blob: df7792bdd1529408384c891acbf02f2f0824a822 [file] [log] [blame]
Chris Lattner2f5add62007-04-05 06:57:15 +00001//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
Steve Naroff09ef4742007-03-09 23:16:33 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Steve Naroff and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Chris Lattner2f5add62007-04-05 06:57:15 +000010// This file implements the NumericLiteralParser, CharLiteralParser, and
11// StringLiteralParser interfaces.
Steve Naroff09ef4742007-03-09 23:16:33 +000012//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Lex/LiteralSupport.h"
16#include "clang/Lex/Preprocessor.h"
17#include "clang/Basic/TargetInfo.h"
18#include "clang/Basic/Diagnostic.h"
Chris Lattner5b743d32007-04-04 05:52:58 +000019#include "llvm/ADT/APInt.h"
Steve Naroff4f88b312007-03-13 22:37:02 +000020#include "llvm/ADT/StringExtras.h"
Steve Naroff09ef4742007-03-09 23:16:33 +000021using namespace llvm;
22using namespace clang;
23
Chris Lattner2f5add62007-04-05 06:57:15 +000024/// HexDigitValue - Return the value of the specified hex digit, or -1 if it's
25/// not valid.
26static int HexDigitValue(char C) {
27 if (C >= '0' && C <= '9') return C-'0';
28 if (C >= 'a' && C <= 'f') return C-'a'+10;
29 if (C >= 'A' && C <= 'F') return C-'A'+10;
30 return -1;
31}
32
33/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
34/// either a character or a string literal.
35static unsigned ProcessCharEscape(const char *&ThisTokBuf,
36 const char *ThisTokEnd, bool &HadError,
37 SourceLocation Loc, Preprocessor &PP) {
38 // Skip the '\' char.
39 ++ThisTokBuf;
40
41 // We know that this character can't be off the end of the buffer, because
42 // that would have been \", which would not have been the end of string.
43 unsigned ResultChar = *ThisTokBuf++;
44 switch (ResultChar) {
45 // These map to themselves.
46 case '\\': case '\'': case '"': case '?': break;
47
48 // These have fixed mappings.
49 case 'a':
50 // TODO: K&R: the meaning of '\\a' is different in traditional C
51 ResultChar = 7;
52 break;
53 case 'b':
54 ResultChar = 8;
55 break;
56 case 'e':
57 PP.Diag(Loc, diag::ext_nonstandard_escape, "e");
58 ResultChar = 27;
59 break;
60 case 'f':
61 ResultChar = 12;
62 break;
63 case 'n':
64 ResultChar = 10;
65 break;
66 case 'r':
67 ResultChar = 13;
68 break;
69 case 't':
70 ResultChar = 9;
71 break;
72 case 'v':
73 ResultChar = 11;
74 break;
75
76 //case 'u': case 'U': // FIXME: UCNs.
77 case 'x': // Hex escape.
78 if (ThisTokBuf == ThisTokEnd ||
79 (ResultChar = HexDigitValue(*ThisTokBuf)) == ~0U) {
80 PP.Diag(Loc, diag::err_hex_escape_no_digits);
81 HadError = 1;
82 ResultChar = 0;
83 break;
84 }
85 ++ThisTokBuf; // Consumed one hex digit.
86
87 // FIXME: warn_hex_escape_too_large. '\x12345'
88 assert(0 && "hex escape: unimp!");
89 break;
90 case '0': case '1': case '2': case '3':
91 case '4': case '5': case '6': case '7':
92 // Octal escapes.
93 // FIXME: warn_octal_escape_too_large. '\012345'
94 assert(0 && "octal escape: unimp!");
95 break;
96
97 // Otherwise, these are not valid escapes.
98 case '(': case '{': case '[': case '%':
99 // GCC accepts these as extensions. We warn about them as such though.
100 if (!PP.getLangOptions().NoExtensions) {
101 PP.Diag(Loc, diag::ext_nonstandard_escape,
102 std::string()+(char)ResultChar);
103 break;
104 }
105 // FALL THROUGH.
