blob: 0c7f14d01cc62a165d0a88d27e9849bcdc38f4e9 [file] [log] [blame]
Evan Cheng7e763d82011-07-25 18:43:53 +00001//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains small standalone helper functions and enum definitions for
11// the X86 target useful for the compiler back-end and the MC libraries.
12// As such, it deliberately does not include references to LLVM core
13// code gen types, passes, etc..
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef X86BASEINFO_H
18#define X86BASEINFO_H
19
20#include "X86MCTargetDesc.h"
21#include "llvm/Support/DataTypes.h"
Craig Topper4ed72782012-02-05 05:38:58 +000022#include "llvm/Support/ErrorHandling.h"
Evan Cheng7e763d82011-07-25 18:43:53 +000023
24namespace llvm {
25
26namespace X86 {
27 // Enums for memory operand decoding. Each memory operand is represented with
28 // a 5 operand sequence in the form:
29 // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30 // These enums help decode this.
31 enum {
32 AddrBaseReg = 0,
33 AddrScaleAmt = 1,
34 AddrIndexReg = 2,
35 AddrDisp = 3,
36
37 /// AddrSegmentReg - The operand # of the segment in the memory operand.
38 AddrSegmentReg = 4,
39
40 /// AddrNumOperands - Total number of operands in a memory reference.
41 AddrNumOperands = 5
42 };
43} // end namespace X86;
44
45
46/// X86II - This namespace holds all of the target specific flags that
47/// instruction info tracks.
48///
49namespace X86II {
50 /// Target Operand Flag enum.
51 enum TOF {
52 //===------------------------------------------------------------------===//
53 // X86 Specific MachineOperand flags.
54
55 MO_NO_FLAG,
56
57 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
58 /// relocation of:
59 /// SYMBOL_LABEL + [. - PICBASELABEL]
60 MO_GOT_ABSOLUTE_ADDRESS,
61
62 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
63 /// immediate should get the value of the symbol minus the PIC base label:
64 /// SYMBOL_LABEL - PICBASELABEL
65 MO_PIC_BASE_OFFSET,
66
67 /// MO_GOT - On a symbol operand this indicates that the immediate is the
68 /// offset to the GOT entry for the symbol name from the base of the GOT.
69 ///
70 /// See the X86-64 ELF ABI supplement for more details.
71 /// SYMBOL_LABEL @GOT
72 MO_GOT,
73
74 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
75 /// the offset to the location of the symbol name from the base of the GOT.
76 ///
77 /// See the X86-64 ELF ABI supplement for more details.
78 /// SYMBOL_LABEL @GOTOFF
79 MO_GOTOFF,
80
81 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
82 /// offset to the GOT entry for the symbol name from the current code
83 /// location.
84 ///
85 /// See the X86-64 ELF ABI supplement for more details.
86 /// SYMBOL_LABEL @GOTPCREL
87 MO_GOTPCREL,
88
89 /// MO_PLT - On a symbol operand this indicates that the immediate is
90 /// offset to the PLT entry of symbol name from the current code location.
91 ///
92 /// See the X86-64 ELF ABI supplement for more details.
93 /// SYMBOL_LABEL @PLT
94 MO_PLT,
95
96 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
97 /// some TLS offset.
98 ///
99 /// See 'ELF Handling for Thread-Local Storage' for more details.
100 /// SYMBOL_LABEL @TLSGD
101 MO_TLSGD,
102
103 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
104 /// some TLS offset.
105 ///
106 /// See 'ELF Handling for Thread-Local Storage' for more details.
107 /// SYMBOL_LABEL @GOTTPOFF
108 MO_GOTTPOFF,
109
110 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
111 /// some TLS offset.
112 ///
113 /// See 'ELF Handling for Thread-Local Storage' for more details.
114 /// SYMBOL_LABEL @INDNTPOFF
115 MO_INDNTPOFF,
116
117 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
118 /// some TLS offset.
