James Molloy | 0cbb2a86 | 2015-03-27 10:36:57 +0000 | [diff] [blame] | 1 | //===- Float2Int.cpp - Demote floating point ops to work on integers ------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the Float2Int pass, which aims to demote floating |
| 11 | // point operations to work on integers, where that is losslessly possible. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #define DEBUG_TYPE "float2int" |
| 16 | #include "llvm/ADT/APInt.h" |
| 17 | #include "llvm/ADT/APSInt.h" |
| 18 | #include "llvm/ADT/DenseMap.h" |
| 19 | #include "llvm/ADT/EquivalenceClasses.h" |
| 20 | #include "llvm/ADT/MapVector.h" |
| 21 | #include "llvm/ADT/SmallVector.h" |
Chandler Carruth | 08eebe2 | 2015-07-23 09:34:01 +0000 | [diff] [blame] | 22 | #include "llvm/Analysis/AliasAnalysis.h" |
James Molloy | 0cbb2a86 | 2015-03-27 10:36:57 +0000 | [diff] [blame] | 23 | #include "llvm/IR/ConstantRange.h" |
| 24 | #include "llvm/IR/Constants.h" |
| 25 | #include "llvm/IR/IRBuilder.h" |
| 26 | #include "llvm/IR/InstIterator.h" |
| 27 | #include "llvm/IR/Instructions.h" |
| 28 | #include "llvm/IR/Module.h" |
| 29 | #include "llvm/Pass.h" |
| 30 | #include "llvm/Support/Debug.h" |
| 31 | #include "llvm/Support/raw_ostream.h" |
| 32 | #include "llvm/Transforms/Scalar.h" |
| 33 | #include <deque> |
| 34 | #include <functional> // For std::function |
| 35 | using namespace llvm; |
| 36 | |
| 37 | // The algorithm is simple. Start at instructions that convert from the |
| 38 | // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use |
| 39 | // graph, using an equivalence datastructure to unify graphs that interfere. |
| 40 | // |
| 41 | // Mappable instructions are those with an integer corrollary that, given |
| 42 | // integer domain inputs, produce an integer output; fadd, for example. |
| 43 | // |
| 44 | // If a non-mappable instruction is seen, this entire def-use graph is marked |
| 45 | // as non-transformable. If we see an instruction that converts from the |
| 46 | // integer domain to FP domain (uitofp,sitofp), we terminate our walk. |
| 47 | |
| 48 | /// The largest integer type worth dealing with. |
| 49 | static cl::opt<unsigned> |
| 50 | MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden, |
| 51 | cl::desc("Max integer bitwidth to consider in float2int" |
| 52 | "(default=64)")); |
| 53 | |
| 54 | namespace { |
| 55 | struct Float2Int : public FunctionPass { |
| 56 | static char ID; // Pass identification, replacement for typeid |
| 57 | Float2Int() : FunctionPass(ID) { |
| 58 | initializeFloat2IntPass(*PassRegistry::getPassRegistry()); |
| 59 | } |
| 60 | |
| 61 | bool runOnFunction(Function &F) override; |
| 62 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 63 | AU.setPreservesCFG(); |
Chandler Carruth | 08eebe2 | 2015-07-23 09:34:01 +0000 | [diff] [blame] | 64 | AU.addPreserved<AliasAnalysis>(); |
James Molloy | 0cbb2a86 | 2015-03-27 10:36:57 +0000 | [diff] [blame] | 65 | } |
| 66 | |
| 67 | void findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots); |
| 68 | ConstantRange seen(Instruction *I, ConstantRange R); |
| 69 | ConstantRange badRange(); |
| 70 | ConstantRange unknownRange(); |
| 71 | ConstantRange validateRange(ConstantRange R); |
| 72 | void walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots); |
| 73 | void walkForwards(); |
| 74 | bool validateAndTransform(); |
| 75 | Value *convert(Instruction *I, Type *ToTy); |
| 76 | void cleanup(); |
| 77 | |
| 78 | MapVector<Instruction*, ConstantRange > SeenInsts; |
| 79 | SmallPtrSet<Instruction*,8> Roots; |
