Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 1 | //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 9 | // |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 10 | /// \file |
| 11 | /// This file contains the declarations of the Vectorization Plan base classes: |
| 12 | /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual |
| 13 | /// VPBlockBase, together implementing a Hierarchical CFG; |
| 14 | /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be |
| 15 | /// treated as proper graphs for generic algorithms; |
| 16 | /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained |
| 17 | /// within VPBasicBlocks; |
| 18 | /// 4. The VPlan class holding a candidate for vectorization; |
| 19 | /// 5. The VPlanPrinter class providing a way to print a plan in dot format. |
| 20 | /// These are documented in docs/VectorizationPlan.rst. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 21 | // |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 22 | //===----------------------------------------------------------------------===// |
| 23 | |
| 24 | #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |
| 25 | #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |
| 26 | |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 27 | #include "llvm/ADT/DenseMap.h" |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 28 | #include "llvm/ADT/GraphTraits.h" |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 29 | #include "llvm/ADT/Optional.h" |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 30 | #include "llvm/ADT/SmallSet.h" |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 31 | #include "llvm/ADT/SmallVector.h" |
| 32 | #include "llvm/ADT/Twine.h" |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 33 | #include "llvm/ADT/ilist.h" |
| 34 | #include "llvm/ADT/ilist_node.h" |
| 35 | #include "llvm/IR/IRBuilder.h" |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 36 | #include <algorithm> |
| 37 | #include <cassert> |
| 38 | #include <cstddef> |
| 39 | #include <map> |
| 40 | #include <string> |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 41 | |
| 42 | namespace llvm { |
| 43 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 44 | class BasicBlock; |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 45 | class DominatorTree; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 46 | class InnerLoopVectorizer; |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 47 | class LoopInfo; |
| 48 | class raw_ostream; |
| 49 | class Value; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 50 | class VPBasicBlock; |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 51 | class VPRegionBlock; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 52 | |
| 53 | /// In what follows, the term "input IR" refers to code that is fed into the |
| 54 | /// vectorizer whereas the term "output IR" refers to code that is generated by |
| 55 | /// the vectorizer. |
| 56 | |
| 57 | /// VPIteration represents a single point in the iteration space of the output |
| 58 | /// (vectorized and/or unrolled) IR loop. |
| 59 | struct VPIteration { |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 60 | /// in [0..UF) |
| 61 | unsigned Part; |
| 62 | |
| 63 | /// in [0..VF) |
| 64 | unsigned Lane; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 65 | }; |
| 66 | |
| 67 | /// This is a helper struct for maintaining vectorization state. It's used for |
| 68 | /// mapping values from the original loop to their corresponding values in |
| 69 | /// the new loop. Two mappings are maintained: one for vectorized values and |
| 70 | /// one for scalarized values. Vectorized values are represented with UF |
| 71 | /// vector values in the new loop, and scalarized values are represented with |
| 72 | /// UF x VF scalar values in the new loop. UF and VF are the unroll and |
| 73 | /// vectorization factors, respectively. |
| 74 | /// |
| 75 | /// Entries can be added to either map with setVectorValue and setScalarValue, |
| 76 | /// which assert that an entry was not already added before. If an entry is to |
| 77 | /// replace an existing one, call resetVectorValue and resetScalarValue. This is |
| 78 | /// currently needed to modify the mapped values during "fix-up" operations that |
| 79 | /// occur once the first phase of widening is complete. These operations include |
| 80 | /// type truncation and the second phase of recurrence widening. |
| 81 | /// |
| 82 | /// Entries from either map can be retrieved using the getVectorValue and |
| 83 | /// getScalarValue functions, which assert that the desired value exists. |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 84 | struct VectorizerValueMap { |
| 85 | private: |
| 86 | /// The unroll factor. Each entry in the vector map contains UF vector values. |
| 87 | unsigned UF; |
| 88 | |
| 89 | /// The vectorization factor. Each entry in the scalar map contains UF x VF |
| 90 | /// scalar values. |
