blob: 391404fce537cbbba6fef3c3b4a6ced01cbb5e5e [file] [log] [blame]
Chris Lattnere47e4402007-06-01 18:02:12 +00001//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
Chris Lattnerb6984c42007-06-20 04:44:43 +000015#include "CodeGenModule.h"
Chris Lattnere47e4402007-06-01 18:02:12 +000016#include "clang/AST/AST.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner4347e3692007-06-06 04:54:52 +000019#include "llvm/Function.h"
20#include "llvm/GlobalVariable.h"
Chris Lattnere47e4402007-06-01 18:02:12 +000021using namespace clang;
22using namespace CodeGen;
23
Chris Lattnerd7f58862007-06-02 05:24:33 +000024//===--------------------------------------------------------------------===//
Chris Lattnerf0106d22007-06-02 19:33:17 +000025// Miscellaneous Helper Methods
26//===--------------------------------------------------------------------===//
27
Chris Lattnere9a64532007-06-22 21:44:33 +000028/// CreateTempAlloca - This creates a alloca and inserts it into the entry
29/// block.
30llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
31 const char *Name) {
32 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
33}
Chris Lattner8394d792007-06-05 20:53:16 +000034
35/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
36/// expression and compare the result against zero, returning an Int1Ty value.
Chris Lattner23b7eb62007-06-15 23:05:46 +000037llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
Chris Lattner8394d792007-06-05 20:53:16 +000038 QualType Ty;
39 RValue Val = EmitExprWithUsualUnaryConversions(E, Ty);
40 return ConvertScalarValueToBool(Val, Ty);
41}
42
Chris Lattnere9a64532007-06-22 21:44:33 +000043/// EmitLoadOfComplex - Given an RValue reference for a complex, emit code to
44/// load the real and imaginary pieces, returning them as Real/Imag.
45void CodeGenFunction::EmitLoadOfComplex(RValue V,
46 llvm::Value *&Real, llvm::Value *&Imag){
47 llvm::Value *Ptr = V.getAggregateAddr();
48
49 llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
50 llvm::Constant *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1);
51 llvm::Value *RealPtr = Builder.CreateGEP(Ptr, Zero, Zero, "realp");
52 llvm::Value *ImagPtr = Builder.CreateGEP(Ptr, Zero, One, "imagp");
53
54 // FIXME: Handle volatility.
55 Real = Builder.CreateLoad(RealPtr, "real");
56 Imag = Builder.CreateLoad(ImagPtr, "imag");
57}
58
59/// EmitStoreOfComplex - Store the specified real/imag parts into the
60/// specified value pointer.
61void CodeGenFunction::EmitStoreOfComplex(llvm::Value *Real, llvm::Value *Imag,
62 llvm::Value *ResPtr) {
63 llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
64 llvm::Constant *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1);
65 llvm::Value *RealPtr = Builder.CreateGEP(ResPtr, Zero, Zero, "real");
66 llvm::Value *ImagPtr = Builder.CreateGEP(ResPtr, Zero, One, "imag");
67
68 // FIXME: Handle volatility.
69 Builder.CreateStore(Real, RealPtr);
70 Builder.CreateStore(Imag, ImagPtr);
71}
72
Chris Lattner8394d792007-06-05 20:53:16 +000073//===--------------------------------------------------------------------===//
74// Conversions
75//===--------------------------------------------------------------------===//
76
77/// EmitConversion - Convert the value specied by Val, whose type is ValTy, to
78/// the type specified by DstTy, following the rules of C99 6.3.
79RValue CodeGenFunction::EmitConversion(RValue Val, QualType ValTy,
Chris Lattnerf033c142007-06-22 19:05:19 +000080 QualType DstTy) {
Chris Lattner8394d792007-06-05 20:53:16 +000081 ValTy = ValTy.getCanonicalType();
82 DstTy = DstTy.getCanonicalType();
83 if (ValTy == DstTy) return Val;
Chris Lattner83b484b2007-06-06 04:39:08 +000084
85 // Handle conversions to bool first, they are special: comparisons against 0.
86 if (const BuiltinType *DestBT = dyn_cast<BuiltinType>(DstTy))
87 if (DestBT->getKind() == BuiltinType::Bool)
88 return RValue::get(ConvertScalarValueToBool(Val, ValTy));
Chris Lattner8394d792007-06-05 20:53:16 +000089
Chris Lattner83b484b2007-06-06 04:39:08 +000090 // Handle pointer conversions next: pointers can only be converted to/from
91 // other pointers and integers.
Chris Lattnercf106ab2007-06-06 04:05:39 +000092 if (isa<PointerType>(DstTy)) {
Chris Lattnerf033c142007-06-22 19:05:19 +000093 const llvm::Type *DestTy = ConvertType(DstTy);
Chris Lattnercf106ab2007-06-06 04:05:39 +000094
95 // The source value may be an integer, or a pointer.
96 assert(Val.isScalar() && "Can only convert from integer or pointer");
97 if (isa<llvm::PointerType>(Val.getVal()->getType()))
98 return RValue::get(Builder.CreateBitCast(Val.getVal(), DestTy, "conv"));
99 assert(ValTy->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
100 return RValue::get(Builder.CreatePtrToInt(Val.getVal(), DestTy, "conv"));
Chris Lattner83b484b2007-06-06 04:39:08 +0000101 }
102
103 if (isa<PointerType>(ValTy)) {
Chris Lattnercf106ab2007-06-06 04:05:39 +0000104 // Must be an ptr to int cast.
Chris Lattnerf033c142007-06-22 19:05:19 +0000105 const llvm::Type *DestTy = ConvertType(DstTy);
Chris Lattnercf106ab2007-06-06 04:05:39 +0000106 assert(isa<llvm::IntegerType>(DestTy) && "not ptr->int?");
107 return RValue::get(Builder.CreateIntToPtr(Val.getVal(), DestTy, "conv"));
Chris Lattner8394d792007-06-05 20:53:16 +0000108 }
Chris Lattner83b484b2007-06-06 04:39:08 +0000109
110 // Finally, we have the arithmetic types: real int/float and complex
111 // int/float. Handle real->real conversions first, they are the most
112 // common.
113 if (Val.isScalar() && DstTy->isRealType()) {
114 // We know that these are representable as scalars in LLVM, convert to LLVM
115 // types since they are easier to reason about.
Chris Lattner23b7eb62007-06-15 23:05:46 +0000116 llvm::Value *SrcVal = Val.getVal();
Chris Lattnerf033c142007-06-22 19:05:19 +0000117 const llvm::Type *DestTy = ConvertType(DstTy);
Chris Lattner83b484b2007-06-06 04:39:08 +0000118 if (SrcVal->getType() == DestTy) return Val;
119
Chris Lattner23b7eb62007-06-15 23:05:46 +0000120 llvm::Value *Result;
Chris Lattner83b484b2007-06-06 04:39:08 +0000121 if (isa<llvm::IntegerType>(SrcVal->getType())) {
122 bool InputSigned = ValTy->isSignedIntegerType();
123 if (isa<llvm::IntegerType>(DestTy))
124 Result = Builder.CreateIntCast(SrcVal, DestTy, InputSigned, "conv");
125 else if (InputSigned)
126 Result = Builder.CreateSIToFP(SrcVal, DestTy, "conv");
127 else
128 Result = Builder.CreateUIToFP(SrcVal, DestTy, "conv");
129 } else {
130 assert(SrcVal->getType()->isFloatingPoint() && "Unknown real conversion");
131 if (isa<llvm::IntegerType>(DestTy)) {
132 if (DstTy->isSignedIntegerType())
133 Result = Builder.CreateFPToSI(SrcVal, DestTy, "conv");
134 else
135 Result = Builder.CreateFPToUI(SrcVal, DestTy, "conv");
136 } else {
137 assert(DestTy->isFloatingPoint() && "Unknown real conversion");
138 if (DestTy->getTypeID() < SrcVal->getType()->getTypeID())
139 Result = Builder.CreateFPTrunc(SrcVal, DestTy, "conv");
140 else
141 Result = Builder.CreateFPExt(SrcVal, DestTy, "conv");
142 }
143 }
144 return RValue::get(Result);
145 }
146
147 assert(0 && "FIXME: We don't support complex conversions yet!");
Chris Lattner8394d792007-06-05 20:53:16 +0000148}
149
150
151/// ConvertScalarValueToBool - Convert the specified expression value to a
Chris Lattnerf0106d22007-06-02 19:33:17 +0000152/// boolean (i1) truth value. This is equivalent to "Val == 0".
