blob: 22b0819cd71a940ca824df68f597133546c96ccf [file] [log] [blame]
Lang Hames7331cc32016-05-23 20:34:19 +00001#include "llvm/ADT/APFloat.h"
2#include "llvm/ADT/STLExtras.h"
3#include "llvm/IR/BasicBlock.h"
4#include "llvm/IR/Constants.h"
5#include "llvm/IR/DerivedTypes.h"
6#include "llvm/IR/Function.h"
7#include "llvm/IR/Instructions.h"
8#include "llvm/IR/IRBuilder.h"
9#include "llvm/IR/LLVMContext.h"
10#include "llvm/IR/LegacyPassManager.h"
11#include "llvm/IR/Module.h"
12#include "llvm/IR/Type.h"
13#include "llvm/IR/Verifier.h"
14#include "llvm/Support/TargetSelect.h"
15#include "llvm/Target/TargetMachine.h"
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/Transforms/Scalar/GVN.h"
18#include "KaleidoscopeJIT.h"
19#include <cassert>
20#include <cctype>
21#include <cstdint>
22#include <cstdio>
23#include <cstdlib>
24#include <map>
25#include <memory>
26#include <string>
27#include <utility>
28#include <vector>
29
30using namespace llvm;
31using namespace llvm::orc;
32
33//===----------------------------------------------------------------------===//
34// Lexer
35//===----------------------------------------------------------------------===//
36
37// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
38// of these for known things.
39enum Token {
40 tok_eof = -1,
41
42 // commands
43 tok_def = -2,
44 tok_extern = -3,
45
46 // primary
47 tok_identifier = -4,
48 tok_number = -5,
49
50 // control
51 tok_if = -6,
52 tok_then = -7,
53 tok_else = -8,
54 tok_for = -9,
55 tok_in = -10,
56
57 // operators
58 tok_binary = -11,
59 tok_unary = -12,
60
61 // var definition
62 tok_var = -13
63};
64
65static std::string IdentifierStr; // Filled in if tok_identifier
66static double NumVal; // Filled in if tok_number
67
68/// gettok - Return the next token from standard input.
69static int gettok() {
70 static int LastChar = ' ';
71
72 // Skip any whitespace.
73 while (isspace(LastChar))
74 LastChar = getchar();
75
76 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
77 IdentifierStr = LastChar;
78 while (isalnum((LastChar = getchar())))
79 IdentifierStr += LastChar;
80
81 if (IdentifierStr == "def")
82 return tok_def;
83 if (IdentifierStr == "extern")
84 return tok_extern;
85 if (IdentifierStr == "if")
86 return tok_if;
87 if (IdentifierStr == "then")
88 return tok_then;
89 if (IdentifierStr == "else")
90 return tok_else;
91 if (IdentifierStr == "for")
92 return tok_for;
93 if (IdentifierStr == "in")
94 return tok_in;
95 if (IdentifierStr == "binary")
96 return tok_binary;
97 if (IdentifierStr == "unary")
98 return tok_unary;
99 if (IdentifierStr == "var")
100 return tok_var;
101 return tok_identifier;
102 }
103
104 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
105 std::string NumStr;
106 do {
107 NumStr += LastChar;
108 LastChar = getchar();
109 } while (isdigit(LastChar) || LastChar == '.');
110
111 NumVal = strtod(NumStr.c_str(), nullptr);
112 return tok_number;
113 }
114
115 if (LastChar == '#') {
116 // Comment until end of line.
117 do
118 LastChar = getchar();
119 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
120
121 if (LastChar != EOF)
122 return gettok();
123 }
124
125 // Check for end of file. Don't eat the EOF.
126 if (LastChar == EOF)
127 return tok_eof;
128
129 // Otherwise, just return the character as its ascii value.
130 int ThisChar = LastChar;
131 LastChar = getchar();
132 return ThisChar;
133}
134
135//===----------------------------------------------------------------------===//
136// Abstract Syntax Tree (aka Parse Tree)
137//===----------------------------------------------------------------------===//
138namespace {
139/// ExprAST - Base class for all expression nodes.
140class ExprAST {
141public:
142 virtual ~ExprAST() {}
143 virtual Value *codegen() = 0;
144};
145
146/// NumberExprAST - Expression class for numeric literals like "1.0".
147class NumberExprAST : public ExprAST {
148 double Val;
149
150public:
151 NumberExprAST(double Val) : Val(Val) {}
152 Value *codegen() override;
153};
154
155/// VariableExprAST - Expression class for referencing a variable, like "a".
