blob: 3b79e6234d2e715ca27a9ab8005c44af090eb997 [file] [log] [blame]
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001//===--- BitTracker.cpp ---------------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10// SSA-based bit propagation.
11//
12// The purpose of this code is, for a given virtual register, to provide
13// information about the value of each bit in the register. The values
14// of bits are represented by the class BitValue, and take one of four
15// cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the
16// "ref" value means that the bit is a copy of another bit (which itself
17// cannot be a copy of yet another bit---such chains are not allowed).
18// A "ref" value is associated with a BitRef structure, which indicates
19// which virtual register, and which bit in that register is the origin
20// of the value. For example, given an instruction
21// vreg2 = ASL vreg1, 1
22// assuming that nothing is known about bits of vreg1, bit 1 of vreg2
23// will be a "ref" to (vreg1, 0). If there is a subsequent instruction
24// vreg3 = ASL vreg2, 2
25// then bit 3 of vreg3 will be a "ref" to (vreg1, 0) as well.
26// The "bottom" case means that the bit's value cannot be determined,
27// and that this virtual register actually defines it. The "bottom" case
28// is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref
29// to self", so for the vreg1 above, the bit 0 of it will be a "ref" to
30// (vreg1, 0), bit 1 will be a "ref" to (vreg1, 1), etc.
31//
32// The tracker implements the Wegman-Zadeck algorithm, originally developed
33// for SSA-based constant propagation. Each register is represented as
34// a sequence of bits, with the convention that bit 0 is the least signi-
35// ficant bit. Each bit is propagated individually. The class RegisterCell
36// implements the register's representation, and is also the subject of
37// the lattice operations in the tracker.
38//
39// The intended usage of the bit tracker is to create a target-specific
40// machine instruction evaluator, pass the evaluator to the BitTracker
41// object, and run the tracker. The tracker will then collect the bit
42// value information for a given machine function. After that, it can be
43// queried for the cells for each virtual register.
44// Sample code:
45// const TargetSpecificEvaluator TSE(TRI, MRI);
46// BitTracker BT(TSE, MF);
47// BT.run();
48// ...
49// unsigned Reg = interestingRegister();
50// RegisterCell RC = BT.get(Reg);
51// if (RC[3].is(1))
52// Reg0bit3 = 1;
53//
54// The code below is intended to be fully target-independent.
55
56#include "llvm/CodeGen/MachineBasicBlock.h"
57#include "llvm/CodeGen/MachineFunction.h"
58#include "llvm/CodeGen/MachineInstr.h"
59#include "llvm/CodeGen/MachineRegisterInfo.h"
60#include "llvm/IR/Constants.h"
61#include "llvm/Support/Debug.h"
62#include "llvm/Support/raw_ostream.h"
63#include "llvm/Target/TargetRegisterInfo.h"
64
65#include "BitTracker.h"
66
67using namespace llvm;
68
69typedef BitTracker BT;
70
71namespace {
72 // Local trickery to pretty print a register (without the whole "%vreg"
73 // business).
74 struct printv {
75 printv(unsigned r) : R(r) {}
76 unsigned R;
77 };
78 raw_ostream &operator<< (raw_ostream &OS, const printv &PV) {
79 if (PV.R)
80 OS << 'v' << TargetRegisterInfo::virtReg2Index(PV.R);
81 else
82 OS << 's';
83 return OS;
84 }
85}
86
87
88raw_ostream &operator<< (raw_ostream &OS, const BT::BitValue &BV) {
89 switch (BV.Type) {
90 case BT::BitValue::Top:
91 OS << 'T';
92 break;
93 case BT::BitValue::Zero:
94 OS << '0';
95 break;
96 case BT::BitValue::One:
97 OS << '1';
98 break;
99 case BT::BitValue::Ref:
100 OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']';
101 break;
102 }
103 return OS;
104}
105
106
107raw_ostream &operator<< (raw_ostream &OS, const BT::RegisterCell &RC) {
108 unsigned n = RC.Bits.size();
109 OS << "{ w:" << n;
110 // Instead of printing each bit value individually, try to group them
111 // into logical segments, such as sequences of 0 or 1 bits or references
112 // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz").
113 // "Start" will be the index of the beginning of the most recent segment.
114 unsigned Start = 0;
115 bool SeqRef = false; // A sequence of refs to consecutive bits.
116 bool ConstRef = false; // A sequence of refs to the same bit.
117
118 for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) {
119 const BT::BitValue &V = RC[i];
120 const BT::BitValue &SV = RC[Start];
121 bool IsRef = (V.Type == BT::BitValue::Ref);
122 // If the current value is the same as Start, skip to the next one.
123 if (!IsRef && V == SV)
124 continue;
125 if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) {
126 if (Start+1 == i) {
127 SeqRef = (V.RefI.Pos == SV.RefI.Pos+1);
128 ConstRef = (V.RefI.Pos == SV.RefI.Pos);
129 }
130 if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start))
131 continue;
132 if (ConstRef && V.RefI.Pos == SV.RefI.Pos)
133 continue;
134 }
135
136 // The current value is different. Print the previous one and reset
137 // the Start.
