blob: b8aea71720d8b2abb66de499edf8888fc85e5f0c [file] [log] [blame]
Tobias Grossercef36d52012-02-14 14:02:33 +00001//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// If the trip count of a loop is computable, this pass also makes the following
15// changes:
16// 1. The exit condition for the loop is canonicalized to compare the
17// induction value against the exit value. This turns loops like:
18// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19// 2. Any use outside of the loop of an expression derived from the indvar
20// is changed to compute the derived value outside of the loop, eliminating
21// the dependence on the exit value of the induction variable. If the only
22// purpose of the loop is to compute the exit value of some derived
23// expression, this transformation will make the loop dead.
24//
25//===----------------------------------------------------------------------===//
26
27#define DEBUG_TYPE "indvars"
28
29#include "polly/LinkAllPasses.h"
30
31#include "llvm/Transforms/Scalar.h"
32#include "llvm/BasicBlock.h"
33#include "llvm/Constants.h"
34#include "llvm/Instructions.h"
35#include "llvm/IntrinsicInst.h"
36#include "llvm/LLVMContext.h"
37#include "llvm/Type.h"
38#include "llvm/Analysis/Dominators.h"
39#include "llvm/Analysis/IVUsers.h"
40#include "llvm/Analysis/ScalarEvolutionExpander.h"
41#include "llvm/Analysis/LoopInfo.h"
42#include "llvm/Analysis/LoopPass.h"
43#include "llvm/Support/CFG.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/Transforms/Utils/Local.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Transforms/Utils/SimplifyIndVar.h"
50#include "llvm/Target/TargetData.h"
51#include "llvm/ADT/DenseMap.h"
52#include "llvm/ADT/SmallVector.h"
53#include "llvm/ADT/Statistic.h"
54using namespace llvm;
55
56STATISTIC(NumRemoved , "Number of aux indvars removed");
57STATISTIC(NumWidened , "Number of indvars widened");
58STATISTIC(NumInserted , "Number of canonical indvars added");
59STATISTIC(NumReplaced , "Number of exit values replaced");
60STATISTIC(NumLFTR , "Number of loop exit tests replaced");
61STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
62STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
63
64static const bool EnableIVRewrite = true;
65static const bool VerifyIndvars = false;
66
67namespace {
68 class IndVarSimplify : public LoopPass {
69 IVUsers *IU;
70 LoopInfo *LI;
71 ScalarEvolution *SE;
72 DominatorTree *DT;
73 TargetData *TD;
74
75 SmallVector<WeakVH, 16> DeadInsts;
76 bool Changed;
77 public:
78
79 static char ID; // Pass identification, replacement for typeid
80 IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
81 Changed(false) {
82 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
83 }
84
85 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
86
87 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
88 AU.addRequired<DominatorTree>();
89 AU.addRequired<LoopInfo>();
90 AU.addRequired<ScalarEvolution>();
91 AU.addRequiredID(LoopSimplifyID);
92 AU.addRequiredID(LCSSAID);
93 if (EnableIVRewrite)
94 AU.addRequired<IVUsers>();
95 AU.addPreserved<ScalarEvolution>();
96 AU.addPreservedID(LoopSimplifyID);
97 AU.addPreservedID(LCSSAID);
98 if (EnableIVRewrite)
99 AU.addPreserved<IVUsers>();
100 AU.setPreservesCFG();
101 }
102
103 private:
104 virtual void releaseMemory() {
105 DeadInsts.clear();
106 }
107
108 bool isValidRewrite(Value *FromVal, Value *ToVal);
109
110 void HandleFloatingPointIV(Loop *L, PHINode *PH);
111 void RewriteNonIntegerIVs(Loop *L);
112
113 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
114
115 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
116
117 void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
118
119 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
120 PHINode *IndVar, SCEVExpander &Rewriter);
121
122 void SinkUnusedInvariants(Loop *L);
123 };
124}
125
126char IndVarSimplify::ID = 0;
127INITIALIZE_PASS_BEGIN(IndVarSimplify, "polly-indvars",
128 "Induction Variable Simplification (Polly version)", false,
129 false)
130INITIALIZE_PASS_DEPENDENCY(DominatorTree)
131INITIALIZE_PASS_DEPENDENCY(LoopInfo)
132INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
133INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
134INITIALIZE_PASS_DEPENDENCY(LCSSA)
135INITIALIZE_PASS_DEPENDENCY(IVUsers)
136INITIALIZE_PASS_END(IndVarSimplify, "polly-indvars",
137 "Induction Variable Simplification (Polly version)", false,
138 false)
139
140Pass *polly::createIndVarSimplifyPass() {
141 return new IndVarSimplify();
142}
143
144/// isValidRewrite - Return true if the SCEV expansion generated by the
145/// rewriter can replace the original value. SCEV guarantees that it
146/// produces the same value, but the way it is produced may be illegal IR.
147/// Ideally, this function will only be called for verification.
148bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
149 // If an SCEV expression subsumed multiple pointers, its expansion could
150 // reassociate the GEP changing the base pointer. This is illegal because the
151 // final address produced by a GEP chain must be inbounds relative to its
152 // underlying object. Otherwise basic alias analysis, among other things,
153 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
154 // producing an expression involving multiple pointers. Until then, we must
155 // bail out here.
156 //
157 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
158 // because it understands lcssa phis while SCEV does not.
159 Value *FromPtr = FromVal;
160 Value *ToPtr = ToVal;
161 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
162 FromPtr = GEP->getPointerOperand();
163 }
164 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
165 ToPtr = GEP->getPointerOperand();
166 }
167 if (FromPtr != FromVal || ToPtr != ToVal) {
168 // Quickly check the common case
169 if (FromPtr == ToPtr)
170 return true;
171
172 // SCEV may have rewritten an expression that produces the GEP's pointer
173 // operand. That's ok as long as the pointer operand has the same base
174 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
175 // base of a recurrence. This handles the case in which SCEV expansion
176 // converts a pointer type recurrence into a nonrecurrent pointer base
177 // indexed by an integer recurrence.
178
179 // If the GEP base pointer is a vector of pointers, abort.
180 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
181 return false;
182
183 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
184 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
185 if (FromBase == ToBase)
186 return true;
187
188 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
189 << *FromBase << " != " << *ToBase << "\n");
190
191 return false;
192 }
193 return true;
194}
195
196/// Determine the insertion point for this user. By default, insert immediately
197/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
198/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
199/// common dominator for the incoming blocks.
200static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
201 DominatorTree *DT) {
202 PHINode *PHI = dyn_cast<PHINode>(User);
203 if (!PHI)
204 return User;
205
206 Instruction *InsertPt = 0;
207 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
208 if (PHI->getIncomingValue(i) != Def)
209 continue;
210
211 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
212 if (!InsertPt) {
213 InsertPt = InsertBB->getTerminator();
214 continue;
215 }
216 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
217 InsertPt = InsertBB->getTerminator();
218 }
219 assert(InsertPt && "Missing phi operand");
220 assert((!isa<Instruction>(Def) ||
221 DT->dominates(cast<Instruction>(Def), InsertPt)) &&
222 "def does not dominate all uses");
223 return InsertPt;
224}
225
226//===----------------------------------------------------------------------===//
227// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
228//===----------------------------------------------------------------------===//
229
230/// ConvertToSInt - Convert APF to an integer, if possible.
231static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
232 bool isExact = false;
233 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
234 return false;
235 // See if we can convert this to an int64_t
236 uint64_t UIntVal;
237 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
238 &isExact) != APFloat::opOK || !isExact)
239 return false;
240 IntVal = UIntVal;
241 return true;
242}
243
244/// HandleFloatingPointIV - If the loop has floating induction variable
245/// then insert corresponding integer induction variable if possible.
246/// For example,
247/// for(double i = 0; i < 10000; ++i)
248/// bar(i)
249/// is converted into
250/// for(int i = 0; i < 10000; ++i)
251/// bar((double)i);
252///
253void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
254 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
255 unsigned BackEdge = IncomingEdge^1;
256
257 // Check incoming value.
258 ConstantFP *InitValueVal =
259 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
260
261 int64_t InitValue;
262 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
263 return;
264
265 // Check IV increment. Reject this PN if increment operation is not
266 // an add or increment value can not be represented by an integer.