156class VariableExprAST : public ExprAST {
157 std::string Name;
158
159public:
160 VariableExprAST(const std::string &Name) : Name(Name) {}
161 const std::string &getName() const { return Name; }
162 Value *codegen() override;
163};
164
165/// UnaryExprAST - Expression class for a unary operator.
166class UnaryExprAST : public ExprAST {
167 char Opcode;
168 std::unique_ptr<ExprAST> Operand;
169
170public:
171 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
172 : Opcode(Opcode), Operand(std::move(Operand)) {}
173 Value *codegen() override;
174};
175
176/// BinaryExprAST - Expression class for a binary operator.
177class BinaryExprAST : public ExprAST {
178 char Op;
179 std::unique_ptr<ExprAST> LHS, RHS;
180
181public:
182 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
183 std::unique_ptr<ExprAST> RHS)
184 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
185 Value *codegen() override;
186};
187
188/// CallExprAST - Expression class for function calls.
189class CallExprAST : public ExprAST {
190 std::string Callee;
191 std::vector<std::unique_ptr<ExprAST>> Args;
192
193public:
194 CallExprAST(const std::string &Callee,
195 std::vector<std::unique_ptr<ExprAST>> Args)
196 : Callee(Callee), Args(std::move(Args)) {}
197 Value *codegen() override;
198};
199
200/// IfExprAST - Expression class for if/then/else.
201class IfExprAST : public ExprAST {
202 std::unique_ptr<ExprAST> Cond, Then, Else;
203
204public:
205 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
206 std::unique_ptr<ExprAST> Else)
207 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
208 Value *codegen() override;
209};
210
211/// ForExprAST - Expression class for for/in.
212class ForExprAST : public ExprAST {
213 std::string VarName;
214 std::unique_ptr<ExprAST> Start, End, Step, Body;
215
216public:
217 ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
218 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
219 std::unique_ptr<ExprAST> Body)
220 : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
221 Step(std::move(Step)), Body(std::move(Body)) {}
222 Value *codegen() override;
223};
224
225/// VarExprAST - Expression class for var/in
226class VarExprAST : public ExprAST {
227 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
228 std::unique_ptr<ExprAST> Body;
229
230public:
231 VarExprAST(
232 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
233 std::unique_ptr<ExprAST> Body)
234 : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
235 Value *codegen() override;
236};
237
238/// PrototypeAST - This class represents the "prototype" for a function,
239/// which captures its name, and its argument names (thus implicitly the number
240/// of arguments the function takes), as well as if it is an operator.
241class PrototypeAST {
242 std::string Name;
243 std::vector<std::string> Args;
244 bool IsOperator;
245 unsigned Precedence; // Precedence if a binary op.
246
247public:
248 PrototypeAST(const std::string &Name, std::vector<std::string> Args,
249 bool IsOperator = false, unsigned Prec = 0)
250 : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
251 Precedence(Prec) {}
252 Function *codegen();
253 const std::string &getName() const { return Name; }
254
255 bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
256 bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
257
258 char getOperatorName() const {
259 assert(isUnaryOp() || isBinaryOp());
260 return Name[Name.size() - 1];
261 }
262
263 unsigned getBinaryPrecedence() const { return Precedence; }
264};
265
266/// FunctionAST - This class represents a function definition itself.
267class FunctionAST {
268 std::unique_ptr<PrototypeAST> Proto;
269 std::unique_ptr<ExprAST> Body;
270
271public:
272 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
273 std::unique_ptr<ExprAST> Body)
274 : Proto(std::move(Proto)), Body(std::move(Body)) {}
275 Function *codegen();
276};
277} // end anonymous namespace
278
279//===----------------------------------------------------------------------===//
280// Parser
281//===----------------------------------------------------------------------===//
282
283/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
284/// token the parser is looking at. getNextToken reads another token from the
285/// lexer and updates CurTok with its results.
286static int CurTok;
287static int getNextToken() { return CurTok = gettok(); }
288
289/// BinopPrecedence - This holds the precedence for each binary operator that is
290/// defined.
291static std::map<char, int> BinopPrecedence;
292
293/// GetTokPrecedence - Get the precedence of the pending binary operator token.
294static int GetTokPrecedence() {
295 if (!isascii(CurTok))
296 return -1;
297
298 // Make sure it's a declared binop.
299 int TokPrec = BinopPrecedence[CurTok];
300 if (TokPrec <= 0)
301 return -1;
302 return TokPrec;
303}
304
305/// LogError* - These are little helper functions for error handling.