| 80 | EquivalenceClasses<Instruction*> ECs; |
| 81 | MapVector<Instruction*, Value*> ConvertedInsts; |
| 82 | LLVMContext *Ctx; |
| 83 | }; |
Alexander Kornienko | f00654e | 2015-06-23 09:49:53 +0000 | [diff] [blame] | 84 | } |
James Molloy | 0cbb2a86 | 2015-03-27 10:36:57 +0000 | [diff] [blame] | 85 | |
| 86 | char Float2Int::ID = 0; |
| 87 | INITIALIZE_PASS(Float2Int, "float2int", "Float to int", false, false) |
| 88 | |
| 89 | // Given a FCmp predicate, return a matching ICmp predicate if one |
| 90 | // exists, otherwise return BAD_ICMP_PREDICATE. |
| 91 | static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) { |
| 92 | switch (P) { |
| 93 | case CmpInst::FCMP_OEQ: |
| 94 | case CmpInst::FCMP_UEQ: |
| 95 | return CmpInst::ICMP_EQ; |
| 96 | case CmpInst::FCMP_OGT: |
| 97 | case CmpInst::FCMP_UGT: |
| 98 | return CmpInst::ICMP_SGT; |
| 99 | case CmpInst::FCMP_OGE: |
| 100 | case CmpInst::FCMP_UGE: |
| 101 | return CmpInst::ICMP_SGE; |
| 102 | case CmpInst::FCMP_OLT: |
| 103 | case CmpInst::FCMP_ULT: |
| 104 | return CmpInst::ICMP_SLT; |
| 105 | case CmpInst::FCMP_OLE: |
| 106 | case CmpInst::FCMP_ULE: |
| 107 | return CmpInst::ICMP_SLE; |
| 108 | case CmpInst::FCMP_ONE: |
| 109 | case CmpInst::FCMP_UNE: |
| 110 | return CmpInst::ICMP_NE; |
| 111 | default: |
| 112 | return CmpInst::BAD_ICMP_PREDICATE; |
| 113 | } |
| 114 | } |
| 115 | |
| 116 | // Given a floating point binary operator, return the matching |
| 117 | // integer version. |
| 118 | static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) { |
| 119 | switch (Opcode) { |
| 120 | default: llvm_unreachable("Unhandled opcode!"); |
| 121 | case Instruction::FAdd: return Instruction::Add; |
| 122 | case Instruction::FSub: return Instruction::Sub; |
| 123 | case Instruction::FMul: return Instruction::Mul; |
| 124 | } |
| 125 | } |
| 126 | |
| 127 | // Find the roots - instructions that convert from the FP domain to |
| 128 | // integer domain. |
| 129 | void Float2Int::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) { |
| 130 | for (auto &I : inst_range(F)) { |
| 131 | switch (I.getOpcode()) { |
| 132 | default: break; |
| 133 | case Instruction::FPToUI: |
| 134 | case Instruction::FPToSI: |
| 135 | Roots.insert(&I); |
| 136 | break; |
| 137 | case Instruction::FCmp: |
| 138 | if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) != |
| 139 | CmpInst::BAD_ICMP_PREDICATE) |
| 140 | Roots.insert(&I); |
| 141 | break; |
| 142 | } |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | // Helper - mark I as having been traversed, having range R. |
| 147 | ConstantRange Float2Int::seen(Instruction *I, ConstantRange R) { |
| 148 | DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n"); |
| 149 | if (SeenInsts.find(I) != SeenInsts.end()) |
| 150 | SeenInsts.find(I)->second = R; |
| 151 | else |
| 152 | SeenInsts.insert(std::make_pair(I, R)); |
| 153 | return R; |
| 154 | } |
| 155 | |
| 156 | // Helper - get a range representing a poison value. |
| 157 | ConstantRange Float2Int::badRange() { |
| 158 | return ConstantRange(MaxIntegerBW + 1, true); |
| 159 | } |
| 160 | ConstantRange Float2Int::unknownRange() { |
| 161 | return ConstantRange(MaxIntegerBW + 1, false); |
| 162 | } |
| 163 | ConstantRange Float2Int::validateRange(ConstantRange R) { |
| 164 | if (R.getBitWidth() > MaxIntegerBW + 1) |
| 165 | return badRange(); |
| 166 | return R; |
| 167 | } |
| 168 | |
| 169 | // The most obvious way to structure the search is a depth-first, eager |
| 170 | // search from each root. However, that require direct recursion and so |