106 default:
107 if (isgraph(ThisTokBuf[0])) {
108 PP.Diag(Loc, diag::ext_unknown_escape, std::string()+(char)ResultChar);
109 } else {
110 PP.Diag(Loc, diag::ext_unknown_escape, "x"+utohexstr(ResultChar));
111 }
112 break;
113 }
114
115 return ResultChar;
116}
117
118
119
120
Steve Naroff09ef4742007-03-09 23:16:33 +0000121/// integer-constant: [C99 6.4.4.1]
122/// decimal-constant integer-suffix
123/// octal-constant integer-suffix
124/// hexadecimal-constant integer-suffix
125/// decimal-constant:
126/// nonzero-digit
127/// decimal-constant digit
128/// octal-constant:
129/// 0
130/// octal-constant octal-digit
131/// hexadecimal-constant:
132/// hexadecimal-prefix hexadecimal-digit
133/// hexadecimal-constant hexadecimal-digit
134/// hexadecimal-prefix: one of
135/// 0x 0X
136/// integer-suffix:
137/// unsigned-suffix [long-suffix]
138/// unsigned-suffix [long-long-suffix]
139/// long-suffix [unsigned-suffix]
140/// long-long-suffix [unsigned-sufix]
141/// nonzero-digit:
142/// 1 2 3 4 5 6 7 8 9
143/// octal-digit:
144/// 0 1 2 3 4 5 6 7
145/// hexadecimal-digit:
146/// 0 1 2 3 4 5 6 7 8 9
147/// a b c d e f
148/// A B C D E F
149/// unsigned-suffix: one of
150/// u U
151/// long-suffix: one of
152/// l L
153/// long-long-suffix: one of
154/// ll LL
155///
156/// floating-constant: [C99 6.4.4.2]
157/// TODO: add rules...
158///
159
160NumericLiteralParser::
161NumericLiteralParser(const char *begin, const char *end,
Chris Lattner2f5add62007-04-05 06:57:15 +0000162 SourceLocation TokLoc, Preprocessor &pp)
163 : PP(pp), ThisTokBegin(begin), ThisTokEnd(end) {
Steve Naroff09ef4742007-03-09 23:16:33 +0000164 s = DigitsBegin = begin;
165 saw_exponent = false;
166 saw_period = false;
167 saw_float_suffix = false;
168 isLong = false;
169 isUnsigned = false;
170 isLongLong = false;
171 hadError = false;
172
173 if (*s == '0') { // parse radix
174 s++;
175 if ((*s == 'x' || *s == 'X') && (isxdigit(s[1]) || s[1] == '.')) {
176 s++;
177 radix = 16;
178 DigitsBegin = s;
179 s = SkipHexDigits(s);
180 if (s == ThisTokEnd) {
181 } else if (*s == '.') {
182 s++;
183 saw_period = true;
184 s = SkipHexDigits(s);
185 }
186 // A binary exponent can appear with or with a '.'. If dotted, the
187 // binary exponent is required.
188 if (*s == 'p' || *s == 'P') {
189 s++;
190 saw_exponent = true;
191 if (*s == '+' || *s == '-') s++; // sign
192 const char *first_non_digit = SkipDigits(s);
193 if (first_non_digit == s) {
194 Diag(TokLoc, diag::err_exponent_has_no_digits);
195 return;
196 } else {
197 s = first_non_digit;
198 }
199 } else if (saw_period) {
200 Diag(TokLoc, diag::err_hexconstant_requires_exponent);
201 return;
202 }
203 } else {
204 // For now, the radix is set to 8. If we discover that we have a
205 // floating point constant, the radix will change to 10. Octal floating
206 // point constants are not permitted (only decimal and hexadecimal).
207 radix = 8;
208 DigitsBegin = s;
209 s = SkipOctalDigits(s);
210 if (s == ThisTokEnd) {
211 } else if (*s == '.') {
212 s++;
213 radix = 10;
214 saw_period = true;
215 s = SkipDigits(s);
216 }
217 if (*s == 'e' || *s == 'E') { // exponent
218 s++;
219 radix = 10;
220 saw_exponent = true;
221 if (*s == '+' || *s == '-') s++; // sign
222 const char *first_non_digit = SkipDigits(s);
223 if (first_non_digit == s) {
224 Diag(TokLoc, diag::err_exponent_has_no_digits);
225 return;
226 } else {
227 s = first_non_digit;
228 }
229 }
230 }
231 } else { // the first digit is non-zero
232 radix = 10;
233 s = SkipDigits(s);
234 if (s == ThisTokEnd) {
235 } else if (*s == '.') {
236 s++;
237 saw_period = true;
238 s = SkipDigits(s);
239 }
240 if (*s == 'e' || *s == 'E') { // exponent
241 s++;
242 saw_exponent = true;
243 if (*s == '+' || *s == '-') s++; // sign
244 const char *first_non_digit = SkipDigits(s);
245 if (first_non_digit == s) {
246 Diag(TokLoc, diag::err_exponent_has_no_digits);
247 return;
248 } else {
249 s = first_non_digit;
250 }
251 }
252 }
253
254 SuffixBegin = s;
255
256 if (saw_period || saw_exponent) {
257 if (s < ThisTokEnd) { // parse size suffix (float, long double)
258 if (*s == 'f' || *s == 'F') {
259 saw_float_suffix = true;
260 s++;
261 } else if (*s == 'l' || *s == 'L') {
262 isLong = true;
263 s++;
264 }
265 if (s != ThisTokEnd) {
266 Diag(TokLoc, diag::err_invalid_suffix_float_constant,
267 std::string(SuffixBegin, ThisTokEnd));
268 return;
269 }
270 }
271 } else {
272 if (s < ThisTokEnd) {
273 // parse int suffix - they can appear in any order ("ul", "lu", "llu").