267 BinaryOperator *Incr =
268 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
269 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
270
271 // If this is not an add of the PHI with a constantfp, or if the constant fp
272 // is not an integer, bail out.
273 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
274 int64_t IncValue;
275 if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
276 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
277 return;
278
279 // Check Incr uses. One user is PN and the other user is an exit condition
280 // used by the conditional terminator.
281 Value::use_iterator IncrUse = Incr->use_begin();
282 Instruction *U1 = cast<Instruction>(*IncrUse++);
283 if (IncrUse == Incr->use_end()) return;
284 Instruction *U2 = cast<Instruction>(*IncrUse++);
285 if (IncrUse != Incr->use_end()) return;
286
287 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
288 // only used by a branch, we can't transform it.
289 FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
290 if (!Compare)
291 Compare = dyn_cast<FCmpInst>(U2);
292 if (Compare == 0 || !Compare->hasOneUse() ||
293 !isa<BranchInst>(Compare->use_back()))
294 return;
295
296 BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
297
298 // We need to verify that the branch actually controls the iteration count
299 // of the loop. If not, the new IV can overflow and no one will notice.
300 // The branch block must be in the loop and one of the successors must be out
301 // of the loop.
302 assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
303 if (!L->contains(TheBr->getParent()) ||
304 (L->contains(TheBr->getSuccessor(0)) &&
305 L->contains(TheBr->getSuccessor(1))))
306 return;
307
308
309 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
310 // transform it.
311 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
312 int64_t ExitValue;
313 if (ExitValueVal == 0 ||
314 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
315 return;
316
317 // Find new predicate for integer comparison.
318 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
319 switch (Compare->getPredicate()) {
320 default: return; // Unknown comparison.
321 case CmpInst::FCMP_OEQ:
322 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
323 case CmpInst::FCMP_ONE:
324 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
325 case CmpInst::FCMP_OGT:
326 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
327 case CmpInst::FCMP_OGE:
328 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
329 case CmpInst::FCMP_OLT:
330 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
331 case CmpInst::FCMP_OLE:
332 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
333 }
334
335 // We convert the floating point induction variable to a signed i32 value if
336 // we can. This is only safe if the comparison will not overflow in a way
337 // that won't be trapped by the integer equivalent operations. Check for this
338 // now.
339 // TODO: We could use i64 if it is native and the range requires it.
340
341 // The start/stride/exit values must all fit in signed i32.
342 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
343 return;
344
345 // If not actually striding (add x, 0.0), avoid touching the code.
346 if (IncValue == 0)
347 return;
348
349 // Positive and negative strides have different safety conditions.
350 if (IncValue > 0) {
351 // If we have a positive stride, we require the init to be less than the
352 // exit value.
353 if (InitValue >= ExitValue)
354 return;
355
356 uint32_t Range = uint32_t(ExitValue-InitValue);
357 // Check for infinite loop, either:
358 // while (i <= Exit) or until (i > Exit)
359 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
360 if (++Range == 0) return; // Range overflows.
361 }
362
363 unsigned Leftover = Range % uint32_t(IncValue);
364
365 // If this is an equality comparison, we require that the strided value
366 // exactly land on the exit value, otherwise the IV condition will wrap
367 // around and do things the fp IV wouldn't.
368 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
369 Leftover != 0)
370 return;
371
372 // If the stride would wrap around the i32 before exiting, we can't
373 // transform the IV.
374 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
375 return;
376
377 } else {
378 // If we have a negative stride, we require the init to be greater than the
379 // exit value.
380 if (InitValue <= ExitValue)
381 return;
382
383 uint32_t Range = uint32_t(InitValue-ExitValue);
384 // Check for infinite loop, either:
385 // while (i >= Exit) or until (i < Exit)
386 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
387 if (++Range == 0) return; // Range overflows.
388 }
389
390 unsigned Leftover = Range % uint32_t(-IncValue);
391
392 // If this is an equality comparison, we require that the strided value
393 // exactly land on the exit value, otherwise the IV condition will wrap
394 // around and do things the fp IV wouldn't.
395 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
396 Leftover != 0)
397 return;
398
399 // If the stride would wrap around the i32 before exiting, we can't
400 // transform the IV.
401 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
402 return;
403 }
404
405 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
406
407 // Insert new integer induction variable.
408 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
409 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
410 PN->getIncomingBlock(IncomingEdge));
411
412 Value *NewAdd =
413 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
414 Incr->getName()+".int", Incr);
415 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
416
417 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
418 ConstantInt::get(Int32Ty, ExitValue),
419 Compare->getName());
420
421 // In the following deletions, PN may become dead and may be deleted.
422 // Use a WeakVH to observe whether this happens.
423 WeakVH WeakPH = PN;
424
425 // Delete the old floating point exit comparison. The branch starts using the
426 // new comparison.
427 NewCompare->takeName(Compare);
428 Compare->replaceAllUsesWith(NewCompare);
429 RecursivelyDeleteTriviallyDeadInstructions(Compare);
430
431 // Delete the old floating point increment.
432 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
433 RecursivelyDeleteTriviallyDeadInstructions(Incr);
434
435 // If the FP induction variable still has uses, this is because something else
436 // in the loop uses its value. In order to canonicalize the induction
437 // variable, we chose to eliminate the IV and rewrite it in terms of an
438 // int->fp cast.
439 //
440 // We give preference to sitofp over uitofp because it is faster on most
441 // platforms.
442 if (WeakPH) {
443 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
444 PN->getParent()->getFirstInsertionPt());
445 PN->replaceAllUsesWith(Conv);
446 RecursivelyDeleteTriviallyDeadInstructions(PN);
447 }
448
449 // Add a new IVUsers entry for the newly-created integer PHI.
450 if (IU)
451 IU->AddUsersIfInteresting(NewPHI);
452
453 Changed = true;
454}
455
456void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
457 // First step. Check to see if there are any floating-point recurrences.
458 // If there are, change them into integer recurrences, permitting analysis by
459 // the SCEV routines.
460 //
461 BasicBlock *Header = L->getHeader();
462
463 SmallVector<WeakVH, 8> PHIs;
464 for (BasicBlock::iterator I = Header->begin();
465 PHINode *PN = dyn_cast<PHINode>(I); ++I)
466 PHIs.push_back(PN);
467
468 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
469 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
470 HandleFloatingPointIV(L, PN);
471
472 // If the loop previously had floating-point IV, ScalarEvolution
473 // may not have been able to compute a trip count. Now that we've done some
474 // re-writing, the trip count may be computable.
475 if (Changed)
476 SE->forgetLoop(L);
477}
478
479//===----------------------------------------------------------------------===//
480// RewriteLoopExitValues - Optimize IV users outside the loop.
481// As a side effect, reduces the amount of IV processing within the loop.
482//===----------------------------------------------------------------------===//
483
484/// RewriteLoopExitValues - Check to see if this loop has a computable
485/// loop-invariant execution count. If so, this means that we can compute the
486/// final value of any expressions that are recurrent in the loop, and
487/// substitute the exit values from the loop into any instructions outside of
488/// the loop that use the final values of the current expressions.
489///
490/// This is mostly redundant with the regular IndVarSimplify activities that
491/// happen later, except that it's more powerful in some cases, because it's
492/// able to brute-force evaluate arbitrary instructions as long as they have
493/// constant operands at the beginning of the loop.
494void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
495 // Verify the input to the pass in already in LCSSA form.
496 assert(L->isLCSSAForm(*DT));
497
498 SmallVector<BasicBlock*, 8> ExitBlocks;
499 L->getUniqueExitBlocks(ExitBlocks);
500
501 // Find all values that are computed inside the loop, but used outside of it.
502 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
503 // the exit blocks of the loop to find them.
504 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
505 BasicBlock *ExitBB = ExitBlocks[i];
506
507 // If there are no PHI nodes in this exit block, then no values defined
508 // inside the loop are used on this path, skip it.
509 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
510 if (!PN) continue;
511
512 unsigned NumPreds = PN->getNumIncomingValues();
513
514 // Iterate over all of the PHI nodes.
515 BasicBlock::iterator BBI = ExitBB->begin();
516 while ((PN = dyn_cast<PHINode>(BBI++))) {
517 if (PN->use_empty())
518 continue; // dead use, don't replace it
519
520 // SCEV only supports integer expressions for now.