| 91 | unsigned VF; |
| 92 | |
| 93 | /// The vector and scalar map storage. We use std::map and not DenseMap |
| 94 | /// because insertions to DenseMap invalidate its iterators. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 95 | using VectorParts = SmallVector<Value *, 2>; |
| 96 | using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 97 | std::map<Value *, VectorParts> VectorMapStorage; |
| 98 | std::map<Value *, ScalarParts> ScalarMapStorage; |
| 99 | |
| 100 | public: |
| 101 | /// Construct an empty map with the given unroll and vectorization factors. |
| 102 | VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {} |
| 103 | |
| 104 | /// \return True if the map has any vector entry for \p Key. |
| 105 | bool hasAnyVectorValue(Value *Key) const { |
| 106 | return VectorMapStorage.count(Key); |
| 107 | } |
| 108 | |
| 109 | /// \return True if the map has a vector entry for \p Key and \p Part. |
| 110 | bool hasVectorValue(Value *Key, unsigned Part) const { |
| 111 | assert(Part < UF && "Queried Vector Part is too large."); |
| 112 | if (!hasAnyVectorValue(Key)) |
| 113 | return false; |
| 114 | const VectorParts &Entry = VectorMapStorage.find(Key)->second; |
| 115 | assert(Entry.size() == UF && "VectorParts has wrong dimensions."); |
| 116 | return Entry[Part] != nullptr; |
| 117 | } |
| 118 | |
| 119 | /// \return True if the map has any scalar entry for \p Key. |
| 120 | bool hasAnyScalarValue(Value *Key) const { |
| 121 | return ScalarMapStorage.count(Key); |
| 122 | } |
| 123 | |
| 124 | /// \return True if the map has a scalar entry for \p Key and \p Instance. |
| 125 | bool hasScalarValue(Value *Key, const VPIteration &Instance) const { |
| 126 | assert(Instance.Part < UF && "Queried Scalar Part is too large."); |
| 127 | assert(Instance.Lane < VF && "Queried Scalar Lane is too large."); |
| 128 | if (!hasAnyScalarValue(Key)) |
| 129 | return false; |
| 130 | const ScalarParts &Entry = ScalarMapStorage.find(Key)->second; |
| 131 | assert(Entry.size() == UF && "ScalarParts has wrong dimensions."); |
| 132 | assert(Entry[Instance.Part].size() == VF && |
| 133 | "ScalarParts has wrong dimensions."); |
| 134 | return Entry[Instance.Part][Instance.Lane] != nullptr; |
| 135 | } |
| 136 | |
| 137 | /// Retrieve the existing vector value that corresponds to \p Key and |
| 138 | /// \p Part. |
| 139 | Value *getVectorValue(Value *Key, unsigned Part) { |
| 140 | assert(hasVectorValue(Key, Part) && "Getting non-existent value."); |
| 141 | return VectorMapStorage[Key][Part]; |
| 142 | } |
| 143 | |
| 144 | /// Retrieve the existing scalar value that corresponds to \p Key and |
| 145 | /// \p Instance. |
| 146 | Value *getScalarValue(Value *Key, const VPIteration &Instance) { |
| 147 | assert(hasScalarValue(Key, Instance) && "Getting non-existent value."); |
| 148 | return ScalarMapStorage[Key][Instance.Part][Instance.Lane]; |
| 149 | } |
| 150 | |
| 151 | /// Set a vector value associated with \p Key and \p Part. Assumes such a |
| 152 | /// value is not already set. If it is, use resetVectorValue() instead. |
| 153 | void setVectorValue(Value *Key, unsigned Part, Value *Vector) { |
| 154 | assert(!hasVectorValue(Key, Part) && "Vector value already set for part"); |
| 155 | if (!VectorMapStorage.count(Key)) { |
| 156 | VectorParts Entry(UF); |
| 157 | VectorMapStorage[Key] = Entry; |
| 158 | } |
| 159 | VectorMapStorage[Key][Part] = Vector; |
| 160 | } |
| 161 | |
| 162 | /// Set a scalar value associated with \p Key and \p Instance. Assumes such a |
| 163 | /// value is not already set. |
| 164 | void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) { |
| 165 | assert(!hasScalarValue(Key, Instance) && "Scalar value already set"); |
| 166 | if (!ScalarMapStorage.count(Key)) { |
| 167 | ScalarParts Entry(UF); |
| 168 | // TODO: Consider storing uniform values only per-part, as they occupy |
| 169 | // lane 0 only, keeping the other VF-1 redundant entries null. |
| 170 | for (unsigned Part = 0; Part < UF; ++Part) |
| 171 | Entry[Part].resize(VF, nullptr); |
| 172 | ScalarMapStorage[Key] = Entry; |
| 173 | } |
| 174 | ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; |
| 175 | } |
| 176 | |
| 177 | /// Reset the vector value associated with \p Key for the given \p Part. |
| 178 | /// This function can be used to update values that have already been |
| 179 | /// vectorized. This is the case for "fix-up" operations including type |
| 180 | /// truncation and the second phase of recurrence vectorization. |
| 181 | void resetVectorValue(Value *Key, unsigned Part, Value *Vector) { |
| 182 | assert(hasVectorValue(Key, Part) && "Vector value not set for part"); |
| 183 | VectorMapStorage[Key][Part] = Vector; |
| 184 | } |
| 185 | |
| 186 | /// Reset the scalar value associated with \p Key for \p Part and \p Lane. |
| 187 | /// This function can be used to update values that have already been |
| 188 | /// scalarized. This is the case for "fix-up" operations including scalar phi |