138 OS << " [" << Start;
139 unsigned Count = i - Start;
140 if (Count == 1) {
141 OS << "]:" << SV;
142 } else {
143 OS << '-' << i-1 << "]:";
144 if (SV.Type == BT::BitValue::Ref && SeqRef)
145 OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
146 << SV.RefI.Pos+(Count-1) << ']';
147 else
148 OS << SV;
149 }
150 Start = i;
151 SeqRef = ConstRef = false;
152 }
153
154 OS << " [" << Start;
155 unsigned Count = n - Start;
156 if (n-Start == 1) {
157 OS << "]:" << RC[Start];
158 } else {
159 OS << '-' << n-1 << "]:";
160 const BT::BitValue &SV = RC[Start];
161 if (SV.Type == BT::BitValue::Ref && SeqRef)
162 OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
163 << SV.RefI.Pos+(Count-1) << ']';
164 else
165 OS << SV;
166 }
167 OS << " }";
168
169 return OS;
170}
171
172
173BitTracker::BitTracker(const MachineEvaluator &E, llvm::MachineFunction &F) :
174 Trace(false), ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType) {
175}
176
177
178BitTracker::~BitTracker() {
179 delete &Map;
180}
181
182
183// If we were allowed to update a cell for a part of a register, the meet
184// operation would need to be parametrized by the register number and the
185// exact part of the register, so that the computer BitRefs correspond to
186// the actual bits of the "self" register.
187// While this cannot happen in the current implementation, I'm not sure
188// if this should be ruled out in the future.
189bool BT::RegisterCell::meet(const RegisterCell &RC, unsigned SelfR) {
190 // An example when "meet" can be invoked with SelfR == 0 is a phi node
191 // with a physical register as an operand.
192 assert(SelfR == 0 || TargetRegisterInfo::isVirtualRegister(SelfR));
193 bool Changed = false;
194 for (uint16_t i = 0, n = Bits.size(); i < n; ++i) {
195 const BitValue &RCV = RC[i];
196 Changed |= Bits[i].meet(RCV, BitRef(SelfR, i));
197 }
198 return Changed;
199}
200
201
202// Insert the entire cell RC into the current cell at position given by M.
203BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC,
204 const BitMask &M) {
205 uint16_t B = M.first(), E = M.last(), W = width();
206 // Sanity: M must be a valid mask for *this.
207 assert(B < W && E < W);
208 // Sanity: the masked part of *this must have the same number of bits
209 // as the source.
210 assert(B > E || E-B+1 == RC.width()); // B <= E => E-B+1 = |RC|.
211 assert(B <= E || E+(W-B)+1 == RC.width()); // E < B => E+(W-B)+1 = |RC|.
212 if (B <= E) {
213 for (uint16_t i = 0; i <= E-B; ++i)
214 Bits[i+B] = RC[i];
215 } else {
216 for (uint16_t i = 0; i < W-B; ++i)
217 Bits[i+B] = RC[i];
218 for (uint16_t i = 0; i <= E; ++i)
219 Bits[i] = RC[i+(W-B)];
220 }
221 return *this;
222}
223
224
225BT::RegisterCell BT::RegisterCell::extract(const BitMask &M) const {
226 uint16_t B = M.first(), E = M.last(), W = width();
227 assert(B < W && E < W);
228 if (B <= E) {
229 RegisterCell RC(E-B+1);
230 for (uint16_t i = B; i <= E; ++i)
231 RC.Bits[i-B] = Bits[i];
232 return RC;
233 }
234
235 RegisterCell RC(E+(W-B)+1);
236 for (uint16_t i = 0; i < W-B; ++i)
237 RC.Bits[i] = Bits[i+B];
238 for (uint16_t i = 0; i <= E; ++i)
239 RC.Bits[i+(W-B)] = Bits[i];
240 return RC;
241}
242
243
244BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) {
245 // Rotate left (i.e. towards increasing bit indices).
246 // Swap the two parts: [0..W-Sh-1] [W-Sh..W-1]
247 uint16_t W = width();
248 Sh = Sh % W;
249 if (Sh == 0)
250 return *this;
251
252 RegisterCell Tmp(W-Sh);
253 // Tmp = [0..W-Sh-1].
254 for (uint16_t i = 0; i < W-Sh; ++i)
255 Tmp[i] = Bits[i];
256 // Shift [W-Sh..W-1] to [0..Sh-1].
257 for (uint16_t i = 0; i < Sh; ++i)
258 Bits[i] = Bits[W-Sh+i];
259 // Copy Tmp to [Sh..W-1].
260 for (uint16_t i = 0; i < W-Sh; ++i)
261 Bits[i+Sh] = Tmp.Bits[i];
262 return *this;
263}
264
265
266BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E,
267 const BitValue &V) {
268 assert(B <= E);
269 while (B < E)
270 Bits[B++] = V;
271 return *this;
272}
273
274
275BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) {
276 // Append the cell given as the argument to the "this" cell.
277 // Bit 0 of RC becomes bit W of the result, where W is this->width().
