blob: 2f91e54e5ce769662e68524e891ce08c9e5bc7f9 [file] [log] [blame]
Neil Henning66416572018-10-08 15:49:19 +00001//===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
2//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Neil Henning66416572018-10-08 15:49:19 +00006//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This pass optimizes atomic operations by using a single lane of a wavefront
11/// to perform the atomic operation, thus reducing contention on that memory
12/// location.
13//
14//===----------------------------------------------------------------------===//
15
16#include "AMDGPU.h"
17#include "AMDGPUSubtarget.h"
18#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
19#include "llvm/CodeGen/TargetPassConfig.h"
20#include "llvm/IR/IRBuilder.h"
21#include "llvm/IR/InstVisitor.h"
22#include "llvm/Transforms/Utils/BasicBlockUtils.h"
23
24#define DEBUG_TYPE "amdgpu-atomic-optimizer"
25
26using namespace llvm;
27
28namespace {
29
30enum DPP_CTRL {
31 DPP_ROW_SR1 = 0x111,
32 DPP_ROW_SR2 = 0x112,
33 DPP_ROW_SR4 = 0x114,
34 DPP_ROW_SR8 = 0x118,
35 DPP_WF_SR1 = 0x138,
36 DPP_ROW_BCAST15 = 0x142,
37 DPP_ROW_BCAST31 = 0x143
38};
39
40struct ReplacementInfo {
41 Instruction *I;
42 Instruction::BinaryOps Op;
43 unsigned ValIdx;
44 bool ValDivergent;
45};
46
47class AMDGPUAtomicOptimizer : public FunctionPass,
48 public InstVisitor<AMDGPUAtomicOptimizer> {
49private:
50 SmallVector<ReplacementInfo, 8> ToReplace;
51 const LegacyDivergenceAnalysis *DA;
52 const DataLayout *DL;
53 DominatorTree *DT;
54 bool HasDPP;
Neil Henning233a02d2018-11-05 12:04:48 +000055 bool IsPixelShader;
Neil Henning66416572018-10-08 15:49:19 +000056
57 void optimizeAtomic(Instruction &I, Instruction::BinaryOps Op,
58 unsigned ValIdx, bool ValDivergent) const;
59
60 void setConvergent(CallInst *const CI) const;
61
62public:
63 static char ID;
64
65 AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
66
67 bool runOnFunction(Function &F) override;
68
69 void getAnalysisUsage(AnalysisUsage &AU) const override {
70 AU.addPreserved<DominatorTreeWrapperPass>();
71 AU.addRequired<LegacyDivergenceAnalysis>();
72 AU.addRequired<TargetPassConfig>();
73 }
74
75 void visitAtomicRMWInst(AtomicRMWInst &I);
76 void visitIntrinsicInst(IntrinsicInst &I);
77};
78
79} // namespace
80
81char AMDGPUAtomicOptimizer::ID = 0;
82
83char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
84
85bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
86 if (skipFunction(F)) {
87 return false;
88 }
89
90 DA = &getAnalysis<LegacyDivergenceAnalysis>();
91 DL = &F.getParent()->getDataLayout();
92 DominatorTreeWrapperPass *const DTW =
93 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
94 DT = DTW ? &DTW->getDomTree() : nullptr;
95 const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
96 const TargetMachine &TM = TPC.getTM<TargetMachine>();
97 const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
98 HasDPP = ST.hasDPP();
Neil Henning233a02d2018-11-05 12:04:48 +000099 IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
Neil Henning66416572018-10-08 15:49:19 +0000100
101 visit(F);
102
103 const bool Changed = !ToReplace.empty();
104
105 for (ReplacementInfo &Info : ToReplace) {
106 optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
107 }
108
109 ToReplace.clear();
110
111 return Changed;
112}
113
114void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
115 // Early exit for unhandled address space atomic instructions.
116 switch (I.getPointerAddressSpace()) {
117 default:
118 return;
119 case AMDGPUAS::GLOBAL_ADDRESS:
120 case AMDGPUAS::LOCAL_ADDRESS:
121 break;
122 }
123
124 Instruction::BinaryOps Op;
125
126 switch (I.getOperation()) {
127 default:
128 return;
129 case AtomicRMWInst::Add:
130 Op = Instruction::Add;
131 break;
132 case AtomicRMWInst::Sub:
133 Op = Instruction::Sub;
134 break;
135 }
136
137 const unsigned PtrIdx = 0;
138 const unsigned ValIdx = 1;
139
140 // If the pointer operand is divergent, then each lane is doing an atomic
141 // operation on a different address, and we cannot optimize that.
