blob: f139f359649193eda360f43bb084fec89f2325a8 [file] [log] [blame]
Renato Golin33f973a2014-04-01 09:51:49 +00001==============================
2TableGen Language Introduction
3==============================
4
5.. contents::
6 :local:
7
8.. warning::
9 This document is extremely rough. If you find something lacking, please
10 fix it, file a documentation bug, or ask about it on llvmdev.
11
12Introduction
13============
14
15This document is not meant to be a normative spec about the TableGen language
16in and of itself (i.e. how to understand a given construct in terms of how
17it affects the final set of records represented by the TableGen file). For
18the formal language specification, see :doc:`LangRef`.
19
20TableGen syntax
21===============
22
23TableGen doesn't care about the meaning of data (that is up to the backend to
24define), but it does care about syntax, and it enforces a simple type system.
25This section describes the syntax and the constructs allowed in a TableGen file.
26
27TableGen primitives
28-------------------
29
30TableGen comments
31^^^^^^^^^^^^^^^^^
32
33TableGen supports C++ style "``//``" comments, which run to the end of the
34line, and it also supports **nestable** "``/* */``" comments.
35
36.. _TableGen type:
37
38The TableGen type system
39^^^^^^^^^^^^^^^^^^^^^^^^
40
41TableGen files are strongly typed, in a simple (but complete) type-system.
42These types are used to perform automatic conversions, check for errors, and to
43help interface designers constrain the input that they allow. Every `value
44definition`_ is required to have an associated type.
45
46TableGen supports a mixture of very low-level types (such as ``bit``) and very
47high-level types (such as ``dag``). This flexibility is what allows it to
48describe a wide range of information conveniently and compactly. The TableGen
49types are:
50
51``bit``
52 A 'bit' is a boolean value that can hold either 0 or 1.
53
54``int``
55 The 'int' type represents a simple 32-bit integer value, such as 5.
56
57``string``
58 The 'string' type represents an ordered sequence of characters of arbitrary
59 length.
60
61``bits<n>``
62 A 'bits' type is an arbitrary, but fixed, size integer that is broken up
63 into individual bits. This type is useful because it can handle some bits
64 being defined while others are undefined.
65
66``list<ty>``
67 This type represents a list whose elements are some other type. The
68 contained type is arbitrary: it can even be another list type.
69
70Class type
71 Specifying a class name in a type context means that the defined value must
72 be a subclass of the specified class. This is useful in conjunction with
73 the ``list`` type, for example, to constrain the elements of the list to a
74 common base class (e.g., a ``list<Register>`` can only contain definitions
75 derived from the "``Register``" class).
76
77``dag``
78 This type represents a nestable directed graph of elements.
79
80To date, these types have been sufficient for describing things that TableGen
81has been used for, but it is straight-forward to extend this list if needed.
82
83.. _TableGen expressions:
84
85TableGen values and expressions
86^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
87
88TableGen allows for a pretty reasonable number of different expression forms
89when building up values. These forms allow the TableGen file to be written in a
90natural syntax and flavor for the application. The current expression forms
91supported include:
92
93``?``
94 uninitialized field
95
96``0b1001011``
97 binary integer value
98
99``07654321``
100 octal integer value (indicated by a leading 0)
101
102``7``
103 decimal integer value
104
105``0x7F``
106 hexadecimal integer value
107
108``"foo"``
109 string value
110
111``[{ ... }]``
112 usually called a "code fragment", but is just a multiline string literal
113
114``[ X, Y, Z ]<type>``
115 list value. <type> is the type of the list element and is usually optional.
116 In rare cases, TableGen is unable to deduce the element type in which case
117 the user must specify it explicitly.
118
119``{ a, b, c }``
120 initializer for a "bits<3>" value
121
122``value``
123 value reference
124
125``value{17}``
126 access to one bit of a value
127
128``value{15-17}``
129 access to multiple bits of a value
130
131``DEF``
132 reference to a record definition
133
134``CLASS<val list>``
135 reference to a new anonymous definition of CLASS with the specified template
136 arguments.