278 uint16_t W = width(), WRC = RC.width();
279 Bits.resize(W+WRC);
280 for (uint16_t i = 0; i < WRC; ++i)
281 Bits[i+W] = RC.Bits[i];
282 return *this;
283}
284
285
286uint16_t BT::RegisterCell::ct(bool B) const {
287 uint16_t W = width();
288 uint16_t C = 0;
289 BitValue V = B;
290 while (C < W && Bits[C] == V)
291 C++;
292 return C;
293}
294
295
296uint16_t BT::RegisterCell::cl(bool B) const {
297 uint16_t W = width();
298 uint16_t C = 0;
299 BitValue V = B;
300 while (C < W && Bits[W-(C+1)] == V)
301 C++;
302 return C;
303}
304
305
306bool BT::RegisterCell::operator== (const RegisterCell &RC) const {
307 uint16_t W = Bits.size();
308 if (RC.Bits.size() != W)
309 return false;
310 for (uint16_t i = 0; i < W; ++i)
311 if (Bits[i] != RC[i])
312 return false;
313 return true;
314}
315
316
317uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const {
318 // The general problem is with finding a register class that corresponds
319 // to a given reference reg:sub. There can be several such classes, and
320 // since we only care about the register size, it does not matter which
321 // such class we would find.
322 // The easiest way to accomplish what we want is to
323 // 1. find a physical register PhysR from the same class as RR.Reg,
324 // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub,
325 // 3. find a register class that contains PhysS.
326 unsigned PhysR;
327 if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) {
328 const TargetRegisterClass *VC = MRI.getRegClass(RR.Reg);
329 assert(VC->begin() != VC->end() && "Empty register class");
330 PhysR = *VC->begin();
331 } else {
332 assert(TargetRegisterInfo::isPhysicalRegister(RR.Reg));
333 PhysR = RR.Reg;
334 }
335
336 unsigned PhysS = (RR.Sub == 0) ? PhysR : TRI.getSubReg(PhysR, RR.Sub);
337 const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(PhysS);
338 uint16_t BW = RC->getSize()*8;
339 return BW;
340}
341
342
343BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR,
344 const CellMapType &M) const {
345 uint16_t BW = getRegBitWidth(RR);
346
347 // Physical registers are assumed to be present in the map with an unknown
348 // value. Don't actually insert anything in the map, just return the cell.
349 if (TargetRegisterInfo::isPhysicalRegister(RR.Reg))
350 return RegisterCell::self(0, BW);
351
352 assert(TargetRegisterInfo::isVirtualRegister(RR.Reg));
353 // For virtual registers that belong to a class that is not tracked,
354 // generate an "unknown" value as well.
355 const TargetRegisterClass *C = MRI.getRegClass(RR.Reg);
356 if (!track(C))
357 return RegisterCell::self(0, BW);
358
359 CellMapType::const_iterator F = M.find(RR.Reg);
360 if (F != M.end()) {
361 if (!RR.Sub)
362 return F->second;
363 BitMask M = mask(RR.Reg, RR.Sub);
364 return F->second.extract(M);
365 }
366 // If not found, create a "top" entry, but do not insert it in the map.
367 return RegisterCell::top(BW);
368}
369
370
371void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC,
372 CellMapType &M) const {
373 // While updating the cell map can be done in a meaningful way for
374 // a part of a register, it makes little sense to implement it as the
375 // SSA representation would never contain such "partial definitions".
376 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
377 return;
378 assert(RR.Sub == 0 && "Unexpected sub-register in definition");
379 // Eliminate all ref-to-reg-0 bit values: replace them with "self".
380 for (unsigned i = 0, n = RC.width(); i < n; ++i) {
381 const BitValue &V = RC[i];
382 if (V.Type == BitValue::Ref && V.RefI.Reg == 0)
383 RC[i].RefI = BitRef(RR.Reg, i);
384 }
385 M[RR.Reg] = RC;
386}
387
388
389// Check if the cell represents a compile-time integer value.
390bool BT::MachineEvaluator::isInt(const RegisterCell &A) const {
391 uint16_t W = A.width();
392 for (uint16_t i = 0; i < W; ++i)
393 if (!A[i].is(0) && !A[i].is(1))
394 return false;
395 return true;
396}
397
398
399// Convert a cell to the integer value. The result must fit in uint64_t.
400uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const {
401 assert(isInt(A));
402 uint64_t Val = 0;
403 uint16_t W = A.width();
404 for (uint16_t i = 0; i < W; ++i) {
405 Val <<= 1;
406 Val |= A[i].is(1);
407 }
408 return Val;
409}
410
411
412// Evaluator helper functions. These implement some common operation on
413// register cells that can be used to implement target-specific instructions
414// in a target-specific evaluator.
415
416BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const {
417 RegisterCell Res(W);
418 // For bits beyond the 63rd, this will generate the sign bit of V.