521 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
522 continue;
523
524 // It's necessary to tell ScalarEvolution about this explicitly so that
525 // it can walk the def-use list and forget all SCEVs, as it may not be
526 // watching the PHI itself. Once the new exit value is in place, there
527 // may not be a def-use connection between the loop and every instruction
528 // which got a SCEVAddRecExpr for that loop.
529 SE->forgetValue(PN);
530
531 // Iterate over all of the values in all the PHI nodes.
532 for (unsigned i = 0; i != NumPreds; ++i) {
533 // If the value being merged in is not integer or is not defined
534 // in the loop, skip it.
535 Value *InVal = PN->getIncomingValue(i);
536 if (!isa<Instruction>(InVal))
537 continue;
538
539 // If this pred is for a subloop, not L itself, skip it.
540 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
541 continue; // The Block is in a subloop, skip it.
542
543 // Check that InVal is defined in the loop.
544 Instruction *Inst = cast<Instruction>(InVal);
545 if (!L->contains(Inst))
546 continue;
547
548 // Okay, this instruction has a user outside of the current loop
549 // and varies predictably *inside* the loop. Evaluate the value it
550 // contains when the loop exits, if possible.
551 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
552 if (!SE->isLoopInvariant(ExitValue, L))
553 continue;
554
555 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
556
557 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
558 << " LoopVal = " << *Inst << "\n");
559
560 if (!isValidRewrite(Inst, ExitVal)) {
561 DeadInsts.push_back(ExitVal);
562 continue;
563 }
564 Changed = true;
565 ++NumReplaced;
566
567 PN->setIncomingValue(i, ExitVal);
568
569 // If this instruction is dead now, delete it.
570 RecursivelyDeleteTriviallyDeadInstructions(Inst);
571
572 if (NumPreds == 1) {
573 // Completely replace a single-pred PHI. This is safe, because the
574 // NewVal won't be variant in the loop, so we don't need an LCSSA phi
575 // node anymore.
576 PN->replaceAllUsesWith(ExitVal);
577 RecursivelyDeleteTriviallyDeadInstructions(PN);
578 }
579 }
580 if (NumPreds != 1) {
581 // Clone the PHI and delete the original one. This lets IVUsers and
582 // any other maps purge the original user from their records.
583 PHINode *NewPN = cast<PHINode>(PN->clone());
584 NewPN->takeName(PN);
585 NewPN->insertBefore(PN);
586 PN->replaceAllUsesWith(NewPN);
587 PN->eraseFromParent();
588 }
589 }
590 }
591
592 // The insertion point instruction may have been deleted; clear it out
593 // so that the rewriter doesn't trip over it later.
594 Rewriter.clearInsertPoint();
595}
596
597//===----------------------------------------------------------------------===//
598// Rewrite IV users based on a canonical IV.
599// Only for use with -enable-iv-rewrite.
600//===----------------------------------------------------------------------===//
601
602/// FIXME: It is an extremely bad idea to indvar substitute anything more
603/// complex than affine induction variables. Doing so will put expensive
604/// polynomial evaluations inside of the loop, and the str reduction pass
605/// currently can only reduce affine polynomials. For now just disable
606/// indvar subst on anything more complex than an affine addrec, unless
607/// it can be expanded to a trivial value.
608static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
609 // Loop-invariant values are safe.
610 if (SE->isLoopInvariant(S, L)) return true;
611
612 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
613 // to transform them into efficient code.
614 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
615 return AR->isAffine();
616
617 // An add is safe it all its operands are safe.
618 if (const SCEVCommutativeExpr *Commutative
619 = dyn_cast<SCEVCommutativeExpr>(S)) {
620 for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
621 E = Commutative->op_end(); I != E; ++I)
622 if (!isSafe(*I, L, SE)) return false;
623 return true;
624 }
625
626 // A cast is safe if its operand is.
627 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
628 return isSafe(C->getOperand(), L, SE);
629
630 // A udiv is safe if its operands are.
631 if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
632 return isSafe(UD->getLHS(), L, SE) &&
633 isSafe(UD->getRHS(), L, SE);
634
635 // SCEVUnknown is always safe.
636 if (isa<SCEVUnknown>(S))
637 return true;
638
639 // Nothing else is safe.
640 return false;
641}
642
643void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
644 // Rewrite all induction variable expressions in terms of the canonical
645 // induction variable.
646 //
647 // If there were induction variables of other sizes or offsets, manually
648 // add the offsets to the primary induction variable and cast, avoiding
649 // the need for the code evaluation methods to insert induction variables
650 // of different sizes.
651 for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
652 Value *Op = UI->getOperandValToReplace();
653 Type *UseTy = Op->getType();
654 Instruction *User = UI->getUser();
655
656 // Compute the final addrec to expand into code.
657 const SCEV *AR = IU->getReplacementExpr(*UI);
658
659 // Evaluate the expression out of the loop, if possible.
660 if (!L->contains(UI->getUser())) {
661 const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
662 if (SE->isLoopInvariant(ExitVal, L))
663 AR = ExitVal;
664 }
665
666 // FIXME: It is an extremely bad idea to indvar substitute anything more
667 // complex than affine induction variables. Doing so will put expensive
668 // polynomial evaluations inside of the loop, and the str reduction pass
669 // currently can only reduce affine polynomials. For now just disable
670 // indvar subst on anything more complex than an affine addrec, unless
671 // it can be expanded to a trivial value.
672 if (!isSafe(AR, L, SE))
673 continue;
674
675 // Determine the insertion point for this user. By default, insert
676 // immediately before the user. The SCEVExpander class will automatically
677 // hoist loop invariants out of the loop. For PHI nodes, there may be
678 // multiple uses, so compute the nearest common dominator for the
679 // incoming blocks.
680 Instruction *InsertPt = getInsertPointForUses(User, Op, DT);
681
682 // Now expand it into actual Instructions and patch it into place.
683 Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
684
685 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
686 << " into = " << *NewVal << "\n");
687
688 if (!isValidRewrite(Op, NewVal)) {
689 DeadInsts.push_back(NewVal);
690 continue;
691 }
692 // Inform ScalarEvolution that this value is changing. The change doesn't
693 // affect its value, but it does potentially affect which use lists the
694 // value will be on after the replacement, which affects ScalarEvolution's
695 // ability to walk use lists and drop dangling pointers when a value is
696 // deleted.
697 SE->forgetValue(User);
698
699 // Patch the new value into place.
700 if (Op->hasName())
701 NewVal->takeName(Op);
702 if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
703 NewValI->setDebugLoc(User->getDebugLoc());
704 User->replaceUsesOfWith(Op, NewVal);
705 UI->setOperandValToReplace(NewVal);
706
707 ++NumRemoved;
708 Changed = true;
709
710 // The old value may be dead now.
711 DeadInsts.push_back(Op);
712 }
713}
714
715//===----------------------------------------------------------------------===//
716// IV Widening - Extend the width of an IV to cover its widest uses.
717//===----------------------------------------------------------------------===//
718
719namespace {
720 // Collect information about induction variables that are used by sign/zero
721 // extend operations. This information is recorded by CollectExtend and
722 // provides the input to WidenIV.
723 struct WideIVInfo {
724 PHINode *NarrowIV;
725 Type *WidestNativeType; // Widest integer type created [sz]ext
726 bool IsSigned; // Was an sext user seen before a zext?
727
728 WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
729 };
730
731 class WideIVVisitor : public IVVisitor {
732 ScalarEvolution *SE;
733 const TargetData *TD;
734
735 public:
736 WideIVInfo WI;
737
738 WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
739 const TargetData *TData) :
740 SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
741
742 // Implement the interface used by simplifyUsersOfIV.
743 virtual void visitCast(CastInst *Cast);
744 };
745}
746
747/// visitCast - Update information about the induction variable that is
748/// extended by this sign or zero extend operation. This is used to determine
749/// the final width of the IV before actually widening it.
750void WideIVVisitor::visitCast(CastInst *Cast) {
751 bool IsSigned = Cast->getOpcode() == Instruction::SExt;
752 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
753 return;
754
755 Type *Ty = Cast->getType();
756 uint64_t Width = SE->getTypeSizeInBits(Ty);
757 if (TD && !TD->isLegalInteger(Width))
758 return;
759
760 if (!WI.WidestNativeType) {
761 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
762 WI.IsSigned = IsSigned;
763 return;
764 }
765
766 // We extend the IV to satisfy the sign of its first user, arbitrarily.