Chris Lattner23b7eb62007-06-15 23:05:46 +0000153llvm::Value *CodeGenFunction::ConvertScalarValueToBool(RValue Val, QualType Ty){
Chris Lattnerf0106d22007-06-02 19:33:17 +0000154 Ty = Ty.getCanonicalType();
Chris Lattner23b7eb62007-06-15 23:05:46 +0000155 llvm::Value *Result;
Chris Lattnerf0106d22007-06-02 19:33:17 +0000156 if (const BuiltinType *BT = dyn_cast<BuiltinType>(Ty)) {
157 switch (BT->getKind()) {
158 default: assert(0 && "Unknown scalar value");
159 case BuiltinType::Bool:
160 Result = Val.getVal();
161 // Bool is already evaluated right.
162 assert(Result->getType() == llvm::Type::Int1Ty &&
163 "Unexpected bool value type!");
164 return Result;
Chris Lattnerb16f4552007-06-03 07:25:34 +0000165 case BuiltinType::Char_S:
166 case BuiltinType::Char_U:
Chris Lattnerf0106d22007-06-02 19:33:17 +0000167 case BuiltinType::SChar:
168 case BuiltinType::UChar:
169 case BuiltinType::Short:
170 case BuiltinType::UShort:
171 case BuiltinType::Int:
172 case BuiltinType::UInt:
173 case BuiltinType::Long:
174 case BuiltinType::ULong:
175 case BuiltinType::LongLong:
176 case BuiltinType::ULongLong:
177 // Code below handles simple integers.
178 break;
179 case BuiltinType::Float:
180 case BuiltinType::Double:
181 case BuiltinType::LongDouble: {
182 // Compare against 0.0 for fp scalars.
183 Result = Val.getVal();
Chris Lattner23b7eb62007-06-15 23:05:46 +0000184 llvm::Value *Zero = llvm::Constant::getNullValue(Result->getType());
Chris Lattnerf0106d22007-06-02 19:33:17 +0000185 // FIXME: llvm-gcc produces a une comparison: validate this is right.
186 Result = Builder.CreateFCmpUNE(Result, Zero, "tobool");
187 return Result;
188 }
Chris Lattnerf0106d22007-06-02 19:33:17 +0000189 }
Chris Lattnerc6395932007-06-22 20:56:16 +0000190 } else if (isa<PointerType>(Ty) ||
191 cast<TagType>(Ty)->getDecl()->getKind() == Decl::Enum) {
Chris Lattnerf0106d22007-06-02 19:33:17 +0000192 // Code below handles this fine.
Chris Lattnerc6395932007-06-22 20:56:16 +0000193 } else {
194 assert(isa<ComplexType>(Ty) && "Unknwon type!");
195 assert(0 && "FIXME: comparisons against complex not implemented yet");
Chris Lattnerf0106d22007-06-02 19:33:17 +0000196 }
197
198 // Usual case for integers, pointers, and enums: compare against zero.
199 Result = Val.getVal();
Chris Lattnera45c5af2007-06-02 19:47:04 +0000200
201 // Because of the type rules of C, we often end up computing a logical value,
202 // then zero extending it to int, then wanting it as a logical value again.
203 // Optimize this common case.
Chris Lattner23b7eb62007-06-15 23:05:46 +0000204 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Result)) {
Chris Lattnera45c5af2007-06-02 19:47:04 +0000205 if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
206 Result = ZI->getOperand(0);
207 ZI->eraseFromParent();
208 return Result;
209 }
210 }
211
Chris Lattner23b7eb62007-06-15 23:05:46 +0000212 llvm::Value *Zero = llvm::Constant::getNullValue(Result->getType());
Chris Lattnerf0106d22007-06-02 19:33:17 +0000213 return Builder.CreateICmpNE(Result, Zero, "tobool");
214}
215
Chris Lattnera45c5af2007-06-02 19:47:04 +0000216//===----------------------------------------------------------------------===//
Chris Lattnerd7f58862007-06-02 05:24:33 +0000217// LValue Expression Emission
Chris Lattnera45c5af2007-06-02 19:47:04 +0000218//===----------------------------------------------------------------------===//
Chris Lattnerd7f58862007-06-02 05:24:33 +0000219
Chris Lattner8394d792007-06-05 20:53:16 +0000220/// EmitLValue - Emit code to compute a designator that specifies the location
221/// of the expression.
222///
223/// This can return one of two things: a simple address or a bitfield
224/// reference. In either case, the LLVM Value* in the LValue structure is
225/// guaranteed to be an LLVM pointer type.
226///
227/// If this returns a bitfield reference, nothing about the pointee type of
228/// the LLVM value is known: For example, it may not be a pointer to an
229/// integer.
230///
231/// If this returns a normal address, and if the lvalue's C type is fixed
232/// size, this method guarantees that the returned pointer type will point to
233/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
234/// variable length type, this is not possible.
235///
Chris Lattnerd7f58862007-06-02 05:24:33 +0000236LValue CodeGenFunction::EmitLValue(const Expr *E) {
237 switch (E->getStmtClass()) {
238 default:
Chris Lattner8394d792007-06-05 20:53:16 +0000239 fprintf(stderr, "Unimplemented lvalue expr!\n");
Chris Lattnerd7f58862007-06-02 05:24:33 +0000240 E->dump();
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000241 return LValue::MakeAddr(llvm::UndefValue::get(
Chris Lattnerd7f58862007-06-02 05:24:33 +0000242 llvm::PointerType::get(llvm::Type::Int32Ty)));
243
244 case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast<DeclRefExpr>(E));
Chris Lattner946aa312007-06-05 03:59:43 +0000245 case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
Chris Lattner4347e3692007-06-06 04:54:52 +0000246 case Expr::StringLiteralClass:
247 return EmitStringLiteralLValue(cast<StringLiteral>(E));
Chris Lattner8394d792007-06-05 20:53:16 +0000248
249 case Expr::UnaryOperatorClass:
250 return EmitUnaryOpLValue(cast<UnaryOperator>(E));
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000251 case Expr::ArraySubscriptExprClass:
252 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
Chris Lattnerd7f58862007-06-02 05:24:33 +0000253 }
254}
255
Chris Lattner8394d792007-06-05 20:53:16 +0000256/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
257/// this method emits the address of the lvalue, then loads the result as an
258/// rvalue, returning the rvalue.
Chris Lattner9369a562007-06-29 16:31:29 +0000259RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
260 ExprType = ExprType.getCanonicalType();
Chris Lattner8394d792007-06-05 20:53:16 +0000261
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000262 if (LV.isSimple()) {
263 llvm::Value *Ptr = LV.getAddress();
264 const llvm::Type *EltTy =
265 cast<llvm::PointerType>(Ptr->getType())->getElementType();
266
267 // Simple scalar l-value.
268 if (EltTy->isFirstClassType())
269 return RValue::get(Builder.CreateLoad(Ptr, "tmp"));
270
271 // Otherwise, we have an aggregate lvalue.
272 return RValue::getAggregate(Ptr);
273 }
Chris Lattner09153c02007-06-22 18:48:09 +0000274
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000275 if (LV.isVectorElt()) {
276 llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), "tmp");
277 return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
278 "vecext"));
279 }
Chris Lattner09153c02007-06-22 18:48:09 +0000280
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000281 assert(0 && "Bitfield ref not impl!");
Chris Lattner8394d792007-06-05 20:53:16 +0000282}
283
Chris Lattner9369a562007-06-29 16:31:29 +0000284RValue CodeGenFunction::EmitLoadOfLValue(const Expr *E) {
285 return EmitLoadOfLValue(EmitLValue(E), E->getType());
286}
287
288
Chris Lattner8394d792007-06-05 20:53:16 +0000289/// EmitStoreThroughLValue - Store the specified rvalue into the specified
290/// lvalue, where both are guaranteed to the have the same type, and that type
291/// is 'Ty'.
292void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
293 QualType Ty) {
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000294 if (Dst.isVectorElt()) {
295 // Read/modify/write the vector, inserting the new element.
296 // FIXME: Volatility.