306std::unique_ptr<ExprAST> LogError(const char *Str) {
307 fprintf(stderr, "Error: %s\n", Str);
308 return nullptr;
309}
310
311std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
312 LogError(Str);
313 return nullptr;
314}
315
316static std::unique_ptr<ExprAST> ParseExpression();
317
318/// numberexpr ::= number
319static std::unique_ptr<ExprAST> ParseNumberExpr() {
320 auto Result = llvm::make_unique<NumberExprAST>(NumVal);
321 getNextToken(); // consume the number
322 return std::move(Result);
323}
324
325/// parenexpr ::= '(' expression ')'
326static std::unique_ptr<ExprAST> ParseParenExpr() {
327 getNextToken(); // eat (.
328 auto V = ParseExpression();
329 if (!V)
330 return nullptr;
331
332 if (CurTok != ')')
333 return LogError("expected ')'");
334 getNextToken(); // eat ).
335 return V;
336}
337
338/// identifierexpr
339/// ::= identifier
340/// ::= identifier '(' expression* ')'
341static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
342 std::string IdName = IdentifierStr;
343
344 getNextToken(); // eat identifier.
345
346 if (CurTok != '(') // Simple variable ref.
347 return llvm::make_unique<VariableExprAST>(IdName);
348
349 // Call.
350 getNextToken(); // eat (
351 std::vector<std::unique_ptr<ExprAST>> Args;
352 if (CurTok != ')') {
353 while (true) {
354 if (auto Arg = ParseExpression())
355 Args.push_back(std::move(Arg));
356 else
357 return nullptr;
358
359 if (CurTok == ')')
360 break;
361
362 if (CurTok != ',')
363 return LogError("Expected ')' or ',' in argument list");
364 getNextToken();
365 }
366 }
367
368 // Eat the ')'.
369 getNextToken();
370
371 return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
372}
373
374/// ifexpr ::= 'if' expression 'then' expression 'else' expression
375static std::unique_ptr<ExprAST> ParseIfExpr() {
376 getNextToken(); // eat the if.
377
378 // condition.
379 auto Cond = ParseExpression();
380 if (!Cond)
381 return nullptr;
382
383 if (CurTok != tok_then)
384 return LogError("expected then");
385 getNextToken(); // eat the then
386
387 auto Then = ParseExpression();
388 if (!Then)
389 return nullptr;
390
391 if (CurTok != tok_else)
392 return LogError("expected else");
393
394 getNextToken();
395
396 auto Else = ParseExpression();
397 if (!Else)
398 return nullptr;
399
400 return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
401 std::move(Else));
402}
403
404/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
405static std::unique_ptr<ExprAST> ParseForExpr() {
406 getNextToken(); // eat the for.
407
408 if (CurTok != tok_identifier)
409 return LogError("expected identifier after for");
410
411 std::string IdName = IdentifierStr;
412 getNextToken(); // eat identifier.
413
414 if (CurTok != '=')
415 return LogError("expected '=' after for");
416 getNextToken(); // eat '='.
417
418 auto Start = ParseExpression();
419 if (!Start)
420 return nullptr;
421 if (CurTok != ',')
422 return LogError("expected ',' after for start value");
423 getNextToken();
424
425 auto End = ParseExpression();
426 if (!End)
427 return nullptr;
428
429 // The step value is optional.
430 std::unique_ptr<ExprAST> Step;
431 if (CurTok == ',') {
432 getNextToken();
433 Step = ParseExpression();
434 if (!Step)
435 return nullptr;
436 }
437
438 if (CurTok != tok_in)
439 return LogError("expected 'in' after for");
440 getNextToken(); // eat 'in'.
441
442 auto Body = ParseExpression();
443 if (!Body)
444 return nullptr;
445
446 return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
447 std::move(Step), std::move(Body));
448}
449
450/// varexpr ::= 'var' identifier ('=' expression)?
451// (',' identifier ('=' expression)?)* 'in' expression
452static std::unique_ptr<ExprAST> ParseVarExpr() {
453 getNextToken(); // eat the var.
454
455 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
456
457 // At least one variable name is required.
458 if (CurTok != tok_identifier)
459 return LogError("expected identifier after var");
460
461 while (true) {
462 std::string Name = IdentifierStr;
463 getNextToken(); // eat identifier.
464
465 // Read the optional initializer.
466 std::unique_ptr<ExprAST> Init = nullptr;
467 if (CurTok == '=') {
468 getNextToken(); // eat the '='.
