blob: ed002a794d663cebb0aa3b0f1a03f72b37aed830 [file] [log] [blame]
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001//===--- BitTracker.h -----------------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef BITTRACKER_H
11#define BITTRACKER_H
12
13#include "llvm/ADT/SetVector.h"
14#include "llvm/ADT/SmallVector.h"
15#include "llvm/CodeGen/MachineFunction.h"
16
17#include <map>
18#include <queue>
19#include <set>
20
21namespace llvm {
22 class ConstantInt;
23 class MachineRegisterInfo;
24 class MachineBasicBlock;
25 class MachineInstr;
26 class MachineOperand;
27 class raw_ostream;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000028
29struct BitTracker {
30 struct BitRef;
31 struct RegisterRef;
32 struct BitValue;
33 struct BitMask;
34 struct RegisterCell;
35 struct MachineEvaluator;
36
Benjamin Kramerd8861512015-07-13 20:38:16 +000037 typedef SetVector<const MachineBasicBlock *> BranchTargetList;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000038
39 struct CellMapType : public std::map<unsigned,RegisterCell> {
40 bool has(unsigned Reg) const;
41 };
42
Benjamin Kramerd8861512015-07-13 20:38:16 +000043 BitTracker(const MachineEvaluator &E, MachineFunction &F);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000044 ~BitTracker();
45
46 void run();
47 void trace(bool On = false) { Trace = On; }
48 bool has(unsigned Reg) const;
49 const RegisterCell &lookup(unsigned Reg) const;
50 RegisterCell get(RegisterRef RR) const;
51 void put(RegisterRef RR, const RegisterCell &RC);
52 void subst(RegisterRef OldRR, RegisterRef NewRR);
Benjamin Kramerd8861512015-07-13 20:38:16 +000053 bool reached(const MachineBasicBlock *B) const;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000054
55private:
Benjamin Kramerd8861512015-07-13 20:38:16 +000056 void visitPHI(const MachineInstr *PI);
57 void visitNonBranch(const MachineInstr *MI);
58 void visitBranchesFrom(const MachineInstr *BI);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000059 void visitUsesOf(unsigned Reg);
60 void reset();
61
62 typedef std::pair<int,int> CFGEdge;
63 typedef std::set<CFGEdge> EdgeSetType;
Benjamin Kramerd8861512015-07-13 20:38:16 +000064 typedef std::set<const MachineInstr *> InstrSetType;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000065 typedef std::queue<CFGEdge> EdgeQueueType;
66
67 EdgeSetType EdgeExec; // Executable flow graph edges.
68 InstrSetType InstrExec; // Executable instructions.
69 EdgeQueueType FlowQ; // Work queue of CFG edges.
70 bool Trace; // Enable tracing for debugging.
71
72 const MachineEvaluator &ME;
Benjamin Kramerd8861512015-07-13 20:38:16 +000073 MachineFunction &MF;
74 MachineRegisterInfo &MRI;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000075 CellMapType &Map;
76};
77
78
79// Abstraction of a reference to bit at position Pos from a register Reg.
80struct BitTracker::BitRef {
81 BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {}
82 BitRef(const BitRef &BR) : Reg(BR.Reg), Pos(BR.Pos) {}
83 bool operator== (const BitRef &BR) const {
84 // If Reg is 0, disregard Pos.
85 return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos);
86 }
87 unsigned Reg;
88 uint16_t Pos;
89};
90
91
92// Abstraction of a register reference in MachineOperand. It contains the
93// register number and the subregister index.
94struct BitTracker::RegisterRef {
95 RegisterRef(unsigned R = 0, unsigned S = 0)
96 : Reg(R), Sub(S) {}
Benjamin Kramerd8861512015-07-13 20:38:16 +000097 RegisterRef(const MachineOperand &MO)
98 : Reg(MO.getReg()), Sub(MO.getSubReg()) {}
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000099 unsigned Reg, Sub;
100};
101
102
103// Value that a single bit can take. This is outside of the context of
104// any register, it is more of an abstraction of the two-element set of
105// possible bit values. One extension here is the "Ref" type, which
106// indicates that this bit takes the same value as the bit described by
107// RefInfo.
108struct BitTracker::BitValue {
109 enum ValueType {
110 Top, // Bit not yet defined.
111 Zero, // Bit = 0.
112 One, // Bit = 1.
113 Ref // Bit value same as the one described in RefI.
114 // Conceptually, there is no explicit "bottom" value: the lattice's
115 // bottom will be expressed as a "ref to itself", which, in the context
116 // of registers, could be read as "this value of this bit is defined by
117 // this bit".