119 ///
120 /// See 'ELF Handling for Thread-Local Storage' for more details.
121 /// SYMBOL_LABEL @TPOFF
122 MO_TPOFF,
123
124 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
125 /// some TLS offset.
126 ///
127 /// See 'ELF Handling for Thread-Local Storage' for more details.
128 /// SYMBOL_LABEL @NTPOFF
129 MO_NTPOFF,
130
Hans Wennborgf9d0e442012-05-11 10:11:01 +0000131 /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
132 /// some TLS offset.
133 ///
134 /// See 'ELF Handling for Thread-Local Storage' for more details.
135 /// SYMBOL_LABEL @GOTNTPOFF
136 MO_GOTNTPOFF,
137
Evan Cheng7e763d82011-07-25 18:43:53 +0000138 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
139 /// reference is actually to the "__imp_FOO" symbol. This is used for
140 /// dllimport linkage on windows.
141 MO_DLLIMPORT,
142
143 /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
144 /// reference is actually to the "FOO$stub" symbol. This is used for calls
145 /// and jumps to external functions on Tiger and earlier.
146 MO_DARWIN_STUB,
147
148 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
149 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
150 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
151 MO_DARWIN_NONLAZY,
152
153 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
154 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
155 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
156 MO_DARWIN_NONLAZY_PIC_BASE,
157
158 /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
159 /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
160 /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
161 /// stub.
162 MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
163
164 /// MO_TLVP - On a symbol operand this indicates that the immediate is
165 /// some TLS offset.
166 ///
167 /// This is the TLS offset for the Darwin TLS mechanism.
168 MO_TLVP,
169
170 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
171 /// is some TLS offset from the picbase.
172 ///
173 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
Anton Korobeynikovc6b40172012-02-11 17:26:53 +0000174 MO_TLVP_PIC_BASE,
175
176 /// MO_SECREL - On a symbol operand this indicates that the immediate is
177 /// the offset from beginning of section.
178 ///
179 /// This is the TLS offset for the COFF/Windows TLS mechanism.
180 MO_SECREL
Evan Cheng7e763d82011-07-25 18:43:53 +0000181 };
182
183 enum {
184 //===------------------------------------------------------------------===//
185 // Instruction encodings. These are the standard/most common forms for X86
186 // instructions.
187 //
188
189 // PseudoFrm - This represents an instruction that is a pseudo instruction
190 // or one that has not been implemented yet. It is illegal to code generate
191 // it, but tolerated for intermediate implementation stages.
192 Pseudo = 0,
193
194 /// Raw - This form is for instructions that don't have any operands, so
195 /// they are just a fixed opcode value, like 'leave'.
196 RawFrm = 1,
197
198 /// AddRegFrm - This form is used for instructions like 'push r32' that have
199 /// their one register operand added to their opcode.
200 AddRegFrm = 2,
201
202 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
203 /// to specify a destination, which in this case is a register.
204 ///
205 MRMDestReg = 3,
206
207 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
208 /// to specify a destination, which in this case is memory.
209 ///
210 MRMDestMem = 4,
211
212 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
213 /// to specify a source, which in this case is a register.
214 ///
215 MRMSrcReg = 5,
216
217 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
218 /// to specify a source, which in this case is memory.
219 ///
220 MRMSrcMem = 6,
221
222 /// MRM[0-7][rm] - These forms are used to represent instructions that use
223 /// a Mod/RM byte, and use the middle field to hold extended opcode
224 /// information. In the intel manual these are represented as /0, /1, ...
225 ///
226
227 // First, instructions that operate on a register r/m operand...
228 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
229 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
230
231 // Next, instructions that operate on a memory r/m operand...
232 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
233 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
234
235 // MRMInitReg - This form is used for instructions whose source and
236 // destinations are the same register.
237 MRMInitReg = 32,
238
Craig Toppered7aa462012-02-18 08:19:49 +0000239 //// MRM_XX - A mod/rm byte of exactly 0xXX.