137
138``X.Y``
139 reference to the subfield of a value
140
141``list[4-7,17,2-3]``
142 A slice of the 'list' list, including elements 4,5,6,7,17,2, and 3 from it.
143 Elements may be included multiple times.
144
145``foreach <var> = [ <list> ] in { <body> }``
146
147``foreach <var> = [ <list> ] in <def>``
148 Replicate <body> or <def>, replacing instances of <var> with each value
149 in <list>. <var> is scoped at the level of the ``foreach`` loop and must
150 not conflict with any other object introduced in <body> or <def>. Currently
151 only ``def``\s are expanded within <body>.
152
153``foreach <var> = 0-15 in ...``
154
155``foreach <var> = {0-15,32-47} in ...``
156 Loop over ranges of integers. The braces are required for multiple ranges.
157
158``(DEF a, b)``
159 a dag value. The first element is required to be a record definition, the
160 remaining elements in the list may be arbitrary other values, including
161 nested ```dag``' values.
162
163``!strconcat(a, b)``
164 A string value that is the result of concatenating the 'a' and 'b' strings.
165
166``str1#str2``
167 "#" (paste) is a shorthand for !strconcat. It may concatenate things that
168 are not quoted strings, in which case an implicit !cast<string> is done on
169 the operand of the paste.
170
171``!cast<type>(a)``
172 A symbol of type *type* obtained by looking up the string 'a' in the symbol
173 table. If the type of 'a' does not match *type*, TableGen aborts with an
174 error. !cast<string> is a special case in that the argument must be an
175 object defined by a 'def' construct.
176
177``!subst(a, b, c)``
178 If 'a' and 'b' are of string type or are symbol references, substitute 'b'
179 for 'a' in 'c.' This operation is analogous to $(subst) in GNU make.
180
181``!foreach(a, b, c)``
182 For each member 'b' of dag or list 'a' apply operator 'c.' 'b' is a dummy
183 variable that should be declared as a member variable of an instantiated
184 class. This operation is analogous to $(foreach) in GNU make.
185
186``!head(a)``
187 The first element of list 'a.'
188
189``!tail(a)``
190 The 2nd-N elements of list 'a.'
191
192``!empty(a)``
193 An integer {0,1} indicating whether list 'a' is empty.
194
195``!if(a,b,c)``
196 'b' if the result of 'int' or 'bit' operator 'a' is nonzero, 'c' otherwise.
197
198``!eq(a,b)``
199 'bit 1' if string a is equal to string b, 0 otherwise. This only operates
200 on string, int and bit objects. Use !cast<string> to compare other types of
201 objects.
202
203Note that all of the values have rules specifying how they convert to values
204for different types. These rules allow you to assign a value like "``7``"
205to a "``bits<4>``" value, for example.
206
207Classes and definitions
208-----------------------
209
210As mentioned in the :doc:`introduction <index>`, classes and definitions (collectively known as
211'records') in TableGen are the main high-level unit of information that TableGen
212collects. Records are defined with a ``def`` or ``class`` keyword, the record
213name, and an optional list of "`template arguments`_". If the record has
214superclasses, they are specified as a comma separated list that starts with a
215colon character ("``:``"). If `value definitions`_ or `let expressions`_ are
216needed for the class, they are enclosed in curly braces ("``{}``"); otherwise,
217the record ends with a semicolon.
218
219Here is a simple TableGen file:
220
221.. code-block:: llvm
222
223 class C { bit V = 1; }
224 def X : C;
225 def Y : C {
226 string Greeting = "hello";
227 }
228
229This example defines two definitions, ``X`` and ``Y``, both of which derive from
230the ``C`` class. Because of this, they both get the ``V`` bit value. The ``Y``
231definition also gets the Greeting member as well.
232
233In general, classes are useful for collecting together the commonality between a
234group of records and isolating it in a single place. Also, classes permit the
235specification of default values for their subclasses, allowing the subclasses to
236override them as they wish.