419 for (uint16_t i = 0; i < W; ++i) {
420 Res[i] = BitValue(V & 1);
421 V >>= 1;
422 }
423 return Res;
424}
425
426
427BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const {
428 APInt A = CI->getValue();
429 uint16_t BW = A.getBitWidth();
430 assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow");
431 RegisterCell Res(BW);
432 for (uint16_t i = 0; i < BW; ++i)
433 Res[i] = A[i];
434 return Res;
435}
436
437
438BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1,
439 const RegisterCell &A2) const {
440 uint16_t W = A1.width();
441 assert(W == A2.width());
442 RegisterCell Res(W);
443 bool Carry = false;
444 uint16_t I;
445 for (I = 0; I < W; ++I) {
446 const BitValue &V1 = A1[I];
447 const BitValue &V2 = A2[I];
448 if (!V1.num() || !V2.num())
449 break;
450 unsigned S = bool(V1) + bool(V2) + Carry;
451 Res[I] = BitValue(S & 1);
452 Carry = (S > 1);
453 }
454 for (; I < W; ++I) {
455 const BitValue &V1 = A1[I];
456 const BitValue &V2 = A2[I];
457 // If the next bit is same as Carry, the result will be 0 plus the
458 // other bit. The Carry bit will remain unchanged.
459 if (V1.is(Carry))
460 Res[I] = BitValue::ref(V2);
461 else if (V2.is(Carry))
462 Res[I] = BitValue::ref(V1);
463 else
464 break;
465 }
466 for (; I < W; ++I)
467 Res[I] = BitValue::self();
468 return Res;
469}
470
471
472BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1,
473 const RegisterCell &A2) const {
474 uint16_t W = A1.width();
475 assert(W == A2.width());
476 RegisterCell Res(W);
477 bool Borrow = false;
478 uint16_t I;
479 for (I = 0; I < W; ++I) {
480 const BitValue &V1 = A1[I];
481 const BitValue &V2 = A2[I];
482 if (!V1.num() || !V2.num())
483 break;
484 unsigned S = bool(V1) - bool(V2) - Borrow;
485 Res[I] = BitValue(S & 1);
486 Borrow = (S > 1);
487 }
488 for (; I < W; ++I) {
489 const BitValue &V1 = A1[I];
490 const BitValue &V2 = A2[I];
491 if (V1.is(Borrow)) {
492 Res[I] = BitValue::ref(V2);
493 break;
494 }
495 if (V2.is(Borrow))
496 Res[I] = BitValue::ref(V1);
497 else
498 break;
499 }
500 for (; I < W; ++I)
501 Res[I] = BitValue::self();
502 return Res;
503}
504
505
506BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1,
507 const RegisterCell &A2) const {
508 uint16_t W = A1.width() + A2.width();
509 uint16_t Z = A1.ct(0) + A2.ct(0);
510 RegisterCell Res(W);
511 Res.fill(0, Z, BitValue::Zero);
512 Res.fill(Z, W, BitValue::self());
513 return Res;
514}
515
516
517BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1,
518 const RegisterCell &A2) const {
519 uint16_t W = A1.width() + A2.width();
520 uint16_t Z = A1.ct(0) + A2.ct(0);
521 RegisterCell Res(W);
522 Res.fill(0, Z, BitValue::Zero);
523 Res.fill(Z, W, BitValue::self());
524 return Res;
525}
526
527
528BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1,
529 uint16_t Sh) const {
530 uint16_t W = A1.width();
531 assert(Sh <= W);
532 RegisterCell Res = RegisterCell::ref(A1);
533 Res.rol(Sh);
534 Res.fill(0, Sh, BitValue::Zero);
535 return Res;
536}
537
538
539BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1,
540 uint16_t Sh) const {
541 uint16_t W = A1.width();
542 assert(Sh <= W);
543 RegisterCell Res = RegisterCell::ref(A1);
544 Res.rol(W-Sh);
545 Res.fill(W-Sh, W, BitValue::Zero);
546 return Res;
547}
548
549
550BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1,
551 uint16_t Sh) const {
552 uint16_t W = A1.width();
553 assert(Sh <= W);
554 RegisterCell Res = RegisterCell::ref(A1);
555 BitValue Sign = Res[W-1];
556 Res.rol(W-Sh);
557 Res.fill(W-Sh, W, Sign);
558 return Res;
559}
560
561
562BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1,
563 const RegisterCell &A2) const {
564 uint16_t W = A1.width();
565 assert(W == A2.width());
566 RegisterCell Res(W);
567 for (uint16_t i = 0; i < W; ++i) {
568 const BitValue &V1 = A1[i];
569 const BitValue &V2 = A2[i];
570 if (V1.is(1))
571 Res[i] = BitValue::ref(V2);
572 else if (V2.is(1))
573 Res[i] = BitValue::ref(V1);
574 else if (V1.is(0) || V2.is(0))