297 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), "tmp");
298 Vec = Builder.CreateInsertElement(Vec, Src.getVal(),
299 Dst.getVectorIdx(), "vecins");
300 Builder.CreateStore(Vec, Dst.getVectorAddr());
301 return;
302 }
303
304 assert(Dst.isSimple() && "FIXME: Don't support store to bitfield yet");
Chris Lattner8394d792007-06-05 20:53:16 +0000305
Chris Lattner09153c02007-06-22 18:48:09 +0000306 llvm::Value *DstAddr = Dst.getAddress();
307 if (Src.isScalar()) {
308 // FIXME: Handle volatility etc.
309 const llvm::Type *SrcTy = Src.getVal()->getType();
310 const llvm::Type *AddrTy =
311 cast<llvm::PointerType>(DstAddr->getType())->getElementType();
312
313 if (AddrTy != SrcTy)
314 DstAddr = Builder.CreateBitCast(DstAddr, llvm::PointerType::get(SrcTy),
315 "storetmp");
316 Builder.CreateStore(Src.getVal(), DstAddr);
317 return;
318 }
Chris Lattner8394d792007-06-05 20:53:16 +0000319
Chris Lattnere9a64532007-06-22 21:44:33 +0000320 // Don't use memcpy for complex numbers.
321 if (Ty->isComplexType()) {
322 llvm::Value *Real, *Imag;
323 EmitLoadOfComplex(Src, Real, Imag);
324 EmitStoreOfComplex(Real, Imag, Dst.getAddress());
325 return;
326 }
327
Chris Lattner09153c02007-06-22 18:48:09 +0000328 // Aggregate assignment turns into llvm.memcpy.
329 const llvm::Type *SBP = llvm::PointerType::get(llvm::Type::Int8Ty);
330 llvm::Value *SrcAddr = Src.getAggregateAddr();
331
332 if (DstAddr->getType() != SBP)
333 DstAddr = Builder.CreateBitCast(DstAddr, SBP, "tmp");
334 if (SrcAddr->getType() != SBP)
335 SrcAddr = Builder.CreateBitCast(SrcAddr, SBP, "tmp");
336
337 unsigned Align = 1; // FIXME: Compute type alignments.
338 unsigned Size = 1234; // FIXME: Compute type sizes.
339
340 // FIXME: Handle variable sized types.
341 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth);
342 llvm::Value *SizeVal = llvm::ConstantInt::get(IntPtr, Size);
343
344 llvm::Value *MemCpyOps[4] = {
345 DstAddr, SrcAddr, SizeVal,llvm::ConstantInt::get(llvm::Type::Int32Ty, Align)
346 };
347
348 Builder.CreateCall(CGM.getMemCpyFn(), MemCpyOps, 4);
Chris Lattner8394d792007-06-05 20:53:16 +0000349}
350
Chris Lattnerd7f58862007-06-02 05:24:33 +0000351
352LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
353 const Decl *D = E->getDecl();
Chris Lattner53621a52007-06-13 20:44:40 +0000354 if (isa<BlockVarDecl>(D) || isa<ParmVarDecl>(D)) {
Chris Lattner23b7eb62007-06-15 23:05:46 +0000355 llvm::Value *V = LocalDeclMap[D];
Chris Lattnerd7f58862007-06-02 05:24:33 +0000356 assert(V && "BlockVarDecl not entered in LocalDeclMap?");
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000357 return LValue::MakeAddr(V);
Chris Lattnerb6984c42007-06-20 04:44:43 +0000358 } else if (isa<FunctionDecl>(D) || isa<FileVarDecl>(D)) {
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000359 return LValue::MakeAddr(CGM.GetAddrOfGlobalDecl(D));
Chris Lattnerd7f58862007-06-02 05:24:33 +0000360 }
361 assert(0 && "Unimp declref");
362}
Chris Lattnere47e4402007-06-01 18:02:12 +0000363
Chris Lattner8394d792007-06-05 20:53:16 +0000364LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
365 // __extension__ doesn't affect lvalue-ness.
366 if (E->getOpcode() == UnaryOperator::Extension)
367 return EmitLValue(E->getSubExpr());
368
369 assert(E->getOpcode() == UnaryOperator::Deref &&
370 "'*' is the only unary operator that produces an lvalue");
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000371 return LValue::MakeAddr(EmitExpr(E->getSubExpr()).getVal());
Chris Lattner8394d792007-06-05 20:53:16 +0000372}
373
Chris Lattner4347e3692007-06-06 04:54:52 +0000374LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
375 assert(!E->isWide() && "FIXME: Wide strings not supported yet!");
376 const char *StrData = E->getStrData();
377 unsigned Len = E->getByteLength();
378
379 // FIXME: Can cache/reuse these within the module.
Chris Lattner23b7eb62007-06-15 23:05:46 +0000380 llvm::Constant *C=llvm::ConstantArray::get(std::string(StrData, StrData+Len));
Chris Lattner4347e3692007-06-06 04:54:52 +0000381
382 // Create a global variable for this.
Chris Lattner23b7eb62007-06-15 23:05:46 +0000383 C = new llvm::GlobalVariable(C->getType(), true,
384 llvm::GlobalValue::InternalLinkage,
Chris Lattner4347e3692007-06-06 04:54:52 +0000385 C, ".str", CurFn->getParent());
Chris Lattner23b7eb62007-06-15 23:05:46 +0000386 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
387 llvm::Constant *Zeros[] = { Zero, Zero };
388 C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000389 return LValue::MakeAddr(C);
Chris Lattner4347e3692007-06-06 04:54:52 +0000390}
391
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000392LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000393 // The index must always be a pointer or integer, neither of which is an
394 // aggregate. Emit it.
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000395 QualType IdxTy;
Chris Lattner23b7eb62007-06-15 23:05:46 +0000396 llvm::Value *Idx =
397 EmitExprWithUsualUnaryConversions(E->getIdx(), IdxTy).getVal();
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000398
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000399 // If the base is a vector type, then we are forming a vector element lvalue
400 // with this subscript.
401 if (E->getBase()->getType()->isVectorType()) {
402 // Emit the vector as an lvalue to get its address.
403 LValue Base = EmitLValue(E->getBase());
404 assert(Base.isSimple() && "Can only subscript lvalue vectors here!");
405 // FIXME: This should properly sign/zero/extend or truncate Idx to i32.
406 return LValue::MakeVectorElt(Base.getAddress(), Idx);
407 }
408
409 // At this point, the base must be a pointer or integer, neither of which are
410 // aggregates. Emit it.
411 QualType BaseTy;
412 llvm::Value *Base =
413 EmitExprWithUsualUnaryConversions(E->getBase(), BaseTy).getVal();
414
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000415 // Usually the base is the pointer type, but sometimes it is the index.
416 // Canonicalize to have the pointer as the base.
417 if (isa<llvm::PointerType>(Idx->getType())) {
418 std::swap(Base, Idx);
419 std::swap(BaseTy, IdxTy);
420 }
421
422 // The pointer is now the base. Extend or truncate the index type to 32 or
423 // 64-bits.
424 bool IdxSigned = IdxTy->isSignedIntegerType();
Chris Lattner23b7eb62007-06-15 23:05:46 +0000425 unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000426 if (IdxBitwidth != LLVMPointerWidth)
Chris Lattner23b7eb62007-06-15 23:05:46 +0000427 Idx = Builder.CreateIntCast(Idx, llvm::IntegerType::get(LLVMPointerWidth),
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000428 IdxSigned, "idxprom");
429
430 // We know that the pointer points to a type of the correct size, unless the
431 // size is a VLA.
432 if (!E->getType()->isConstantSizeType())
433 assert(0 && "VLA idx not implemented");
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000434 return LValue::MakeAddr(Builder.CreateGEP(Base, Idx, "arrayidx"));
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000435}
436
Chris Lattnere47e4402007-06-01 18:02:12 +0000437//===--------------------------------------------------------------------===//
438// Expression Emission
439//===--------------------------------------------------------------------===//
440
Chris Lattner8394d792007-06-05 20:53:16 +0000441RValue CodeGenFunction::EmitExpr(const Expr *E) {
Chris Lattnere47e4402007-06-01 18:02:12 +0000442 assert(E && "Null expression?");
443
444 switch (E->getStmtClass()) {
445 default:
Chris Lattner1fde0b32007-06-20 18:30:55 +0000446 fprintf(stderr, "Unimplemented expr!\n");
Chris Lattnere47e4402007-06-01 18:02:12 +0000447 E->dump();
Chris Lattner23b7eb62007-06-15 23:05:46 +0000448 return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
Chris Lattnerd7f58862007-06-02 05:24:33 +0000449
450 // l-values.