767 if (WI.IsSigned != IsSigned)
768 return;
769
770 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
771 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
772}
773
774namespace {
775
776/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
777/// WideIV that computes the same value as the Narrow IV def. This avoids
778/// caching Use* pointers.
779struct NarrowIVDefUse {
780 Instruction *NarrowDef;
781 Instruction *NarrowUse;
782 Instruction *WideDef;
783
784 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
785
786 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
787 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
788};
789
790/// WidenIV - The goal of this transform is to remove sign and zero extends
791/// without creating any new induction variables. To do this, it creates a new
792/// phi of the wider type and redirects all users, either removing extends or
793/// inserting truncs whenever we stop propagating the type.
794///
795class WidenIV {
796 // Parameters
797 PHINode *OrigPhi;
798 Type *WideType;
799 bool IsSigned;
800
801 // Context
802 LoopInfo *LI;
803 Loop *L;
804 ScalarEvolution *SE;
805 DominatorTree *DT;
806
807 // Result
808 PHINode *WidePhi;
809 Instruction *WideInc;
810 const SCEV *WideIncExpr;
811 SmallVectorImpl<WeakVH> &DeadInsts;
812
813 SmallPtrSet<Instruction*,16> Widened;
814 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
815
816public:
817 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
818 ScalarEvolution *SEv, DominatorTree *DTree,
819 SmallVectorImpl<WeakVH> &DI) :
820 OrigPhi(WI.NarrowIV),
821 WideType(WI.WidestNativeType),
822 IsSigned(WI.IsSigned),
823 LI(LInfo),
824 L(LI->getLoopFor(OrigPhi->getParent())),
825 SE(SEv),
826 DT(DTree),
827 WidePhi(0),
828 WideInc(0),
829 WideIncExpr(0),
830 DeadInsts(DI) {
831 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
832 }
833
834 PHINode *CreateWideIV(SCEVExpander &Rewriter);
835
836protected:
837 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
838 Instruction *Use);
839
840 Instruction *CloneIVUser(NarrowIVDefUse DU);
841
842 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
843
844 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
845
846 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
847
848 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
849};
850} // anonymous namespace
851
852/// isLoopInvariant - Perform a quick domtree based check for loop invariance
853/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
854/// gratuitous for this purpose.
855static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
856 Instruction *Inst = dyn_cast<Instruction>(V);
857 if (!Inst)
858 return true;
859
860 return DT->properlyDominates(Inst->getParent(), L->getHeader());
861}
862
863Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
864 Instruction *Use) {
865 // Set the debug location and conservative insertion point.
866 IRBuilder<> Builder(Use);
867 // Hoist the insertion point into loop preheaders as far as possible.
868 for (const Loop *L = LI->getLoopFor(Use->getParent());
869 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
870 L = L->getParentLoop())
871 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
872
873 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
874 Builder.CreateZExt(NarrowOper, WideType);
875}
876
877/// CloneIVUser - Instantiate a wide operation to replace a narrow
878/// operation. This only needs to handle operations that can evaluation to
879/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
880Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
881 unsigned Opcode = DU.NarrowUse->getOpcode();
882 switch (Opcode) {
883 default:
884 return 0;
885 case Instruction::Add:
886 case Instruction::Mul:
887 case Instruction::UDiv:
888 case Instruction::Sub:
889 case Instruction::And:
890 case Instruction::Or:
891 case Instruction::Xor:
892 case Instruction::Shl:
893 case Instruction::LShr:
894 case Instruction::AShr:
895 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
896
897 // Replace NarrowDef operands with WideDef. Otherwise, we don't know
898 // anything about the narrow operand yet so must insert a [sz]ext. It is
899 // probably loop invariant and will be folded or hoisted. If it actually
900 // comes from a widened IV, it should be removed during a future call to
901 // WidenIVUse.
902 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
903 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
904 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
905 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
906
907 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
908 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
909 LHS, RHS,
910 NarrowBO->getName());
911 IRBuilder<> Builder(DU.NarrowUse);
912 Builder.Insert(WideBO);
913 if (const OverflowingBinaryOperator *OBO =
914 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
915 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
916 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
917 }
918 return WideBO;
919 }
920 llvm_unreachable(0);
921}
922
923/// No-wrap operations can transfer sign extension of their result to their
924/// operands. Generate the SCEV value for the widened operation without
925/// actually modifying the IR yet. If the expression after extending the
926/// operands is an AddRec for this loop, return it.
927const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
928 // Handle the common case of add<nsw/nuw>
929 if (DU.NarrowUse->getOpcode() != Instruction::Add)
930 return 0;
931
932 // One operand (NarrowDef) has already been extended to WideDef. Now determine
933 // if extending the other will lead to a recurrence.
934 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
935 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
936
937 const SCEV *ExtendOperExpr = 0;
938 const OverflowingBinaryOperator *OBO =
939 cast<OverflowingBinaryOperator>(DU.NarrowUse);
940 if (IsSigned && OBO->hasNoSignedWrap())
941 ExtendOperExpr = SE->getSignExtendExpr(
942 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
943 else if(!IsSigned && OBO->hasNoUnsignedWrap())
944 ExtendOperExpr = SE->getZeroExtendExpr(
945 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
946 else
947 return 0;
948
949 // When creating this AddExpr, don't apply the current operations NSW or NUW
950 // flags. This instruction may be guarded by control flow that the no-wrap
951 // behavior depends on. Non-control-equivalent instructions can be mapped to
952 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
953 // semantics to those operations.
954 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
955 SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
956
957 if (!AddRec || AddRec->getLoop() != L)
958 return 0;
959 return AddRec;
960}
961
962/// GetWideRecurrence - Is this instruction potentially interesting from
963/// IVUsers' perspective after widening it's type? In other words, can the
964/// extend be safely hoisted out of the loop with SCEV reducing the value to a
965/// recurrence on the same loop. If so, return the sign or zero extended
966/// recurrence. Otherwise return NULL.
967const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
968 if (!SE->isSCEVable(NarrowUse->getType()))
969 return 0;
970
971 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
972 if (SE->getTypeSizeInBits(NarrowExpr->getType())
973 >= SE->getTypeSizeInBits(WideType)) {
974 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
975 // index. So don't follow this use.
976 return 0;
977 }
978
979 const SCEV *WideExpr = IsSigned ?
980 SE->getSignExtendExpr(NarrowExpr, WideType) :
981 SE->getZeroExtendExpr(NarrowExpr, WideType);
982 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
983 if (!AddRec || AddRec->getLoop() != L)
984 return 0;
985 return AddRec;
986}
987
988/// WidenIVUse - Determine whether an individual user of the narrow IV can be
989/// widened. If so, return the wide clone of the user.
990Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
991
992 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
993 if (isa<PHINode>(DU.NarrowUse) &&
994 LI->getLoopFor(DU.NarrowUse->getParent()) != L)
995 return 0;
996
997 // Our raison d'etre! Eliminate sign and zero extension.
998 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
999 Value *NewDef = DU.WideDef;
1000 if (DU.NarrowUse->getType() != WideType) {
1001 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1002 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1003 if (CastWidth < IVWidth) {
1004 // The cast isn't as wide as the IV, so insert a Trunc.
1005 IRBuilder<> Builder(DU.NarrowUse);
1006 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1007 }
1008 else {
1009 // A wider extend was hidden behind a narrower one. This may induce
1010 // another round of IV widening in which the intermediate IV becomes
1011 // dead. It should be very rare.
1012 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1013 << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1014 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1015 NewDef = DU.NarrowUse;
1016 }
1017 }
1018 if (NewDef != DU.NarrowUse) {
1019 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1020 << " replaced by " << *DU.WideDef << "\n");
1021 ++NumElimExt;
1022 DU.NarrowUse->replaceAllUsesWith(NewDef);
1023 DeadInsts.push_back(DU.NarrowUse);
1024 }
1025 // Now that the extend is gone, we want to expose it's uses for potential
1026 // further simplification. We don't need to directly inform SimplifyIVUsers
1027 // of the new users, because their parent IV will be processed later as a
1028 // new loop phi. If we preserved IVUsers analysis, we would also want to
1029 // push the uses of WideDef here.