469
470 Init = ParseExpression();
471 if (!Init)
472 return nullptr;
473 }
474
475 VarNames.push_back(std::make_pair(Name, std::move(Init)));
476
477 // End of var list, exit loop.
478 if (CurTok != ',')
479 break;
480 getNextToken(); // eat the ','.
481
482 if (CurTok != tok_identifier)
483 return LogError("expected identifier list after var");
484 }
485
486 // At this point, we have to have 'in'.
487 if (CurTok != tok_in)
488 return LogError("expected 'in' keyword after 'var'");
489 getNextToken(); // eat 'in'.
490
491 auto Body = ParseExpression();
492 if (!Body)
493 return nullptr;
494
495 return llvm::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
496}
497
498/// primary
499/// ::= identifierexpr
500/// ::= numberexpr
501/// ::= parenexpr
502/// ::= ifexpr
503/// ::= forexpr
504/// ::= varexpr
505static std::unique_ptr<ExprAST> ParsePrimary() {
506 switch (CurTok) {
507 default:
508 return LogError("unknown token when expecting an expression");
509 case tok_identifier:
510 return ParseIdentifierExpr();
511 case tok_number:
512 return ParseNumberExpr();
513 case '(':
514 return ParseParenExpr();
515 case tok_if:
516 return ParseIfExpr();
517 case tok_for:
518 return ParseForExpr();
519 case tok_var:
520 return ParseVarExpr();
521 }
522}
523
524/// unary
525/// ::= primary
526/// ::= '!' unary
527static std::unique_ptr<ExprAST> ParseUnary() {
528 // If the current token is not an operator, it must be a primary expr.
529 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
530 return ParsePrimary();
531
532 // If this is a unary operator, read it.
533 int Opc = CurTok;
534 getNextToken();
535 if (auto Operand = ParseUnary())
536 return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
537 return nullptr;
538}
539
540/// binoprhs
541/// ::= ('+' unary)*
542static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
543 std::unique_ptr<ExprAST> LHS) {
544 // If this is a binop, find its precedence.
545 while (true) {
546 int TokPrec = GetTokPrecedence();
547
548 // If this is a binop that binds at least as tightly as the current binop,
549 // consume it, otherwise we are done.
550 if (TokPrec < ExprPrec)
551 return LHS;
552
553 // Okay, we know this is a binop.
554 int BinOp = CurTok;
555 getNextToken(); // eat binop
556
557 // Parse the unary expression after the binary operator.
558 auto RHS = ParseUnary();
559 if (!RHS)
560 return nullptr;
561
562 // If BinOp binds less tightly with RHS than the operator after RHS, let
563 // the pending operator take RHS as its LHS.
564 int NextPrec = GetTokPrecedence();
565 if (TokPrec < NextPrec) {
566 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
567 if (!RHS)
568 return nullptr;
569 }
570
571 // Merge LHS/RHS.
572 LHS =
573 llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
574 }
575}
576
577/// expression
578/// ::= unary binoprhs
579///
580static std::unique_ptr<ExprAST> ParseExpression() {
581 auto LHS = ParseUnary();
582 if (!LHS)
583 return nullptr;
584
585 return ParseBinOpRHS(0, std::move(LHS));
586}
587
588/// prototype
589/// ::= id '(' id* ')'
590/// ::= binary LETTER number? (id, id)
591/// ::= unary LETTER (id)
592static std::unique_ptr<PrototypeAST> ParsePrototype() {
593 std::string FnName;
594
595 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
596 unsigned BinaryPrecedence = 30;
597
598 switch (CurTok) {
599 default:
600 return LogErrorP("Expected function name in prototype");
601 case tok_identifier:
602 FnName = IdentifierStr;
603 Kind = 0;
604 getNextToken();
605 break;
606 case tok_unary:
607 getNextToken();
608 if (!isascii(CurTok))
609 return LogErrorP("Expected unary operator");
610 FnName = "unary";
611 FnName += (char)CurTok;
612 Kind = 1;
613 getNextToken();
614 break;
615 case tok_binary:
616 getNextToken();
617 if (!isascii(CurTok))
618 return LogErrorP("Expected binary operator");
619 FnName = "binary";
620 FnName += (char)CurTok;
621 Kind = 2;
622 getNextToken();
623
624 // Read the precedence if present.
