blob: 13e463753234b12a50a4bf0aa7de3342fb4c2693 [file] [log] [blame]
James Molloy0cbb2a862015-03-27 10:36:57 +00001//===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Float2Int pass, which aims to demote floating
11// point operations to work on integers, where that is losslessly possible.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "float2int"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/APSInt.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/EquivalenceClasses.h"
20#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/SmallVector.h"
Chandler Carruth08eebe22015-07-23 09:34:01 +000022#include "llvm/Analysis/AliasAnalysis.h"
James Molloy0cbb2a862015-03-27 10:36:57 +000023#include "llvm/IR/ConstantRange.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/IRBuilder.h"
26#include "llvm/IR/InstIterator.h"
27#include "llvm/IR/Instructions.h"
28#include "llvm/IR/Module.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/Transforms/Scalar.h"
33#include <deque>
34#include <functional> // For std::function
35using namespace llvm;
36
37// The algorithm is simple. Start at instructions that convert from the
38// float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
39// graph, using an equivalence datastructure to unify graphs that interfere.
40//
41// Mappable instructions are those with an integer corrollary that, given
42// integer domain inputs, produce an integer output; fadd, for example.
43//
44// If a non-mappable instruction is seen, this entire def-use graph is marked
45// as non-transformable. If we see an instruction that converts from the
46// integer domain to FP domain (uitofp,sitofp), we terminate our walk.
47
48/// The largest integer type worth dealing with.
49static cl::opt<unsigned>
50MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
51 cl::desc("Max integer bitwidth to consider in float2int"
52 "(default=64)"));
53
54namespace {
55 struct Float2Int : public FunctionPass {
56 static char ID; // Pass identification, replacement for typeid
57 Float2Int() : FunctionPass(ID) {
58 initializeFloat2IntPass(*PassRegistry::getPassRegistry());
59 }
60
61 bool runOnFunction(Function &F) override;
62 void getAnalysisUsage(AnalysisUsage &AU) const override {
63 AU.setPreservesCFG();
Chandler Carruth08eebe22015-07-23 09:34:01 +000064 AU.addPreserved<AliasAnalysis>();
James Molloy0cbb2a862015-03-27 10:36:57 +000065 }
66
67 void findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots);
68 ConstantRange seen(Instruction *I, ConstantRange R);
69 ConstantRange badRange();
70 ConstantRange unknownRange();
71 ConstantRange validateRange(ConstantRange R);
72 void walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots);
73 void walkForwards();
74 bool validateAndTransform();
75 Value *convert(Instruction *I, Type *ToTy);
76 void cleanup();
77
78 MapVector<Instruction*, ConstantRange > SeenInsts;
79 SmallPtrSet<Instruction*,8> Roots;
80 EquivalenceClasses<Instruction*> ECs;
81 MapVector<Instruction*, Value*> ConvertedInsts;
82 LLVMContext *Ctx;
83 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +000084}
James Molloy0cbb2a862015-03-27 10:36:57 +000085
86char Float2Int::ID = 0;
87INITIALIZE_PASS(Float2Int, "float2int", "Float to int", false, false)
88
89// Given a FCmp predicate, return a matching ICmp predicate if one
90// exists, otherwise return BAD_ICMP_PREDICATE.
91static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
92 switch (P) {
93 case CmpInst::FCMP_OEQ:
94 case CmpInst::FCMP_UEQ:
95 return CmpInst::ICMP_EQ;
96 case CmpInst::FCMP_OGT:
97 case CmpInst::FCMP_UGT:
98 return CmpInst::ICMP_SGT;
99 case CmpInst::FCMP_OGE:
100 case CmpInst::FCMP_UGE:
101 return CmpInst::ICMP_SGE;
102 case CmpInst::FCMP_OLT:
103 case CmpInst::FCMP_ULT:
104 return CmpInst::ICMP_SLT;
105 case CmpInst::FCMP_OLE:
106 case CmpInst::FCMP_ULE:
107 return CmpInst::ICMP_SLE;
108 case CmpInst::FCMP_ONE:
109 case CmpInst::FCMP_UNE:
110 return CmpInst::ICMP_NE;
111 default:
112 return CmpInst::BAD_ICMP_PREDICATE;
113 }
114}
115
116// Given a floating point binary operator, return the matching
117// integer version.