1030
1031 // No further widening is needed. The deceased [sz]ext had done it for us.
1032 return 0;
1033 }
1034
1035 // Does this user itself evaluate to a recurrence after widening?
1036 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
1037 if (!WideAddRec) {
1038 WideAddRec = GetExtendedOperandRecurrence(DU);
1039 }
1040 if (!WideAddRec) {
1041 // This user does not evaluate to a recurence after widening, so don't
1042 // follow it. Instead insert a Trunc to kill off the original use,
1043 // eventually isolating the original narrow IV so it can be removed.
1044 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
1045 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1046 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1047 return 0;
1048 }
1049 // Assume block terminators cannot evaluate to a recurrence. We can't to
1050 // insert a Trunc after a terminator if there happens to be a critical edge.
1051 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1052 "SCEV is not expected to evaluate a block terminator");
1053
1054 // Reuse the IV increment that SCEVExpander created as long as it dominates
1055 // NarrowUse.
1056 Instruction *WideUse = 0;
1057 if (WideAddRec == WideIncExpr
1058 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1059 WideUse = WideInc;
1060 else {
1061 WideUse = CloneIVUser(DU);
1062 if (!WideUse)
1063 return 0;
1064 }
1065 // Evaluation of WideAddRec ensured that the narrow expression could be
1066 // extended outside the loop without overflow. This suggests that the wide use
1067 // evaluates to the same expression as the extended narrow use, but doesn't
1068 // absolutely guarantee it. Hence the following failsafe check. In rare cases
1069 // where it fails, we simply throw away the newly created wide use.
1070 if (WideAddRec != SE->getSCEV(WideUse)) {
1071 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1072 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1073 DeadInsts.push_back(WideUse);
1074 return 0;
1075 }
1076
1077 // Returning WideUse pushes it on the worklist.
1078 return WideUse;
1079}
1080
1081/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1082///
1083void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1084 for (Value::use_iterator UI = NarrowDef->use_begin(),
1085 UE = NarrowDef->use_end(); UI != UE; ++UI) {
1086 Instruction *NarrowUse = cast<Instruction>(*UI);
1087
1088 // Handle data flow merges and bizarre phi cycles.
1089 if (!Widened.insert(NarrowUse))
1090 continue;
1091
1092 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
1093 }
1094}
1095
1096/// CreateWideIV - Process a single induction variable. First use the
1097/// SCEVExpander to create a wide induction variable that evaluates to the same
1098/// recurrence as the original narrow IV. Then use a worklist to forward
1099/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
1100/// interesting IV users, the narrow IV will be isolated for removal by
1101/// DeleteDeadPHIs.
1102///
1103/// It would be simpler to delete uses as they are processed, but we must avoid
1104/// invalidating SCEV expressions.
1105///
1106PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
1107 // Is this phi an induction variable?
1108 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1109 if (!AddRec)
1110 return NULL;
1111
1112 // Widen the induction variable expression.
1113 const SCEV *WideIVExpr = IsSigned ?
1114 SE->getSignExtendExpr(AddRec, WideType) :
1115 SE->getZeroExtendExpr(AddRec, WideType);
1116
1117 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1118 "Expect the new IV expression to preserve its type");
1119
1120 // Can the IV be extended outside the loop without overflow?
1121 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1122 if (!AddRec || AddRec->getLoop() != L)
1123 return NULL;
1124
1125 // An AddRec must have loop-invariant operands. Since this AddRec is
1126 // materialized by a loop header phi, the expression cannot have any post-loop
1127 // operands, so they must dominate the loop header.
1128 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1129 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1130 && "Loop header phi recurrence inputs do not dominate the loop");
1131
1132 // The rewriter provides a value for the desired IV expression. This may
1133 // either find an existing phi or materialize a new one. Either way, we
1134 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1135 // of the phi-SCC dominates the loop entry.
1136 Instruction *InsertPt = L->getHeader()->begin();
1137 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1138
1139 // Remembering the WideIV increment generated by SCEVExpander allows
1140 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1141 // employ a general reuse mechanism because the call above is the only call to
1142 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1143 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1144 WideInc =
1145 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1146 WideIncExpr = SE->getSCEV(WideInc);
1147 }
1148
1149 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1150 ++NumWidened;
1151
1152 // Traverse the def-use chain using a worklist starting at the original IV.
1153 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1154
1155 Widened.insert(OrigPhi);
1156 pushNarrowIVUsers(OrigPhi, WidePhi);
1157
1158 while (!NarrowIVUsers.empty()) {
1159 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1160
1161 // Process a def-use edge. This may replace the use, so don't hold a
1162 // use_iterator across it.
1163 Instruction *WideUse = WidenIVUse(DU, Rewriter);
1164
1165 // Follow all def-use edges from the previous narrow use.
1166 if (WideUse)
1167 pushNarrowIVUsers(DU.NarrowUse, WideUse);
1168
1169 // WidenIVUse may have removed the def-use edge.
1170 if (DU.NarrowDef->use_empty())
1171 DeadInsts.push_back(DU.NarrowDef);
1172 }
1173 return WidePhi;
1174}
1175
1176//===----------------------------------------------------------------------===//
1177// Simplification of IV users based on SCEV evaluation.
1178//===----------------------------------------------------------------------===//
1179
1180
1181/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1182/// users. Each successive simplification may push more users which may
1183/// themselves be candidates for simplification.
1184///
1185/// Sign/Zero extend elimination is interleaved with IV simplification.
1186///
1187void IndVarSimplify::SimplifyAndExtend(Loop *L,
1188 SCEVExpander &Rewriter,
1189 LPPassManager &LPM) {
1190 SmallVector<WideIVInfo, 8> WideIVs;
1191
1192 SmallVector<PHINode*, 8> LoopPhis;
1193 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1194 LoopPhis.push_back(cast<PHINode>(I));
1195 }
1196 // Each round of simplification iterates through the SimplifyIVUsers worklist
1197 // for all current phis, then determines whether any IVs can be
1198 // widened. Widening adds new phis to LoopPhis, inducing another round of
1199 // simplification on the wide IVs.
1200 while (!LoopPhis.empty()) {
1201 // Evaluate as many IV expressions as possible before widening any IVs. This
1202 // forces SCEV to set no-wrap flags before evaluating sign/zero
1203 // extension. The first time SCEV attempts to normalize sign/zero extension,
1204 // the result becomes final. So for the most predictable results, we delay
1205 // evaluation of sign/zero extend evaluation until needed, and avoid running
1206 // other SCEV based analysis prior to SimplifyAndExtend.
1207 do {
1208 PHINode *CurrIV = LoopPhis.pop_back_val();
1209
1210 // Information about sign/zero extensions of CurrIV.
1211 WideIVVisitor WIV(CurrIV, SE, TD);
1212
1213 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
1214
1215 if (WIV.WI.WidestNativeType) {
1216 WideIVs.push_back(WIV.WI);
1217 }
1218 } while(!LoopPhis.empty());
1219
1220 for (; !WideIVs.empty(); WideIVs.pop_back()) {
1221 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1222 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1223 Changed = true;
1224 LoopPhis.push_back(WidePhi);
1225 }
1226 }
1227 }
1228}
1229
1230//===----------------------------------------------------------------------===//
1231// LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1232//===----------------------------------------------------------------------===//
1233
1234/// Check for expressions that ScalarEvolution generates to compute
1235/// BackedgeTakenInfo. If these expressions have not been reduced, then
1236/// expanding them may incur additional cost (albeit in the loop preheader).
1237static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1238 SmallPtrSet<const SCEV*, 8> &Processed,
1239 ScalarEvolution *SE) {
1240 if (!Processed.insert(S))
1241 return false;
1242
1243 // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1244 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1245 // precise expression, rather than a UDiv from the user's code. If we can't
1246 // find a UDiv in the code with some simple searching, assume the former and
1247 // forego rewriting the loop.
1248 if (isa<SCEVUDivExpr>(S)) {
1249 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1250 if (!OrigCond) return true;
1251 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1252 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1253 if (R != S) {
1254 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1255 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1256 if (L != S)
1257 return true;
1258 }
1259 }
1260
1261 if (EnableIVRewrite)
1262 return false;
1263
1264 // Recurse past add expressions, which commonly occur in the
1265 // BackedgeTakenCount. They may already exist in program code, and if not,
1266 // they are not too expensive rematerialize.