625 if (CurTok == tok_number) {
626 if (NumVal < 1 || NumVal > 100)
627 return LogErrorP("Invalid precedecnce: must be 1..100");
628 BinaryPrecedence = (unsigned)NumVal;
629 getNextToken();
630 }
631 break;
632 }
633
634 if (CurTok != '(')
635 return LogErrorP("Expected '(' in prototype");
636
637 std::vector<std::string> ArgNames;
638 while (getNextToken() == tok_identifier)
639 ArgNames.push_back(IdentifierStr);
640 if (CurTok != ')')
641 return LogErrorP("Expected ')' in prototype");
642
643 // success.
644 getNextToken(); // eat ')'.
645
646 // Verify right number of names for operator.
647 if (Kind && ArgNames.size() != Kind)
648 return LogErrorP("Invalid number of operands for operator");
649
650 return llvm::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
651 BinaryPrecedence);
652}
653
654/// definition ::= 'def' prototype expression
655static std::unique_ptr<FunctionAST> ParseDefinition() {
656 getNextToken(); // eat def.
657 auto Proto = ParsePrototype();
658 if (!Proto)
659 return nullptr;
660
661 if (auto E = ParseExpression())
662 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
663 return nullptr;
664}
665
666/// toplevelexpr ::= expression
667static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
668 if (auto E = ParseExpression()) {
669 // Make an anonymous proto.
670 auto Proto = llvm::make_unique<PrototypeAST>("__anon_expr",
671 std::vector<std::string>());
672 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
673 }
674 return nullptr;
675}
676
677/// external ::= 'extern' prototype
678static std::unique_ptr<PrototypeAST> ParseExtern() {
679 getNextToken(); // eat extern.
680 return ParsePrototype();
681}
682
683//===----------------------------------------------------------------------===//
684// Code Generation
685//===----------------------------------------------------------------------===//
686
687static LLVMContext TheContext;
688static IRBuilder<> Builder(TheContext);
689static std::unique_ptr<Module> TheModule;
690static std::map<std::string, AllocaInst *> NamedValues;
691static std::unique_ptr<KaleidoscopeJIT> TheJIT;
692static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
693
694Value *LogErrorV(const char *Str) {
695 LogError(Str);
696 return nullptr;
697}
698
699Function *getFunction(std::string Name) {
700 // First, see if the function has already been added to the current module.
701 if (auto *F = TheModule->getFunction(Name))
702 return F;
703
704 // If not, check whether we can codegen the declaration from some existing
705 // prototype.
706 auto FI = FunctionProtos.find(Name);
707 if (FI != FunctionProtos.end())
708 return FI->second->codegen();
709
710 // If no existing prototype exists, return null.
711 return nullptr;
712}
713
714/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
715/// the function. This is used for mutable variables etc.
716static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
717 const std::string &VarName) {
718 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
719 TheFunction->getEntryBlock().begin());
720 return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr, VarName);
721}
722
723Value *NumberExprAST::codegen() {
724 return ConstantFP::get(TheContext, APFloat(Val));
725}
726
727Value *VariableExprAST::codegen() {
728 // Look this variable up in the function.
729 Value *V = NamedValues[Name];
730 if (!V)
731 return LogErrorV("Unknown variable name");
732
733 // Load the value.
734 return Builder.CreateLoad(V, Name.c_str());
735}
736
737Value *UnaryExprAST::codegen() {
738 Value *OperandV = Operand->codegen();
739 if (!OperandV)
740 return nullptr;
741
742 Function *F = getFunction(std::string("unary") + Opcode);
743 if (!F)
744 return LogErrorV("Unknown unary operator");
745
746 return Builder.CreateCall(F, OperandV, "unop");
747}
748
749Value *BinaryExprAST::codegen() {
750 // Special case '=' because we don't want to emit the LHS as an expression.
751 if (Op == '=') {
752 // Assignment requires the LHS to be an identifier.
753 // This assume we're building without RTTI because LLVM builds that way by
754 // default. If you build LLVM with RTTI this can be changed to a
755 // dynamic_cast for automatic error checking.
756 VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
757 if (!LHSE)
758 return LogErrorV("destination of '=' must be a variable");
759 // Codegen the RHS.
760 Value *Val = RHS->codegen();
761 if (!Val)
762 return nullptr;
763
764 // Look up the name.