Chris Lattner8394d792007-06-05 20:53:16 +0000451 case Expr::DeclRefExprClass:
Chris Lattnerf99b3f52007-06-11 03:52:52 +0000452 // DeclRef's of EnumConstantDecl's are simple rvalues.
453 if (const EnumConstantDecl *EC =
454 dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
Chris Lattner23b7eb62007-06-15 23:05:46 +0000455 return RValue::get(llvm::ConstantInt::get(EC->getInitVal()));
Chris Lattner8394d792007-06-05 20:53:16 +0000456 return EmitLoadOfLValue(E);
Chris Lattnera779b3d2007-07-10 21:58:36 +0000457 case Expr::ArraySubscriptExprClass:
458 return EmitArraySubscriptExprRV(cast<ArraySubscriptExpr>(E));
Chris Lattner4347e3692007-06-06 04:54:52 +0000459 case Expr::StringLiteralClass:
460 return RValue::get(EmitLValue(E).getAddress());
Chris Lattnerd7f58862007-06-02 05:24:33 +0000461
462 // Leaf expressions.
463 case Expr::IntegerLiteralClass:
Chris Lattnere47e4402007-06-01 18:02:12 +0000464 return EmitIntegerLiteral(cast<IntegerLiteral>(E));
Chris Lattner2ada32e2007-07-09 23:03:16 +0000465 case Expr::FloatingLiteralClass:
466 return EmitFloatingLiteral(cast<FloatingLiteral>(E));
Chris Lattnerdb91b162007-06-02 00:16:28 +0000467
Chris Lattnerd7f58862007-06-02 05:24:33 +0000468 // Operators.
469 case Expr::ParenExprClass:
470 return EmitExpr(cast<ParenExpr>(E)->getSubExpr());
Chris Lattnerf0106d22007-06-02 19:33:17 +0000471 case Expr::UnaryOperatorClass:
472 return EmitUnaryOperator(cast<UnaryOperator>(E));
Chris Lattner8394d792007-06-05 20:53:16 +0000473 case Expr::CastExprClass:
474 return EmitCastExpr(cast<CastExpr>(E));
Chris Lattner2b228c92007-06-15 21:34:29 +0000475 case Expr::CallExprClass:
476 return EmitCallExpr(cast<CallExpr>(E));
Chris Lattnerd7f58862007-06-02 05:24:33 +0000477 case Expr::BinaryOperatorClass:
Chris Lattnerdb91b162007-06-02 00:16:28 +0000478 return EmitBinaryOperator(cast<BinaryOperator>(E));
Chris Lattnere47e4402007-06-01 18:02:12 +0000479 }
480
481}
482
Chris Lattner8394d792007-06-05 20:53:16 +0000483RValue CodeGenFunction::EmitIntegerLiteral(const IntegerLiteral *E) {
Chris Lattner23b7eb62007-06-15 23:05:46 +0000484 return RValue::get(llvm::ConstantInt::get(E->getValue()));
Chris Lattnere47e4402007-06-01 18:02:12 +0000485}
Chris Lattner2ada32e2007-07-09 23:03:16 +0000486RValue CodeGenFunction::EmitFloatingLiteral(const FloatingLiteral *E) {
487 return RValue::get(llvm::ConstantFP::get(ConvertType(E->getType()),
488 E->getValue()));
489}
Chris Lattnere47e4402007-06-01 18:02:12 +0000490
Chris Lattnera779b3d2007-07-10 21:58:36 +0000491
492RValue CodeGenFunction::EmitArraySubscriptExprRV(const ArraySubscriptExpr *E) {
493 // Emit subscript expressions in rvalue context's. For most cases, this just
494 // loads the lvalue formed by the subscript expr. However, we have to be
495 // careful, because the base of a vector subscript is occasionally an rvalue,
496 // so we can't get it as an lvalue.
497 if (!E->getBase()->getType()->isVectorType())
498 return EmitLoadOfLValue(E);
499
500 // Handle the vector case. The base must be a vector, the index must be an
501 // integer value.
502 QualType BaseTy, IdxTy;
503 llvm::Value *Base =
504 EmitExprWithUsualUnaryConversions(E->getBase(), BaseTy).getVal();
505 llvm::Value *Idx =
506 EmitExprWithUsualUnaryConversions(E->getIdx(), IdxTy).getVal();
507
508 // FIXME: Convert Idx to i32 type.
509
510 return RValue::get(Builder.CreateExtractElement(Base, Idx, "vecext"));
511}
512
513
Chris Lattner8394d792007-06-05 20:53:16 +0000514RValue CodeGenFunction::EmitCastExpr(const CastExpr *E) {
515 QualType SrcTy;
516 RValue Src = EmitExprWithUsualUnaryConversions(E->getSubExpr(), SrcTy);
517
518 // If the destination is void, just evaluate the source.
519 if (E->getType()->isVoidType())
520 return RValue::getAggregate(0);
521
Chris Lattnerf033c142007-06-22 19:05:19 +0000522 return EmitConversion(Src, SrcTy, E->getType());
Chris Lattner8394d792007-06-05 20:53:16 +0000523}
Chris Lattnerf0106d22007-06-02 19:33:17 +0000524
Chris Lattner2b228c92007-06-15 21:34:29 +0000525RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) {
526 QualType Ty;
Chris Lattner23b7eb62007-06-15 23:05:46 +0000527 llvm::Value *Callee =
528 EmitExprWithUsualUnaryConversions(E->getCallee(), Ty).getVal();
Chris Lattner2b228c92007-06-15 21:34:29 +0000529
Chris Lattner23b7eb62007-06-15 23:05:46 +0000530 llvm::SmallVector<llvm::Value*, 16> Args;
Chris Lattner2b228c92007-06-15 21:34:29 +0000531
532 // FIXME: Handle struct return.
533 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
534 RValue ArgVal = EmitExprWithUsualUnaryConversions(E->getArg(i), Ty);
535
536 if (ArgVal.isScalar())
537 Args.push_back(ArgVal.getVal());
538 else // Pass by-address. FIXME: Set attribute bit on call.
Chris Lattner09153c02007-06-22 18:48:09 +0000539 Args.push_back(ArgVal.getAggregateAddr());
Chris Lattner2b228c92007-06-15 21:34:29 +0000540 }
541
Chris Lattner23b7eb62007-06-15 23:05:46 +0000542 llvm::Value *V = Builder.CreateCall(Callee, &Args[0], Args.size());
Chris Lattner2b228c92007-06-15 21:34:29 +0000543 if (V->getType() != llvm::Type::VoidTy)
544 V->setName("call");
545
546 // FIXME: Struct return;
547 return RValue::get(V);
548}
549
550
Chris Lattner8394d792007-06-05 20:53:16 +0000551//===----------------------------------------------------------------------===//
552// Unary Operator Emission
553//===----------------------------------------------------------------------===//
554
555RValue CodeGenFunction::EmitExprWithUsualUnaryConversions(const Expr *E,
556 QualType &ResTy) {
Chris Lattner6db1fb82007-06-02 22:49:07 +0000557 ResTy = E->getType().getCanonicalType();
558
559 if (isa<FunctionType>(ResTy)) { // C99 6.3.2.1p4
560 // Functions are promoted to their address.
561 ResTy = getContext().getPointerType(ResTy);
Chris Lattner8394d792007-06-05 20:53:16 +0000562 return RValue::get(EmitLValue(E).getAddress());
Chris Lattner6db1fb82007-06-02 22:49:07 +0000563 } else if (const ArrayType *ary = dyn_cast<ArrayType>(ResTy)) {
564 // C99 6.3.2.1p3
565 ResTy = getContext().getPointerType(ary->getElementType());
566
567 // FIXME: For now we assume that all source arrays map to LLVM arrays. This
568 // will not true when we add support for VLAs.
569 llvm::Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
570
571 assert(isa<llvm::PointerType>(V->getType()) &&
572 isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
573 ->getElementType()) &&
574 "Doesn't support VLAs yet!");
575 llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
Chris Lattner8394d792007-06-05 20:53:16 +0000576 return RValue::get(Builder.CreateGEP(V, Idx0, Idx0, "arraydecay"));
Chris Lattner6db1fb82007-06-02 22:49:07 +0000577 } else if (ResTy->isPromotableIntegerType()) { // C99 6.3.1.1p2
578 // FIXME: this probably isn't right, pending clarification from Steve.