| 189 | /// nodes for scalarized and predicated instructions. |
| 190 | void resetScalarValue(Value *Key, const VPIteration &Instance, |
| 191 | Value *Scalar) { |
| 192 | assert(hasScalarValue(Key, Instance) && |
| 193 | "Scalar value not set for part and lane"); |
| 194 | ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; |
| 195 | } |
| 196 | }; |
| 197 | |
| 198 | /// VPTransformState holds information passed down when "executing" a VPlan, |
| 199 | /// needed for generating the output IR. |
| 200 | struct VPTransformState { |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 201 | VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT, |
| 202 | IRBuilder<> &Builder, VectorizerValueMap &ValueMap, |
| 203 | InnerLoopVectorizer *ILV) |
| 204 | : VF(VF), UF(UF), LI(LI), DT(DT), Builder(Builder), ValueMap(ValueMap), |
| 205 | ILV(ILV) {} |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 206 | |
| 207 | /// The chosen Vectorization and Unroll Factors of the loop being vectorized. |
| 208 | unsigned VF; |
| 209 | unsigned UF; |
| 210 | |
| 211 | /// Hold the indices to generate specific scalar instructions. Null indicates |
| 212 | /// that all instances are to be generated, using either scalar or vector |
| 213 | /// instructions. |
| 214 | Optional<VPIteration> Instance; |
| 215 | |
| 216 | /// Hold state information used when constructing the CFG of the output IR, |
| 217 | /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. |
| 218 | struct CFGState { |
| 219 | /// The previous VPBasicBlock visited. Initially set to null. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 220 | VPBasicBlock *PrevVPBB = nullptr; |
| 221 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 222 | /// The previous IR BasicBlock created or used. Initially set to the new |
| 223 | /// header BasicBlock. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 224 | BasicBlock *PrevBB = nullptr; |
| 225 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 226 | /// The last IR BasicBlock in the output IR. Set to the new latch |
| 227 | /// BasicBlock, used for placing the newly created BasicBlocks. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 228 | BasicBlock *LastBB = nullptr; |
| 229 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 230 | /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case |
| 231 | /// of replication, maps the BasicBlock of the last replica created. |
| 232 | SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB; |
| 233 | |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 234 | CFGState() = default; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 235 | } CFG; |
| 236 | |
| 237 | /// Hold a pointer to LoopInfo to register new basic blocks in the loop. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 238 | LoopInfo *LI; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 239 | |
| 240 | /// Hold a pointer to Dominator Tree to register new basic blocks in the loop. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 241 | DominatorTree *DT; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 242 | |
| 243 | /// Hold a reference to the IRBuilder used to generate output IR code. |
| 244 | IRBuilder<> &Builder; |
| 245 | |
| 246 | /// Hold a reference to the Value state information used when generating the |
| 247 | /// Values of the output IR. |
| 248 | VectorizerValueMap &ValueMap; |
| 249 | |
| 250 | /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 251 | InnerLoopVectorizer *ILV; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 252 | }; |
| 253 | |
| 254 | /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. |
| 255 | /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. |
| 256 | class VPBlockBase { |
| 257 | private: |
| 258 | const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). |
| 259 | |
| 260 | /// An optional name for the block. |
| 261 | std::string Name; |
| 262 | |
| 263 | /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if |
| 264 | /// it is a topmost VPBlockBase. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 265 | VPRegionBlock *Parent = nullptr; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 266 | |
| 267 | /// List of predecessor blocks. |
| 268 | SmallVector<VPBlockBase *, 1> Predecessors; |
| 269 | |
| 270 | /// List of successor blocks. |
| 271 | SmallVector<VPBlockBase *, 1> Successors; |
| 272 | |
| 273 | /// Add \p Successor as the last successor to this block. |
| 274 | void appendSuccessor(VPBlockBase *Successor) { |
| 275 | assert(Successor && "Cannot add nullptr successor!"); |
| 276 | Successors.push_back(Successor); |
| 277 | } |
| 278 | |
| 279 | /// Add \p Predecessor as the last predecessor to this block. |
| 280 | void appendPredecessor(VPBlockBase *Predecessor) { |
| 281 | assert(Predecessor && "Cannot add nullptr predecessor!"); |
| 282 | Predecessors.push_back(Predecessor); |
| 283 | } |
| 284 | |
| 285 | /// Remove \p Predecessor from the predecessors of this block. |
