));
544
545 return (Log2_32(Bits0) - Log2_32(Bits1));
546}
547
548// Return the number of instructions needed to truncate SrcTy to DstTy.
549unsigned SystemZTTIImpl::
550getVectorTruncCost(Type *SrcTy, Type *DstTy) {
551 assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
552 assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() &&
553 "Packing must reduce size of vector type.");
554 assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() &&
555 "Packing should not change number of elements.");
556
557 // TODO: Since fp32 is expanded, the extract cost should always be 0.
558
Jonas Paulsson2c8b3372018-10-10 07:36:27 +0000559 unsigned NumParts = getNumVectorRegs(SrcTy);
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000560 if (NumParts <= 2)
561 // Up to 2 vector registers can be truncated efficiently with pack or
562 // permute. The latter requires an immediate mask to be loaded, which
563 // typically gets hoisted out of a loop. TODO: return a good value for
564 // BB-VECTORIZER that includes the immediate loads, which we do not want
565 // to count for the loop vectorizer.
566 return 1;
567
568 unsigned Cost = 0;
569 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
570 unsigned VF = SrcTy->getVectorNumElements();
571 for (unsigned P = 0; P < Log2Diff; ++P) {
572 if (NumParts > 1)
573 NumParts /= 2;
574 Cost += NumParts;
575 }
576
577 // Currently, a general mix of permutes and pack instructions is output by
578 // isel, which follow the cost computation above except for this case which
579 // is one instruction less:
580 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
581 DstTy->getScalarSizeInBits() == 8)
582 Cost--;
583
584 return Cost;
585}
586
587// Return the cost of converting a vector bitmask produced by a compare
588// (SrcTy), to the type of the select or extend instruction (DstTy).
589unsigned SystemZTTIImpl::
590getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
591 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
592 "Should only be called with vector types.");
593
594 unsigned PackCost = 0;
595 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
596 unsigned DstScalarBits = DstTy->getScalarSizeInBits();
597 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
598 if (SrcScalarBits > DstScalarBits)
599 // The bitmask will be truncated.
600 PackCost = getVectorTruncCost(SrcTy, DstTy);
601 else if (SrcScalarBits < DstScalarBits) {
Jonas Paulsson2c8b3372018-10-10 07:36:27 +0000602 unsigned DstNumParts = getNumVectorRegs(DstTy);
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000603 // Each vector select needs its part of the bitmask unpacked.
604 PackCost = Log2Diff * DstNumParts;
605 // Extra cost for moving part of mask before unpacking.
606 PackCost += DstNumParts - 1;
607 }
608
609 return PackCost;
610}
611
612// Return the type of the compared operands. This is needed to compute the
613// cost for a Select / ZExt or SExt instruction.
614static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
615 Type *OpTy = nullptr;
616 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
617 OpTy = CI->getOperand(0)->getType();
618 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
Jonas Paulssonf40eac52017-05-03 13:33:45 +0000619 if (LogicI->getNumOperands() == 2)
620 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
621 if (isa<CmpInst>(LogicI->getOperand(1)))
622 OpTy = CI0->getOperand(0)->getType();
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000623
624 if (OpTy != nullptr) {
625 if (VF == 1) {
626 assert (!OpTy->isVectorTy() && "Expected scalar type");
627 return OpTy;
628 }
629 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may
630 // be either scalar or already vectorized with a same or lesser VF.
631 Type *ElTy = OpTy->getScalarType();
632 return VectorType::get(ElTy, VF);
633 }
634
635 return nullptr;
636}
637
Jonas Paulssonf15a53b2018-11-01 09:01:51 +0000638// Get the cost of converting a boolean vector to a vector with same width
639// and element size as Dst, plus the cost of zero extending if needed.
640unsigned SystemZTTIImpl::
641getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst,
642 const Instruction *I) {
643 assert (Dst->isVectorTy());
644 unsigned VF = Dst->getVectorNumElements();
645 unsigned Cost = 0;
646 // If we know what the widths of the compared operands, get any cost of
647 // converting it to match Dst. Otherwise assume same widths.
648 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
649 if (CmpOpTy != nullptr)
650 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
651 if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP)
652 // One 'vn' per dst vector with an immediate mask.