579 llvm::Value *Val = EmitExpr(E).getVal();
580
Chris Lattner6db1fb82007-06-02 22:49:07 +0000581 // If the input is a signed integer, sign extend to the destination.
582 if (ResTy->isSignedIntegerType()) {
583 Val = Builder.CreateSExt(Val, LLVMIntTy, "promote");
584 } else {
585 // This handles unsigned types, including bool.
586 Val = Builder.CreateZExt(Val, LLVMIntTy, "promote");
587 }
588 ResTy = getContext().IntTy;
589
Chris Lattner8394d792007-06-05 20:53:16 +0000590 return RValue::get(Val);
Chris Lattner6db1fb82007-06-02 22:49:07 +0000591 }
592
593 // Otherwise, this is a float, double, int, struct, etc.
594 return EmitExpr(E);
595}
596
597
Chris Lattner8394d792007-06-05 20:53:16 +0000598RValue CodeGenFunction::EmitUnaryOperator(const UnaryOperator *E) {
Chris Lattnerf0106d22007-06-02 19:33:17 +0000599 switch (E->getOpcode()) {
600 default:
601 printf("Unimplemented unary expr!\n");
602 E->dump();
Chris Lattner23b7eb62007-06-15 23:05:46 +0000603 return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
Chris Lattner8394d792007-06-05 20:53:16 +0000604 // FIXME: pre/post inc/dec
605 case UnaryOperator::AddrOf: return EmitUnaryAddrOf(E);
606 case UnaryOperator::Deref : return EmitLoadOfLValue(E);
607 case UnaryOperator::Plus : return EmitUnaryPlus(E);
608 case UnaryOperator::Minus : return EmitUnaryMinus(E);
609 case UnaryOperator::Not : return EmitUnaryNot(E);
610 case UnaryOperator::LNot : return EmitUnaryLNot(E);
611 // FIXME: SIZEOF/ALIGNOF(expr).
612 // FIXME: real/imag
613 case UnaryOperator::Extension: return EmitExpr(E->getSubExpr());
Chris Lattnerf0106d22007-06-02 19:33:17 +0000614 }
615}
616
Chris Lattner8394d792007-06-05 20:53:16 +0000617/// C99 6.5.3.2
618RValue CodeGenFunction::EmitUnaryAddrOf(const UnaryOperator *E) {
619 // The address of the operand is just its lvalue. It cannot be a bitfield.
620 return RValue::get(EmitLValue(E->getSubExpr()).getAddress());
621}
622
623RValue CodeGenFunction::EmitUnaryPlus(const UnaryOperator *E) {
624 // Unary plus just performs promotions on its arithmetic operand.
625 QualType Ty;
Chris Lattnerb48238182007-06-15 21:04:38 +0000626 return EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty);
Chris Lattner8394d792007-06-05 20:53:16 +0000627}
628
629RValue CodeGenFunction::EmitUnaryMinus(const UnaryOperator *E) {
630 // Unary minus performs promotions, then negates its arithmetic operand.
631 QualType Ty;
Chris Lattnerb48238182007-06-15 21:04:38 +0000632 RValue V = EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty);
Chris Lattnerf0106d22007-06-02 19:33:17 +0000633
Chris Lattner8394d792007-06-05 20:53:16 +0000634 if (V.isScalar())
635 return RValue::get(Builder.CreateNeg(V.getVal(), "neg"));
636
637 assert(0 && "FIXME: This doesn't handle complex operands yet");
638}
639
640RValue CodeGenFunction::EmitUnaryNot(const UnaryOperator *E) {
641 // Unary not performs promotions, then complements its integer operand.
642 QualType Ty;
Chris Lattnerb48238182007-06-15 21:04:38 +0000643 RValue V = EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty);
Chris Lattner8394d792007-06-05 20:53:16 +0000644
645 if (V.isScalar())
646 return RValue::get(Builder.CreateNot(V.getVal(), "neg"));
647
648 assert(0 && "FIXME: This doesn't handle integer complex operands yet (GNU)");
649}
650
651
652/// C99 6.5.3.3
653RValue CodeGenFunction::EmitUnaryLNot(const UnaryOperator *E) {
654 // Compare operand to zero.
Chris Lattner23b7eb62007-06-15 23:05:46 +0000655 llvm::Value *BoolVal = EvaluateExprAsBool(E->getSubExpr());
Chris Lattnerf0106d22007-06-02 19:33:17 +0000656
657 // Invert value.
Chris Lattnera45c5af2007-06-02 19:47:04 +0000658 // TODO: Could dynamically modify easy computations here. For example, if
659 // the operand is an icmp ne, turn into icmp eq.
Chris Lattnerf0106d22007-06-02 19:33:17 +0000660 BoolVal = Builder.CreateNot(BoolVal, "lnot");
661
662 // ZExt result to int.
Chris Lattner8394d792007-06-05 20:53:16 +0000663 return RValue::get(Builder.CreateZExt(BoolVal, LLVMIntTy, "lnot.ext"));
Chris Lattnerf0106d22007-06-02 19:33:17 +0000664}
665
Chris Lattnere47e4402007-06-01 18:02:12 +0000666
Chris Lattnerdb91b162007-06-02 00:16:28 +0000667//===--------------------------------------------------------------------===//
668// Binary Operator Emission
669//===--------------------------------------------------------------------===//
670
671// FIXME describe.
Chris Lattnercf250242007-06-03 02:02:44 +0000672QualType CodeGenFunction::
Chris Lattner8394d792007-06-05 20:53:16 +0000673EmitUsualArithmeticConversions(const BinaryOperator *E, RValue &LHS,
674 RValue &RHS) {
Chris Lattnerc18f9d12007-06-02 22:51:30 +0000675 QualType LHSType, RHSType;
676 LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), LHSType);
677 RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSType);
678
Chris Lattnercf250242007-06-03 02:02:44 +0000679 // If both operands have the same source type, we're done already.
680 if (LHSType == RHSType) return LHSType;
681
682 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
683 // The caller can deal with this (e.g. pointer + int).
684 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
685 return LHSType;
686
687 // At this point, we have two different arithmetic types.
688
689 // Handle complex types first (C99 6.3.1.8p1).
690 if (LHSType->isComplexType() || RHSType->isComplexType()) {
691 assert(0 && "FIXME: complex types unimp");
692#if 0
693 // if we have an integer operand, the result is the complex type.
694 if (rhs->isIntegerType())
695 return lhs;
696 if (lhs->isIntegerType())
697 return rhs;
698 return Context.maxComplexType(lhs, rhs);
699#endif
700 }
701
702 // If neither operand is complex, they must be scalars.
703 llvm::Value *LHSV = LHS.getVal();
704 llvm::Value *RHSV = RHS.getVal();
705
706 // If the LLVM types are already equal, then they only differed in sign, or it
707 // was something like char/signed char or double/long double.
708 if (LHSV->getType() == RHSV->getType())
709 return LHSType;
710
711 // Now handle "real" floating types (i.e. float, double, long double).
712 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) {
713 // if we have an integer operand, the result is the real floating type, and
714 // the integer converts to FP.
715 if (RHSType->isIntegerType()) {
716 // Promote the RHS to an FP type of the LHS, with the sign following the
717 // RHS.
718 if (RHSType->isSignedIntegerType())
Chris Lattner8394d792007-06-05 20:53:16 +0000719 RHS = RValue::get(Builder.CreateSIToFP(RHSV,LHSV->getType(),"promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000720 else
Chris Lattner8394d792007-06-05 20:53:16 +0000721 RHS = RValue::get(Builder.CreateUIToFP(RHSV,LHSV->getType(),"promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000722 return LHSType;
723 }
724
725 if (LHSType->isIntegerType()) {
726 // Promote the LHS to an FP type of the RHS, with the sign following the
727 // LHS.