575 Res[i] = BitValue::Zero;
576 else if (V1 == V2)
577 Res[i] = V1;
578 else
579 Res[i] = BitValue::self();
580 }
581 return Res;
582}
583
584
585BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1,
586 const RegisterCell &A2) const {
587 uint16_t W = A1.width();
588 assert(W == A2.width());
589 RegisterCell Res(W);
590 for (uint16_t i = 0; i < W; ++i) {
591 const BitValue &V1 = A1[i];
592 const BitValue &V2 = A2[i];
593 if (V1.is(1) || V2.is(1))
594 Res[i] = BitValue::One;
595 else if (V1.is(0))
596 Res[i] = BitValue::ref(V2);
597 else if (V2.is(0))
598 Res[i] = BitValue::ref(V1);
599 else if (V1 == V2)
600 Res[i] = V1;
601 else
602 Res[i] = BitValue::self();
603 }
604 return Res;
605}
606
607
608BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1,
609 const RegisterCell &A2) const {
610 uint16_t W = A1.width();
611 assert(W == A2.width());
612 RegisterCell Res(W);
613 for (uint16_t i = 0; i < W; ++i) {
614 const BitValue &V1 = A1[i];
615 const BitValue &V2 = A2[i];
616 if (V1.is(0))
617 Res[i] = BitValue::ref(V2);
618 else if (V2.is(0))
619 Res[i] = BitValue::ref(V1);
620 else if (V1 == V2)
621 Res[i] = BitValue::Zero;
622 else
623 Res[i] = BitValue::self();
624 }
625 return Res;
626}
627
628
629BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const {
630 uint16_t W = A1.width();
631 RegisterCell Res(W);
632 for (uint16_t i = 0; i < W; ++i) {
633 const BitValue &V = A1[i];
634 if (V.is(0))
635 Res[i] = BitValue::One;
636 else if (V.is(1))
637 Res[i] = BitValue::Zero;
638 else
639 Res[i] = BitValue::self();
640 }
641 return Res;
642}
643
644
645BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1,
646 uint16_t BitN) const {
647 uint16_t W = A1.width();
648 assert(BitN < W);
649 RegisterCell Res = RegisterCell::ref(A1);
650 Res[BitN] = BitValue::One;
651 return Res;
652}
653
654
655BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1,
656 uint16_t BitN) const {
657 uint16_t W = A1.width();
658 assert(BitN < W);
659 RegisterCell Res = RegisterCell::ref(A1);
660 Res[BitN] = BitValue::Zero;
661 return Res;
662}
663
664
665BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B,
666 uint16_t W) const {
667 uint16_t C = A1.cl(B), AW = A1.width();
668 // If the last leading non-B bit is not a constant, then we don't know
669 // the real count.
670 if ((C < AW && A1[AW-1-C].num()) || C == AW)
671 return eIMM(C, W);
672 return RegisterCell::self(0, W);
673}
674
675
676BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B,
677 uint16_t W) const {
678 uint16_t C = A1.ct(B), AW = A1.width();
679 // If the last trailing non-B bit is not a constant, then we don't know
680 // the real count.
681 if ((C < AW && A1[C].num()) || C == AW)
682 return eIMM(C, W);
683 return RegisterCell::self(0, W);
684}
685
686
687BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1,
688 uint16_t FromN) const {
689 uint16_t W = A1.width();
690 assert(FromN <= W);
691 RegisterCell Res = RegisterCell::ref(A1);
692 BitValue Sign = Res[FromN-1];
693 // Sign-extend "inreg".
694 Res.fill(FromN, W, Sign);
695 return Res;
696}
697
698
699BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1,
700 uint16_t FromN) const {
701 uint16_t W = A1.width();
702 assert(FromN <= W);
703 RegisterCell Res = RegisterCell::ref(A1);
704 Res.fill(FromN, W, BitValue::Zero);
705 return Res;
706}
707
708
709BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1,
710 uint16_t B, uint16_t E) const {
711 uint16_t W = A1.width();
712 assert(B < W && E <= W);
713 if (B == E)
714 return RegisterCell(0);
715 uint16_t Last = (E > 0) ? E-1 : W-1;
716 RegisterCell Res = RegisterCell::ref(A1).extract(BT::BitMask(B, Last));
717 // Return shorter cell.
718 return Res;
719}
720
721
722BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1,
723 const RegisterCell &A2, uint16_t AtN) const {
724 uint16_t W1 = A1.width(), W2 = A2.width();
725 assert(AtN < W1 && AtN+W2 <= W1);
726 // Copy bits from A1, insert A2 at position AtN.