118 // The ordering is:
119 // x <= Top,
120 // Self <= x, where "Self" is "ref to itself".
121 // This makes the value lattice different for each virtual register
122 // (even for each bit in the same virtual register), since the "bottom"
123 // for one register will be a simple "ref" for another register.
124 // Since we do not store the "Self" bit and register number, the meet
125 // operation will need to take it as a parameter.
126 //
127 // In practice there is a special case for values that are not associa-
128 // ted with any specific virtual register. An example would be a value
129 // corresponding to a bit of a physical register, or an intermediate
130 // value obtained in some computation (such as instruction evaluation).
131 // Such cases are identical to the usual Ref type, but the register
132 // number is 0. In such case the Pos field of the reference is ignored.
133 //
134 // What is worthy of notice is that in value V (that is a "ref"), as long
135 // as the RefI.Reg is not 0, it may actually be the same register as the
136 // one in which V will be contained. If the RefI.Pos refers to the posi-
137 // tion of V, then V is assumed to be "bottom" (as a "ref to itself"),
138 // otherwise V is taken to be identical to the referenced bit of the
139 // same register.
140 // If RefI.Reg is 0, however, such a reference to the same register is
141 // not possible. Any value V that is a "ref", and whose RefI.Reg is 0
142 // is treated as "bottom".
143 };
144 ValueType Type;
145 BitRef RefI;
146
147 BitValue(ValueType T = Top) : Type(T) {}
148 BitValue(bool B) : Type(B ? One : Zero) {}
149 BitValue(const BitValue &V) : Type(V.Type), RefI(V.RefI) {}
150 BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {}
151
152 bool operator== (const BitValue &V) const {
153 if (Type != V.Type)
154 return false;
155 if (Type == Ref && !(RefI == V.RefI))
156 return false;
157 return true;
158 }
159 bool operator!= (const BitValue &V) const {
160 return !operator==(V);
161 }
162 bool is(unsigned T) const {
163 assert(T == 0 || T == 1);
164 return T == 0 ? Type == Zero
165 : (T == 1 ? Type == One : false);
166 }
167
168 // The "meet" operation is the "." operation in a semilattice (L, ., T, B):
169 // (1) x.x = x
170 // (2) x.y = y.x
171 // (3) x.(y.z) = (x.y).z
172 // (4) x.T = x (i.e. T = "top")
173 // (5) x.B = B (i.e. B = "bottom")
174 //
175 // This "meet" function will update the value of the "*this" object with
176 // the newly calculated one, and return "true" if the value of *this has
177 // changed, and "false" otherwise.
178 // To prove that it satisfies the conditions (1)-(5), it is sufficient
179 // to show that a relation
180 // x <= y <=> x.y = x
181 // defines a partial order (i.e. that "meet" is same as "infimum").
182 bool meet(const BitValue &V, const BitRef &Self) {
183 // First, check the cases where there is nothing to be done.
184 if (Type == Ref && RefI == Self) // Bottom.meet(V) = Bottom (i.e. This)
185 return false;
186 if (V.Type == Top) // This.meet(Top) = This
187 return false;
188 if (*this == V) // This.meet(This) = This
189 return false;
190
191 // At this point, we know that the value of "this" will change.
192 // If it is Top, it will become the same as V, otherwise it will
193 // become "bottom" (i.e. Self).
194 if (Type == Top) {
195 Type = V.Type;
196 RefI = V.RefI; // This may be irrelevant, but copy anyway.
197 return true;
198 }
199 // Become "bottom".
200 Type = Ref;
201 RefI = Self;
202 return true;
203 }
204
205 // Create a reference to the bit value V.
206 static BitValue ref(const BitValue &V);
207 // Create a "self".
208 static BitValue self(const BitRef &Self = BitRef());
209
210 bool num() const {
211 return Type == Zero || Type == One;
212 }
213 operator bool() const {
214 assert(Type == Zero || Type == One);
215 return Type == One;
216 }
217
Benjamin Kramerd8861512015-07-13 20:38:16 +0000218 friend raw_ostream &operator<<(raw_ostream &OS, const BitValue &BV);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000219};
220
221
222// This operation must be idempotent, i.e. ref(ref(V)) == ref(V).