240 MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35, MRM_C4 = 36,
241 MRM_C8 = 37, MRM_C9 = 38, MRM_E8 = 39, MRM_F0 = 40,
242 MRM_F8 = 41, MRM_F9 = 42, MRM_D0 = 45, MRM_D1 = 46,
Craig Topper66a35972012-02-19 01:39:49 +0000243 MRM_D4 = 47, MRM_D8 = 48, MRM_D9 = 49, MRM_DA = 50,
244 MRM_DB = 51, MRM_DC = 52, MRM_DD = 53, MRM_DE = 54,
245 MRM_DF = 55,
Evan Cheng7e763d82011-07-25 18:43:53 +0000246
247 /// RawFrmImm8 - This is used for the ENTER instruction, which has two
248 /// immediates, the first of which is a 16-bit immediate (specified by
249 /// the imm encoding) and the second is a 8-bit fixed value.
250 RawFrmImm8 = 43,
251
252 /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
253 /// immediates, the first of which is a 16 or 32-bit immediate (specified by
254 /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
255 /// manual, this operand is described as pntr16:32 and pntr16:16
256 RawFrmImm16 = 44,
257
258 FormMask = 63,
259
260 //===------------------------------------------------------------------===//
261 // Actual flags...
262
263 // OpSize - Set if this instruction requires an operand size prefix (0x66),
264 // which most often indicates that the instruction operates on 16 bit data
265 // instead of 32 bit data.
266 OpSize = 1 << 6,
267
268 // AsSize - Set if this instruction requires an operand size prefix (0x67),
269 // which most often indicates that the instruction address 16 bit address
270 // instead of 32 bit address (or 32 bit address in 64 bit mode).
271 AdSize = 1 << 7,
272
273 //===------------------------------------------------------------------===//
274 // Op0Mask - There are several prefix bytes that are used to form two byte
275 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
276 // used to obtain the setting of this field. If no bits in this field is
277 // set, there is no prefix byte for obtaining a multibyte opcode.
278 //
279 Op0Shift = 8,
280 Op0Mask = 0x1F << Op0Shift,
281
282 // TB - TwoByte - Set if this instruction has a two byte opcode, which
283 // starts with a 0x0F byte before the real opcode.
284 TB = 1 << Op0Shift,
285
286 // REP - The 0xF3 prefix byte indicating repetition of the following
287 // instruction.
288 REP = 2 << Op0Shift,
289
290 // D8-DF - These escape opcodes are used by the floating point unit. These
291 // values must remain sequential.
292 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
293 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
294 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
295 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
296
297 // XS, XD - These prefix codes are for single and double precision scalar
298 // floating point operations performed in the SSE registers.
299 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
300
301 // T8, TA, A6, A7 - Prefix after the 0x0F prefix.
302 T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
303 A6 = 15 << Op0Shift, A7 = 16 << Op0Shift,
304
Craig Topper96fa5972011-10-16 16:50:08 +0000305 // T8XD - Prefix before and after 0x0F. Combination of T8 and XD.
306 T8XD = 17 << Op0Shift,
307
308 // T8XS - Prefix before and after 0x0F. Combination of T8 and XS.
309 T8XS = 18 << Op0Shift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000310
Craig Topper980d5982011-10-23 07:34:00 +0000311 // TAXD - Prefix before and after 0x0F. Combination of TA and XD.
312 TAXD = 19 << Op0Shift,
313
Jan Sjödin6dd24882011-12-12 19:12:26 +0000314 // XOP8 - Prefix to include use of imm byte.
315 XOP8 = 20 << Op0Shift,
316
317 // XOP9 - Prefix to exclude use of imm byte.
318 XOP9 = 21 << Op0Shift,
319
Evan Cheng7e763d82011-07-25 18:43:53 +0000320 //===------------------------------------------------------------------===//
321 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
322 // They are used to specify GPRs and SSE registers, 64-bit operand size,
323 // etc. We only cares about REX.W and REX.R bits and only the former is
324 // statically determined.