| 171 | // can only handle small instruction sequences. Instead, we split the search |
| 172 | // up into two phases: |
| 173 | // - walkBackwards: A breadth-first walk of the use-def graph starting from |
| 174 | // the roots. Populate "SeenInsts" with interesting |
| 175 | // instructions and poison values if they're obvious and |
| 176 | // cheap to compute. Calculate the equivalance set structure |
| 177 | // while we're here too. |
| 178 | // - walkForwards: Iterate over SeenInsts in reverse order, so we visit |
| 179 | // defs before their uses. Calculate the real range info. |
| 180 | |
| 181 | // Breadth-first walk of the use-def graph; determine the set of nodes |
| 182 | // we care about and eagerly determine if some of them are poisonous. |
| 183 | void Float2Int::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) { |
| 184 | std::deque<Instruction*> Worklist(Roots.begin(), Roots.end()); |
| 185 | while (!Worklist.empty()) { |
| 186 | Instruction *I = Worklist.back(); |
| 187 | Worklist.pop_back(); |
| 188 | |
| 189 | if (SeenInsts.find(I) != SeenInsts.end()) |
| 190 | // Seen already. |
| 191 | continue; |
| 192 | |
| 193 | switch (I->getOpcode()) { |
| 194 | // FIXME: Handle select and phi nodes. |
| 195 | default: |
| 196 | // Path terminated uncleanly. |
| 197 | seen(I, badRange()); |
| 198 | break; |
| 199 | |
| 200 | case Instruction::UIToFP: { |
| 201 | // Path terminated cleanly. |
| 202 | unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); |
| 203 | APInt Min = APInt::getMinValue(BW).zextOrSelf(MaxIntegerBW+1); |
| 204 | APInt Max = APInt::getMaxValue(BW).zextOrSelf(MaxIntegerBW+1); |
| 205 | seen(I, validateRange(ConstantRange(Min, Max))); |
| 206 | continue; |
| 207 | } |
| 208 | |
| 209 | case Instruction::SIToFP: { |
| 210 | // Path terminated cleanly. |
| 211 | unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); |
| 212 | APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(MaxIntegerBW+1); |
| 213 | APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(MaxIntegerBW+1); |
| 214 | seen(I, validateRange(ConstantRange(SMin, SMax))); |
| 215 | continue; |
| 216 | } |
| 217 | |
| 218 | case Instruction::FAdd: |
| 219 | case Instruction::FSub: |
| 220 | case Instruction::FMul: |
| 221 | case Instruction::FPToUI: |
| 222 | case Instruction::FPToSI: |
| 223 | case Instruction::FCmp: |
| 224 | seen(I, unknownRange()); |
| 225 | break; |
| 226 | } |
| 227 | |
| 228 | for (Value *O : I->operands()) { |
| 229 | if (Instruction *OI = dyn_cast<Instruction>(O)) { |
| 230 | // Unify def-use chains if they interfere. |
| 231 | ECs.unionSets(I, OI); |
| 232 | if (SeenInsts.find(I)->second != badRange()) |
| 233 | Worklist.push_back(OI); |
| 234 | } else if (!isa<ConstantFP>(O)) { |
| 235 | // Not an instruction or ConstantFP? we can't do anything. |
| 236 | seen(I, badRange()); |
| 237 | } |
| 238 | } |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | // Walk forwards down the list of seen instructions, so we visit defs before |
| 243 | // uses. |
| 244 | void Float2Int::walkForwards() { |
| 245 | for (auto It = SeenInsts.rbegin(), E = SeenInsts.rend(); It != E; ++It) { |
| 246 | if (It->second != unknownRange()) |
| 247 | continue; |
| 248 | |
| 249 | Instruction *I = It->first; |
| 250 | std::function<ConstantRange(ArrayRef<ConstantRange>)> Op; |
| 251 | switch (I->getOpcode()) { |
| 252 | // FIXME: Handle select and phi nodes. |
| 253 | default: |
| 254 | case Instruction::UIToFP: |
| 255 | case Instruction::SIToFP: |
| 256 | llvm_unreachable("Should have been handled in walkForwards!"); |