118static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
119 switch (Opcode) {
120 default: llvm_unreachable("Unhandled opcode!");
121 case Instruction::FAdd: return Instruction::Add;
122 case Instruction::FSub: return Instruction::Sub;
123 case Instruction::FMul: return Instruction::Mul;
124 }
125}
126
127// Find the roots - instructions that convert from the FP domain to
128// integer domain.
129void Float2Int::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) {
130 for (auto &I : inst_range(F)) {
131 switch (I.getOpcode()) {
132 default: break;
133 case Instruction::FPToUI:
134 case Instruction::FPToSI:
135 Roots.insert(&I);
136 break;
137 case Instruction::FCmp:
138 if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
139 CmpInst::BAD_ICMP_PREDICATE)
140 Roots.insert(&I);
141 break;
142 }
143 }
144}
145
146// Helper - mark I as having been traversed, having range R.
147ConstantRange Float2Int::seen(Instruction *I, ConstantRange R) {
148 DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
149 if (SeenInsts.find(I) != SeenInsts.end())
150 SeenInsts.find(I)->second = R;
151 else
152 SeenInsts.insert(std::make_pair(I, R));
153 return R;
154}
155
156// Helper - get a range representing a poison value.
157ConstantRange Float2Int::badRange() {
158 return ConstantRange(MaxIntegerBW + 1, true);
159}
160ConstantRange Float2Int::unknownRange() {
161 return ConstantRange(MaxIntegerBW + 1, false);
162}
163ConstantRange Float2Int::validateRange(ConstantRange R) {
164 if (R.getBitWidth() > MaxIntegerBW + 1)
165 return badRange();
166 return R;
167}
168
169// The most obvious way to structure the search is a depth-first, eager
170// search from each root. However, that require direct recursion and so
171// can only handle small instruction sequences. Instead, we split the search
172// up into two phases:
173// - walkBackwards: A breadth-first walk of the use-def graph starting from
174// the roots. Populate "SeenInsts" with interesting
175// instructions and poison values if they're obvious and
176// cheap to compute. Calculate the equivalance set structure
177// while we're here too.
178// - walkForwards: Iterate over SeenInsts in reverse order, so we visit
179// defs before their uses. Calculate the real range info.
180
181// Breadth-first walk of the use-def graph; determine the set of nodes
182// we care about and eagerly determine if some of them are poisonous.
183void Float2Int::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) {
184 std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
185 while (!Worklist.empty()) {
186 Instruction *I = Worklist.back();
187 Worklist.pop_back();
188
189 if (SeenInsts.find(I) != SeenInsts.end())
190 // Seen already.
191 continue;
192
193 switch (I->getOpcode()) {
194 // FIXME: Handle select and phi nodes.
195 default:
196 // Path terminated uncleanly.
197 seen(I, badRange());
198 break;
199
200 case Instruction::UIToFP: {
201 // Path terminated cleanly.
202 unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
203 APInt Min = APInt::getMinValue(BW).zextOrSelf(MaxIntegerBW+1);
204 APInt Max = APInt::getMaxValue(BW).zextOrSelf(MaxIntegerBW+1);
205 seen(I, validateRange(ConstantRange(Min, Max)));
206 continue;
207 }
208
209 case Instruction::SIToFP: {
210 // Path terminated cleanly.
211 unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
212 APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(MaxIntegerBW+1);
213 APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(MaxIntegerBW+1);
214 seen(I, validateRange(ConstantRange(SMin, SMax)));
215 continue;
216 }
217
218 case Instruction::FAdd:
219 case Instruction::FSub:
220 case Instruction::FMul:
221 case Instruction::FPToUI:
222 case Instruction::FPToSI:
223 case Instruction::FCmp:
224 seen(I, unknownRange());
225 break;
226 }
227
228 for (Value *O : I->operands()) {
229 if (Instruction *OI = dyn_cast<Instruction>(O)) {
230 // Unify def-use chains if they interfere.
231 ECs.unionSets(I, OI);
232 if (SeenInsts.find(I)->second != badRange())
233 Worklist.push_back(OI);
234 } else if (!isa<ConstantFP>(O)) {
235 // Not an instruction or ConstantFP? we can't do anything.
236 seen(I, badRange());
237 }
238 }
239 }
240}
241
242// Walk forwards down the list of seen instructions, so we visit defs before
243// uses.
244void Float2Int::walkForwards() {
245 for (auto It = SeenInsts.rbegin(), E = SeenInsts.rend(); It != E; ++It) {
246 if (It->second != unknownRange())
247 continue;
248
249 Instruction *I = It->first;
250 std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
251 switch (I->getOpcode()) {
252 // FIXME: Handle select and phi nodes.