325 //
326 REXShift = Op0Shift + 5,
327 REX_W = 1 << REXShift,
328
329 //===------------------------------------------------------------------===//
330 // This three-bit field describes the size of an immediate operand. Zero is
331 // unused so that we can tell if we forgot to set a value.
332 ImmShift = REXShift + 1,
333 ImmMask = 7 << ImmShift,
334 Imm8 = 1 << ImmShift,
335 Imm8PCRel = 2 << ImmShift,
336 Imm16 = 3 << ImmShift,
337 Imm16PCRel = 4 << ImmShift,
338 Imm32 = 5 << ImmShift,
339 Imm32PCRel = 6 << ImmShift,
340 Imm64 = 7 << ImmShift,
341
342 //===------------------------------------------------------------------===//
343 // FP Instruction Classification... Zero is non-fp instruction.
344
345 // FPTypeMask - Mask for all of the FP types...
346 FPTypeShift = ImmShift + 3,
347 FPTypeMask = 7 << FPTypeShift,
348
349 // NotFP - The default, set for instructions that do not use FP registers.
350 NotFP = 0 << FPTypeShift,
351
352 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
353 ZeroArgFP = 1 << FPTypeShift,
354
355 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
356 OneArgFP = 2 << FPTypeShift,
357
358 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
359 // result back to ST(0). For example, fcos, fsqrt, etc.
360 //
361 OneArgFPRW = 3 << FPTypeShift,
362
363 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
364 // explicit argument, storing the result to either ST(0) or the implicit
365 // argument. For example: fadd, fsub, fmul, etc...
366 TwoArgFP = 4 << FPTypeShift,
367
368 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
369 // explicit argument, but have no destination. Example: fucom, fucomi, ...
370 CompareFP = 5 << FPTypeShift,
371
372 // CondMovFP - "2 operand" floating point conditional move instructions.
373 CondMovFP = 6 << FPTypeShift,
374
375 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
376 SpecialFP = 7 << FPTypeShift,
377
378 // Lock prefix
379 LOCKShift = FPTypeShift + 3,
380 LOCK = 1 << LOCKShift,
381
382 // Segment override prefixes. Currently we just need ability to address
383 // stuff in gs and fs segments.
384 SegOvrShift = LOCKShift + 1,
385 SegOvrMask = 3 << SegOvrShift,
386 FS = 1 << SegOvrShift,
387 GS = 2 << SegOvrShift,
388
389 // Execution domain for SSE instructions in bits 23, 24.
390 // 0 in bits 23-24 means normal, non-SSE instruction.
391 SSEDomainShift = SegOvrShift + 2,
392
393 OpcodeShift = SSEDomainShift + 2,
394
395 //===------------------------------------------------------------------===//
396 /// VEX - The opcode prefix used by AVX instructions
397 VEXShift = OpcodeShift + 8,
398 VEX = 1U << 0,
399
400 /// VEX_W - Has a opcode specific functionality, but is used in the same
401 /// way as REX_W is for regular SSE instructions.
402 VEX_W = 1U << 1,
403
404 /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
405 /// address instructions in SSE are represented as 3 address ones in AVX
406 /// and the additional register is encoded in VEX_VVVV prefix.
407 VEX_4V = 1U << 2,
408
Craig Topperaea148c2011-10-16 07:55:05 +0000409 /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
410 /// operand 3 with VEX.vvvv.
411 VEX_4VOp3 = 1U << 3,
412
Evan Cheng7e763d82011-07-25 18:43:53 +0000413 /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
414 /// must be encoded in the i8 immediate field. This usually happens in
415 /// instructions with 4 operands.
Craig Topperaea148c2011-10-16 07:55:05 +0000416 VEX_I8IMM = 1U << 4,
Evan Cheng7e763d82011-07-25 18:43:53 +0000417
418 /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
419 /// instruction uses 256-bit wide registers. This is usually auto detected
420 /// if a VR256 register is used, but some AVX instructions also have this
421 /// field marked when using a f256 memory references.