142 if (DA->isDivergent(I.getOperand(PtrIdx))) {
143 return;
144 }
145
146 const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
147
148 // If the value operand is divergent, each lane is contributing a different
149 // value to the atomic calculation. We can only optimize divergent values if
150 // we have DPP available on our subtarget, and the atomic operation is 32
151 // bits.
152 if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
153 return;
154 }
155
156 // If we get here, we can optimize the atomic using a single wavefront-wide
157 // atomic operation to do the calculation for the entire wavefront, so
158 // remember the instruction so we can come back to it.
159 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
160
161 ToReplace.push_back(Info);
162}
163
164void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
165 Instruction::BinaryOps Op;
166
167 switch (I.getIntrinsicID()) {
168 default:
169 return;
170 case Intrinsic::amdgcn_buffer_atomic_add:
171 case Intrinsic::amdgcn_struct_buffer_atomic_add:
172 case Intrinsic::amdgcn_raw_buffer_atomic_add:
173 Op = Instruction::Add;
174 break;
175 case Intrinsic::amdgcn_buffer_atomic_sub:
176 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
177 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
178 Op = Instruction::Sub;
179 break;
180 }
181
182 const unsigned ValIdx = 0;
183
184 const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
185
186 // If the value operand is divergent, each lane is contributing a different
187 // value to the atomic calculation. We can only optimize divergent values if
188 // we have DPP available on our subtarget, and the atomic operation is 32
189 // bits.
190 if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
191 return;
192 }
193
194 // If any of the other arguments to the intrinsic are divergent, we can't
195 // optimize the operation.
196 for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
197 if (DA->isDivergent(I.getOperand(Idx))) {
198 return;
199 }
200 }
201
202 // If we get here, we can optimize the atomic using a single wavefront-wide
203 // atomic operation to do the calculation for the entire wavefront, so
204 // remember the instruction so we can come back to it.
205 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
206
207 ToReplace.push_back(Info);
208}
209
210void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
211 Instruction::BinaryOps Op,
212 unsigned ValIdx,
213 bool ValDivergent) const {
214 LLVMContext &Context = I.getContext();
215
216 // Start building just before the instruction.
217 IRBuilder<> B(&I);
218
Neil Henning233a02d2018-11-05 12:04:48 +0000219 // If we are in a pixel shader, because of how we have to mask out helper
220 // lane invocations, we need to record the entry and exit BB's.
221 BasicBlock *PixelEntryBB = nullptr;
222 BasicBlock *PixelExitBB = nullptr;
223
224 // If we're optimizing an atomic within a pixel shader, we need to wrap the
225 // entire atomic operation in a helper-lane check. We do not want any helper
226 // lanes that are around only for the purposes of derivatives to take part
227 // in any cross-lane communication, and we use a branch on whether the lane is
228 // live to do this.
229 if (IsPixelShader) {
230 // Record I's original position as the entry block.
231 PixelEntryBB = I.getParent();
232
233 Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
234 Instruction *const NonHelperTerminator =
235 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
236
237 // Record I's new position as the exit block.
238 PixelExitBB = I.getParent();
239
240 I.moveBefore(NonHelperTerminator);
241 B.SetInsertPoint(&I);
242 }
243
Neil Henning66416572018-10-08 15:49:19 +0000244 Type *const Ty = I.getType();
245 const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
246 Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);
247
248 // This is the value in the atomic operation we need to combine in order to
249 // reduce the number of atomic operations.
250 Value *const V = I.getOperand(ValIdx);
251
252 // We need to know how many lanes are active within the wavefront, and we do
253 // this by getting the exec register, which tells us all the lanes that are
254 // active.