| 286 | void removePredecessor(VPBlockBase *Predecessor) { |
| 287 | auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor); |
| 288 | assert(Pos && "Predecessor does not exist"); |
| 289 | Predecessors.erase(Pos); |
| 290 | } |
| 291 | |
| 292 | /// Remove \p Successor from the successors of this block. |
| 293 | void removeSuccessor(VPBlockBase *Successor) { |
| 294 | auto Pos = std::find(Successors.begin(), Successors.end(), Successor); |
| 295 | assert(Pos && "Successor does not exist"); |
| 296 | Successors.erase(Pos); |
| 297 | } |
| 298 | |
| 299 | protected: |
| 300 | VPBlockBase(const unsigned char SC, const std::string &N) |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 301 | : SubclassID(SC), Name(N) {} |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 302 | |
| 303 | public: |
| 304 | /// An enumeration for keeping track of the concrete subclass of VPBlockBase |
| 305 | /// that are actually instantiated. Values of this enumeration are kept in the |
| 306 | /// SubclassID field of the VPBlockBase objects. They are used for concrete |
| 307 | /// type identification. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 308 | using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC }; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 309 | |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 310 | using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 311 | |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 312 | virtual ~VPBlockBase() = default; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 313 | |
| 314 | const std::string &getName() const { return Name; } |
| 315 | |
| 316 | void setName(const Twine &newName) { Name = newName.str(); } |
| 317 | |
| 318 | /// \return an ID for the concrete type of this object. |
| 319 | /// This is used to implement the classof checks. This should not be used |
| 320 | /// for any other purpose, as the values may change as LLVM evolves. |
| 321 | unsigned getVPBlockID() const { return SubclassID; } |
| 322 | |
| 323 | const VPRegionBlock *getParent() const { return Parent; } |
| 324 | |
| 325 | void setParent(VPRegionBlock *P) { Parent = P; } |
| 326 | |
| 327 | /// \return the VPBasicBlock that is the entry of this VPBlockBase, |
| 328 | /// recursively, if the latter is a VPRegionBlock. Otherwise, if this |
| 329 | /// VPBlockBase is a VPBasicBlock, it is returned. |
| 330 | const VPBasicBlock *getEntryBasicBlock() const; |
| 331 | VPBasicBlock *getEntryBasicBlock(); |
| 332 | |
| 333 | /// \return the VPBasicBlock that is the exit of this VPBlockBase, |
| 334 | /// recursively, if the latter is a VPRegionBlock. Otherwise, if this |
| 335 | /// VPBlockBase is a VPBasicBlock, it is returned. |
| 336 | const VPBasicBlock *getExitBasicBlock() const; |
| 337 | VPBasicBlock *getExitBasicBlock(); |
| 338 | |
| 339 | const VPBlocksTy &getSuccessors() const { return Successors; } |
| 340 | VPBlocksTy &getSuccessors() { return Successors; } |
| 341 | |
| 342 | const VPBlocksTy &getPredecessors() const { return Predecessors; } |
| 343 | VPBlocksTy &getPredecessors() { return Predecessors; } |
| 344 | |
| 345 | /// \return the successor of this VPBlockBase if it has a single successor. |
| 346 | /// Otherwise return a null pointer. |
| 347 | VPBlockBase *getSingleSuccessor() const { |
| 348 | return (Successors.size() == 1 ? *Successors.begin() : nullptr); |
| 349 | } |
| 350 | |
| 351 | /// \return the predecessor of this VPBlockBase if it has a single |
| 352 | /// predecessor. Otherwise return a null pointer. |
| 353 | VPBlockBase *getSinglePredecessor() const { |
| 354 | return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); |
| 355 | } |
| 356 | |
| 357 | /// An Enclosing Block of a block B is any block containing B, including B |
| 358 | /// itself. \return the closest enclosing block starting from "this", which |
| 359 | /// has successors. \return the root enclosing block if all enclosing blocks |
| 360 | /// have no successors. |
| 361 | VPBlockBase *getEnclosingBlockWithSuccessors(); |
| 362 | |
| 363 | /// \return the closest enclosing block starting from "this", which has |
| 364 | /// predecessors. \return the root enclosing block if all enclosing blocks |
| 365 | /// have no predecessors. |
| 366 | VPBlockBase *getEnclosingBlockWithPredecessors(); |
| 367 | |
| 368 | /// \return the successors either attached directly to this VPBlockBase or, if |
| 369 | /// this VPBlockBase is the exit block of a VPRegionBlock and has no |
| 370 | /// successors of its own, search recursively for the first enclosing |
| 371 | /// VPRegionBlock that has successors and return them. If no such |
| 372 | /// VPRegionBlock exists, return the (empty) successors of the topmost |
| 373 | /// VPBlockBase reached. |
| 374 | const VPBlocksTy &getHierarchicalSuccessors() { |
| 375 | return getEnclosingBlockWithSuccessors()->getSuccessors(); |
| 376 | } |
| 377 | |