727 RegisterCell Res = RegisterCell::ref(A1);
728 if (W2 > 0)
729 Res.insert(RegisterCell::ref(A2), BT::BitMask(AtN, AtN+W2-1));
730 return Res;
731}
732
733
734BT::BitMask BT::MachineEvaluator::mask(unsigned Reg, unsigned Sub) const {
735 assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0");
736 uint16_t W = getRegBitWidth(Reg);
737 assert(W > 0 && "Cannot generate mask for empty register");
738 return BitMask(0, W-1);
739}
740
741
742bool BT::MachineEvaluator::evaluate(const MachineInstr *MI,
743 const CellMapType &Inputs, CellMapType &Outputs) const {
744 unsigned Opc = MI->getOpcode();
745 switch (Opc) {
746 case TargetOpcode::REG_SEQUENCE: {
747 RegisterRef RD = MI->getOperand(0);
748 assert(RD.Sub == 0);
749 RegisterRef RS = MI->getOperand(1);
750 unsigned SS = MI->getOperand(2).getImm();
751 RegisterRef RT = MI->getOperand(3);
752 unsigned ST = MI->getOperand(4).getImm();
753 assert(SS != ST);
754
755 uint16_t W = getRegBitWidth(RD);
756 RegisterCell Res(W);
757 Res.insert(RegisterCell::ref(getCell(RS, Inputs)), mask(RD.Reg, SS));
758 Res.insert(RegisterCell::ref(getCell(RT, Inputs)), mask(RD.Reg, ST));
759 putCell(RD, Res, Outputs);
760 break;
761 }
762
763 case TargetOpcode::COPY: {
764 // COPY can transfer a smaller register into a wider one.
765 // If that is the case, fill the remaining high bits with 0.
766 RegisterRef RD = MI->getOperand(0);
767 RegisterRef RS = MI->getOperand(1);
768 assert(RD.Sub == 0);
769 uint16_t WD = getRegBitWidth(RD);
770 uint16_t WS = getRegBitWidth(RS);
771 assert(WD >= WS);
772 RegisterCell Src = getCell(RS, Inputs);
773 RegisterCell Res(WD);
774 Res.insert(Src, BitMask(0, WS-1));
775 Res.fill(WS, WD, BitValue::Zero);
776 putCell(RD, Res, Outputs);
777 break;
778 }
779
780 default:
781 return false;
782 }
783
784 return true;
785}
786
787
788// Main W-Z implementation.
789
790void BT::visitPHI(const MachineInstr *PI) {
791 int ThisN = PI->getParent()->getNumber();
792 if (Trace)
793 dbgs() << "Visit FI(BB#" << ThisN << "): " << *PI;
794
795 const MachineOperand &MD = PI->getOperand(0);
796 assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition");
797 RegisterRef DefRR(MD);
798 uint16_t DefBW = ME.getRegBitWidth(DefRR);
799
800 RegisterCell DefC = ME.getCell(DefRR, Map);
801 if (DefC == RegisterCell::self(DefRR.Reg, DefBW)) // XXX slow
802 return;
803
804 bool Changed = false;
805
806 for (unsigned i = 1, n = PI->getNumOperands(); i < n; i += 2) {
807 const MachineBasicBlock *PB = PI->getOperand(i+1).getMBB();
808 int PredN = PB->getNumber();
809 if (Trace)
810 dbgs() << " edge BB#" << PredN << "->BB#" << ThisN;
811 if (!EdgeExec.count(CFGEdge(PredN, ThisN))) {
812 if (Trace)
813 dbgs() << " not executable\n";
814 continue;
815 }
816
817 RegisterRef RU = PI->getOperand(i);
818 RegisterCell ResC = ME.getCell(RU, Map);
819 if (Trace)
820 dbgs() << " input reg: " << PrintReg(RU.Reg, &ME.TRI, RU.Sub)
821 << " cell: " << ResC << "\n";
822 Changed |= DefC.meet(ResC, DefRR.Reg);
823 }
824
825 if (Changed) {
826 if (Trace)
827 dbgs() << "Output: " << PrintReg(DefRR.Reg, &ME.TRI, DefRR.Sub)
828 << " cell: " << DefC << "\n";
829 ME.putCell(DefRR, DefC, Map);
830 visitUsesOf(DefRR.Reg);
831 }
832}
833
834
835void BT::visitNonBranch(const MachineInstr *MI) {
836 if (Trace) {
837 int ThisN = MI->getParent()->getNumber();
838 dbgs() << "Visit MI(BB#" << ThisN << "): " << *MI;
839 }
840 if (MI->isDebugValue())
841 return;
842 assert(!MI->isBranch() && "Unexpected branch instruction");
843
844 CellMapType ResMap;
845 bool Eval = ME.evaluate(MI, Map, ResMap);
846
847 if (Trace && Eval) {
848 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
849 const MachineOperand &MO = MI->getOperand(i);
850 if (!MO.isReg() || !MO.isUse())
851 continue;
852 RegisterRef RU(MO);
853 dbgs() << " input reg: " << PrintReg(RU.Reg, &ME.TRI, RU.Sub)
854 << " cell: " << ME.getCell(RU, Map) << "\n";
855 }
856 dbgs() << "Outputs:\n";
857 for (CellMapType::iterator I = ResMap.begin(), E = ResMap.end();
858 I != E; ++I) {
859 RegisterRef RD(I->first);
860 dbgs() << " " << PrintReg(I->first, &ME.TRI) << " cell: "
861 << ME.getCell(RD, ResMap) << "\n";
862 }
863 }
864
865 // Iterate over all definitions of the instruction, and update the
866 // cells accordingly.
867 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
868 const MachineOperand &MO = MI->getOperand(i);
869 // Visit register defs only.