| 257 | |
| 258 | case Instruction::FAdd: |
| 259 | Op = [](ArrayRef<ConstantRange> Ops) { |
| 260 | assert(Ops.size() == 2 && "FAdd is a binary operator!"); |
| 261 | return Ops[0].add(Ops[1]); |
| 262 | }; |
| 263 | break; |
| 264 | |
| 265 | case Instruction::FSub: |
| 266 | Op = [](ArrayRef<ConstantRange> Ops) { |
| 267 | assert(Ops.size() == 2 && "FSub is a binary operator!"); |
| 268 | return Ops[0].sub(Ops[1]); |
| 269 | }; |
| 270 | break; |
| 271 | |
| 272 | case Instruction::FMul: |
| 273 | Op = [](ArrayRef<ConstantRange> Ops) { |
| 274 | assert(Ops.size() == 2 && "FMul is a binary operator!"); |
| 275 | return Ops[0].multiply(Ops[1]); |
| 276 | }; |
| 277 | break; |
| 278 | |
| 279 | // |
| 280 | // Root-only instructions - we'll only see these if they're the |
| 281 | // first node in a walk. |
| 282 | // |
| 283 | case Instruction::FPToUI: |
| 284 | case Instruction::FPToSI: |
| 285 | Op = [](ArrayRef<ConstantRange> Ops) { |
| 286 | assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!"); |
| 287 | return Ops[0]; |
| 288 | }; |
| 289 | break; |
| 290 | |
| 291 | case Instruction::FCmp: |
| 292 | Op = [](ArrayRef<ConstantRange> Ops) { |
| 293 | assert(Ops.size() == 2 && "FCmp is a binary operator!"); |
| 294 | return Ops[0].unionWith(Ops[1]); |
| 295 | }; |
| 296 | break; |
| 297 | } |
| 298 | |
| 299 | bool Abort = false; |
| 300 | SmallVector<ConstantRange,4> OpRanges; |
| 301 | for (Value *O : I->operands()) { |
| 302 | if (Instruction *OI = dyn_cast<Instruction>(O)) { |
| 303 | assert(SeenInsts.find(OI) != SeenInsts.end() && |
| 304 | "def not seen before use!"); |
| 305 | OpRanges.push_back(SeenInsts.find(OI)->second); |
| 306 | } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) { |
| 307 | // Work out if the floating point number can be losslessly represented |
| 308 | // as an integer. |
| 309 | // APFloat::convertToInteger(&Exact) purports to do what we want, but |
| 310 | // the exactness can be too precise. For example, negative zero can |
| 311 | // never be exactly converted to an integer. |
| 312 | // |
| 313 | // Instead, we ask APFloat to round itself to an integral value - this |
| 314 | // preserves sign-of-zero - then compare the result with the original. |
| 315 | // |
| 316 | APFloat F = CF->getValueAPF(); |
| 317 | |
| 318 | // First, weed out obviously incorrect values. Non-finite numbers |
| 319 | // can't be represented and neither can negative zero, unless |
| 320 | // we're in fast math mode. |
| 321 | if (!F.isFinite() || |
| 322 | (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) && |
| 323 | !I->hasNoSignedZeros())) { |
| 324 | seen(I, badRange()); |
| 325 | Abort = true; |
| 326 | break; |
| 327 | } |
| 328 | |
| 329 | APFloat NewF = F; |
| 330 | auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven); |
| 331 | if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) { |
| 332 | seen(I, badRange()); |
| 333 | Abort = true; |
| 334 | break; |
| 335 | } |
| 336 | // OK, it's representable. Now get it. |
| 337 | APSInt Int(MaxIntegerBW+1, false); |
| 338 | bool Exact; |
| 339 | CF->getValueAPF().convertToInteger(Int, |
| 340 | APFloat::rmNearestTiesToEven, |
| 341 | &Exact); |
| 342 | OpRanges.push_back(ConstantRange(Int)); |
| 343 | } else { |
| 344 | llvm_unreachable("Should have already marked this as badRange!"); |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | // Reduce the operands' ranges to a single range and return. |
| 349 | if (!Abort) |