237
238.. _value definition:
239.. _value definitions:
240
241Value definitions
242^^^^^^^^^^^^^^^^^
243
244Value definitions define named entries in records. A value must be defined
245before it can be referred to as the operand for another value definition or
246before the value is reset with a `let expression`_. A value is defined by
247specifying a `TableGen type`_ and a name. If an initial value is available, it
248may be specified after the type with an equal sign. Value definitions require
249terminating semicolons.
250
251.. _let expression:
252.. _let expressions:
253.. _"let" expressions within a record:
254
255'let' expressions
256^^^^^^^^^^^^^^^^^
257
258A record-level let expression is used to change the value of a value definition
259in a record. This is primarily useful when a superclass defines a value that a
260derived class or definition wants to override. Let expressions consist of the
261'``let``' keyword followed by a value name, an equal sign ("``=``"), and a new
262value. For example, a new class could be added to the example above, redefining
263the ``V`` field for all of its subclasses:
264
265.. code-block:: llvm
266
267 class D : C { let V = 0; }
268 def Z : D;
269
270In this case, the ``Z`` definition will have a zero value for its ``V`` value,
271despite the fact that it derives (indirectly) from the ``C`` class, because the
272``D`` class overrode its value.
273
274.. _template arguments:
275
276Class template arguments
277^^^^^^^^^^^^^^^^^^^^^^^^
278
279TableGen permits the definition of parameterized classes as well as normal
280concrete classes. Parameterized TableGen classes specify a list of variable
281bindings (which may optionally have defaults) that are bound when used. Here is
282a simple example:
283
284.. code-block:: llvm
285
286 class FPFormat<bits<3> val> {
287 bits<3> Value = val;
288 }
289 def NotFP : FPFormat<0>;
290 def ZeroArgFP : FPFormat<1>;
291 def OneArgFP : FPFormat<2>;
292 def OneArgFPRW : FPFormat<3>;
293 def TwoArgFP : FPFormat<4>;
294 def CompareFP : FPFormat<5>;
295 def CondMovFP : FPFormat<6>;
296 def SpecialFP : FPFormat<7>;
297
298In this case, template arguments are used as a space efficient way to specify a
299list of "enumeration values", each with a "``Value``" field set to the specified
300integer.
301
302The more esoteric forms of `TableGen expressions`_ are useful in conjunction
303with template arguments. As an example:
304
305.. code-block:: llvm
306
307 class ModRefVal<bits<2> val> {
308 bits<2> Value = val;
309 }
310
311 def None : ModRefVal<0>;
312 def Mod : ModRefVal<1>;
313 def Ref : ModRefVal<2>;
314 def ModRef : ModRefVal<3>;
315
316 class Value<ModRefVal MR> {
317 // Decode some information into a more convenient format, while providing
318 // a nice interface to the user of the "Value" class.
319 bit isMod = MR.Value{0};
320 bit isRef = MR.Value{1};
321
322 // other stuff...
323 }
324
325 // Example uses
326 def bork : Value<Mod>;
327 def zork : Value<Ref>;
328 def hork : Value<ModRef>;
329
330This is obviously a contrived example, but it shows how template arguments can
331be used to decouple the interface provided to the user of the class from the
332actual internal data representation expected by the class. In this case,
333running ``llvm-tblgen`` on the example prints the following definitions:
334
335.. code-block:: llvm
336
337 def bork { // Value
338 bit isMod = 1;
339 bit isRef = 0;
340 }
341 def hork { // Value
342 bit isMod = 1;
343 bit isRef = 1;
344 }
345 def zork { // Value
346 bit isMod = 0;
347 bit isRef = 1;
348 }
349
350This shows that TableGen was able to dig into the argument and extract a piece
351of information that was requested by the designer of the "Value" class. For
352more realistic examples, please see existing users of TableGen, such as the X86
353backend.