870 if (!MO.isReg() || !MO.isDef())
871 continue;
872 RegisterRef RD(MO);
873 assert(RD.Sub == 0 && "Unexpected sub-register in definition");
874 if (!TargetRegisterInfo::isVirtualRegister(RD.Reg))
875 continue;
876
877 bool Changed = false;
878 if (!Eval || !ResMap.has(RD.Reg)) {
879 // Set to "ref" (aka "bottom").
880 uint16_t DefBW = ME.getRegBitWidth(RD);
881 RegisterCell RefC = RegisterCell::self(RD.Reg, DefBW);
882 if (RefC != ME.getCell(RD, Map)) {
883 ME.putCell(RD, RefC, Map);
884 Changed = true;
885 }
886 } else {
887 RegisterCell DefC = ME.getCell(RD, Map);
888 RegisterCell ResC = ME.getCell(RD, ResMap);
889 // This is a non-phi instruction, so the values of the inputs come
890 // from the same registers each time this instruction is evaluated.
891 // During the propagation, the values of the inputs can become lowered
892 // in the sense of the lattice operation, which may cause different
893 // results to be calculated in subsequent evaluations. This should
894 // not cause the bottoming of the result in the map, since the new
895 // result is already reflecting the lowered inputs.
896 for (uint16_t i = 0, w = DefC.width(); i < w; ++i) {
897 BitValue &V = DefC[i];
898 // Bits that are already "bottom" should not be updated.
899 if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg)
900 continue;
901 // Same for those that are identical in DefC and ResC.
902 if (V == ResC[i])
903 continue;
904 V = ResC[i];
905 Changed = true;
906 }
907 if (Changed)
908 ME.putCell(RD, DefC, Map);
909 }
910 if (Changed)
911 visitUsesOf(RD.Reg);
912 }
913}
914
915
916void BT::visitBranchesFrom(const MachineInstr *BI) {
917 const MachineBasicBlock &B = *BI->getParent();
918 MachineBasicBlock::const_iterator It = BI, End = B.end();
919 BranchTargetList Targets, BTs;
920 bool FallsThrough = true, DefaultToAll = false;
921 int ThisN = B.getNumber();
922
923 do {
924 BTs.clear();
925 const MachineInstr *MI = &*It;
926 if (Trace)
927 dbgs() << "Visit BR(BB#" << ThisN << "): " << *MI;
928 assert(MI->isBranch() && "Expecting branch instruction");
929 InstrExec.insert(MI);
930 bool Eval = ME.evaluate(MI, Map, BTs, FallsThrough);
931 if (!Eval) {
932 // If the evaluation failed, we will add all targets. Keep going in
933 // the loop to mark all executable branches as such.
934 DefaultToAll = true;
935 FallsThrough = true;
936 if (Trace)
937 dbgs() << " failed to evaluate: will add all CFG successors\n";
938 } else if (!DefaultToAll) {
939 // If evaluated successfully add the targets to the cumulative list.
940 if (Trace) {
941 dbgs() << " adding targets:";
942 for (unsigned i = 0, n = BTs.size(); i < n; ++i)
943 dbgs() << " BB#" << BTs[i]->getNumber();
944 if (FallsThrough)
945 dbgs() << "\n falls through\n";
946 else
947 dbgs() << "\n does not fall through\n";
948 }
949 Targets.insert(BTs.begin(), BTs.end());
950 }
951 ++It;
952 } while (FallsThrough && It != End);
953
954 typedef MachineBasicBlock::const_succ_iterator succ_iterator;
955 if (!DefaultToAll) {
956 // Need to add all CFG successors that lead to EH landing pads.
957 // There won't be explicit branches to these blocks, but they must
958 // be processed.
959 for (succ_iterator I = B.succ_begin(), E = B.succ_end(); I != E; ++I) {
960 const MachineBasicBlock *SB = *I;
961 if (SB->isLandingPad())
962 Targets.insert(SB);
963 }
964 if (FallsThrough) {
965 MachineFunction::const_iterator BIt = &B;
966 MachineFunction::const_iterator Next = std::next(BIt);
967 if (Next != MF.end())
968 Targets.insert(&*Next);
969 }
970 } else {
971 for (succ_iterator I = B.succ_begin(), E = B.succ_end(); I != E; ++I)
972 Targets.insert(*I);
973 }
974
975 for (unsigned i = 0, n = Targets.size(); i < n; ++i) {
976 int TargetN = Targets[i]->getNumber();
977 FlowQ.push(CFGEdge(ThisN, TargetN));
978 }
979}
980
981
982void BT::visitUsesOf(unsigned Reg) {
983 if (Trace)
984 dbgs() << "visiting uses of " << PrintReg(Reg, &ME.TRI) << "\n";
985
986 typedef MachineRegisterInfo::use_nodbg_iterator use_iterator;
987 use_iterator End = MRI.use_nodbg_end();
988 for (use_iterator I = MRI.use_nodbg_begin(Reg); I != End; ++I) {
989 MachineInstr *UseI = I->getParent();
990 if (!InstrExec.count(UseI))
991 continue;
992 if (UseI->isPHI())
993 visitPHI(UseI);
994 else if (!UseI->isBranch())
995 visitNonBranch(UseI);
996 else
997 visitBranchesFrom(UseI);
998 }
999}
1000
1001
1002BT::RegisterCell BT::get(RegisterRef RR) const {
1003 return ME.getCell(RR, Map);
1004}
1005
1006
1007void BT::put(RegisterRef RR, const RegisterCell &RC) {
1008 ME.putCell(RR, RC, Map);
1009}
1010
1011
1012// Replace all references to bits from OldRR with the corresponding bits
1013// in NewRR.