728 if (LHSType->isSignedIntegerType())
Chris Lattner8394d792007-06-05 20:53:16 +0000729 LHS = RValue::get(Builder.CreateSIToFP(LHSV,RHSV->getType(),"promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000730 else
Chris Lattner8394d792007-06-05 20:53:16 +0000731 LHS = RValue::get(Builder.CreateUIToFP(LHSV,RHSV->getType(),"promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000732 return RHSType;
733 }
734
735 // Otherwise, they are two FP types. Promote the smaller operand to the
736 // bigger result.
737 QualType BiggerType = ASTContext::maxFloatingType(LHSType, RHSType);
738
739 if (BiggerType == LHSType)
Chris Lattner8394d792007-06-05 20:53:16 +0000740 RHS = RValue::get(Builder.CreateFPExt(RHSV, LHSV->getType(), "promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000741 else
Chris Lattner8394d792007-06-05 20:53:16 +0000742 LHS = RValue::get(Builder.CreateFPExt(LHSV, RHSV->getType(), "promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000743 return BiggerType;
744 }
745
746 // Finally, we have two integer types that are different according to C. Do
747 // a sign or zero extension if needed.
748
749 // Otherwise, one type is smaller than the other.
750 QualType ResTy = ASTContext::maxIntegerType(LHSType, RHSType);
751
752 if (LHSType == ResTy) {
753 if (RHSType->isSignedIntegerType())
Chris Lattner8394d792007-06-05 20:53:16 +0000754 RHS = RValue::get(Builder.CreateSExt(RHSV, LHSV->getType(), "promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000755 else
Chris Lattner8394d792007-06-05 20:53:16 +0000756 RHS = RValue::get(Builder.CreateZExt(RHSV, LHSV->getType(), "promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000757 } else {
758 assert(RHSType == ResTy && "Unknown conversion");
759 if (LHSType->isSignedIntegerType())
Chris Lattner8394d792007-06-05 20:53:16 +0000760 LHS = RValue::get(Builder.CreateSExt(LHSV, RHSV->getType(), "promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000761 else
Chris Lattner8394d792007-06-05 20:53:16 +0000762 LHS = RValue::get(Builder.CreateZExt(LHSV, RHSV->getType(), "promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000763 }
764 return ResTy;
Chris Lattnerdb91b162007-06-02 00:16:28 +0000765}
766
Chris Lattnercd215f02007-06-29 16:52:55 +0000767/// EmitCompoundAssignmentOperands - Compound assignment operations (like +=)
768/// are strange in that the result of the operation is not the same type as the
769/// intermediate computation. This function emits the LHS and RHS operands of
770/// the compound assignment, promoting them to their common computation type.
771///
772/// Since the LHS is an lvalue, and the result is stored back through it, we
773/// return the lvalue as well as the LHS/RHS rvalues. On return, the LHS and
774/// RHS values are both in the computation type for the operator.
775void CodeGenFunction::
776EmitCompoundAssignmentOperands(const CompoundAssignOperator *E,
777 LValue &LHSLV, RValue &LHS, RValue &RHS) {
778 LHSLV = EmitLValue(E->getLHS());
779
780 // Load the LHS and RHS operands.
781 QualType LHSTy = E->getLHS()->getType();
782 LHS = EmitLoadOfLValue(LHSLV, LHSTy);
783 QualType RHSTy;
784 RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSTy);
785
Chris Lattner47c247e2007-06-29 17:26:27 +0000786 // Shift operands do the usual unary conversions, but do not do the binary
787 // conversions.
788 if (E->isShiftAssignOp()) {
789 // FIXME: This is broken. Implicit conversions should be made explicit,
790 // so that this goes away. This causes us to reload the LHS.
791 LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), LHSTy);
792 }
793
Chris Lattnercd215f02007-06-29 16:52:55 +0000794 // Convert the LHS and RHS to the common evaluation type.
795 LHS = EmitConversion(LHS, LHSTy, E->getComputationType());
796 RHS = EmitConversion(RHS, RHSTy, E->getComputationType());
797}
798
799/// EmitCompoundAssignmentResult - Given a result value in the computation type,
800/// truncate it down to the actual result type, store it through the LHS lvalue,
801/// and return it.
802RValue CodeGenFunction::
803EmitCompoundAssignmentResult(const CompoundAssignOperator *E,
804 LValue LHSLV, RValue ResV) {
805
806 // Truncate back to the destination type.
807 if (E->getComputationType() != E->getType())
808 ResV = EmitConversion(ResV, E->getComputationType(), E->getType());
809
810 // Store the result value into the LHS.
811 EmitStoreThroughLValue(ResV, LHSLV, E->getType());
812
813 // Return the result.
814 return ResV;
815}
816
Chris Lattnerdb91b162007-06-02 00:16:28 +0000817
Chris Lattner8394d792007-06-05 20:53:16 +0000818RValue CodeGenFunction::EmitBinaryOperator(const BinaryOperator *E) {
Chris Lattnercd215f02007-06-29 16:52:55 +0000819 RValue LHS, RHS;
Chris Lattnerdb91b162007-06-02 00:16:28 +0000820 switch (E->getOpcode()) {
821 default:
Chris Lattnerb25a9432007-06-29 17:03:06 +0000822 fprintf(stderr, "Unimplemented binary expr!\n");
Chris Lattnerdb91b162007-06-02 00:16:28 +0000823 E->dump();
Chris Lattner23b7eb62007-06-15 23:05:46 +0000824 return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
Chris Lattnerb25a9432007-06-29 17:03:06 +0000825 case BinaryOperator::Mul:
826 EmitUsualArithmeticConversions(E, LHS, RHS);
827 return EmitMul(LHS, RHS, E->getType());
828 case BinaryOperator::Div:
829 EmitUsualArithmeticConversions(E, LHS, RHS);
830 return EmitDiv(LHS, RHS, E->getType());
831 case BinaryOperator::Rem:
832 EmitUsualArithmeticConversions(E, LHS, RHS);
833 return EmitRem(LHS, RHS, E->getType());
Chris Lattnercd215f02007-06-29 16:52:55 +0000834 case BinaryOperator::Add:
835 // FIXME: This doesn't handle ptr+int etc yet.
836 EmitUsualArithmeticConversions(E, LHS, RHS);
837 return EmitAdd(LHS, RHS, E->getType());
838 case BinaryOperator::Sub:
839 // FIXME: This doesn't handle ptr-int etc yet.