| 378 | /// \return the hierarchical successor of this VPBlockBase if it has a single |
| 379 | /// hierarchical successor. Otherwise return a null pointer. |
| 380 | VPBlockBase *getSingleHierarchicalSuccessor() { |
| 381 | return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); |
| 382 | } |
| 383 | |
| 384 | /// \return the predecessors either attached directly to this VPBlockBase or, |
| 385 | /// if this VPBlockBase is the entry block of a VPRegionBlock and has no |
| 386 | /// predecessors of its own, search recursively for the first enclosing |
| 387 | /// VPRegionBlock that has predecessors and return them. If no such |
| 388 | /// VPRegionBlock exists, return the (empty) predecessors of the topmost |
| 389 | /// VPBlockBase reached. |
| 390 | const VPBlocksTy &getHierarchicalPredecessors() { |
| 391 | return getEnclosingBlockWithPredecessors()->getPredecessors(); |
| 392 | } |
| 393 | |
| 394 | /// \return the hierarchical predecessor of this VPBlockBase if it has a |
| 395 | /// single hierarchical predecessor. Otherwise return a null pointer. |
| 396 | VPBlockBase *getSingleHierarchicalPredecessor() { |
| 397 | return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); |
| 398 | } |
| 399 | |
| 400 | /// Sets a given VPBlockBase \p Successor as the single successor and \return |
| 401 | /// \p Successor. The parent of this Block is copied to be the parent of |
| 402 | /// \p Successor. |
| 403 | VPBlockBase *setOneSuccessor(VPBlockBase *Successor) { |
| 404 | assert(Successors.empty() && "Setting one successor when others exist."); |
| 405 | appendSuccessor(Successor); |
| 406 | Successor->appendPredecessor(this); |
| 407 | Successor->Parent = Parent; |
| 408 | return Successor; |
| 409 | } |
| 410 | |
| 411 | /// Sets two given VPBlockBases \p IfTrue and \p IfFalse to be the two |
| 412 | /// successors. The parent of this Block is copied to be the parent of both |
| 413 | /// \p IfTrue and \p IfFalse. |
| 414 | void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) { |
| 415 | assert(Successors.empty() && "Setting two successors when others exist."); |
| 416 | appendSuccessor(IfTrue); |
| 417 | appendSuccessor(IfFalse); |
| 418 | IfTrue->appendPredecessor(this); |
| 419 | IfFalse->appendPredecessor(this); |
| 420 | IfTrue->Parent = Parent; |
| 421 | IfFalse->Parent = Parent; |
| 422 | } |
| 423 | |
| 424 | void disconnectSuccessor(VPBlockBase *Successor) { |
| 425 | assert(Successor && "Successor to disconnect is null."); |
| 426 | removeSuccessor(Successor); |
| 427 | Successor->removePredecessor(this); |
| 428 | } |
| 429 | |
| 430 | /// The method which generates the output IR that correspond to this |
| 431 | /// VPBlockBase, thereby "executing" the VPlan. |
| 432 | virtual void execute(struct VPTransformState *State) = 0; |
| 433 | |
| 434 | /// Delete all blocks reachable from a given VPBlockBase, inclusive. |
| 435 | static void deleteCFG(VPBlockBase *Entry); |
| 436 | }; |
| 437 | |
| 438 | /// VPRecipeBase is a base class modeling a sequence of one or more output IR |
| 439 | /// instructions. |
| 440 | class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> { |
| 441 | friend VPBasicBlock; |
| 442 | |
| 443 | private: |
| 444 | const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). |
| 445 | |
| 446 | /// Each VPRecipe belongs to a single VPBasicBlock. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 447 | VPBasicBlock *Parent = nullptr; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 448 | |
| 449 | public: |
| 450 | /// An enumeration for keeping track of the concrete subclass of VPRecipeBase |
| 451 | /// that is actually instantiated. Values of this enumeration are kept in the |
| 452 | /// SubclassID field of the VPRecipeBase objects. They are used for concrete |
| 453 | /// type identification. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 454 | using VPRecipeTy = enum { |
Gil Rapaport | 848581c | 2017-11-14 12:09:30 +0000 | [diff] [blame] | 455 | VPBlendSC, |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 456 | VPBranchOnMaskSC, |
| 457 | VPInterleaveSC, |
| 458 | VPPredInstPHISC, |
| 459 | VPReplicateSC, |
| 460 | VPWidenIntOrFpInductionSC, |
Gil Rapaport | 848581c | 2017-11-14 12:09:30 +0000 | [diff] [blame] | 461 | VPWidenMemoryInstructionSC, |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 462 | VPWidenPHISC, |
| 463 | VPWidenSC, |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 464 | }; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 465 | |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 466 | VPRecipeBase(const unsigned char SC) : SubclassID(SC) {} |
| 467 | virtual ~VPRecipeBase() = default; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 468 | |
| 469 | /// \return an ID for the concrete type of this object. |
| 470 | /// This is used to implement the classof checks. This should not be used |
| 471 | /// for any other purpose, as the values may change as LLVM evolves. |