255 MDNode *const RegName =
256 llvm::MDNode::get(Context, llvm::MDString::get(Context, "exec"));
257 Value *const Metadata = llvm::MetadataAsValue::get(Context, RegName);
258 CallInst *const Exec =
259 B.CreateIntrinsic(Intrinsic::read_register, {B.getInt64Ty()}, {Metadata});
260 setConvergent(Exec);
261
262 // We need to know how many lanes are active within the wavefront that are
263 // below us. If we counted each lane linearly starting from 0, a lane is
264 // below us only if its associated index was less than ours. We do this by
265 // using the mbcnt intrinsic.
266 Value *const BitCast = B.CreateBitCast(Exec, VecTy);
267 Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
268 Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
269 CallInst *const PartialMbcnt = B.CreateIntrinsic(
270 Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)});
271 CallInst *const Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {},
272 {ExtractHi, PartialMbcnt});
273
274 Value *const MbcntCast = B.CreateIntCast(Mbcnt, Ty, false);
275
276 Value *LaneOffset = nullptr;
277 Value *NewV = nullptr;
278
279 // If we have a divergent value in each lane, we need to combine the value
280 // using DPP.
281 if (ValDivergent) {
282 // First we need to set all inactive invocations to 0, so that they can
283 // correctly contribute to the final result.
284 CallInst *const SetInactive = B.CreateIntrinsic(
285 Intrinsic::amdgcn_set_inactive, Ty, {V, B.getIntN(TyBitWidth, 0)});
286 setConvergent(SetInactive);
287 NewV = SetInactive;
288
289 const unsigned Iters = 6;
290 const unsigned DPPCtrl[Iters] = {DPP_ROW_SR1, DPP_ROW_SR2,
291 DPP_ROW_SR4, DPP_ROW_SR8,
292 DPP_ROW_BCAST15, DPP_ROW_BCAST31};
293 const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xa, 0xc};
294
295 // This loop performs an inclusive scan across the wavefront, with all lanes
296 // active (by using the WWM intrinsic).
297 for (unsigned Idx = 0; Idx < Iters; Idx++) {
298 CallInst *const DPP = B.CreateIntrinsic(Intrinsic::amdgcn_mov_dpp, Ty,
299 {NewV, B.getInt32(DPPCtrl[Idx]),
300 B.getInt32(RowMask[Idx]),
301 B.getInt32(0xf), B.getFalse()});
302 setConvergent(DPP);
303 Value *const WWM = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, DPP);
304
305 NewV = B.CreateBinOp(Op, NewV, WWM);
306 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
307 }
308
309 // NewV has returned the inclusive scan of V, but for the lane offset we
310 // require an exclusive scan. We do this by shifting the values from the
311 // entire wavefront right by 1, and by setting the bound_ctrl (last argument
312 // to the intrinsic below) to true, we can guarantee that 0 will be shifted
313 // into the 0'th invocation.
314 CallInst *const DPP =
315 B.CreateIntrinsic(Intrinsic::amdgcn_mov_dpp, {Ty},
316 {NewV, B.getInt32(DPP_WF_SR1), B.getInt32(0xf),
317 B.getInt32(0xf), B.getTrue()});
318 setConvergent(DPP);
319 LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, DPP);
320
321 // Read the value from the last lane, which has accumlated the values of
322 // each active lane in the wavefront. This will be our new value with which
323 // we will provide to the atomic operation.
324 if (TyBitWidth == 64) {
325 Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
326 Value *const ExtractHi =
327 B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty());
328 CallInst *const ReadLaneLo = B.CreateIntrinsic(
329 Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)});
330 setConvergent(ReadLaneLo);
331 CallInst *const ReadLaneHi = B.CreateIntrinsic(
332 Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)});
333 setConvergent(ReadLaneHi);
334 Value *const PartialInsert = B.CreateInsertElement(
335 UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
336 Value *const Insert =
337 B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
338 NewV = B.CreateBitCast(Insert, Ty);
339 } else if (TyBitWidth == 32) {
340 CallInst *const ReadLane = B.CreateIntrinsic(Intrinsic::amdgcn_readlane,
341 {}, {NewV, B.getInt32(63)});
342 setConvergent(ReadLane);
343 NewV = ReadLane;
344 } else {
345 llvm_unreachable("Unhandled atomic bit width");
346 }
347 } else {
348 // Get the total number of active lanes we have by using popcount.