1267 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1268 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1269 I != E; ++I) {
1270 if (isHighCostExpansion(*I, BI, Processed, SE))
1271 return true;
1272 }
1273 return false;
1274 }
1275
1276 // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1277 // the exit condition.
1278 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1279 return true;
1280
1281 // If we haven't recognized an expensive SCEV pattern, assume it's an
1282 // expression produced by program code.
1283 return false;
1284}
1285
1286/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1287/// count expression can be safely and cheaply expanded into an instruction
1288/// sequence that can be used by LinearFunctionTestReplace.
1289///
1290/// TODO: This fails for pointer-type loop counters with greater than one byte
1291/// strides, consequently preventing LFTR from running. For the purpose of LFTR
1292/// we could skip this check in the case that the LFTR loop counter (chosen by
1293/// FindLoopCounter) is also pointer type. Instead, we could directly convert
1294/// the loop test to an inequality test by checking the target data's alignment
1295/// of element types (given that the initial pointer value originates from or is
1296/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1297/// However, we don't yet have a strong motivation for converting loop tests
1298/// into inequality tests.
1299static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1300 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1301 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1302 BackedgeTakenCount->isZero())
1303 return false;
1304
1305 if (!L->getExitingBlock())
1306 return false;
1307
1308 // Can't rewrite non-branch yet.
1309 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1310 if (!BI)
1311 return false;
1312
1313 SmallPtrSet<const SCEV*, 8> Processed;
1314 if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
1315 return false;
1316
1317 return true;
1318}
1319
1320/// getBackedgeIVType - Get the widest type used by the loop test after peeking
1321/// through Truncs.
1322///
1323/// TODO: Unnecessary when ForceLFTR is removed.
1324static Type *getBackedgeIVType(Loop *L) {
1325 if (!L->getExitingBlock())
1326 return 0;
1327
1328 // Can't rewrite non-branch yet.
1329 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1330 if (!BI)
1331 return 0;
1332
1333 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1334 if (!Cond)
1335 return 0;
1336
1337 Type *Ty = 0;
1338 for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
1339 OI != OE; ++OI) {
1340 assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
1341 TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
1342 if (!Trunc)
1343 continue;
1344
1345 return Trunc->getSrcTy();
1346 }
1347 return Ty;
1348}
1349
1350/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1351/// invariant value to the phi.
1352static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1353 Instruction *IncI = dyn_cast<Instruction>(IncV);
1354 if (!IncI)
1355 return 0;
1356
1357 switch (IncI->getOpcode()) {
1358 case Instruction::Add:
1359 case Instruction::Sub:
1360 break;
1361 case Instruction::GetElementPtr:
1362 // An IV counter must preserve its type.
1363 if (IncI->getNumOperands() == 2)
1364 break;
1365 default:
1366 return 0;
1367 }
1368
1369 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1370 if (Phi && Phi->getParent() == L->getHeader()) {
1371 if (isLoopInvariant(IncI->getOperand(1), L, DT))
1372 return Phi;
1373 return 0;
1374 }
1375 if (IncI->getOpcode() == Instruction::GetElementPtr)
1376 return 0;
1377
1378 // Allow add/sub to be commuted.
1379 Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1380 if (Phi && Phi->getParent() == L->getHeader()) {
1381 if (isLoopInvariant(IncI->getOperand(0), L, DT))
1382 return Phi;
1383 }
1384 return 0;
1385}
1386
1387/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1388/// that the current exit test is already sufficiently canonical.
1389static bool needsLFTR(Loop *L, DominatorTree *DT) {
1390 assert(L->getExitingBlock() && "expected loop exit");
1391
1392 BasicBlock *LatchBlock = L->getLoopLatch();
1393 // Don't bother with LFTR if the loop is not properly simplified.
1394 if (!LatchBlock)
1395 return false;
1396
1397 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1398 assert(BI && "expected exit branch");
1399
1400 // Do LFTR to simplify the exit condition to an ICMP.
1401 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1402 if (!Cond)
1403 return true;
1404
1405 // Do LFTR to simplify the exit ICMP to EQ/NE
1406 ICmpInst::Predicate Pred = Cond->getPredicate();
1407 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1408 return true;
1409
1410 // Look for a loop invariant RHS
1411 Value *LHS = Cond->getOperand(0);
1412 Value *RHS = Cond->getOperand(1);
1413 if (!isLoopInvariant(RHS, L, DT)) {
1414 if (!isLoopInvariant(LHS, L, DT))
1415 return true;
1416 std::swap(LHS, RHS);
1417 }
1418 // Look for a simple IV counter LHS
1419 PHINode *Phi = dyn_cast<PHINode>(LHS);
1420 if (!Phi)
1421 Phi = getLoopPhiForCounter(LHS, L, DT);
1422
1423 if (!Phi)
1424 return true;
1425
1426 // Do LFTR if the exit condition's IV is *not* a simple counter.
1427 Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
1428 return Phi != getLoopPhiForCounter(IncV, L, DT);
1429}
1430
1431/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1432/// be rewritten) loop exit test.
1433static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1434 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1435 Value *IncV = Phi->getIncomingValue(LatchIdx);
1436
1437 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1438 UI != UE; ++UI) {
1439 if (*UI != Cond && *UI != IncV) return false;
1440 }
1441
1442 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1443 UI != UE; ++UI) {
1444 if (*UI != Cond && *UI != Phi) return false;
1445 }
1446 return true;
1447}
1448
1449/// FindLoopCounter - Find an affine IV in canonical form.
1450///
1451/// BECount may be an i8* pointer type. The pointer difference is already
1452/// valid count without scaling the address stride, so it remains a pointer
1453/// expression as far as SCEV is concerned.
1454///
1455/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1456///
1457/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1458/// This is difficult in general for SCEV because of potential overflow. But we
1459/// could at least handle constant BECounts.
1460static PHINode *
1461FindLoopCounter(Loop *L, const SCEV *BECount,
1462 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
1463 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1464
1465 Value *Cond =
1466 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1467
1468 // Loop over all of the PHI nodes, looking for a simple counter.
1469 PHINode *BestPhi = 0;
1470 const SCEV *BestInit = 0;
1471 BasicBlock *LatchBlock = L->getLoopLatch();
1472 assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1473
1474 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1475 PHINode *Phi = cast<PHINode>(I);
1476 if (!SE->isSCEVable(Phi->getType()))
1477 continue;
1478
1479 // Avoid comparing an integer IV against a pointer Limit.
1480 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1481 continue;
1482
1483 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1484 if (!AR || AR->getLoop() != L || !AR->isAffine())
1485 continue;
1486
1487 // AR may be a pointer type, while BECount is an integer type.
1488 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1489 // AR may not be a narrower type, or we may never exit.
1490 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1491 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1492 continue;
1493
1494 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1495 if (!Step || !Step->isOne())
1496 continue;
1497
1498 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1499 Value *IncV = Phi->getIncomingValue(LatchIdx);
1500 if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1501 continue;
1502
1503 const SCEV *Init = AR->getStart();
1504
1505 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1506 // Don't force a live loop counter if another IV can be used.
1507 if (AlmostDeadIV(Phi, LatchBlock, Cond))
1508 continue;
1509
1510 // Prefer to count-from-zero. This is a more "canonical" counter form. It
1511 // also prefers integer to pointer IVs.
1512 if (BestInit->isZero() != Init->isZero()) {
1513 if (BestInit->isZero())
1514 continue;
1515 }
1516 // If two IVs both count from zero or both count from nonzero then the
1517 // narrower is likely a dead phi that has been widened. Use the wider phi
1518 // to allow the other to be eliminated.
1519 if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1520 continue;
1521 }
1522 BestPhi = Phi;
1523 BestInit = Init;
1524 }
1525 return BestPhi;
1526}
1527
1528/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1529/// holds the RHS of the new loop test.
1530static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1531 SCEVExpander &Rewriter, ScalarEvolution *SE) {
1532 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1533 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1534 const SCEV *IVInit = AR->getStart();
1535
1536 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1537 // finds a valid pointer IV. Sign extend BECount in order to materialize a
1538 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1539 // the existing GEPs whenever possible.
1540 if (IndVar->getType()->isPointerTy()
1541 && !IVCount->getType()->isPointerTy()) {
1542
1543 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1544 const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy);
1545
1546 // Expand the code for the iteration count.