253 default:
254 case Instruction::UIToFP:
255 case Instruction::SIToFP:
256 llvm_unreachable("Should have been handled in walkForwards!");
257
258 case Instruction::FAdd:
259 Op = [](ArrayRef<ConstantRange> Ops) {
260 assert(Ops.size() == 2 && "FAdd is a binary operator!");
261 return Ops[0].add(Ops[1]);
262 };
263 break;
264
265 case Instruction::FSub:
266 Op = [](ArrayRef<ConstantRange> Ops) {
267 assert(Ops.size() == 2 && "FSub is a binary operator!");
268 return Ops[0].sub(Ops[1]);
269 };
270 break;
271
272 case Instruction::FMul:
273 Op = [](ArrayRef<ConstantRange> Ops) {
274 assert(Ops.size() == 2 && "FMul is a binary operator!");
275 return Ops[0].multiply(Ops[1]);
276 };
277 break;
278
279 //
280 // Root-only instructions - we'll only see these if they're the
281 // first node in a walk.
282 //
283 case Instruction::FPToUI:
284 case Instruction::FPToSI:
285 Op = [](ArrayRef<ConstantRange> Ops) {
286 assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
287 return Ops[0];
288 };
289 break;
290
291 case Instruction::FCmp:
292 Op = [](ArrayRef<ConstantRange> Ops) {
293 assert(Ops.size() == 2 && "FCmp is a binary operator!");
294 return Ops[0].unionWith(Ops[1]);
295 };
296 break;
297 }
298
299 bool Abort = false;
300 SmallVector<ConstantRange,4> OpRanges;
301 for (Value *O : I->operands()) {
302 if (Instruction *OI = dyn_cast<Instruction>(O)) {
303 assert(SeenInsts.find(OI) != SeenInsts.end() &&
304 "def not seen before use!");
305 OpRanges.push_back(SeenInsts.find(OI)->second);
306 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
307 // Work out if the floating point number can be losslessly represented
308 // as an integer.
309 // APFloat::convertToInteger(&Exact) purports to do what we want, but
310 // the exactness can be too precise. For example, negative zero can
311 // never be exactly converted to an integer.
312 //
313 // Instead, we ask APFloat to round itself to an integral value - this
314 // preserves sign-of-zero - then compare the result with the original.
315 //
316 APFloat F = CF->getValueAPF();
317
318 // First, weed out obviously incorrect values. Non-finite numbers
319 // can't be represented and neither can negative zero, unless
320 // we're in fast math mode.
321 if (!F.isFinite() ||
322 (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
323 !I->hasNoSignedZeros())) {
324 seen(I, badRange());
325 Abort = true;
326 break;
327 }
328
329 APFloat NewF = F;
330 auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
331 if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) {
332 seen(I, badRange());
333 Abort = true;
334 break;
335 }
336 // OK, it's representable. Now get it.
337 APSInt Int(MaxIntegerBW+1, false);
338 bool Exact;
339 CF->getValueAPF().convertToInteger(Int,
340 APFloat::rmNearestTiesToEven,
341 &Exact);
342 OpRanges.push_back(ConstantRange(Int));
343 } else {
344 llvm_unreachable("Should have already marked this as badRange!");
345 }
346 }
347
348 // Reduce the operands' ranges to a single range and return.
349 if (!Abort)
350 seen(I, Op(OpRanges));
351 }
352}
353
354// If there is a valid transform to be done, do it.
355bool Float2Int::validateAndTransform() {
356 bool MadeChange = false;
357
358 // Iterate over every disjoint partition of the def-use graph.
359 for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
360 ConstantRange R(MaxIntegerBW + 1, false);
361 bool Fail = false;
362 Type *ConvertedToTy = nullptr;
363
364 // For every member of the partition, union all the ranges together.
365 for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
366 MI != ME; ++MI) {
367 Instruction *I = *MI;
368 auto SeenI = SeenInsts.find(I);
369 if (SeenI == SeenInsts.end())
370 continue;
371
372 R = R.unionWith(SeenI->second);
373 // We need to ensure I has no users that have not been seen.
374 // If it does, transformation would be illegal.
375 //
376 // Don't count the roots, as they terminate the graphs.
377 if (Roots.count(I) == 0) {
378 // Set the type of the conversion while we're here.