| 350 | seen(I, Op(OpRanges)); |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | // If there is a valid transform to be done, do it. |
| 355 | bool Float2Int::validateAndTransform() { |
| 356 | bool MadeChange = false; |
| 357 | |
| 358 | // Iterate over every disjoint partition of the def-use graph. |
| 359 | for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) { |
| 360 | ConstantRange R(MaxIntegerBW + 1, false); |
| 361 | bool Fail = false; |
| 362 | Type *ConvertedToTy = nullptr; |
| 363 | |
| 364 | // For every member of the partition, union all the ranges together. |
| 365 | for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); |
| 366 | MI != ME; ++MI) { |
| 367 | Instruction *I = *MI; |
| 368 | auto SeenI = SeenInsts.find(I); |
| 369 | if (SeenI == SeenInsts.end()) |
| 370 | continue; |
| 371 | |
| 372 | R = R.unionWith(SeenI->second); |
| 373 | // We need to ensure I has no users that have not been seen. |
| 374 | // If it does, transformation would be illegal. |
| 375 | // |
| 376 | // Don't count the roots, as they terminate the graphs. |
| 377 | if (Roots.count(I) == 0) { |
| 378 | // Set the type of the conversion while we're here. |
| 379 | if (!ConvertedToTy) |
| 380 | ConvertedToTy = I->getType(); |
| 381 | for (User *U : I->users()) { |
| 382 | Instruction *UI = dyn_cast<Instruction>(U); |
| 383 | if (!UI || SeenInsts.find(UI) == SeenInsts.end()) { |
| 384 | DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n"); |
| 385 | Fail = true; |
| 386 | break; |
| 387 | } |
| 388 | } |
| 389 | } |
| 390 | if (Fail) |
| 391 | break; |
| 392 | } |
| 393 | |
| 394 | // If the set was empty, or we failed, or the range is poisonous, |
| 395 | // bail out. |
| 396 | if (ECs.member_begin(It) == ECs.member_end() || Fail || |
| 397 | R.isFullSet() || R.isSignWrappedSet()) |
| 398 | continue; |
| 399 | assert(ConvertedToTy && "Must have set the convertedtoty by this point!"); |
| 400 | |
| 401 | // The number of bits required is the maximum of the upper and |
| 402 | // lower limits, plus one so it can be signed. |
| 403 | unsigned MinBW = std::max(R.getLower().getMinSignedBits(), |
| 404 | R.getUpper().getMinSignedBits()) + 1; |
| 405 | DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n"); |
| 406 | |
| 407 | // If we've run off the realms of the exactly representable integers, |
| 408 | // the floating point result will differ from an integer approximation. |
| 409 | |
| 410 | // Do we need more bits than are in the mantissa of the type we converted |
| 411 | // to? semanticsPrecision returns the number of mantissa bits plus one |
| 412 | // for the sign bit. |
| 413 | unsigned MaxRepresentableBits |
| 414 | = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1; |
| 415 | if (MinBW > MaxRepresentableBits) { |
| 416 | DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n"); |
| 417 | continue; |
| 418 | } |
| 419 | if (MinBW > 64) { |
| 420 | DEBUG(dbgs() << "F2I: Value requires more than 64 bits to represent!\n"); |
| 421 | continue; |
| 422 | } |
| 423 | |
| 424 | // OK, R is known to be representable. Now pick a type for it. |
| 425 | // FIXME: Pick the smallest legal type that will fit. |
| 426 | Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx); |
| 427 | |
| 428 | for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); |
| 429 | MI != ME; ++MI) |
| 430 | convert(*MI, Ty); |
| 431 | MadeChange = true; |
| 432 | } |
| 433 | |
| 434 | return MadeChange; |
| 435 | } |
| 436 | |
| 437 | Value *Float2Int::convert(Instruction *I, Type *ToTy) { |
| 438 | if (ConvertedInsts.find(I) != ConvertedInsts.end()) |