1014void BT::subst(RegisterRef OldRR, RegisterRef NewRR) {
1015 assert(Map.has(OldRR.Reg) && "OldRR not present in map");
1016 BitMask OM = ME.mask(OldRR.Reg, OldRR.Sub);
1017 BitMask NM = ME.mask(NewRR.Reg, NewRR.Sub);
1018 uint16_t OMB = OM.first(), OME = OM.last();
1019 uint16_t NMB = NM.first(), NME = NM.last();
1020 assert((OME-OMB == NME-NMB) &&
1021 "Substituting registers of different lengths");
1022 for (CellMapType::iterator I = Map.begin(), E = Map.end(); I != E; ++I) {
1023 RegisterCell &RC = I->second;
1024 for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
1025 BitValue &V = RC[i];
1026 if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg)
1027 continue;
1028 if (V.RefI.Pos < OMB || V.RefI.Pos > OME)
1029 continue;
1030 V.RefI.Reg = NewRR.Reg;
1031 V.RefI.Pos += NMB-OMB;
1032 }
1033 }
1034}
1035
1036
1037// Check if the block has been "executed" during propagation. (If not, the
1038// block is dead, but it may still appear to be reachable.)
1039bool BT::reached(const MachineBasicBlock *B) const {
1040 int BN = B->getNumber();
1041 assert(BN >= 0);
1042 for (EdgeSetType::iterator I = EdgeExec.begin(), E = EdgeExec.end();
1043 I != E; ++I) {
1044 if (I->second == BN)
1045 return true;
1046 }
1047 return false;
1048}
1049
1050
1051void BT::reset() {
1052 EdgeExec.clear();
1053 InstrExec.clear();
1054 Map.clear();
1055}
1056
1057
1058void BT::run() {
1059 reset();
1060 assert(FlowQ.empty());
1061
1062 typedef GraphTraits<const MachineFunction*> MachineFlowGraphTraits;
1063 const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF);
1064
1065 unsigned MaxBN = 0;
1066 for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
1067 I != E; ++I) {
1068 assert(I->getNumber() >= 0 && "Disconnected block");
1069 unsigned BN = I->getNumber();
1070 if (BN > MaxBN)
1071 MaxBN = BN;
1072 }
1073
1074 // Keep track of visited blocks.
1075 BitVector BlockScanned(MaxBN+1);
1076
1077 int EntryN = Entry->getNumber();
1078 // Generate a fake edge to get something to start with.
1079 FlowQ.push(CFGEdge(-1, EntryN));
1080
1081 while (!FlowQ.empty()) {
1082 CFGEdge Edge = FlowQ.front();
1083 FlowQ.pop();
1084
1085 if (EdgeExec.count(Edge))
1086 continue;
1087 EdgeExec.insert(Edge);
1088
1089 const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second);
1090 MachineBasicBlock::const_iterator It = B.begin(), End = B.end();
1091 // Visit PHI nodes first.
1092 while (It != End && It->isPHI()) {
1093 const MachineInstr *PI = &*It++;
1094 InstrExec.insert(PI);
1095 visitPHI(PI);
1096 }
1097
1098 // If this block has already been visited through a flow graph edge,
1099 // then the instructions have already been processed. Any updates to
1100 // the cells would now only happen through visitUsesOf...
1101 if (BlockScanned[Edge.second])
1102 continue;
1103 BlockScanned[Edge.second] = true;
1104
1105 // Visit non-branch instructions.
1106 while (It != End && !It->isBranch()) {
1107 const MachineInstr *MI = &*It++;
1108 InstrExec.insert(MI);
1109 visitNonBranch(MI);
1110 }
1111 // If block end has been reached, add the fall-through edge to the queue.
1112 if (It == End) {
1113 MachineFunction::const_iterator BIt = &B;
1114 MachineFunction::const_iterator Next = std::next(BIt);
1115 if (Next != MF.end()) {
1116 int ThisN = B.getNumber();
1117 int NextN = Next->getNumber();
1118 FlowQ.push(CFGEdge(ThisN, NextN));
1119 }
1120 } else {
1121 // Handle the remaining sequence of branches. This function will update
1122 // the work queue.
1123 visitBranchesFrom(It);
1124 }
1125 } // while (!FlowQ->empty())
1126
1127 if (Trace) {
1128 dbgs() << "Cells after propagation:\n";
1129 for (CellMapType::iterator I = Map.begin(), E = Map.end(); I != E; ++I)
1130 dbgs() << PrintReg(I->first, &ME.TRI) << " -> " << I->second << "\n";
1131 }
1132}
1133