379 if (!ConvertedToTy)
380 ConvertedToTy = I->getType();
381 for (User *U : I->users()) {
382 Instruction *UI = dyn_cast<Instruction>(U);
383 if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
384 DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
385 Fail = true;
386 break;
387 }
388 }
389 }
390 if (Fail)
391 break;
392 }
393
394 // If the set was empty, or we failed, or the range is poisonous,
395 // bail out.
396 if (ECs.member_begin(It) == ECs.member_end() || Fail ||
397 R.isFullSet() || R.isSignWrappedSet())
398 continue;
399 assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
400
401 // The number of bits required is the maximum of the upper and
402 // lower limits, plus one so it can be signed.
403 unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
404 R.getUpper().getMinSignedBits()) + 1;
405 DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
406
407 // If we've run off the realms of the exactly representable integers,
408 // the floating point result will differ from an integer approximation.
409
410 // Do we need more bits than are in the mantissa of the type we converted
411 // to? semanticsPrecision returns the number of mantissa bits plus one
412 // for the sign bit.
413 unsigned MaxRepresentableBits
414 = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
415 if (MinBW > MaxRepresentableBits) {
416 DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
417 continue;
418 }
419 if (MinBW > 64) {
420 DEBUG(dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
421 continue;
422 }
423
424 // OK, R is known to be representable. Now pick a type for it.
425 // FIXME: Pick the smallest legal type that will fit.
426 Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);
427
428 for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
429 MI != ME; ++MI)
430 convert(*MI, Ty);
431 MadeChange = true;
432 }
433
434 return MadeChange;
435}
436
437Value *Float2Int::convert(Instruction *I, Type *ToTy) {
438 if (ConvertedInsts.find(I) != ConvertedInsts.end())
439 // Already converted this instruction.
440 return ConvertedInsts[I];
441
442 SmallVector<Value*,4> NewOperands;
443 for (Value *V : I->operands()) {
444 // Don't recurse if we're an instruction that terminates the path.
445 if (I->getOpcode() == Instruction::UIToFP ||
446 I->getOpcode() == Instruction::SIToFP) {
447 NewOperands.push_back(V);
448 } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
449 NewOperands.push_back(convert(VI, ToTy));
450 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
451 APSInt Val(ToTy->getPrimitiveSizeInBits(), /*IsUnsigned=*/false);
452 bool Exact;
453 CF->getValueAPF().convertToInteger(Val,
454 APFloat::rmNearestTiesToEven,
455 &Exact);
456 NewOperands.push_back(ConstantInt::get(ToTy, Val));
457 } else {
458 llvm_unreachable("Unhandled operand type?");
459 }
460 }
461
462 // Now create a new instruction.
463 IRBuilder<> IRB(I);
464 Value *NewV = nullptr;
465 switch (I->getOpcode()) {
466 default: llvm_unreachable("Unhandled instruction!");
467
468 case Instruction::FPToUI:
469 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
470 break;
471
472 case Instruction::FPToSI:
473 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
474 break;
475
476 case Instruction::FCmp: {
477 CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
478 assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
479 NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
480 break;
481 }
482
483 case Instruction::UIToFP:
484 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
485 break;
486
487 case Instruction::SIToFP:
488 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
489 break;
490
491 case Instruction::FAdd:
492 case Instruction::FSub:
493 case Instruction::FMul:
494 NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
495 NewOperands[0], NewOperands[1],
496 I->getName());
497 break;
498 }
499
500 // If we're a root instruction, RAUW.
501 if (Roots.count(I))
502 I->replaceAllUsesWith(NewV);
503
504 ConvertedInsts[I] = NewV;
505 return NewV;
506}
507
508// Perform dead code elimination on the instructions we just modified.
509void Float2Int::cleanup() {
510 for (auto I = ConvertedInsts.rbegin(), E = ConvertedInsts.rend();
511 I != E; ++I)
512 I->first->eraseFromParent();
513}
514
515bool Float2Int::runOnFunction(Function &F) {
516 if (skipOptnoneFunction(F))
517 return false;
518
519 DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
520 // Clear out all state.
521 ECs = EquivalenceClasses<Instruction*>();
522 SeenInsts.clear();
523 ConvertedInsts.clear();
524 Roots.clear();
525
526 Ctx = &F.getParent()->getContext();
527
528 findRoots(F, Roots);
529
530 walkBackwards(Roots);
531 walkForwards();
532
533 bool Modified = validateAndTransform();
534 if (Modified)
535 cleanup();
536 return Modified;
537}
538
539FunctionPass *llvm::createFloat2IntPass() {
540 return new Float2Int();
541}
542