Craig Topperaea148c2011-10-16 07:55:05 +0000422 VEX_L = 1U << 5,
Evan Cheng7e763d82011-07-25 18:43:53 +0000423
Craig Topperf18c8962011-10-04 06:30:42 +0000424 // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
425 // prefix. Usually used for scalar instructions. Needed by disassembler.
Craig Topperaea148c2011-10-16 07:55:05 +0000426 VEX_LIG = 1U << 6,
Craig Topperf18c8962011-10-04 06:30:42 +0000427
Evan Cheng7e763d82011-07-25 18:43:53 +0000428 /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
429 /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
430 /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
431 /// storing a classifier in the imm8 field. To simplify our implementation,
432 /// we handle this by storeing the classifier in the opcode field and using
433 /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
Bruno Cardoso Lopes0f9a1f52011-11-25 19:33:42 +0000434 Has3DNow0F0FOpcode = 1U << 7,
435
Craig Toppercd93de92011-12-30 04:48:54 +0000436 /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
437 /// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
438 MemOp4 = 1U << 8,
Jan Sjödin6dd24882011-12-12 19:12:26 +0000439
440 /// XOP - Opcode prefix used by XOP instructions.
441 XOP = 1U << 9
442
Evan Cheng7e763d82011-07-25 18:43:53 +0000443 };
444
445 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
446 // specified machine instruction.
447 //
448 static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
449 return TSFlags >> X86II::OpcodeShift;
450 }
451
452 static inline bool hasImm(uint64_t TSFlags) {
453 return (TSFlags & X86II::ImmMask) != 0;
454 }
455
456 /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
457 /// of the specified instruction.
458 static inline unsigned getSizeOfImm(uint64_t TSFlags) {
459 switch (TSFlags & X86II::ImmMask) {
Craig Topper4ed72782012-02-05 05:38:58 +0000460 default: llvm_unreachable("Unknown immediate size");
Evan Cheng7e763d82011-07-25 18:43:53 +0000461 case X86II::Imm8:
462 case X86II::Imm8PCRel: return 1;
463 case X86II::Imm16:
464 case X86II::Imm16PCRel: return 2;
465 case X86II::Imm32:
466 case X86II::Imm32PCRel: return 4;
467 case X86II::Imm64: return 8;
468 }
469 }
470
471 /// isImmPCRel - Return true if the immediate of the specified instruction's
472 /// TSFlags indicates that it is pc relative.
473 static inline unsigned isImmPCRel(uint64_t TSFlags) {
474 switch (TSFlags & X86II::ImmMask) {
Craig Topper4ed72782012-02-05 05:38:58 +0000475 default: llvm_unreachable("Unknown immediate size");
Evan Cheng7e763d82011-07-25 18:43:53 +0000476 case X86II::Imm8PCRel:
477 case X86II::Imm16PCRel:
478 case X86II::Imm32PCRel:
479 return true;
480 case X86II::Imm8:
481 case X86II::Imm16:
482 case X86II::Imm32:
483 case X86II::Imm64:
484 return false;
485 }
486 }
487
488 /// getMemoryOperandNo - The function returns the MCInst operand # for the
489 /// first field of the memory operand. If the instruction doesn't have a
490 /// memory operand, this returns -1.
491 ///
492 /// Note that this ignores tied operands. If there is a tied register which
493 /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
494 /// counted as one operand.
495 ///
Craig Topper25ea4e52011-10-16 03:51:13 +0000496 static inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000497 switch (TSFlags & X86II::FormMask) {
Pete Cooperf76b5fe2012-04-30 03:56:44 +0000498 case X86II::MRMInitReg:
499 // FIXME: Remove this form.
500 return -1;
Craig Topper4ed72782012-02-05 05:38:58 +0000501 default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
Evan Cheng7e763d82011-07-25 18:43:53 +0000502 case X86II::Pseudo:
503 case X86II::RawFrm:
504 case X86II::AddRegFrm:
505 case X86II::MRMDestReg:
506 case X86II::MRMSrcReg:
507 case X86II::RawFrmImm8:
508 case X86II::RawFrmImm16:
509 return -1;
510 case X86II::MRMDestMem:
511 return 0;
512 case X86II::MRMSrcMem: {
513 bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
Craig Toppercd93de92011-12-30 04:48:54 +0000514 bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
Evan Cheng7e763d82011-07-25 18:43:53 +0000515 unsigned FirstMemOp = 1;
Craig Topperaea148c2011-10-16 07:55:05 +0000516 if (HasVEX_4V)
Evan Cheng7e763d82011-07-25 18:43:53 +0000517 ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
Craig Toppercd93de92011-12-30 04:48:54 +0000518 if (HasMemOp4)
Bruno Cardoso Lopes0f9a1f52011-11-25 19:33:42 +0000519 ++FirstMemOp;// Skip the register source (which is encoded in I8IMM).
Evan Cheng7e763d82011-07-25 18:43:53 +0000520
521 // FIXME: Maybe lea should have its own form? This is a horrible hack.
522 //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
523 // Opcode == X86::LEA16r || Opcode == X86::LEA32r)
524 return FirstMemOp;
525 }
526 case X86II::MRM0r: case X86II::MRM1r:
527 case X86II::MRM2r: case X86II::MRM3r:
528 case X86II::MRM4r: case X86II::MRM5r:
529 case X86II::MRM6r: case X86II::MRM7r:
530 return -1;
531 case X86II::MRM0m: case X86II::MRM1m:
532 case X86II::MRM2m: case X86II::MRM3m:
533 case X86II::MRM4m: case X86II::MRM5m:
Craig Topper27ad1252011-10-15 20:46:47 +0000534 case X86II::MRM6m: case X86II::MRM7m: {
535 bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
536 unsigned FirstMemOp = 0;
537 if (HasVEX_4V)
538 ++FirstMemOp;// Skip the register dest (which is encoded in VEX_VVVV).
539 return FirstMemOp;
540 }
Craig Toppered7aa462012-02-18 08:19:49 +0000541 case X86II::MRM_C1: case X86II::MRM_C2:
542 case X86II::MRM_C3: case X86II::MRM_C4:
543 case X86II::MRM_C8: case X86II::MRM_C9:
544 case X86II::MRM_E8: case X86II::MRM_F0:
545 case X86II::MRM_F8: case X86II::MRM_F9:
546 case X86II::MRM_D0: case X86II::MRM_D1:
Craig Topper66a35972012-02-19 01:39:49 +0000547 case X86II::MRM_D4: case X86II::MRM_D8:
548 case X86II::MRM_D9: case X86II::MRM_DA:
549 case X86II::MRM_DB: case X86II::MRM_DC:
550 case X86II::MRM_DD: case X86II::MRM_DE:
551 case X86II::MRM_DF:
Evan Cheng7e763d82011-07-25 18:43:53 +0000552 return -1;
553 }
554 }
555
556 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
557 /// higher) register? e.g. r8, xmm8, xmm13, etc.
558 static inline bool isX86_64ExtendedReg(unsigned RegNo) {
559 switch (RegNo) {
560 default: break;
561 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
562 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
563 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
564 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
565 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
566 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
567 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
568 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
569 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
570 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
571 case X86::YMM8: case X86::YMM9: case X86::YMM10: case X86::YMM11:
572 case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
573 case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
574 case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
575 return true;
576 }
577 return false;
578 }
579
580 static inline bool isX86_64NonExtLowByteReg(unsigned reg) {
581 return (reg == X86::SPL || reg == X86::BPL ||
582 reg == X86::SIL || reg == X86::DIL);
583 }
584}
585
586} // end namespace llvm;
587
588#endif