840 EmitUsualArithmeticConversions(E, LHS, RHS);
841 return EmitSub(LHS, RHS, E->getType());
Chris Lattner47c247e2007-06-29 17:26:27 +0000842 case BinaryOperator::Shl:
843 EmitShiftOperands(E, LHS, RHS);
844 return EmitShl(LHS, RHS, E->getType());
845 case BinaryOperator::Shr:
846 EmitShiftOperands(E, LHS, RHS);
847 return EmitShr(LHS, RHS, E->getType());
Chris Lattnerb25a9432007-06-29 17:03:06 +0000848 case BinaryOperator::And:
849 EmitUsualArithmeticConversions(E, LHS, RHS);
850 return EmitAnd(LHS, RHS, E->getType());
851 case BinaryOperator::Xor:
852 EmitUsualArithmeticConversions(E, LHS, RHS);
853 return EmitXor(LHS, RHS, E->getType());
854 case BinaryOperator::Or :
855 EmitUsualArithmeticConversions(E, LHS, RHS);
856 return EmitOr(LHS, RHS, E->getType());
Chris Lattner8394d792007-06-05 20:53:16 +0000857 case BinaryOperator::LAnd: return EmitBinaryLAnd(E);
858 case BinaryOperator::LOr: return EmitBinaryLOr(E);
Chris Lattner1fde0b32007-06-20 18:30:55 +0000859 case BinaryOperator::LT:
860 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_ULT,
861 llvm::ICmpInst::ICMP_SLT,
862 llvm::FCmpInst::FCMP_OLT);
863 case BinaryOperator::GT:
864 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_UGT,
865 llvm::ICmpInst::ICMP_SGT,
866 llvm::FCmpInst::FCMP_OGT);
867 case BinaryOperator::LE:
868 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_ULE,
869 llvm::ICmpInst::ICMP_SLE,
870 llvm::FCmpInst::FCMP_OLE);
871 case BinaryOperator::GE:
872 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_UGE,
873 llvm::ICmpInst::ICMP_SGE,
874 llvm::FCmpInst::FCMP_OGE);
875 case BinaryOperator::EQ:
876 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_EQ,
877 llvm::ICmpInst::ICMP_EQ,
878 llvm::FCmpInst::FCMP_OEQ);
879 case BinaryOperator::NE:
880 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_NE,
881 llvm::ICmpInst::ICMP_NE,
882 llvm::FCmpInst::FCMP_UNE);
Chris Lattnercd215f02007-06-29 16:52:55 +0000883 case BinaryOperator::Assign:
884 return EmitBinaryAssign(E);
885
Chris Lattnerb25a9432007-06-29 17:03:06 +0000886 case BinaryOperator::MulAssign: {
887 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
888 LValue LHSLV;
889 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
890 LHS = EmitMul(LHS, RHS, CAO->getComputationType());
891 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
892 }
893 case BinaryOperator::DivAssign: {
894 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
895 LValue LHSLV;
896 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
897 LHS = EmitDiv(LHS, RHS, CAO->getComputationType());
898 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
899 }
900 case BinaryOperator::RemAssign: {
901 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
902 LValue LHSLV;
903 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
904 LHS = EmitRem(LHS, RHS, CAO->getComputationType());
905 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
906 }
Chris Lattnercd215f02007-06-29 16:52:55 +0000907 case BinaryOperator::AddAssign: {
908 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
909 LValue LHSLV;
910 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
911 LHS = EmitAdd(LHS, RHS, CAO->getComputationType());
912 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
913 }
914 case BinaryOperator::SubAssign: {
915 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
916 LValue LHSLV;
917 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
918 LHS = EmitSub(LHS, RHS, CAO->getComputationType());
919 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
920 }
Chris Lattner47c247e2007-06-29 17:26:27 +0000921 case BinaryOperator::ShlAssign: {
922 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
923 LValue LHSLV;
924 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
925 LHS = EmitShl(LHS, RHS, CAO->getComputationType());
926 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
927 }
928 case BinaryOperator::ShrAssign: {
929 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
930 LValue LHSLV;
931 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
932 LHS = EmitShr(LHS, RHS, CAO->getComputationType());
933 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
934 }
Chris Lattnerb25a9432007-06-29 17:03:06 +0000935 case BinaryOperator::AndAssign: {
936 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
937 LValue LHSLV;
938 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
939 LHS = EmitAnd(LHS, RHS, CAO->getComputationType());
940 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
941 }
942 case BinaryOperator::OrAssign: {
943 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
944 LValue LHSLV;
945 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
946 LHS = EmitOr(LHS, RHS, CAO->getComputationType());
947 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
948 }
949 case BinaryOperator::XorAssign: {
950 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
951 LValue LHSLV;
952 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
953 LHS = EmitXor(LHS, RHS, CAO->getComputationType());
954 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
955 }
Chris Lattner8394d792007-06-05 20:53:16 +0000956 case BinaryOperator::Comma: return EmitBinaryComma(E);
Chris Lattnerdb91b162007-06-02 00:16:28 +0000957 }
958}
959
Chris Lattnerb25a9432007-06-29 17:03:06 +0000960RValue CodeGenFunction::EmitMul(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner8394d792007-06-05 20:53:16 +0000961 if (LHS.isScalar())
962 return RValue::get(Builder.CreateMul(LHS.getVal(), RHS.getVal(), "mul"));
963
964 assert(0 && "FIXME: This doesn't handle complex operands yet");
965}
966
Chris Lattnerb25a9432007-06-29 17:03:06 +0000967RValue CodeGenFunction::EmitDiv(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner8394d792007-06-05 20:53:16 +0000968 if (LHS.isScalar()) {
Chris Lattner23b7eb62007-06-15 23:05:46 +0000969 llvm::Value *RV;
Chris Lattner8394d792007-06-05 20:53:16 +0000970 if (LHS.getVal()->getType()->isFloatingPoint())
971 RV = Builder.CreateFDiv(LHS.getVal(), RHS.getVal(), "div");
Chris Lattnerb25a9432007-06-29 17:03:06 +0000972 else if (ResTy->isUnsignedIntegerType())
Chris Lattner8394d792007-06-05 20:53:16 +0000973 RV = Builder.CreateUDiv(LHS.getVal(), RHS.getVal(), "div");
974 else
975 RV = Builder.CreateSDiv(LHS.getVal(), RHS.getVal(), "div");
976 return RValue::get(RV);
977 }
978 assert(0 && "FIXME: This doesn't handle complex operands yet");
979}
980
Chris Lattnerb25a9432007-06-29 17:03:06 +0000981RValue CodeGenFunction::EmitRem(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner8394d792007-06-05 20:53:16 +0000982 if (LHS.isScalar()) {
Chris Lattner23b7eb62007-06-15 23:05:46 +0000983 llvm::Value *RV;
Chris Lattner8394d792007-06-05 20:53:16 +0000984 // Rem in C can't be a floating point type: C99 6.5.5p2.
Chris Lattnerb25a9432007-06-29 17:03:06 +0000985 if (ResTy->isUnsignedIntegerType())
Chris Lattner8394d792007-06-05 20:53:16 +0000986 RV = Builder.CreateURem(LHS.getVal(), RHS.getVal(), "rem");
987 else
988 RV = Builder.CreateSRem(LHS.getVal(), RHS.getVal(), "rem");
989 return RValue::get(RV);
990 }
991
992 assert(0 && "FIXME: This doesn't handle complex operands yet");
993}
994
Chris Lattnercd215f02007-06-29 16:52:55 +0000995RValue CodeGenFunction::EmitAdd(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner8394d792007-06-05 20:53:16 +0000996 if (LHS.isScalar())
997 return RValue::get(Builder.CreateAdd(LHS.getVal(), RHS.getVal(), "add"));
Chris Lattnercd215f02007-06-29 16:52:55 +0000998
Chris Lattnere9a64532007-06-22 21:44:33 +0000999 // Otherwise, this must be a complex number.
1000 llvm::Value *LHSR, *LHSI, *RHSR, *RHSI;
1001
1002 EmitLoadOfComplex(LHS, LHSR, LHSI);
1003 EmitLoadOfComplex(RHS, RHSR, RHSI);
1004
1005 llvm::Value *ResR = Builder.CreateAdd(LHSR, RHSR, "add.r");
1006 llvm::Value *ResI = Builder.CreateAdd(LHSI, RHSI, "add.i");
1007
Chris Lattnercd215f02007-06-29 16:52:55 +00001008 llvm::Value *Res = CreateTempAlloca(ConvertType(ResTy));
Chris Lattnere9a64532007-06-22 21:44:33 +00001009 EmitStoreOfComplex(ResR, ResI, Res);
1010 return RValue::getAggregate(Res);
Chris Lattner8394d792007-06-05 20:53:16 +00001011}
1012
Chris Lattnercd215f02007-06-29 16:52:55 +00001013RValue CodeGenFunction::EmitSub(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner8394d792007-06-05 20:53:16 +00001014 if (LHS.isScalar())
1015 return RValue::get(Builder.CreateSub(LHS.getVal(), RHS.getVal(), "sub"));
1016
1017 assert(0 && "FIXME: This doesn't handle complex operands yet");
Chris Lattner8394d792007-06-05 20:53:16 +00001018}
1019
Chris Lattner47c247e2007-06-29 17:26:27 +00001020void CodeGenFunction::EmitShiftOperands(const BinaryOperator *E,
1021 RValue &LHS, RValue &RHS) {
Chris Lattner8394d792007-06-05 20:53:16 +00001022 // For shifts, integer promotions are performed, but the usual arithmetic
1023 // conversions are not. The LHS and RHS need not have the same type.
Chris Lattner8394d792007-06-05 20:53:16 +00001024 QualType ResTy;
Chris Lattner47c247e2007-06-29 17:26:27 +00001025 LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), ResTy);
1026 RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), ResTy);
1027}
Chris Lattner8394d792007-06-05 20:53:16 +00001028
Chris Lattner47c247e2007-06-29 17:26:27 +00001029
1030RValue CodeGenFunction::EmitShl(RValue LHSV, RValue RHSV, QualType ResTy) {
1031 llvm::Value *LHS = LHSV.getVal(), *RHS = RHSV.getVal();
1032
Chris Lattner8394d792007-06-05 20:53:16 +00001033 // LLVM requires the LHS and RHS to be the same type, promote or truncate the
1034 // RHS to the same size as the LHS.