653 Cost += getNumVectorRegs(Dst);
654 return Cost;
655}
656
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000657int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
658 const Instruction *I) {
659 unsigned DstScalarBits = Dst->getScalarSizeInBits();
660 unsigned SrcScalarBits = Src->getScalarSizeInBits();
661
662 if (Src->isVectorTy()) {
663 assert (ST->hasVector() && "getCastInstrCost() called with vector type.");
664 assert (Dst->isVectorTy());
665 unsigned VF = Src->getVectorNumElements();
Jonas Paulsson2c8b3372018-10-10 07:36:27 +0000666 unsigned NumDstVectors = getNumVectorRegs(Dst);
667 unsigned NumSrcVectors = getNumVectorRegs(Src);
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000668
669 if (Opcode == Instruction::Trunc) {
670 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
671 return 0; // Check for NOOP conversions.
672 return getVectorTruncCost(Src, Dst);
673 }
674
675 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
676 if (SrcScalarBits >= 8) {
677 // ZExt/SExt will be handled with one unpack per doubling of width.
678 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
679
680 // For types that spans multiple vector registers, some additional
681 // instructions are used to setup the unpacking.
682 unsigned NumSrcVectorOps =
683 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
684 : (NumDstVectors / 2));
685
686 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
687 }
Jonas Paulssonf15a53b2018-11-01 09:01:51 +0000688 else if (SrcScalarBits == 1)
689 return getBoolVecToIntConversionCost(Opcode, Dst, I);
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000690 }
Fangrui Songf78650a2018-07-30 19:41:25 +0000691
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000692 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
693 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
694 // TODO: Fix base implementation which could simplify things a bit here
695 // (seems to miss on differentiating on scalar/vector types).
696
697 // Only 64 bit vector conversions are natively supported.
Jonas Paulssonf15a53b2018-11-01 09:01:51 +0000698 if (DstScalarBits == 64) {
699 if (SrcScalarBits == 64)
700 return NumDstVectors;
701
702 if (SrcScalarBits == 1)
703 return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors;
704 }
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000705
706 // Return the cost of multiple scalar invocation plus the cost of
707 // inserting and extracting the values. Base implementation does not
708 // realize float->int gets scalarized.
709 unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(),
710 Src->getScalarType());
711 unsigned TotCost = VF * ScalarCost;
712 bool NeedsInserts = true, NeedsExtracts = true;
713 // FP128 registers do not get inserted or extracted.
714 if (DstScalarBits == 128 &&
715 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
716 NeedsInserts = false;
717 if (SrcScalarBits == 128 &&
718 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
719 NeedsExtracts = false;
720
Jonas Paulsson5cea85d2018-11-12 15:32:27 +0000721 TotCost += getScalarizationOverhead(Src, false, NeedsExtracts);
722 TotCost += getScalarizationOverhead(Dst, NeedsInserts, false);
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000723
724 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
725 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
726 TotCost *= 2;
727
728 return TotCost;
729 }
730
731 if (Opcode == Instruction::FPTrunc) {
732 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements.
733 return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false);
734 else // double -> float
735 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
736 }
737
738 if (Opcode == Instruction::FPExt) {
739 if (SrcScalarBits == 32 && DstScalarBits == 64) {
740 // float -> double is very rare and currently unoptimized. Instead of
741 // using vldeb, which can do two at a time, all conversions are
742 // scalarized.
743 return VF * 2;
744 }
745 // -> fp128. VF * lxdb/lxeb + extraction of elements.
746 return VF + getScalarizationOverhead(Src, false, true);
747 }
748 }
749 else { // Scalar
750 assert (!Dst->isVectorTy());
751
Jonas Paulssoncced2a22018-11-02 17:53:31 +0000752 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) {
753 if (SrcScalarBits >= 32 ||
754 (I != nullptr && isa<LoadInst>(I->getOperand(0))))
755 return 1;
756 return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/;
757 }
Fangrui Songf78650a2018-07-30 19:41:25 +0000758
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000759 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
760 Src->isIntegerTy(1)) {
Jonas Paulsson77df2f22018-09-14 06:46:55 +0000761 if (ST->hasLoadStoreOnCond2())
762 return 2; // li 0; loc 1
763
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000764 // This should be extension of a compare i1 result, which is done with
765 // ipm and a varying sequence of instructions.
766 unsigned Cost = 0;
767 if (Opcode == Instruction::SExt)
768 Cost = (DstScalarBits < 64 ? 3 : 4);
769 if (Opcode == Instruction::ZExt)
770 Cost = 3;
771 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
772 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
773 // If operands of an fp-type was compared, this costs +1.
774 Cost++;
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000775 return Cost;
776 }
777 }
778
779 return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
780}
781
Jonas Paulsson2b280ea2018-10-25 22:53:27 +0000782int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
783 Type *CondTy, const Instruction *I) {
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000784 if (ValTy->isVectorTy()) {
785 assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type.");
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000786 unsigned VF = ValTy->getVectorNumElements();
787
788 // Called with a compare instruction.
789 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
790 unsigned PredicateExtraCost = 0;
791 if (I != nullptr) {
792 // Some predicates cost one or two extra instructions.
Craig Topper781aa182018-05-05 01:57:00 +0000793 switch (cast<CmpInst>(I)->getPredicate()) {
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000794 case CmpInst::Predicate::ICMP_NE:
795 case CmpInst::Predicate::ICMP_UGE:
796 case CmpInst::Predicate::ICMP_ULE:
797 case CmpInst::Predicate::ICMP_SGE:
798 case CmpInst::Predicate::ICMP_SLE:
799 PredicateExtraCost = 1;
800 break;
801 case CmpInst::Predicate::FCMP_ONE:
802 case CmpInst::Predicate::FCMP_ORD:
803 case CmpInst::Predicate::FCMP_UEQ:
804 case CmpInst::Predicate::FCMP_UNO:
805 PredicateExtraCost = 2;
806 break;
807 default:
808 break;
809 }
810 }
811
812 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
813 // floats. FIXME: <2 x float> generates same code as <4 x float>.
814 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
Jonas Paulsson2c8b3372018-10-10 07:36:27 +0000815 unsigned NumVecs_cmp = getNumVectorRegs(ValTy);
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000816
817 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
818 return Cost;
819 }
820 else { // Called with a select instruction.
821 assert (Opcode == Instruction::Select);
822
823 // We can figure out the extra cost of packing / unpacking if the
824 // instruction was passed and the compare instruction is found.
825 unsigned PackCost = 0;
826 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
827 if (CmpOpTy != nullptr)
828 PackCost =
829 getVectorBitmaskConversionCost(CmpOpTy, ValTy);
830
Jonas Paulsson2c8b3372018-10-10 07:36:27 +0000831 return getNumVectorRegs(ValTy) /*vsel*/ + PackCost;
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000832 }
833 }
834 else { // Scalar
835 switch (Opcode) {
836 case Instruction::ICmp: {
837 unsigned Cost = 1;
838 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
839 Cost += 2; // extend both operands
840 return Cost;
841 }
842 case Instruction::Select:
843 if (ValTy->isFloatingPointTy())
Jonas Paulsson2b280ea2018-10-25 22:53:27 +0000844 return 4; // No load on condition for FP - costs a conditional jump.
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000845 return 1; // Load On Condition.
846 }
847 }
848
849 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr);
850}
851
852int SystemZTTIImpl::
853getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
854 // vlvgp will insert two grs into a vector register, so only count half the
855 // number of instructions.
Craig Topperfde47232017-07-09 07:04:03 +0000856 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000857 return ((Index % 2 == 0) ? 1 : 0);
858
859 if (Opcode == Instruction::ExtractElement) {
Jonas Paulsson2c8b3372018-10-10 07:36:27 +0000860 int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1);
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000861
862 // Give a slight penalty for moving out of vector pipeline to FXU unit.
Craig Topper95d23472017-07-09 07:04:00 +0000863 if (Index == 0 && Val->isIntOrIntVectorTy())
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000864 Cost += 1;
865
866 return Cost;
867 }
868
869 return BaseT::getVectorInstrCost(Opcode, Val, Index);
870}
871
Jonas Paulssonb7caa802018-10-25 22:28:25 +0000872// Check if a load may be folded as a memory operand in its user.
873bool SystemZTTIImpl::
874isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) {
875 if (!Ld->hasOneUse())
876 return false;
877 FoldedValue = Ld;
878 const Instruction *UserI = cast<Instruction>(*Ld->user_begin());
879 unsigned LoadedBits = getScalarSizeInBits(Ld->getType());
880 unsigned TruncBits = 0;
881 unsigned SExtBits = 0;
882 unsigned ZExtBits = 0;
883 if (UserI->hasOneUse()) {
884 unsigned UserBits = UserI->getType()->getScalarSizeInBits();
885 if (isa<TruncInst>(UserI))
886 TruncBits = UserBits;
887 else if (isa<SExtInst>(UserI))
888 SExtBits = UserBits;
889 else if (isa<ZExtInst>(UserI))
890 ZExtBits = UserBits;
891 }
892 if (TruncBits || SExtBits || ZExtBits) {
893 FoldedValue = UserI;
894 UserI = cast<Instruction>(*UserI->user_begin());
895 // Load (single use) -> trunc/extend (single use) -> UserI
896 }
Jonas Paulssonaf8e0362018-10-30 13:41:03 +0000897 if ((UserI->getOpcode() == Instruction::Sub ||
898 UserI->getOpcode() == Instruction::SDiv ||
899 UserI->getOpcode() == Instruction::UDiv) &&
900 UserI->getOperand(1) != FoldedValue)
901 return false; // Not commutative, only RHS foldable.
Jonas Paulssonb7caa802018-10-25 22:28:25 +0000902 switch (UserI->getOpcode()) {
903 case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64
904 case Instruction::Sub:
905 if (LoadedBits == 32 && ZExtBits == 64)
906 return true;
907 LLVM_FALLTHROUGH;
908 case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64
909 if (LoadedBits == 16 &&
910 (SExtBits == 32 ||
911 (SExtBits == 64 && ST->hasMiscellaneousExtensions2())))
912 return true;
913 LLVM_FALLTHROUGH;
914 case Instruction::SDiv:// SE: 32->64
915 if (LoadedBits == 32 && SExtBits == 64)
916 return true;
917 LLVM_FALLTHROUGH;
918 case Instruction::UDiv:
919 case Instruction::And:
920 case Instruction::Or:
921 case Instruction::Xor:
922 case Instruction::ICmp:
923 // This also makes sense for float operations, but disabled for now due
924 // to regressions.
925 // case Instruction::FCmp:
926 // case Instruction::FAdd:
927 // case Instruction::FSub:
928 // case Instruction::FMul:
929 // case Instruction::FDiv:
930
931 // All possible extensions of memory checked above.
932 if (SExtBits || ZExtBits)
933 return false;
934
935 unsigned LoadOrTruncBits = (TruncBits ? TruncBits : LoadedBits);
936 return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64);
937 break;
938 }
939 return false;
940}
941
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000942int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
943 unsigned Alignment, unsigned AddressSpace,
944 const Instruction *I) {
945 assert(!Src->isVoidTy() && "Invalid type");
946
Jonas Paulssonb7caa802018-10-25 22:28:25 +0000947 if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) {
948 // Store the load or its truncated or extended value in FoldedValue.
949 const Instruction *FoldedValue = nullptr;
950 if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) {
951 const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin());
952 assert (UserI->getNumOperands() == 2 && "Expected a binop.");
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000953
Jonas Paulssonb7caa802018-10-25 22:28:25 +0000954 // UserI can't fold two loads, so in that case return 0 cost only
955 // half of the time.
956 for (unsigned i = 0; i < 2; ++i) {
957 if (UserI->getOperand(i) == FoldedValue)
958 continue;
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000959
Jonas Paulssonb7caa802018-10-25 22:28:25 +0000960 if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){
961 LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp);
962 if (!OtherLoad &&
963 (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) ||
964 isa<ZExtInst>(OtherOp)))
965 OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0));
966 if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/))
967 return i == 0; // Both operands foldable.
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000968 }
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000969 }
Jonas Paulssonb7caa802018-10-25 22:28:25 +0000970
971 return 0; // Only I is foldable in user.
972 }
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000973 }
974
Jonas Paulsson2c8b3372018-10-10 07:36:27 +0000975 unsigned NumOps =
976 (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src));
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000977
978 if (Src->getScalarSizeInBits() == 128)
979 // 128 bit scalars are held in a pair of two 64 bit registers.
980 NumOps *= 2;
981
982 return NumOps;
983}
984
Jonas Paulsson79f24412018-11-02 17:15:36 +0000985// The generic implementation of getInterleavedMemoryOpCost() is based on
986// adding costs of the memory operations plus all the extracts and inserts
987// needed for using / defining the vector operands. The SystemZ version does
988// roughly the same but bases the computations on vector permutations
989// instead.
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000990int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
991 unsigned Factor,
992 ArrayRef<unsigned> Indices,
993 unsigned Alignment,
Dorit Nuzman38bbf812018-10-14 08:50:06 +0000994 unsigned AddressSpace,
Dorit Nuzman34da6dd2018-10-31 09:57:56 +0000995 bool UseMaskForCond,
996 bool UseMaskForGaps) {
997 if (UseMaskForCond || UseMaskForGaps)
Dorit Nuzman38bbf812018-10-14 08:50:06 +0000998 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
Dorit Nuzman34da6dd2018-10-31 09:57:56 +0000999 Alignment, AddressSpace,
1000 UseMaskForCond, UseMaskForGaps);
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001001 assert(isa<VectorType>(VecTy) &&
1002 "Expect a vector type for interleaved memory op");
1003
Jonas Paulsson79f24412018-11-02 17:15:36 +00001004 // Return the ceiling of dividing A by B.
1005 auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; };
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001006
Jonas Paulsson79f24412018-11-02 17:15:36 +00001007 unsigned NumElts = VecTy->getVectorNumElements();
1008 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
1009 unsigned VF = NumElts / Factor;
1010 unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy));
1011 unsigned NumVectorMemOps = getNumVectorRegs(VecTy);
1012 unsigned NumPermutes = 0;
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001013
Jonas Paulsson79f24412018-11-02 17:15:36 +00001014 if (Opcode == Instruction::Load) {
1015 // Loading interleave groups may have gaps, which may mean fewer
1016 // loads. Find out how many vectors will be loaded in total, and in how
1017 // many of them each value will be in.
1018 BitVector UsedInsts(NumVectorMemOps, false);
1019 std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false));
1020 for (unsigned Index : Indices)
1021 for (unsigned Elt = 0; Elt < VF; ++Elt) {
1022 unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg;
1023 UsedInsts.set(Vec);
1024 ValueVecs[Index].set(Vec);
1025 }
1026 NumVectorMemOps = UsedInsts.count();
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001027
Jonas Paulsson79f24412018-11-02 17:15:36 +00001028 for (unsigned Index : Indices) {
1029 // Estimate that each loaded source vector containing this Index
1030 // requires one operation, except that vperm can handle two input
1031 // registers first time for each dst vector.
1032 unsigned NumSrcVecs = ValueVecs[Index].count();
1033 unsigned NumDstVecs = ceil(VF * getScalarSizeInBits(VecTy), 128U);
1034 assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources");
1035 NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs);
1036 }
1037 } else {
1038 // Estimate the permutes for each stored vector as the smaller of the
1039 // number of elements and the number of source vectors. Subtract one per
1040 // dst vector for vperm (S.A.).
1041 unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor);
1042 unsigned NumDstVecs = NumVectorMemOps;
1043 assert (NumSrcVecs > 1 && "Expected at least two source vectors.");
1044 NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs;
1045 }
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001046
1047 // Cost of load/store operations and the permutations needed.
Jonas Paulsson79f24412018-11-02 17:15:36 +00001048 return NumVectorMemOps + NumPermutes;
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001049}
Jonas Paulsson96782c22018-11-22 07:17:29 +00001050
1051static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) {
1052 if (RetTy->isVectorTy() && ID == Intrinsic::bswap)
1053 return getNumVectorRegs(RetTy); // VPERM
1054 return -1;
1055}
1056
1057int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1058 ArrayRef<Value *> Args,
1059 FastMathFlags FMF, unsigned VF) {
1060 int Cost = getVectorIntrinsicInstrCost(ID, RetTy);
1061 if (Cost != -1)
1062 return Cost;
1063 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
1064}
1065
1066int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1067 ArrayRef<Type *> Tys,
1068 FastMathFlags FMF,
1069 unsigned ScalarizationCostPassed) {
1070 int Cost = getVectorIntrinsicInstrCost(ID, RetTy);
1071 if (Cost != -1)
1072 return Cost;
1073 return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys,
1074 FMF, ScalarizationCostPassed);
1075}