765 Value *Variable = NamedValues[LHSE->getName()];
766 if (!Variable)
767 return LogErrorV("Unknown variable name");
768
769 Builder.CreateStore(Val, Variable);
770 return Val;
771 }
772
773 Value *L = LHS->codegen();
774 Value *R = RHS->codegen();
775 if (!L || !R)
776 return nullptr;
777
778 switch (Op) {
779 case '+':
780 return Builder.CreateFAdd(L, R, "addtmp");
781 case '-':
782 return Builder.CreateFSub(L, R, "subtmp");
783 case '*':
784 return Builder.CreateFMul(L, R, "multmp");
785 case '<':
786 L = Builder.CreateFCmpULT(L, R, "cmptmp");
787 // Convert bool 0/1 to double 0.0 or 1.0
788 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
789 default:
790 break;
791 }
792
793 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
794 // a call to it.
795 Function *F = getFunction(std::string("binary") + Op);
796 assert(F && "binary operator not found!");
797
798 Value *Ops[] = {L, R};
799 return Builder.CreateCall(F, Ops, "binop");
800}
801
802Value *CallExprAST::codegen() {
803 // Look up the name in the global module table.
804 Function *CalleeF = getFunction(Callee);
805 if (!CalleeF)
806 return LogErrorV("Unknown function referenced");
807
808 // If argument mismatch error.
809 if (CalleeF->arg_size() != Args.size())
810 return LogErrorV("Incorrect # arguments passed");
811
812 std::vector<Value *> ArgsV;
813 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
814 ArgsV.push_back(Args[i]->codegen());
815 if (!ArgsV.back())
816 return nullptr;
817 }
818
819 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
820}
821
822Value *IfExprAST::codegen() {
823 Value *CondV = Cond->codegen();
824 if (!CondV)
825 return nullptr;
826
827 // Convert condition to a bool by comparing equal to 0.0.
828 CondV = Builder.CreateFCmpONE(
829 CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");
830
831 Function *TheFunction = Builder.GetInsertBlock()->getParent();
832
833 // Create blocks for the then and else cases. Insert the 'then' block at the
834 // end of the function.
835 BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
836 BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
837 BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");
838
839 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
840
841 // Emit then value.
842 Builder.SetInsertPoint(ThenBB);
843
844 Value *ThenV = Then->codegen();
845 if (!ThenV)
846 return nullptr;
847
848 Builder.CreateBr(MergeBB);
849 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
850 ThenBB = Builder.GetInsertBlock();
851
852 // Emit else block.
853 TheFunction->getBasicBlockList().push_back(ElseBB);
854 Builder.SetInsertPoint(ElseBB);
855
856 Value *ElseV = Else->codegen();
857 if (!ElseV)
858 return nullptr;
859
860 Builder.CreateBr(MergeBB);
861 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
862 ElseBB = Builder.GetInsertBlock();
863
864 // Emit merge block.
865 TheFunction->getBasicBlockList().push_back(MergeBB);
866 Builder.SetInsertPoint(MergeBB);
867 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");
868
869 PN->addIncoming(ThenV, ThenBB);
870 PN->addIncoming(ElseV, ElseBB);
871 return PN;
872}
873
874// Output for-loop as:
875// var = alloca double
876// ...
877// start = startexpr
878// store start -> var
879// goto loop
880// loop:
881// ...
882// bodyexpr
883// ...
884// loopend:
885// step = stepexpr
886// endcond = endexpr
887//
888// curvar = load var
889// nextvar = curvar + step
890// store nextvar -> var
891// br endcond, loop, endloop
892// outloop:
893Value *ForExprAST::codegen() {
894 Function *TheFunction = Builder.GetInsertBlock()->getParent();
895
896 // Create an alloca for the variable in the entry block.
897 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
898
899 // Emit the start code first, without 'variable' in scope.
900 Value *StartVal = Start->codegen();
901 if (!StartVal)
902 return nullptr;
903
904 // Store the value into the alloca.
905 Builder.CreateStore(StartVal, Alloca);
906
907 // Make the new basic block for the loop header, inserting after current
908 // block.
909 BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);
910
911 // Insert an explicit fall through from the current block to the LoopBB.
912 Builder.CreateBr(LoopBB);
913
914 // Start insertion in LoopBB.
915 Builder.SetInsertPoint(LoopBB);
916
917 // Within the loop, the variable is defined equal to the PHI node. If it
918 // shadows an existing variable, we have to restore it, so save it now.
919 AllocaInst *OldVal = NamedValues[VarName];
920 NamedValues[VarName] = Alloca;
921
922 // Emit the body of the loop. This, like any other expr, can change the
923 // current BB. Note that we ignore the value computed by the body, but don't
924 // allow an error.
925 if (!Body->codegen())
926 return nullptr;
927
928 // Emit the step value.