1035 if (LHS->getType() != RHS->getType())
1036 RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom");
1037
1038 return RValue::get(Builder.CreateShl(LHS, RHS, "shl"));
1039}
1040
Chris Lattner47c247e2007-06-29 17:26:27 +00001041RValue CodeGenFunction::EmitShr(RValue LHSV, RValue RHSV, QualType ResTy) {
1042 llvm::Value *LHS = LHSV.getVal(), *RHS = RHSV.getVal();
Chris Lattner8394d792007-06-05 20:53:16 +00001043
1044 // LLVM requires the LHS and RHS to be the same type, promote or truncate the
1045 // RHS to the same size as the LHS.
1046 if (LHS->getType() != RHS->getType())
1047 RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom");
1048
Chris Lattner47c247e2007-06-29 17:26:27 +00001049 if (ResTy->isUnsignedIntegerType())
Chris Lattner8394d792007-06-05 20:53:16 +00001050 return RValue::get(Builder.CreateLShr(LHS, RHS, "shr"));
1051 else
1052 return RValue::get(Builder.CreateAShr(LHS, RHS, "shr"));
1053}
1054
Chris Lattner1fde0b32007-06-20 18:30:55 +00001055RValue CodeGenFunction::EmitBinaryCompare(const BinaryOperator *E,
1056 unsigned UICmpOpc, unsigned SICmpOpc,
1057 unsigned FCmpOpc) {
Chris Lattner273c63d2007-06-20 18:02:30 +00001058 RValue LHS, RHS;
1059 EmitUsualArithmeticConversions(E, LHS, RHS);
1060
1061 llvm::Value *Result;
1062 if (LHS.isScalar()) {
1063 if (LHS.getVal()->getType()->isFloatingPoint()) {
Chris Lattner1fde0b32007-06-20 18:30:55 +00001064 Result = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1065 LHS.getVal(), RHS.getVal(), "cmp");
1066 } else if (E->getLHS()->getType()->isUnsignedIntegerType()) {
1067 // FIXME: This check isn't right for "unsigned short < int" where ushort
1068 // promotes to int and does a signed compare.
1069 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1070 LHS.getVal(), RHS.getVal(), "cmp");
Chris Lattner273c63d2007-06-20 18:02:30 +00001071 } else {
Chris Lattner1fde0b32007-06-20 18:30:55 +00001072 // Signed integers and pointers.
1073 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1074 LHS.getVal(), RHS.getVal(), "cmp");
Chris Lattner273c63d2007-06-20 18:02:30 +00001075 }
1076 } else {
1077 // Struct/union/complex
1078 assert(0 && "Aggregate comparisons not implemented yet!");
1079 }
1080
1081 // ZExt result to int.
1082 return RValue::get(Builder.CreateZExt(Result, LLVMIntTy, "cmp.ext"));
1083}
1084
Chris Lattnerb25a9432007-06-29 17:03:06 +00001085RValue CodeGenFunction::EmitAnd(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner8394d792007-06-05 20:53:16 +00001086 if (LHS.isScalar())
1087 return RValue::get(Builder.CreateAnd(LHS.getVal(), RHS.getVal(), "and"));
1088
1089 assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
1090}
1091
Chris Lattnerb25a9432007-06-29 17:03:06 +00001092RValue CodeGenFunction::EmitXor(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner8394d792007-06-05 20:53:16 +00001093 if (LHS.isScalar())
1094 return RValue::get(Builder.CreateXor(LHS.getVal(), RHS.getVal(), "xor"));
1095
1096 assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
1097}
1098
Chris Lattnerb25a9432007-06-29 17:03:06 +00001099RValue CodeGenFunction::EmitOr(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner8394d792007-06-05 20:53:16 +00001100 if (LHS.isScalar())
1101 return RValue::get(Builder.CreateOr(LHS.getVal(), RHS.getVal(), "or"));
1102
1103 assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
1104}
1105
1106RValue CodeGenFunction::EmitBinaryLAnd(const BinaryOperator *E) {
Chris Lattner23b7eb62007-06-15 23:05:46 +00001107 llvm::Value *LHSCond = EvaluateExprAsBool(E->getLHS());
Chris Lattner8394d792007-06-05 20:53:16 +00001108
Chris Lattner23b7eb62007-06-15 23:05:46 +00001109 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("land_cont");
1110 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("land_rhs");
Chris Lattner8394d792007-06-05 20:53:16 +00001111
Chris Lattner23b7eb62007-06-15 23:05:46 +00001112 llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
Chris Lattner8394d792007-06-05 20:53:16 +00001113 Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock);
1114
1115 EmitBlock(RHSBlock);
Chris Lattner23b7eb62007-06-15 23:05:46 +00001116 llvm::Value *RHSCond = EvaluateExprAsBool(E->getRHS());
Chris Lattner8394d792007-06-05 20:53:16 +00001117
1118 // Reaquire the RHS block, as there may be subblocks inserted.
1119 RHSBlock = Builder.GetInsertBlock();
1120 EmitBlock(ContBlock);
1121
1122 // Create a PHI node. If we just evaluted the LHS condition, the result is
1123 // false. If we evaluated both, the result is the RHS condition.
Chris Lattner23b7eb62007-06-15 23:05:46 +00001124 llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land");
Chris Lattner8394d792007-06-05 20:53:16 +00001125 PN->reserveOperandSpace(2);
Chris Lattner23b7eb62007-06-15 23:05:46 +00001126 PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock);
Chris Lattner8394d792007-06-05 20:53:16 +00001127 PN->addIncoming(RHSCond, RHSBlock);
1128
1129 // ZExt result to int.
1130 return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "land.ext"));
1131}
1132
1133RValue CodeGenFunction::EmitBinaryLOr(const BinaryOperator *E) {
Chris Lattner23b7eb62007-06-15 23:05:46 +00001134 llvm::Value *LHSCond = EvaluateExprAsBool(E->getLHS());
Chris Lattner8394d792007-06-05 20:53:16 +00001135
Chris Lattner23b7eb62007-06-15 23:05:46 +00001136 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("lor_cont");
1137 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("lor_rhs");
Chris Lattner8394d792007-06-05 20:53:16 +00001138
Chris Lattner23b7eb62007-06-15 23:05:46 +00001139 llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
Chris Lattner8394d792007-06-05 20:53:16 +00001140 Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock);
1141
1142 EmitBlock(RHSBlock);
Chris Lattner23b7eb62007-06-15 23:05:46 +00001143 llvm::Value *RHSCond = EvaluateExprAsBool(E->getRHS());
Chris Lattner8394d792007-06-05 20:53:16 +00001144
1145 // Reaquire the RHS block, as there may be subblocks inserted.
1146 RHSBlock = Builder.GetInsertBlock();
1147 EmitBlock(ContBlock);
1148
1149 // Create a PHI node. If we just evaluted the LHS condition, the result is
1150 // true. If we evaluated both, the result is the RHS condition.
Chris Lattner23b7eb62007-06-15 23:05:46 +00001151 llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor");
Chris Lattner8394d792007-06-05 20:53:16 +00001152 PN->reserveOperandSpace(2);
Chris Lattner23b7eb62007-06-15 23:05:46 +00001153 PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock);
Chris Lattner8394d792007-06-05 20:53:16 +00001154 PN->addIncoming(RHSCond, RHSBlock);
1155
1156 // ZExt result to int.
1157 return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "lor.ext"));
1158}
1159
1160RValue CodeGenFunction::EmitBinaryAssign(const BinaryOperator *E) {
1161 LValue LHS = EmitLValue(E->getLHS());
1162
1163 QualType RHSTy;
1164 RValue RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSTy);
1165
1166 // Convert the RHS to the type of the LHS.
Chris Lattnerf033c142007-06-22 19:05:19 +00001167 RHS = EmitConversion(RHS, RHSTy, E->getType());
Chris Lattner8394d792007-06-05 20:53:16 +00001168
1169 // Store the value into the LHS.
1170 EmitStoreThroughLValue(RHS, LHS, E->getType());
1171
1172 // Return the converted RHS.
1173 return RHS;
1174}
1175
Chris Lattner9369a562007-06-29 16:31:29 +00001176
Chris Lattner8394d792007-06-05 20:53:16 +00001177RValue CodeGenFunction::EmitBinaryComma(const BinaryOperator *E) {
1178 EmitExpr(E->getLHS());
1179 return EmitExpr(E->getRHS());
1180}