| 472 | unsigned getVPRecipeID() const { return SubclassID; } |
| 473 | |
| 474 | /// \return the VPBasicBlock which this VPRecipe belongs to. |
| 475 | VPBasicBlock *getParent() { return Parent; } |
| 476 | const VPBasicBlock *getParent() const { return Parent; } |
| 477 | |
| 478 | /// The method which generates the output IR instructions that correspond to |
| 479 | /// this VPRecipe, thereby "executing" the VPlan. |
| 480 | virtual void execute(struct VPTransformState &State) = 0; |
| 481 | |
| 482 | /// Each recipe prints itself. |
| 483 | virtual void print(raw_ostream &O, const Twine &Indent) const = 0; |
| 484 | }; |
| 485 | |
| 486 | /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It |
| 487 | /// holds a sequence of zero or more VPRecipe's each representing a sequence of |
| 488 | /// output IR instructions. |
| 489 | class VPBasicBlock : public VPBlockBase { |
| 490 | public: |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 491 | using RecipeListTy = iplist<VPRecipeBase>; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 492 | |
| 493 | private: |
| 494 | /// The VPRecipes held in the order of output instructions to generate. |
| 495 | RecipeListTy Recipes; |
| 496 | |
| 497 | public: |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 498 | VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) |
| 499 | : VPBlockBase(VPBasicBlockSC, Name.str()) { |
| 500 | if (Recipe) |
| 501 | appendRecipe(Recipe); |
| 502 | } |
| 503 | |
| 504 | ~VPBasicBlock() override { Recipes.clear(); } |
| 505 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 506 | /// Instruction iterators... |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 507 | using iterator = RecipeListTy::iterator; |
| 508 | using const_iterator = RecipeListTy::const_iterator; |
| 509 | using reverse_iterator = RecipeListTy::reverse_iterator; |
| 510 | using const_reverse_iterator = RecipeListTy::const_reverse_iterator; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 511 | |
| 512 | //===--------------------------------------------------------------------===// |
| 513 | /// Recipe iterator methods |
| 514 | /// |
| 515 | inline iterator begin() { return Recipes.begin(); } |
| 516 | inline const_iterator begin() const { return Recipes.begin(); } |
| 517 | inline iterator end() { return Recipes.end(); } |
| 518 | inline const_iterator end() const { return Recipes.end(); } |
| 519 | |
| 520 | inline reverse_iterator rbegin() { return Recipes.rbegin(); } |
| 521 | inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } |
| 522 | inline reverse_iterator rend() { return Recipes.rend(); } |
| 523 | inline const_reverse_iterator rend() const { return Recipes.rend(); } |
| 524 | |
| 525 | inline size_t size() const { return Recipes.size(); } |
| 526 | inline bool empty() const { return Recipes.empty(); } |
| 527 | inline const VPRecipeBase &front() const { return Recipes.front(); } |
| 528 | inline VPRecipeBase &front() { return Recipes.front(); } |
| 529 | inline const VPRecipeBase &back() const { return Recipes.back(); } |
| 530 | inline VPRecipeBase &back() { return Recipes.back(); } |
| 531 | |
| 532 | /// \brief Returns a pointer to a member of the recipe list. |
| 533 | static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { |
| 534 | return &VPBasicBlock::Recipes; |
| 535 | } |
| 536 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 537 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 538 | static inline bool classof(const VPBlockBase *V) { |
| 539 | return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC; |
| 540 | } |
| 541 | |
| 542 | /// Augment the existing recipes of a VPBasicBlock with an additional |
| 543 | /// \p Recipe as the last recipe. |
| 544 | void appendRecipe(VPRecipeBase *Recipe) { |
| 545 | assert(Recipe && "No recipe to append."); |
| 546 | assert(!Recipe->Parent && "Recipe already in VPlan"); |
| 547 | Recipe->Parent = this; |
| 548 | return Recipes.push_back(Recipe); |
| 549 | } |
| 550 | |
| 551 | /// The method which generates the output IR instructions that correspond to |
| 552 | /// this VPBasicBlock, thereby "executing" the VPlan. |
| 553 | void execute(struct VPTransformState *State) override; |
| 554 | |
| 555 | private: |
| 556 | /// Create an IR BasicBlock to hold the output instructions generated by this |
| 557 | /// VPBasicBlock, and return it. Update the CFGState accordingly. |
| 558 | BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG); |
| 559 | }; |
| 560 | |
| 561 | /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks |
| 562 | /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG. |
| 563 | /// A VPRegionBlock may indicate that its contents are to be replicated several |
| 564 | /// times. This is designed to support predicated scalarization, in which a |
| 565 | /// scalar if-then code structure needs to be generated VF * UF times. Having |
| 566 | /// this replication indicator helps to keep a single model for multiple |