929 Value *StepVal = nullptr;
930 if (Step) {
931 StepVal = Step->codegen();
932 if (!StepVal)
933 return nullptr;
934 } else {
935 // If not specified, use 1.0.
936 StepVal = ConstantFP::get(TheContext, APFloat(1.0));
937 }
938
939 // Compute the end condition.
940 Value *EndCond = End->codegen();
941 if (!EndCond)
942 return nullptr;
943
944 // Reload, increment, and restore the alloca. This handles the case where
945 // the body of the loop mutates the variable.
946 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
947 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
948 Builder.CreateStore(NextVar, Alloca);
949
950 // Convert condition to a bool by comparing equal to 0.0.
951 EndCond = Builder.CreateFCmpONE(
952 EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");
953
954 // Create the "after loop" block and insert it.
955 BasicBlock *AfterBB =
956 BasicBlock::Create(TheContext, "afterloop", TheFunction);
957
958 // Insert the conditional branch into the end of LoopEndBB.
959 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
960
961 // Any new code will be inserted in AfterBB.
962 Builder.SetInsertPoint(AfterBB);
963
964 // Restore the unshadowed variable.
965 if (OldVal)
966 NamedValues[VarName] = OldVal;
967 else
968 NamedValues.erase(VarName);
969
970 // for expr always returns 0.0.
971 return Constant::getNullValue(Type::getDoubleTy(TheContext));
972}
973
974Value *VarExprAST::codegen() {
975 std::vector<AllocaInst *> OldBindings;
976
977 Function *TheFunction = Builder.GetInsertBlock()->getParent();
978
979 // Register all variables and emit their initializer.
980 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
981 const std::string &VarName = VarNames[i].first;
982 ExprAST *Init = VarNames[i].second.get();
983
984 // Emit the initializer before adding the variable to scope, this prevents
985 // the initializer from referencing the variable itself, and permits stuff
986 // like this:
987 // var a = 1 in
988 // var a = a in ... # refers to outer 'a'.
989 Value *InitVal;
990 if (Init) {
991 InitVal = Init->codegen();
992 if (!InitVal)
993 return nullptr;
994 } else { // If not specified, use 0.0.
995 InitVal = ConstantFP::get(TheContext, APFloat(0.0));
996 }
997
998 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
999 Builder.CreateStore(InitVal, Alloca);
1000
1001 // Remember the old variable binding so that we can restore the binding when
1002 // we unrecurse.
1003 OldBindings.push_back(NamedValues[VarName]);
1004
1005 // Remember this binding.
1006 NamedValues[VarName] = Alloca;
1007 }
1008
1009 // Codegen the body, now that all vars are in scope.
1010 Value *BodyVal = Body->codegen();
1011 if (!BodyVal)
1012 return nullptr;
1013
1014 // Pop all our variables from scope.
1015 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1016 NamedValues[VarNames[i].first] = OldBindings[i];
1017
1018 // Return the body computation.
1019 return BodyVal;
1020}
1021
1022Function *PrototypeAST::codegen() {
1023 // Make the function type: double(double,double) etc.
1024 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
1025 FunctionType *FT =
1026 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);
1027
1028 Function *F =
1029 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
1030
1031 // Set names for all arguments.
1032 unsigned Idx = 0;
1033 for (auto &Arg : F->args())
1034 Arg.setName(Args[Idx++]);
1035
1036 return F;
1037}
1038
1039Function *FunctionAST::codegen() {
1040 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
1041 // reference to it for use below.
1042 auto &P = *Proto;
1043 FunctionProtos[Proto->getName()] = std::move(Proto);
1044 Function *TheFunction = getFunction(P.getName());
1045 if (!TheFunction)
1046 return nullptr;
1047
1048 // If this is an operator, install it.
1049 if (P.isBinaryOp())
1050 BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
1051
1052 // Create a new basic block to start insertion into.
1053 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
1054 Builder.SetInsertPoint(BB);
1055
1056 // Record the function arguments in the NamedValues map.
1057 NamedValues.clear();
1058 for (auto &Arg : TheFunction->args()) {
1059 // Create an alloca for this variable.
1060 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
1061
1062 // Store the initial value into the alloca.
1063 Builder.CreateStore(&Arg, Alloca);
1064
1065 // Add arguments to variable symbol table.
1066 NamedValues[Arg.getName()] = Alloca;
1067 }
1068
1069 if (Value *RetVal = Body->codegen()) {
1070 // Finish off the function.
1071 Builder.CreateRet(RetVal);
1072
1073 // Validate the generated code, checking for consistency.
1074 verifyFunction(*TheFunction);
1075
1076 return TheFunction;
1077 }
1078
1079 // Error reading body, remove function.
1080 TheFunction->eraseFromParent();
1081
1082 if (P.isBinaryOp())
1083 BinopPrecedence.erase(Proto->getOperatorName());
1084 return nullptr;
1085}
1086
1087//===----------------------------------------------------------------------===//
1088// Top-Level parsing and JIT Driver
1089//===----------------------------------------------------------------------===//
1090
1091static void InitializeModule() {
1092 // Open a new module.
1093 TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
1094 TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());
1095}
1096
1097static void HandleDefinition() {
1098 if (auto FnAST = ParseDefinition()) {
1099 if (auto *FnIR = FnAST->codegen()) {
1100 fprintf(stderr, "Read function definition:");
1101 FnIR->dump();
1102 TheJIT->addModule(std::move(TheModule));
1103 InitializeModule();
1104 }
1105 } else {
1106 // Skip token for error recovery.
1107 getNextToken();
1108 }
1109}
1110
1111static void HandleExtern() {
1112 if (auto ProtoAST = ParseExtern()) {
1113 if (auto *FnIR = ProtoAST->codegen()) {
1114 fprintf(stderr, "Read extern: ");
1115 FnIR->dump();
1116 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
1117 }
1118 } else {
1119 // Skip token for error recovery.
1120 getNextToken();
1121 }
1122}
1123
1124static void HandleTopLevelExpression() {
1125 // Evaluate a top-level expression into an anonymous function.
1126 if (auto FnAST = ParseTopLevelExpr()) {
1127 if (FnAST->codegen()) {
1128 // JIT the module containing the anonymous expression, keeping a handle so
1129 // we can free it later.
1130 auto H = TheJIT->addModule(std::move(TheModule));
1131 InitializeModule();
1132
1133 // Search the JIT for the __anon_expr symbol.
1134 auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
1135 assert(ExprSymbol && "Function not found");
1136
1137 // Get the symbol's address and cast it to the right type (takes no
1138 // arguments, returns a double) so we can call it as a native function.
1139 double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
1140 fprintf(stderr, "Evaluated to %f\n", FP());
1141
1142 // Delete the anonymous expression module from the JIT.
1143 TheJIT->removeModule(H);
1144 }
1145 } else {
1146 // Skip token for error recovery.
1147 getNextToken();
1148 }
1149}
1150
1151/// top ::= definition | external | expression | ';'
1152static void MainLoop() {
1153 while (true) {
1154 fprintf(stderr, "ready> ");
1155 switch (CurTok) {
1156 case tok_eof:
1157 return;
1158 case ';': // ignore top-level semicolons.
1159 getNextToken();
1160 break;
1161 case tok_def:
1162 HandleDefinition();
1163 break;
1164 case tok_extern:
1165 HandleExtern();
1166 break;
1167 default:
1168 HandleTopLevelExpression();
1169 break;
1170 }
1171 }
1172}
1173
1174//===----------------------------------------------------------------------===//
1175// "Library" functions that can be "extern'd" from user code.
1176//===----------------------------------------------------------------------===//
1177
1178/// putchard - putchar that takes a double and returns 0.
1179extern "C" double putchard(double X) {
1180 fputc((char)X, stderr);
1181 return 0;
1182}
1183
1184/// printd - printf that takes a double prints it as "%f\n", returning 0.
1185extern "C" double printd(double X) {
1186 fprintf(stderr, "%f\n", X);
1187 return 0;
1188}
1189
1190//===----------------------------------------------------------------------===//
1191// Main driver code.
1192//===----------------------------------------------------------------------===//
1193
1194int main() {
1195 InitializeNativeTarget();
1196 InitializeNativeTargetAsmPrinter();
1197 InitializeNativeTargetAsmParser();
1198
1199 // Install standard binary operators.
1200 // 1 is lowest precedence.
1201 BinopPrecedence['='] = 2;
1202 BinopPrecedence['<'] = 10;
1203 BinopPrecedence['+'] = 20;
1204 BinopPrecedence['-'] = 20;
1205 BinopPrecedence['*'] = 40; // highest.
1206
1207 // Prime the first token.
1208 fprintf(stderr, "ready> ");
1209 getNextToken();
1210
1211 TheJIT = llvm::make_unique<KaleidoscopeJIT>();
1212
1213 InitializeModule();
1214
1215 // Run the main "interpreter loop" now.
1216 MainLoop();
1217
1218 return 0;
1219}