1547 assert(SE->isLoopInvariant(IVOffset, L) &&
1548 "Computed iteration count is not loop invariant!");
1549 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1550 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1551
1552 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1553 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1554 // We could handle pointer IVs other than i8*, but we need to compensate for
1555 // gep index scaling. See canExpandBackedgeTakenCount comments.
1556 assert(SE->getSizeOfExpr(
1557 cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1558 && "unit stride pointer IV must be i8*");
1559
1560 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1561 return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
1562 }
1563 else {
1564 // In any other case, convert both IVInit and IVCount to integers before
1565 // comparing. This may result in SCEV expension of pointers, but in practice
1566 // SCEV will fold the pointer arithmetic away as such:
1567 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1568 //
1569 // Valid Cases: (1) both integers is most common; (2) both may be pointers
1570 // for simple memset-style loops; (3) IVInit is an integer and IVCount is a
1571 // pointer may occur when enable-iv-rewrite generates a canonical IV on top
1572 // of case #2.
1573
1574 const SCEV *IVLimit = 0;
1575 // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1576 // For non-zero Start, compute IVCount here.
1577 if (AR->getStart()->isZero())
1578 IVLimit = IVCount;
1579 else {
1580 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1581 const SCEV *IVInit = AR->getStart();
1582
1583 // For integer IVs, truncate the IV before computing IVInit + BECount.
1584 if (SE->getTypeSizeInBits(IVInit->getType())
1585 > SE->getTypeSizeInBits(IVCount->getType()))
1586 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1587
1588 IVLimit = SE->getAddExpr(IVInit, IVCount);
1589 }
1590 // Expand the code for the iteration count.
1591 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1592 IRBuilder<> Builder(BI);
1593 assert(SE->isLoopInvariant(IVLimit, L) &&
1594 "Computed iteration count is not loop invariant!");
1595 // Ensure that we generate the same type as IndVar, or a smaller integer
1596 // type. In the presence of null pointer values, we have an integer type
1597 // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1598 Type *LimitTy = IVCount->getType()->isPointerTy() ?
1599 IndVar->getType() : IVCount->getType();
1600 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1601 }
1602}
1603
1604/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1605/// loop to be a canonical != comparison against the incremented loop induction
1606/// variable. This pass is able to rewrite the exit tests of any loop where the
1607/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1608/// is actually a much broader range than just linear tests.
1609Value *IndVarSimplify::
1610LinearFunctionTestReplace(Loop *L,
1611 const SCEV *BackedgeTakenCount,
1612 PHINode *IndVar,
1613 SCEVExpander &Rewriter) {
1614 assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1615
1616 // LFTR can ignore IV overflow and truncate to the width of
1617 // BECount. This avoids materializing the add(zext(add)) expression.
1618 Type *CntTy = !EnableIVRewrite ?
1619 BackedgeTakenCount->getType() : IndVar->getType();
1620
1621 const SCEV *IVCount = BackedgeTakenCount;
1622
1623 // If the exiting block is the same as the backedge block, we prefer to
1624 // compare against the post-incremented value, otherwise we must compare
1625 // against the preincremented value.
1626 Value *CmpIndVar;
1627 if (L->getExitingBlock() == L->getLoopLatch()) {
1628 // Add one to the "backedge-taken" count to get the trip count.
1629 // If this addition may overflow, we have to be more pessimistic and
1630 // cast the induction variable before doing the add.
1631 const SCEV *N =
1632 SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1));
1633 if (CntTy == IVCount->getType())
1634 IVCount = N;
1635 else {
1636 const SCEV *Zero = SE->getConstant(IVCount->getType(), 0);
1637 if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1638 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1639 // No overflow. Cast the sum.
1640 IVCount = SE->getTruncateOrZeroExtend(N, CntTy);
1641 } else {
1642 // Potential overflow. Cast before doing the add.
1643 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
1644 IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1));
1645 }
1646 }
1647 // The BackedgeTaken expression contains the number of times that the
1648 // backedge branches to the loop header. This is one less than the
1649 // number of times the loop executes, so use the incremented indvar.
1650 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1651 } else {
1652 // We must use the preincremented value...
1653 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
1654 CmpIndVar = IndVar;
1655 }
1656
1657 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1658 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1659 && "genLoopLimit missed a cast");
1660
1661 // Insert a new icmp_ne or icmp_eq instruction before the branch.
1662 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1663 ICmpInst::Predicate P;
1664 if (L->contains(BI->getSuccessor(0)))
1665 P = ICmpInst::ICMP_NE;
1666 else
1667 P = ICmpInst::ICMP_EQ;
1668
1669 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1670 << " LHS:" << *CmpIndVar << '\n'
1671 << " op:\t"
1672 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1673 << " RHS:\t" << *ExitCnt << "\n"
1674 << " IVCount:\t" << *IVCount << "\n");
1675
1676 IRBuilder<> Builder(BI);
1677 if (SE->getTypeSizeInBits(CmpIndVar->getType())
1678 > SE->getTypeSizeInBits(ExitCnt->getType())) {
1679 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1680 "lftr.wideiv");
1681 }
1682
1683 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1684 Value *OrigCond = BI->getCondition();
1685 // It's tempting to use replaceAllUsesWith here to fully replace the old
1686 // comparison, but that's not immediately safe, since users of the old
1687 // comparison may not be dominated by the new comparison. Instead, just
1688 // update the branch to use the new comparison; in the common case this
1689 // will make old comparison dead.
1690 BI->setCondition(Cond);
1691 DeadInsts.push_back(OrigCond);
1692
1693 ++NumLFTR;
1694 Changed = true;
1695 return Cond;
1696}
1697
1698//===----------------------------------------------------------------------===//
1699// SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1700//===----------------------------------------------------------------------===//
1701
1702/// If there's a single exit block, sink any loop-invariant values that
1703/// were defined in the preheader but not used inside the loop into the
1704/// exit block to reduce register pressure in the loop.
1705void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1706 BasicBlock *ExitBlock = L->getExitBlock();
1707 if (!ExitBlock) return;
1708
1709 BasicBlock *Preheader = L->getLoopPreheader();
1710 if (!Preheader) return;
1711
1712 Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
1713 BasicBlock::iterator I = Preheader->getTerminator();
1714 while (I != Preheader->begin()) {
1715 --I;
1716 // New instructions were inserted at the end of the preheader.
1717 if (isa<PHINode>(I))
1718 break;
1719
1720 // Don't move instructions which might have side effects, since the side
1721 // effects need to complete before instructions inside the loop. Also don't
1722 // move instructions which might read memory, since the loop may modify
1723 // memory. Note that it's okay if the instruction might have undefined
1724 // behavior: LoopSimplify guarantees that the preheader dominates the exit
1725 // block.
1726 if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1727 continue;
1728
1729 // Skip debug info intrinsics.
1730 if (isa<DbgInfoIntrinsic>(I))
1731 continue;
1732
1733 // Skip landingpad instructions.
1734 if (isa<LandingPadInst>(I))
1735 continue;
1736
1737 // Don't sink alloca: we never want to sink static alloca's out of the
1738 // entry block, and correctly sinking dynamic alloca's requires
1739 // checks for stacksave/stackrestore intrinsics.
1740 // FIXME: Refactor this check somehow?
1741 if (isa<AllocaInst>(I))
1742 continue;
1743
1744 // Determine if there is a use in or before the loop (direct or
1745 // otherwise).
1746 bool UsedInLoop = false;
1747 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1748 UI != UE; ++UI) {
1749 User *U = *UI;
1750 BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1751 if (PHINode *P = dyn_cast<PHINode>(U)) {
1752 unsigned i =
1753 PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1754 UseBB = P->getIncomingBlock(i);
1755 }
1756 if (UseBB == Preheader || L->contains(UseBB)) {
1757 UsedInLoop = true;
1758 break;
1759 }
1760 }
1761
1762 // If there is, the def must remain in the preheader.
1763 if (UsedInLoop)
1764 continue;
1765
1766 // Otherwise, sink it to the exit block.
1767 Instruction *ToMove = I;
1768 bool Done = false;
1769
1770 if (I != Preheader->begin()) {
1771 // Skip debug info intrinsics.