| 439 | // Already converted this instruction. |
| 440 | return ConvertedInsts[I]; |
| 441 | |
| 442 | SmallVector<Value*,4> NewOperands; |
| 443 | for (Value *V : I->operands()) { |
| 444 | // Don't recurse if we're an instruction that terminates the path. |
| 445 | if (I->getOpcode() == Instruction::UIToFP || |
| 446 | I->getOpcode() == Instruction::SIToFP) { |
| 447 | NewOperands.push_back(V); |
| 448 | } else if (Instruction *VI = dyn_cast<Instruction>(V)) { |
| 449 | NewOperands.push_back(convert(VI, ToTy)); |
| 450 | } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) { |
| 451 | APSInt Val(ToTy->getPrimitiveSizeInBits(), /*IsUnsigned=*/false); |
| 452 | bool Exact; |
| 453 | CF->getValueAPF().convertToInteger(Val, |
| 454 | APFloat::rmNearestTiesToEven, |
| 455 | &Exact); |
| 456 | NewOperands.push_back(ConstantInt::get(ToTy, Val)); |
| 457 | } else { |
| 458 | llvm_unreachable("Unhandled operand type?"); |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | // Now create a new instruction. |
| 463 | IRBuilder<> IRB(I); |
| 464 | Value *NewV = nullptr; |
| 465 | switch (I->getOpcode()) { |
| 466 | default: llvm_unreachable("Unhandled instruction!"); |
| 467 | |
| 468 | case Instruction::FPToUI: |
| 469 | NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType()); |
| 470 | break; |
| 471 | |
| 472 | case Instruction::FPToSI: |
| 473 | NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType()); |
| 474 | break; |
| 475 | |
| 476 | case Instruction::FCmp: { |
| 477 | CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate()); |
| 478 | assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!"); |
| 479 | NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName()); |
| 480 | break; |
| 481 | } |
| 482 | |
| 483 | case Instruction::UIToFP: |
| 484 | NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy); |
| 485 | break; |
| 486 | |
| 487 | case Instruction::SIToFP: |
| 488 | NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy); |
| 489 | break; |
| 490 | |
| 491 | case Instruction::FAdd: |
| 492 | case Instruction::FSub: |
| 493 | case Instruction::FMul: |
| 494 | NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()), |
| 495 | NewOperands[0], NewOperands[1], |
| 496 | I->getName()); |
| 497 | break; |
| 498 | } |
| 499 | |
| 500 | // If we're a root instruction, RAUW. |
| 501 | if (Roots.count(I)) |
| 502 | I->replaceAllUsesWith(NewV); |
| 503 | |
| 504 | ConvertedInsts[I] = NewV; |
| 505 | return NewV; |
| 506 | } |
| 507 | |
| 508 | // Perform dead code elimination on the instructions we just modified. |
| 509 | void Float2Int::cleanup() { |
| 510 | for (auto I = ConvertedInsts.rbegin(), E = ConvertedInsts.rend(); |
| 511 | I != E; ++I) |
| 512 | I->first->eraseFromParent(); |
| 513 | } |
| 514 | |
| 515 | bool Float2Int::runOnFunction(Function &F) { |
| 516 | if (skipOptnoneFunction(F)) |
| 517 | return false; |
| 518 | |
| 519 | DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n"); |
| 520 | // Clear out all state. |
| 521 | ECs = EquivalenceClasses<Instruction*>(); |
| 522 | SeenInsts.clear(); |
| 523 | ConvertedInsts.clear(); |
| 524 | Roots.clear(); |
| 525 | |
| 526 | Ctx = &F.getParent()->getContext(); |
| 527 | |
| 528 | findRoots(F, Roots); |
| 529 | |
| 530 | walkBackwards(Roots); |
| 531 | walkForwards(); |
| 532 | |
| 533 | bool Modified = validateAndTransform(); |
| 534 | if (Modified) |
| 535 | cleanup(); |
| 536 | return Modified; |
| 537 | } |
| 538 | |
| 539 | FunctionPass *llvm::createFloat2IntPass() { |
| 540 | return new Float2Int(); |
| 541 | } |
| 542 | |