| 567 | /// candidate VF's. The actual replication takes place only once the desired VF |
| 568 | /// and UF have been determined. |
| 569 | class VPRegionBlock : public VPBlockBase { |
| 570 | private: |
| 571 | /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. |
| 572 | VPBlockBase *Entry; |
| 573 | |
| 574 | /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock. |
| 575 | VPBlockBase *Exit; |
| 576 | |
| 577 | /// An indicator whether this region is to generate multiple replicated |
| 578 | /// instances of output IR corresponding to its VPBlockBases. |
| 579 | bool IsReplicator; |
| 580 | |
| 581 | public: |
| 582 | VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit, |
| 583 | const std::string &Name = "", bool IsReplicator = false) |
| 584 | : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit), |
| 585 | IsReplicator(IsReplicator) { |
| 586 | assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); |
| 587 | assert(Exit->getSuccessors().empty() && "Exit block has successors."); |
| 588 | Entry->setParent(this); |
| 589 | Exit->setParent(this); |
| 590 | } |
| 591 | |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 592 | ~VPRegionBlock() override { |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 593 | if (Entry) |
| 594 | deleteCFG(Entry); |
| 595 | } |
| 596 | |
| 597 | /// Method to support type inquiry through isa, cast, and dyn_cast. |
| 598 | static inline bool classof(const VPBlockBase *V) { |
| 599 | return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; |
| 600 | } |
| 601 | |
| 602 | const VPBlockBase *getEntry() const { return Entry; } |
| 603 | VPBlockBase *getEntry() { return Entry; } |
| 604 | |
| 605 | const VPBlockBase *getExit() const { return Exit; } |
| 606 | VPBlockBase *getExit() { return Exit; } |
| 607 | |
| 608 | /// An indicator whether this region is to generate multiple replicated |
| 609 | /// instances of output IR corresponding to its VPBlockBases. |
| 610 | bool isReplicator() const { return IsReplicator; } |
| 611 | |
| 612 | /// The method which generates the output IR instructions that correspond to |
| 613 | /// this VPRegionBlock, thereby "executing" the VPlan. |
| 614 | void execute(struct VPTransformState *State) override; |
| 615 | }; |
| 616 | |
| 617 | /// VPlan models a candidate for vectorization, encoding various decisions take |
| 618 | /// to produce efficient output IR, including which branches, basic-blocks and |
| 619 | /// output IR instructions to generate, and their cost. VPlan holds a |
| 620 | /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry |
| 621 | /// VPBlock. |
| 622 | class VPlan { |
| 623 | private: |
| 624 | /// Hold the single entry to the Hierarchical CFG of the VPlan. |
| 625 | VPBlockBase *Entry; |
| 626 | |
| 627 | /// Holds the VFs applicable to this VPlan. |
| 628 | SmallSet<unsigned, 2> VFs; |
| 629 | |
| 630 | /// Holds the name of the VPlan, for printing. |
| 631 | std::string Name; |
| 632 | |
| 633 | public: |
| 634 | VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {} |
| 635 | |
| 636 | ~VPlan() { |
| 637 | if (Entry) |
| 638 | VPBlockBase::deleteCFG(Entry); |
| 639 | } |
| 640 | |
| 641 | /// Generate the IR code for this VPlan. |
| 642 | void execute(struct VPTransformState *State); |
| 643 | |
| 644 | VPBlockBase *getEntry() { return Entry; } |
| 645 | const VPBlockBase *getEntry() const { return Entry; } |
| 646 | |
| 647 | VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; } |
| 648 | |
| 649 | void addVF(unsigned VF) { VFs.insert(VF); } |
| 650 | |
| 651 | bool hasVF(unsigned VF) { return VFs.count(VF); } |
| 652 | |
| 653 | const std::string &getName() const { return Name; } |
| 654 | |
| 655 | void setName(const Twine &newName) { Name = newName.str(); } |
| 656 | |
| 657 | private: |
| 658 | /// Add to the given dominator tree the header block and every new basic block |
| 659 | /// that was created between it and the latch block, inclusive. |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 660 | static void updateDominatorTree(DominatorTree *DT, |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 661 | BasicBlock *LoopPreHeaderBB, |
| 662 | BasicBlock *LoopLatchBB); |
| 663 | }; |
| 664 | |
| 665 | /// VPlanPrinter prints a given VPlan to a given output stream. The printing is |
| 666 | /// indented and follows the dot format. |
| 667 | class VPlanPrinter { |
| 668 | friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan); |
| 669 | friend inline raw_ostream &operator<<(raw_ostream &OS, |
| 670 | const struct VPlanIngredient &I); |
| 671 | |
| 672 | private: |
| 673 | raw_ostream &OS; |
| 674 | VPlan &Plan; |
| 675 | unsigned Depth; |
| 676 | unsigned TabWidth = 2; |
| 677 | std::string Indent; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 678 | unsigned BID = 0; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 679 | SmallDenseMap<const VPBlockBase *, unsigned> BlockID; |