223inline BitTracker::BitValue
224BitTracker::BitValue::ref(const BitValue &V) {
225 if (V.Type != Ref)
226 return BitValue(V.Type);
227 if (V.RefI.Reg != 0)
228 return BitValue(V.RefI.Reg, V.RefI.Pos);
229 return self();
230}
231
232
233inline BitTracker::BitValue
234BitTracker::BitValue::self(const BitRef &Self) {
235 return BitValue(Self.Reg, Self.Pos);
236}
237
238
239// A sequence of bits starting from index B up to and including index E.
240// If E < B, the mask represents two sections: [0..E] and [B..W) where
241// W is the width of the register.
242struct BitTracker::BitMask {
243 BitMask() : B(0), E(0) {}
244 BitMask(uint16_t b, uint16_t e) : B(b), E(e) {}
245 uint16_t first() const { return B; }
246 uint16_t last() const { return E; }
247private:
248 uint16_t B, E;
249};
250
251
252// Representation of a register: a list of BitValues.
253struct BitTracker::RegisterCell {
254 RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {}
255
256 uint16_t width() const {
257 return Bits.size();
258 }
259 const BitValue &operator[](uint16_t BitN) const {
260 assert(BitN < Bits.size());
261 return Bits[BitN];
262 }
263 BitValue &operator[](uint16_t BitN) {
264 assert(BitN < Bits.size());
265 return Bits[BitN];
266 }
267
268 bool meet(const RegisterCell &RC, unsigned SelfR);
269 RegisterCell &insert(const RegisterCell &RC, const BitMask &M);
270 RegisterCell extract(const BitMask &M) const; // Returns a new cell.
271 RegisterCell &rol(uint16_t Sh); // Rotate left.
272 RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V);
273 RegisterCell &cat(const RegisterCell &RC); // Concatenate.
274 uint16_t cl(bool B) const;
275 uint16_t ct(bool B) const;
276
277 bool operator== (const RegisterCell &RC) const;
278 bool operator!= (const RegisterCell &RC) const {
279 return !operator==(RC);
280 }
281
282 const RegisterCell &operator=(const RegisterCell &RC) {
283 Bits = RC.Bits;
284 return *this;
285 }
286
287 // Generate a "ref" cell for the corresponding register. In the resulting
288 // cell each bit will be described as being the same as the corresponding
289 // bit in register Reg (i.e. the cell is "defined" by register Reg).
290 static RegisterCell self(unsigned Reg, uint16_t Width);
291 // Generate a "top" cell of given size.
292 static RegisterCell top(uint16_t Width);
293 // Generate a cell that is a "ref" to another cell.
294 static RegisterCell ref(const RegisterCell &C);
295
296private:
297 // The DefaultBitN is here only to avoid frequent reallocation of the
298 // memory in the vector.
299 static const unsigned DefaultBitN = 32;
Benjamin Kramerd8861512015-07-13 20:38:16 +0000300 typedef SmallVector<BitValue, DefaultBitN> BitValueList;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000301 BitValueList Bits;
302
Benjamin Kramerd8861512015-07-13 20:38:16 +0000303 friend raw_ostream &operator<<(raw_ostream &OS, const RegisterCell &RC);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000304};
305
306
307inline bool BitTracker::has(unsigned Reg) const {
308 return Map.find(Reg) != Map.end();
309}
310
311
312inline const BitTracker::RegisterCell&
313BitTracker::lookup(unsigned Reg) const {
314 CellMapType::const_iterator F = Map.find(Reg);
315 assert(F != Map.end());
316 return F->second;
317}
318
319
320inline BitTracker::RegisterCell
321BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) {
322 RegisterCell RC(Width);
323 for (uint16_t i = 0; i < Width; ++i)
324 RC.Bits[i] = BitValue::self(BitRef(Reg, i));
325 return RC;
326}
327
328
329inline BitTracker::RegisterCell
330BitTracker::RegisterCell::top(uint16_t Width) {
331 RegisterCell RC(Width);
332 for (uint16_t i = 0; i < Width; ++i)
333 RC.Bits[i] = BitValue(BitValue::Top);
334 return RC;
335}
336
337
338inline BitTracker::RegisterCell
339BitTracker::RegisterCell::ref(const RegisterCell &C) {
340 uint16_t W = C.width();
341 RegisterCell RC(W);
342 for (unsigned i = 0; i < W; ++i)
343 RC[i] = BitValue::ref(C[i]);
344 return RC;
345}
346
347
348inline bool BitTracker::CellMapType::has(unsigned Reg) const {
349 return find(Reg) != end();
350}
351
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000352// A class to evaluate target's instructions and update the cell maps.