1772 do {
1773 --I;
1774 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1775
1776 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1777 Done = true;
1778 } else {
1779 Done = true;
1780 }
1781
1782 ToMove->moveBefore(InsertPt);
1783 if (Done) break;
1784 InsertPt = ToMove;
1785 }
1786}
1787
1788//===----------------------------------------------------------------------===//
1789// IndVarSimplify driver. Manage several subpasses of IV simplification.
1790//===----------------------------------------------------------------------===//
1791
1792bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1793 // If LoopSimplify form is not available, stay out of trouble. Some notes:
1794 // - LSR currently only supports LoopSimplify-form loops. Indvars'
1795 // canonicalization can be a pessimization without LSR to "clean up"
1796 // afterwards.
1797 // - We depend on having a preheader; in particular,
1798 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
1799 // and we're in trouble if we can't find the induction variable even when
1800 // we've manually inserted one.
1801 if (!L->isLoopSimplifyForm())
1802 return false;
1803
1804 if (EnableIVRewrite)
1805 IU = &getAnalysis<IVUsers>();
1806 LI = &getAnalysis<LoopInfo>();
1807 SE = &getAnalysis<ScalarEvolution>();
1808 DT = &getAnalysis<DominatorTree>();
1809 TD = getAnalysisIfAvailable<TargetData>();
1810
1811 DeadInsts.clear();
1812 Changed = false;
1813
1814 // If there are any floating-point recurrences, attempt to
1815 // transform them to use integer recurrences.
1816 RewriteNonIntegerIVs(L);
1817
1818 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1819
1820 // Create a rewriter object which we'll use to transform the code with.
1821 SCEVExpander Rewriter(*SE, "indvars");
1822#ifndef NDEBUG
1823 Rewriter.setDebugType(DEBUG_TYPE);
1824#endif
1825
1826 // Eliminate redundant IV users.
1827 //
1828 // Simplification works best when run before other consumers of SCEV. We
1829 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1830 // other expressions involving loop IVs have been evaluated. This helps SCEV
1831 // set no-wrap flags before normalizing sign/zero extension.
1832 if (!EnableIVRewrite) {
1833 Rewriter.disableCanonicalMode();
1834 SimplifyAndExtend(L, Rewriter, LPM);
1835 }
1836
1837 // Check to see if this loop has a computable loop-invariant execution count.
1838 // If so, this means that we can compute the final value of any expressions
1839 // that are recurrent in the loop, and substitute the exit values from the
1840 // loop into any instructions outside of the loop that use the final values of
1841 // the current expressions.
1842 //
1843 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1844 RewriteLoopExitValues(L, Rewriter);
1845
1846 // Eliminate redundant IV users.
1847 if (EnableIVRewrite)
1848 Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts);
1849
1850 // Eliminate redundant IV cycles.
1851 if (!EnableIVRewrite)
1852 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1853
1854 // Compute the type of the largest recurrence expression, and decide whether
1855 // a canonical induction variable should be inserted.
1856 Type *LargestType = 0;
1857 bool NeedCannIV = false;
1858 bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
1859 if (EnableIVRewrite && ExpandBECount) {
1860 // If we have a known trip count and a single exit block, we'll be
1861 // rewriting the loop exit test condition below, which requires a
1862 // canonical induction variable.
1863 NeedCannIV = true;
1864 Type *Ty = BackedgeTakenCount->getType();
1865 if (!EnableIVRewrite) {
1866 // In this mode, SimplifyIVUsers may have already widened the IV used by
1867 // the backedge test and inserted a Trunc on the compare's operand. Get
1868 // the wider type to avoid creating a redundant narrow IV only used by the
1869 // loop test.
1870 LargestType = getBackedgeIVType(L);
1871 }
1872 if (!LargestType ||
1873 SE->getTypeSizeInBits(Ty) >
1874 SE->getTypeSizeInBits(LargestType))
1875 LargestType = SE->getEffectiveSCEVType(Ty);
1876 }
1877 if (EnableIVRewrite) {
1878 for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
1879 NeedCannIV = true;
1880 Type *Ty =
1881 SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
1882 if (!LargestType ||
1883 SE->getTypeSizeInBits(Ty) >
1884 SE->getTypeSizeInBits(LargestType))
1885 LargestType = Ty;
1886 }
1887 }
1888
1889 // Now that we know the largest of the induction variable expressions
1890 // in this loop, insert a canonical induction variable of the largest size.
1891 PHINode *IndVar = 0;
1892 if (NeedCannIV) {
1893 // Check to see if the loop already has any canonical-looking induction
1894 // variables. If any are present and wider than the planned canonical
1895 // induction variable, temporarily remove them, so that the Rewriter
1896 // doesn't attempt to reuse them.
1897 SmallVector<PHINode *, 2> OldCannIVs;
1898 while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
1899 if (SE->getTypeSizeInBits(OldCannIV->getType()) >
1900 SE->getTypeSizeInBits(LargestType))
1901 OldCannIV->removeFromParent();
1902 else
1903 break;
1904 OldCannIVs.push_back(OldCannIV);
1905 }
1906
1907 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
1908
1909 ++NumInserted;
1910 Changed = true;
1911 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
1912
1913 // Now that the official induction variable is established, reinsert
1914 // any old canonical-looking variables after it so that the IR remains
1915 // consistent. They will be deleted as part of the dead-PHI deletion at
1916 // the end of the pass.
1917 while (!OldCannIVs.empty()) {
1918 PHINode *OldCannIV = OldCannIVs.pop_back_val();
1919 OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt());
1920 }
1921 }
1922 else if (!EnableIVRewrite && ExpandBECount && needsLFTR(L, DT)) {
1923 IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
1924 }
1925 // If we have a trip count expression, rewrite the loop's exit condition
1926 // using it. We can currently only handle loops with a single exit.
1927 Value *NewICmp = 0;
1928 if (ExpandBECount && IndVar) {
1929 // Check preconditions for proper SCEVExpander operation. SCEV does not
1930 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1931 // pass that uses the SCEVExpander must do it. This does not work well for
1932 // loop passes because SCEVExpander makes assumptions about all loops, while
1933 // LoopPassManager only forces the current loop to be simplified.
1934 //
1935 // FIXME: SCEV expansion has no way to bail out, so the caller must
1936 // explicitly check any assumptions made by SCEV. Brittle.
1937 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1938 if (!AR || AR->getLoop()->getLoopPreheader())
1939 NewICmp =
1940 LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
1941 }
1942 // Rewrite IV-derived expressions.
1943 if (EnableIVRewrite)
1944 RewriteIVExpressions(L, Rewriter);
1945
1946 // Clear the rewriter cache, because values that are in the rewriter's cache
1947 // can be deleted in the loop below, causing the AssertingVH in the cache to
1948 // trigger.
1949 Rewriter.clear();
1950
1951 // Now that we're done iterating through lists, clean up any instructions
1952 // which are now dead.
1953 while (!DeadInsts.empty())
1954 if (Instruction *Inst =
1955 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1956 RecursivelyDeleteTriviallyDeadInstructions(Inst);
1957
1958 // The Rewriter may not be used from this point on.
1959
1960 // Loop-invariant instructions in the preheader that aren't used in the
1961 // loop may be sunk below the loop to reduce register pressure.
1962 SinkUnusedInvariants(L);
1963
1964 // For completeness, inform IVUsers of the IV use in the newly-created
1965 // loop exit test instruction.
1966 if (IU && NewICmp) {
1967 ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp);
1968 if (NewICmpInst)
1969 IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)));
1970 }
1971 // Clean up dead instructions.
1972 Changed |= DeleteDeadPHIs(L->getHeader());
1973 // Check a post-condition.
1974 assert(L->isLCSSAForm(*DT) &&
1975 "Indvars did not leave the loop in lcssa form!");
1976
1977 // Verify that LFTR, and any other change have not interfered with SCEV's
1978 // ability to compute trip count.
1979#ifndef NDEBUG
1980 if (!EnableIVRewrite && VerifyIndvars &&
1981 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1982 SE->forgetLoop(L);
1983 const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1984 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1985 SE->getTypeSizeInBits(NewBECount->getType()))
1986 NewBECount = SE->getTruncateOrNoop(NewBECount,
1987 BackedgeTakenCount->getType());
1988 else
1989 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1990 NewBECount->getType());
1991 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
1992 }
1993#endif
1994
1995 return Changed;
1996}