349 Instruction *const Ctpop = B.CreateUnaryIntrinsic(Intrinsic::ctpop, Exec);
350 Value *const CtpopCast = B.CreateIntCast(Ctpop, Ty, false);
351
352 // Calculate the new value we will be contributing to the atomic operation
353 // for the entire wavefront.
354 NewV = B.CreateMul(V, CtpopCast);
355 LaneOffset = B.CreateMul(V, MbcntCast);
356 }
357
358 // We only want a single lane to enter our new control flow, and we do this
359 // by checking if there are any active lanes below us. Only one lane will
360 // have 0 active lanes below us, so that will be the only one to progress.
361 Value *const Cond = B.CreateICmpEQ(MbcntCast, B.getIntN(TyBitWidth, 0));
362
363 // Store I's original basic block before we split the block.
364 BasicBlock *const EntryBB = I.getParent();
365
366 // We need to introduce some new control flow to force a single lane to be
367 // active. We do this by splitting I's basic block at I, and introducing the
368 // new block such that:
369 // entry --> single_lane -\
370 // \------------------> exit
371 Instruction *const SingleLaneTerminator =
372 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
373
374 // Move the IR builder into single_lane next.
375 B.SetInsertPoint(SingleLaneTerminator);
376
377 // Clone the original atomic operation into single lane, replacing the
378 // original value with our newly created one.
379 Instruction *const NewI = I.clone();
380 B.Insert(NewI);
381 NewI->setOperand(ValIdx, NewV);
382
383 // Move the IR builder into exit next, and start inserting just before the
384 // original instruction.
385 B.SetInsertPoint(&I);
386
387 // Create a PHI node to get our new atomic result into the exit block.
388 PHINode *const PHI = B.CreatePHI(Ty, 2);
389 PHI->addIncoming(UndefValue::get(Ty), EntryBB);
390 PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
391
392 // We need to broadcast the value who was the lowest active lane (the first
393 // lane) to all other lanes in the wavefront. We use an intrinsic for this,
394 // but have to handle 64-bit broadcasts with two calls to this intrinsic.
395 Value *BroadcastI = nullptr;
396
397 if (TyBitWidth == 64) {
398 Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
399 Value *const ExtractHi =
400 B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty());
401 CallInst *const ReadFirstLaneLo =
402 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
403 setConvergent(ReadFirstLaneLo);
404 CallInst *const ReadFirstLaneHi =
405 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
406 setConvergent(ReadFirstLaneHi);
407 Value *const PartialInsert = B.CreateInsertElement(
408 UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
409 Value *const Insert =
410 B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
411 BroadcastI = B.CreateBitCast(Insert, Ty);
412 } else if (TyBitWidth == 32) {
413 CallInst *const ReadFirstLane =
414 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
415 setConvergent(ReadFirstLane);
416 BroadcastI = ReadFirstLane;
417 } else {
418 llvm_unreachable("Unhandled atomic bit width");
419 }
420
421 // Now that we have the result of our single atomic operation, we need to
422 // get our individual lane's slice into the result. We use the lane offset we
423 // previously calculated combined with the atomic result value we got from the
424 // first lane, to get our lane's index into the atomic result.
425 Value *const Result = B.CreateBinOp(Op, BroadcastI, LaneOffset);
426
Neil Henning233a02d2018-11-05 12:04:48 +0000427 if (IsPixelShader) {
428 // Need a final PHI to reconverge to above the helper lane branch mask.
429 B.SetInsertPoint(PixelExitBB->getFirstNonPHI());
430
431 PHINode *const PHI = B.CreatePHI(Ty, 2);
432 PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB);
433 PHI->addIncoming(Result, I.getParent());
434 I.replaceAllUsesWith(PHI);
435 } else {
436 // Replace the original atomic instruction with the new one.
437 I.replaceAllUsesWith(Result);
438 }
Neil Henning66416572018-10-08 15:49:19 +0000439
440 // And delete the original.
441 I.eraseFromParent();
442}
443
444void AMDGPUAtomicOptimizer::setConvergent(CallInst *const CI) const {
445 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
446}
447
448INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
449 "AMDGPU atomic optimizations", false, false)
450INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
451INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
452INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
453 "AMDGPU atomic optimizations", false, false)
454
455FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
456 return new AMDGPUAtomicOptimizer();
457}