353// This is used internally by the bit tracker. A target that wants to
354// utilize this should implement the evaluation functions (noted below)
355// in a subclass of this class.
356struct BitTracker::MachineEvaluator {
Benjamin Kramerd8861512015-07-13 20:38:16 +0000357 MachineEvaluator(const TargetRegisterInfo &T, MachineRegisterInfo &M)
358 : TRI(T), MRI(M) {}
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000359 virtual ~MachineEvaluator() {}
360
361 uint16_t getRegBitWidth(const RegisterRef &RR) const;
362
363 RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const;
364 void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const;
365 // A result of any operation should use refs to the source cells, not
366 // the cells directly. This function is a convenience wrapper to quickly
367 // generate a ref for a cell corresponding to a register reference.
368 RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const {
369 RegisterCell RC = getCell(RR, M);
370 return RegisterCell::ref(RC);
371 }
372
373 // Helper functions.
374 // Check if a cell is an immediate value (i.e. all bits are either 0 or 1).
375 bool isInt(const RegisterCell &A) const;
376 // Convert cell to an immediate value.
377 uint64_t toInt(const RegisterCell &A) const;
378
379 // Generate cell from an immediate value.
380 RegisterCell eIMM(int64_t V, uint16_t W) const;
Benjamin Kramerd8861512015-07-13 20:38:16 +0000381 RegisterCell eIMM(const ConstantInt *CI) const;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000382
383 // Arithmetic.
384 RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const;
385 RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const;
386 RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const;
387 RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const;
388
389 // Shifts.
390 RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const;
391 RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const;
392 RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const;
393
394 // Logical.
395 RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const;
396 RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const;
397 RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const;
398 RegisterCell eNOT(const RegisterCell &A1) const;
399
400 // Set bit, clear bit.
401 RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const;
402 RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const;
403
404 // Count leading/trailing bits (zeros/ones).
405 RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const;
406 RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const;
407
408 // Sign/zero extension.
409 RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const;
410 RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const;
411
412 // Extract/insert
413 // XTR R,b,e: extract bits from A1 starting at bit b, ending at e-1.
414 // INS R,S,b: take R and replace bits starting from b with S.
415 RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const;
416 RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2,
417 uint16_t AtN) const;
418
419 // User-provided functions for individual targets:
420
421 // Return a sub-register mask that indicates which bits in Reg belong
422 // to the subregister Sub. These bits are assumed to be contiguous in
423 // the super-register, and have the same ordering in the sub-register
424 // as in the super-register. It is valid to call this function with
425 // Sub == 0, in this case, the function should return a mask that spans
426 // the entire register Reg (which is what the default implementation
427 // does).
428 virtual BitMask mask(unsigned Reg, unsigned Sub) const;
429 // Indicate whether a given register class should be tracked.
Benjamin Kramerd8861512015-07-13 20:38:16 +0000430 virtual bool track(const TargetRegisterClass *RC) const { return true; }
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000431 // Evaluate a non-branching machine instruction, given the cell map with
432 // the input values. Place the results in the Outputs map. Return "true"
433 // if evaluation succeeded, "false" otherwise.
Benjamin Kramerd8861512015-07-13 20:38:16 +0000434 virtual bool evaluate(const MachineInstr *MI, const CellMapType &Inputs,
435 CellMapType &Outputs) const;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000436 // Evaluate a branch, given the cell map with the input values. Fill out
437 // a list of all possible branch targets and indicate (through a flag)
438 // whether the branch could fall-through. Return "true" if this information
439 // has been successfully computed, "false" otherwise.
Benjamin Kramerd8861512015-07-13 20:38:16 +0000440 virtual bool evaluate(const MachineInstr *BI, const CellMapType &Inputs,
441 BranchTargetList &Targets, bool &FallsThru) const = 0;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000442
Benjamin Kramerd8861512015-07-13 20:38:16 +0000443 const TargetRegisterInfo &TRI;
444 MachineRegisterInfo &MRI;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000445};
446
Benjamin Kramerd8861512015-07-13 20:38:16 +0000447} // end namespace llvm
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000448
Benjamin Kramerd8861512015-07-13 20:38:16 +0000449#endif