| 680 | |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 681 | VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {} |
| 682 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 683 | /// Handle indentation. |
| 684 | void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } |
| 685 | |
| 686 | /// Print a given \p Block of the Plan. |
| 687 | void dumpBlock(const VPBlockBase *Block); |
| 688 | |
| 689 | /// Print the information related to the CFG edges going out of a given |
| 690 | /// \p Block, followed by printing the successor blocks themselves. |
| 691 | void dumpEdges(const VPBlockBase *Block); |
| 692 | |
| 693 | /// Print a given \p BasicBlock, including its VPRecipes, followed by printing |
| 694 | /// its successor blocks. |
| 695 | void dumpBasicBlock(const VPBasicBlock *BasicBlock); |
| 696 | |
| 697 | /// Print a given \p Region of the Plan. |
| 698 | void dumpRegion(const VPRegionBlock *Region); |
| 699 | |
| 700 | unsigned getOrCreateBID(const VPBlockBase *Block) { |
| 701 | return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; |
| 702 | } |
| 703 | |
| 704 | const Twine getOrCreateName(const VPBlockBase *Block); |
| 705 | |
| 706 | const Twine getUID(const VPBlockBase *Block); |
| 707 | |
| 708 | /// Print the information related to a CFG edge between two VPBlockBases. |
| 709 | void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, |
| 710 | const Twine &Label); |
| 711 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 712 | void dump(); |
| 713 | |
| 714 | static void printAsIngredient(raw_ostream &O, Value *V); |
| 715 | }; |
| 716 | |
| 717 | struct VPlanIngredient { |
| 718 | Value *V; |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 719 | |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 720 | VPlanIngredient(Value *V) : V(V) {} |
| 721 | }; |
| 722 | |
| 723 | inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) { |
| 724 | VPlanPrinter::printAsIngredient(OS, I.V); |
| 725 | return OS; |
| 726 | } |
| 727 | |
| 728 | inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) { |
| 729 | VPlanPrinter Printer(OS, Plan); |
| 730 | Printer.dump(); |
| 731 | return OS; |
| 732 | } |
| 733 | |
| 734 | //===--------------------------------------------------------------------===// |
| 735 | // GraphTraits specializations for VPlan/VPRegionBlock Control-Flow Graphs // |
| 736 | //===--------------------------------------------------------------------===// |
| 737 | |
| 738 | // Provide specializations of GraphTraits to be able to treat a VPBlockBase as a |
| 739 | // graph of VPBlockBase nodes... |
| 740 | |
| 741 | template <> struct GraphTraits<VPBlockBase *> { |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 742 | using NodeRef = VPBlockBase *; |
| 743 | using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 744 | |
| 745 | static NodeRef getEntryNode(NodeRef N) { return N; } |
| 746 | |
| 747 | static inline ChildIteratorType child_begin(NodeRef N) { |
| 748 | return N->getSuccessors().begin(); |
| 749 | } |
| 750 | |
| 751 | static inline ChildIteratorType child_end(NodeRef N) { |
| 752 | return N->getSuccessors().end(); |
| 753 | } |
| 754 | }; |
| 755 | |
| 756 | template <> struct GraphTraits<const VPBlockBase *> { |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 757 | using NodeRef = const VPBlockBase *; |
| 758 | using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 759 | |
| 760 | static NodeRef getEntryNode(NodeRef N) { return N; } |
| 761 | |
| 762 | static inline ChildIteratorType child_begin(NodeRef N) { |
| 763 | return N->getSuccessors().begin(); |
| 764 | } |
| 765 | |
| 766 | static inline ChildIteratorType child_end(NodeRef N) { |
| 767 | return N->getSuccessors().end(); |
| 768 | } |
| 769 | }; |
| 770 | |
| 771 | // Provide specializations of GraphTraits to be able to treat a VPBlockBase as a |
| 772 | // graph of VPBlockBase nodes... and to walk it in inverse order. Inverse order |
| 773 | // for a VPBlockBase is considered to be when traversing the predecessors of a |
| 774 | // VPBlockBase instead of its successors. |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 775 | template <> struct GraphTraits<Inverse<VPBlockBase *>> { |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 776 | using NodeRef = VPBlockBase *; |
| 777 | using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 778 | |
| 779 | static Inverse<VPBlockBase *> getEntryNode(Inverse<VPBlockBase *> B) { |
| 780 | return B; |
| 781 | } |
| 782 | |
| 783 | static inline ChildIteratorType child_begin(NodeRef N) { |
| 784 | return N->getPredecessors().begin(); |
| 785 | } |
| 786 | |
| 787 | static inline ChildIteratorType child_end(NodeRef N) { |
| 788 | return N->getPredecessors().end(); |
| 789 | } |
| 790 | }; |
| 791 | |
Eugene Zelenko | 6cadde7 | 2017-10-17 21:27:42 +0000 | [diff] [blame] | 792 | } // end namespace llvm |
Ayal Zaks | 1f58dda | 2017-08-27 12:55:46 +0000 | [diff] [blame] | 793 | |
| 794 | #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |