Silviu Baranga | ea63a7f | 2016-02-08 17:02:45 +0000 | [diff] [blame] | 1 | ; RUN: opt -basicaa -loop-accesses -analyze < %s | FileCheck %s -check-prefix=LAA |
| 2 | ; RUN: opt -loop-versioning -S < %s | FileCheck %s -check-prefix=LV |
| 3 | |
| 4 | target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128" |
| 5 | |
| 6 | ; For this loop: |
| 7 | ; unsigned index = 0; |
| 8 | ; for (int i = 0; i < n; i++) { |
| 9 | ; A[2 * index] = A[2 * index] + B[i]; |
| 10 | ; index++; |
| 11 | ; } |
| 12 | ; |
| 13 | ; SCEV is unable to prove that A[2 * i] does not overflow. |
| 14 | ; |
| 15 | ; Analyzing the IR does not help us because the GEPs are not |
| 16 | ; affine AddRecExprs. However, we can turn them into AddRecExprs |
| 17 | ; using SCEV Predicates. |
| 18 | ; |
| 19 | ; Once we have an affine expression we need to add an additional NUSW |
| 20 | ; to check that the pointers don't wrap since the GEPs are not |
| 21 | ; inbound. |
| 22 | |
| 23 | ; LAA-LABEL: f1 |
| 24 | ; LAA: Memory dependences are safe{{$}} |
| 25 | ; LAA: SCEV assumptions: |
| 26 | ; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nusw> |
| 27 | ; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw> |
| 28 | |
| 29 | ; The expression for %mul_ext as analyzed by SCEV is |
| 30 | ; (zext i32 {0,+,2}<%for.body> to i64) |
| 31 | ; We have added the nusw flag to turn this expression into the SCEV expression: |
| 32 | ; i64 {0,+,2}<%for.body> |
| 33 | |
| 34 | ; LV-LABEL: f1 |
| 35 | ; LV-LABEL: for.body.lver.check |
| 36 | ; LV: [[PredCheck0:%[^ ]*]] = icmp ne i128 |
| 37 | ; LV: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] |
| 38 | ; LV: [[PredCheck1:%[^ ]*]] = icmp ne i128 |
| 39 | ; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] |
| 40 | ; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph |
| 41 | define void @f1(i16* noalias %a, |
| 42 | i16* noalias %b, i64 %N) { |
| 43 | entry: |
| 44 | br label %for.body |
| 45 | |
| 46 | for.body: ; preds = %for.body, %entry |
| 47 | %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] |
| 48 | %ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ] |
| 49 | |
| 50 | %mul = mul i32 %ind1, 2 |
| 51 | %mul_ext = zext i32 %mul to i64 |
| 52 | |
| 53 | %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext |
| 54 | %loadA = load i16, i16* %arrayidxA, align 2 |
| 55 | |
| 56 | %arrayidxB = getelementptr i16, i16* %b, i64 %ind |
| 57 | %loadB = load i16, i16* %arrayidxB, align 2 |
| 58 | |
| 59 | %add = mul i16 %loadA, %loadB |
| 60 | |
| 61 | store i16 %add, i16* %arrayidxA, align 2 |
| 62 | |
| 63 | %inc = add nuw nsw i64 %ind, 1 |
| 64 | %inc1 = add i32 %ind1, 1 |
| 65 | |
| 66 | %exitcond = icmp eq i64 %inc, %N |
| 67 | br i1 %exitcond, label %for.end, label %for.body |
| 68 | |
| 69 | for.end: ; preds = %for.body |
| 70 | ret void |
| 71 | } |
| 72 | |
| 73 | ; For this loop: |
| 74 | ; unsigned index = n; |
| 75 | ; for (int i = 0; i < n; i++) { |
| 76 | ; A[2 * index] = A[2 * index] + B[i]; |
| 77 | ; index--; |
| 78 | ; } |
| 79 | ; |
| 80 | ; the SCEV expression for 2 * index is not an AddRecExpr |
| 81 | ; (and implictly not affine). However, we are able to make assumptions |
| 82 | ; that will turn the expression into an affine one and continue the |
| 83 | ; analysis. |
| 84 | ; |
| 85 | ; Once we have an affine expression we need to add an additional NUSW |
| 86 | ; to check that the pointers don't wrap since the GEPs are not |
| 87 | ; inbounds. |
| 88 | ; |
| 89 | ; This loop has a negative stride for A, and the nusw flag is required in |
| 90 | ; order to properly extend the increment from i32 -4 to i64 -4. |
| 91 | |
| 92 | ; LAA-LABEL: f2 |
| 93 | ; LAA: Memory dependences are safe{{$}} |
| 94 | ; LAA: SCEV assumptions: |
| 95 | ; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nusw> |
| 96 | ; LAA-NEXT: {((2 * (zext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body> Added Flags: <nusw> |
| 97 | |
| 98 | ; The expression for %mul_ext as analyzed by SCEV is |
| 99 | ; (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64) |
| 100 | ; We have added the nusw flag to turn this expression into the following SCEV: |
| 101 | ; i64 {zext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body> |
| 102 | |
| 103 | ; LV-LABEL: f2 |
| 104 | ; LV-LABEL: for.body.lver.check |
| 105 | ; LV: [[PredCheck0:%[^ ]*]] = icmp ne i128 |
| 106 | ; LV: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] |
| 107 | ; LV: [[PredCheck1:%[^ ]*]] = icmp ne i128 |
| 108 | ; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] |
| 109 | ; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph |
| 110 | define void @f2(i16* noalias %a, |
| 111 | i16* noalias %b, i64 %N) { |
| 112 | entry: |
| 113 | %TruncN = trunc i64 %N to i32 |
| 114 | br label %for.body |
| 115 | |
| 116 | for.body: ; preds = %for.body, %entry |
| 117 | %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] |
| 118 | %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ] |
| 119 | |
| 120 | %mul = mul i32 %ind1, 2 |
| 121 | %mul_ext = zext i32 %mul to i64 |
| 122 | |
| 123 | %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext |
| 124 | %loadA = load i16, i16* %arrayidxA, align 2 |
| 125 | |
| 126 | %arrayidxB = getelementptr i16, i16* %b, i64 %ind |
| 127 | %loadB = load i16, i16* %arrayidxB, align 2 |
| 128 | |
| 129 | %add = mul i16 %loadA, %loadB |
| 130 | |
| 131 | store i16 %add, i16* %arrayidxA, align 2 |
| 132 | |
| 133 | %inc = add nuw nsw i64 %ind, 1 |
| 134 | %dec = sub i32 %ind1, 1 |
| 135 | |
| 136 | %exitcond = icmp eq i64 %inc, %N |
| 137 | br i1 %exitcond, label %for.end, label %for.body |
| 138 | |
| 139 | for.end: ; preds = %for.body |
| 140 | ret void |
| 141 | } |
| 142 | |
| 143 | ; We replicate the tests above, but this time sign extend 2 * index instead |
| 144 | ; of zero extending it. |
| 145 | |
| 146 | ; LAA-LABEL: f3 |
| 147 | ; LAA: Memory dependences are safe{{$}} |
| 148 | ; LAA: SCEV assumptions: |
| 149 | ; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nssw> |
| 150 | ; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw> |
| 151 | |
| 152 | ; The expression for %mul_ext as analyzed by SCEV is |
| 153 | ; i64 (sext i32 {0,+,2}<%for.body> to i64) |
| 154 | ; We have added the nssw flag to turn this expression into the following SCEV: |
| 155 | ; i64 {0,+,2}<%for.body> |
| 156 | |
| 157 | ; LV-LABEL: f3 |
| 158 | ; LV-LABEL: for.body.lver.check |
| 159 | ; LV: [[PredCheck0:%[^ ]*]] = icmp ne i128 |
| 160 | ; LV: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] |
| 161 | ; LV: [[PredCheck1:%[^ ]*]] = icmp ne i128 |
| 162 | ; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] |
| 163 | ; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph |
| 164 | define void @f3(i16* noalias %a, |
| 165 | i16* noalias %b, i64 %N) { |
| 166 | entry: |
| 167 | br label %for.body |
| 168 | |
| 169 | for.body: ; preds = %for.body, %entry |
| 170 | %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] |
| 171 | %ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ] |
| 172 | |
| 173 | %mul = mul i32 %ind1, 2 |
| 174 | %mul_ext = sext i32 %mul to i64 |
| 175 | |
| 176 | %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext |
| 177 | %loadA = load i16, i16* %arrayidxA, align 2 |
| 178 | |
| 179 | %arrayidxB = getelementptr i16, i16* %b, i64 %ind |
| 180 | %loadB = load i16, i16* %arrayidxB, align 2 |
| 181 | |
| 182 | %add = mul i16 %loadA, %loadB |
| 183 | |
| 184 | store i16 %add, i16* %arrayidxA, align 2 |
| 185 | |
| 186 | %inc = add nuw nsw i64 %ind, 1 |
| 187 | %inc1 = add i32 %ind1, 1 |
| 188 | |
| 189 | %exitcond = icmp eq i64 %inc, %N |
| 190 | br i1 %exitcond, label %for.end, label %for.body |
| 191 | |
| 192 | for.end: ; preds = %for.body |
| 193 | ret void |
| 194 | } |
| 195 | |
| 196 | ; LAA-LABEL: f4 |
| 197 | ; LAA: Memory dependences are safe{{$}} |
| 198 | ; LAA: SCEV assumptions: |
| 199 | ; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw> |
| 200 | ; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body> Added Flags: <nusw> |
| 201 | |
| 202 | ; The expression for %mul_ext as analyzed by SCEV is |
| 203 | ; i64 (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64) |
| 204 | ; We have added the nssw flag to turn this expression into the following SCEV: |
| 205 | ; i64 {sext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body> |
| 206 | |
| 207 | ; LV-LABEL: f4 |
| 208 | ; LV-LABEL: for.body.lver.check |
| 209 | ; LV: [[PredCheck0:%[^ ]*]] = icmp ne i128 |
| 210 | ; LV: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] |
| 211 | ; LV: [[PredCheck1:%[^ ]*]] = icmp ne i128 |
| 212 | ; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] |
| 213 | ; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph |
| 214 | define void @f4(i16* noalias %a, |
| 215 | i16* noalias %b, i64 %N) { |
| 216 | entry: |
| 217 | %TruncN = trunc i64 %N to i32 |
| 218 | br label %for.body |
| 219 | |
| 220 | for.body: ; preds = %for.body, %entry |
| 221 | %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] |
| 222 | %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ] |
| 223 | |
| 224 | %mul = mul i32 %ind1, 2 |
| 225 | %mul_ext = sext i32 %mul to i64 |
| 226 | |
| 227 | %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext |
| 228 | %loadA = load i16, i16* %arrayidxA, align 2 |
| 229 | |
| 230 | %arrayidxB = getelementptr i16, i16* %b, i64 %ind |
| 231 | %loadB = load i16, i16* %arrayidxB, align 2 |
| 232 | |
| 233 | %add = mul i16 %loadA, %loadB |
| 234 | |
| 235 | store i16 %add, i16* %arrayidxA, align 2 |
| 236 | |
| 237 | %inc = add nuw nsw i64 %ind, 1 |
| 238 | %dec = sub i32 %ind1, 1 |
| 239 | |
| 240 | %exitcond = icmp eq i64 %inc, %N |
| 241 | br i1 %exitcond, label %for.end, label %for.body |
| 242 | |
| 243 | for.end: ; preds = %for.body |
| 244 | ret void |
| 245 | } |
| 246 | |
| 247 | ; The following function is similar to the one above, but has the GEP |
| 248 | ; to pointer %A inbounds. The index %mul doesn't have the nsw flag. |
| 249 | ; This means that the SCEV expression for %mul can wrap and we need |
| 250 | ; a SCEV predicate to continue analysis. |
| 251 | ; |
| 252 | ; We can still analyze this by adding the required no wrap SCEV predicates. |
| 253 | |
| 254 | ; LAA-LABEL: f5 |
| 255 | ; LAA: Memory dependences are safe{{$}} |
| 256 | ; LAA: SCEV assumptions: |
| 257 | ; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw> |
| 258 | ; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body> Added Flags: <nusw> |
| 259 | |
| 260 | ; LV-LABEL: f5 |
| 261 | ; LV-LABEL: for.body.lver.check |
| 262 | define void @f5(i16* noalias %a, |
| 263 | i16* noalias %b, i64 %N) { |
| 264 | entry: |
| 265 | %TruncN = trunc i64 %N to i32 |
| 266 | br label %for.body |
| 267 | |
| 268 | for.body: ; preds = %for.body, %entry |
| 269 | %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] |
| 270 | %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ] |
| 271 | |
| 272 | %mul = mul i32 %ind1, 2 |
| 273 | |
| 274 | %arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul |
| 275 | %loadA = load i16, i16* %arrayidxA, align 2 |
| 276 | |
| 277 | %arrayidxB = getelementptr inbounds i16, i16* %b, i64 %ind |
| 278 | %loadB = load i16, i16* %arrayidxB, align 2 |
| 279 | |
| 280 | %add = mul i16 %loadA, %loadB |
| 281 | |
| 282 | store i16 %add, i16* %arrayidxA, align 2 |
| 283 | |
| 284 | %inc = add nuw nsw i64 %ind, 1 |
| 285 | %dec = sub i32 %ind1, 1 |
| 286 | |
| 287 | %exitcond = icmp eq i64 %inc, %N |
| 288 | br i1 %exitcond, label %for.end, label %for.body |
| 289 | |
| 290 | for.end: ; preds = %for.body |
| 291 | ret void |
| 292 | } |