354
355Multiclass definitions and instances
356^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
357
358While classes with template arguments are a good way to factor commonality
359between two instances of a definition, multiclasses allow a convenient notation
360for defining multiple definitions at once (instances of implicitly constructed
361classes). For example, consider an 3-address instruction set whose instructions
362come in two forms: "``reg = reg op reg``" and "``reg = reg op imm``"
363(e.g. SPARC). In this case, you'd like to specify in one place that this
364commonality exists, then in a separate place indicate what all the ops are.
365
366Here is an example TableGen fragment that shows this idea:
367
368.. code-block:: llvm
369
370 def ops;
371 def GPR;
372 def Imm;
373 class inst<int opc, string asmstr, dag operandlist>;
374
375 multiclass ri_inst<int opc, string asmstr> {
376 def _rr : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
377 (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
378 def _ri : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
379 (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
380 }
381
382 // Instantiations of the ri_inst multiclass.
383 defm ADD : ri_inst<0b111, "add">;
384 defm SUB : ri_inst<0b101, "sub">;
385 defm MUL : ri_inst<0b100, "mul">;
386 ...
387
388The name of the resultant definitions has the multidef fragment names appended
389to them, so this defines ``ADD_rr``, ``ADD_ri``, ``SUB_rr``, etc. A defm may
390inherit from multiple multiclasses, instantiating definitions from each
391multiclass. Using a multiclass this way is exactly equivalent to instantiating
392the classes multiple times yourself, e.g. by writing:
393
394.. code-block:: llvm
395
396 def ops;
397 def GPR;
398 def Imm;
399 class inst<int opc, string asmstr, dag operandlist>;
400
401 class rrinst<int opc, string asmstr>
402 : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
403 (ops GPR:$dst, GPR:$src1, GPR:$src2)>;
404
405 class riinst<int opc, string asmstr>
406 : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"),
407 (ops GPR:$dst, GPR:$src1, Imm:$src2)>;
408
409 // Instantiations of the ri_inst multiclass.
410 def ADD_rr : rrinst<0b111, "add">;
411 def ADD_ri : riinst<0b111, "add">;
412 def SUB_rr : rrinst<0b101, "sub">;
413 def SUB_ri : riinst<0b101, "sub">;
414 def MUL_rr : rrinst<0b100, "mul">;
415 def MUL_ri : riinst<0b100, "mul">;
416 ...
417
418A ``defm`` can also be used inside a multiclass providing several levels of
419multiclass instantiations.
420
421.. code-block:: llvm
422
423 class Instruction<bits<4> opc, string Name> {
424 bits<4> opcode = opc;
425 string name = Name;
426 }
427
428 multiclass basic_r<bits<4> opc> {
429 def rr : Instruction<opc, "rr">;
430 def rm : Instruction<opc, "rm">;
431 }
432
433 multiclass basic_s<bits<4> opc> {
434 defm SS : basic_r<opc>;
435 defm SD : basic_r<opc>;
436 def X : Instruction<opc, "x">;
437 }
438
439 multiclass basic_p<bits<4> opc> {
440 defm PS : basic_r<opc>;
441 defm PD : basic_r<opc>;
442 def Y : Instruction<opc, "y">;
443 }
444
445 defm ADD : basic_s<0xf>, basic_p<0xf>;
446 ...
447
448 // Results
449 def ADDPDrm { ...
450 def ADDPDrr { ...
451 def ADDPSrm { ...
452 def ADDPSrr { ...
453 def ADDSDrm { ...
454 def ADDSDrr { ...
455 def ADDY { ...
456 def ADDX { ...
457
458``defm`` declarations can inherit from classes too, the rule to follow is that
459the class list must start after the last multiclass, and there must be at least
460one multiclass before them.
461
462.. code-block:: llvm
463
464 class XD { bits<4> Prefix = 11; }
465 class XS { bits<4> Prefix = 12; }
466
467 class I<bits<4> op> {
468 bits<4> opcode = op;
469 }
470
471 multiclass R {
472 def rr : I<4>;
473 def rm : I<2>;
474 }
475
476 multiclass Y {
477 defm SS : R, XD;
478 defm SD : R, XS;
479 }
480
481 defm Instr : Y;
482
483 // Results
484 def InstrSDrm {
485 bits<4> opcode = { 0, 0, 1, 0 };
486 bits<4> Prefix = { 1, 1, 0, 0 };
487 }
488 ...
489 def InstrSSrr {
490 bits<4> opcode = { 0, 1, 0, 0 };
491 bits<4> Prefix = { 1, 0, 1, 1 };
492 }
493
494File scope entities
495-------------------
496
497File inclusion
498^^^^^^^^^^^^^^
499
500TableGen supports the '``include``' token, which textually substitutes the
501specified file in place of the include directive. The filename should be
502specified as a double quoted string immediately after the '``include``' keyword.
503Example:
504
505.. code-block:: llvm
506
507 include "foo.td"
508
509'let' expressions
510^^^^^^^^^^^^^^^^^
511
512"Let" expressions at file scope are similar to `"let" expressions within a
513record`_, except they can specify a value binding for multiple records at a
514time, and may be useful in certain other cases. File-scope let expressions are
515really just another way that TableGen allows the end-user to factor out
516commonality from the records.
517
518File-scope "let" expressions take a comma-separated list of bindings to apply,
519and one or more records to bind the values in. Here are some examples:
520
521.. code-block:: llvm
522
523 let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in
524 def RET : I<0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]>;
525
526 let isCall = 1 in
527 // All calls clobber the non-callee saved registers...
528 let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
529 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
530 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] in {
531 def CALLpcrel32 : Ii32<0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops),
532 "call\t${dst:call}", []>;
533 def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops),
534 "call\t{*}$dst", [(X86call GR32:$dst)]>;
535 def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops),
536 "call\t{*}$dst", []>;
537 }
538
539File-scope "let" expressions are often useful when a couple of definitions need
540to be added to several records, and the records do not otherwise need to be
541opened, as in the case with the ``CALL*`` instructions above.
542
543It's also possible to use "let" expressions inside multiclasses, providing more
544ways to factor out commonality from the records, specially if using several
545levels of multiclass instantiations. This also avoids the need of using "let"
546expressions within subsequent records inside a multiclass.
547
548.. code-block:: llvm
549
550 multiclass basic_r<bits<4> opc> {
551 let Predicates = [HasSSE2] in {
552 def rr : Instruction<opc, "rr">;
553 def rm : Instruction<opc, "rm">;
554 }
555 let Predicates = [HasSSE3] in
556 def rx : Instruction<opc, "rx">;
557 }
558
559 multiclass basic_ss<bits<4> opc> {
560 let IsDouble = 0 in
561 defm SS : basic_r<opc>;
562
563 let IsDouble = 1 in
564 defm SD : basic_r<opc>;
565 }
566
567 defm ADD : basic_ss<0xf>;
568
569Looping
570^^^^^^^
571
572TableGen supports the '``foreach``' block, which textually replicates the loop
573body, substituting iterator values for iterator references in the body.
574Example:
575
576.. code-block:: llvm
577
578 foreach i = [0, 1, 2, 3] in {
579 def R#i : Register<...>;
580 def F#i : Register<...>;
581 }
582
583This will create objects ``R0``, ``R1``, ``R2`` and ``R3``. ``foreach`` blocks
584may be nested. If there is only one item in the body the braces may be
585elided:
586
587.. code-block:: llvm
588
589 foreach i = [0, 1, 2, 3] in
590 def R#i : Register<...>;
591
592Code Generator backend info
593===========================
594
595Expressions used by code generator to describe instructions and isel patterns:
596
597``(implicit a)``
598 an implicitly defined physical register. This tells the dag instruction
599 selection emitter the input pattern's extra definitions matches implicit
600 physical register definitions.
601