274 if (*s == 'u' || *s == 'U') {
275 s++;
276 isUnsigned = true; // unsigned
277
278 if ((s < ThisTokEnd) && (*s == 'l' || *s == 'L')) {
279 s++;
280 // handle "long long" type - l's need to be adjacent and same case.
281 if ((s < ThisTokEnd) && (*s == *(s-1))) {
282 isLongLong = true; // unsigned long long
283 s++;
284 } else {
285 isLong = true; // unsigned long
286 }
287 }
288 } else if (*s == 'l' || *s == 'L') {
289 s++;
290 // handle "long long" types - l's need to be adjacent and same case.
291 if ((s < ThisTokEnd) && (*s == *(s-1))) {
292 s++;
293 if ((s < ThisTokEnd) && (*s == 'u' || *s == 'U')) {
294 isUnsigned = true; // unsigned long long
295 s++;
296 } else {
297 isLongLong = true; // long long
298 }
299 } else { // handle "long" types
300 if ((s < ThisTokEnd) && (*s == 'u' || *s == 'U')) {
301 isUnsigned = true; // unsigned long
302 s++;
303 } else {
304 isLong = true; // long
305 }
306 }
307 }
308 if (s != ThisTokEnd) {
309 Diag(TokLoc, diag::err_invalid_suffix_integer_constant,
310 std::string(SuffixBegin, ThisTokEnd));
311 return;
312 }
313 }
314 }
315}
316
Steve Naroff451d8f162007-03-12 23:22:38 +0000317bool NumericLiteralParser::GetIntegerValue(uintmax_t &val) {
Steve Narofff2fb89e2007-03-13 20:29:44 +0000318 uintmax_t max_value = UINTMAX_MAX / radix;
Chris Lattner5b743d32007-04-04 05:52:58 +0000319 unsigned max_digit = UINTMAX_MAX % radix;
Steve Naroff09ef4742007-03-09 23:16:33 +0000320
321 val = 0;
Steve Naroff451d8f162007-03-12 23:22:38 +0000322 s = DigitsBegin;
323 while (s < SuffixBegin) {
Chris Lattner2f5add62007-04-05 06:57:15 +0000324 unsigned C = HexDigitValue(*s++);
Steve Naroff451d8f162007-03-12 23:22:38 +0000325
Chris Lattner5b743d32007-04-04 05:52:58 +0000326 if (val > max_value || (val == max_value && C > max_digit)) {
Steve Naroff451d8f162007-03-12 23:22:38 +0000327 return false; // Overflow!
328 } else {
329 val *= radix;
Chris Lattner5b743d32007-04-04 05:52:58 +0000330 val += C;
Steve Naroff451d8f162007-03-12 23:22:38 +0000331 }
332 }
333 return true;
334}
335
336bool NumericLiteralParser::GetIntegerValue(int &val) {
Steve Narofff2fb89e2007-03-13 20:29:44 +0000337 intmax_t max_value = INT_MAX / radix;
Chris Lattner5b743d32007-04-04 05:52:58 +0000338 unsigned max_digit = INT_MAX % radix;
Steve Naroff451d8f162007-03-12 23:22:38 +0000339
340 val = 0;
Steve Naroff09ef4742007-03-09 23:16:33 +0000341 s = DigitsBegin;
342 while (s < SuffixBegin) {
Chris Lattner2f5add62007-04-05 06:57:15 +0000343 unsigned C = HexDigitValue(*s++);
Steve Naroff09ef4742007-03-09 23:16:33 +0000344
Chris Lattner5b743d32007-04-04 05:52:58 +0000345 if (val > max_value || (val == max_value && C > max_digit)) {
Steve Naroff09ef4742007-03-09 23:16:33 +0000346 return false; // Overflow!
347 } else {
348 val *= radix;
Chris Lattner5b743d32007-04-04 05:52:58 +0000349 val += C;
Steve Naroff09ef4742007-03-09 23:16:33 +0000350 }
351 }
352 return true;
353}
Steve Narofff2fb89e2007-03-13 20:29:44 +0000354
Chris Lattner5b743d32007-04-04 05:52:58 +0000355/// GetIntegerValue - Convert this numeric literal value to an APInt that
Chris Lattner871b4e12007-04-04 06:36:34 +0000356/// matches Val's input width. If there is an overflow, set Val to the low bits
357/// of the result and return true. Otherwise, return false.
Chris Lattner5b743d32007-04-04 05:52:58 +0000358bool NumericLiteralParser::GetIntegerValue(APInt &Val) {
359 Val = 0;
360 s = DigitsBegin;
361
Chris Lattner5b743d32007-04-04 05:52:58 +0000362 APInt RadixVal(Val.getBitWidth(), radix);
363 APInt CharVal(Val.getBitWidth(), 0);
364 APInt OldVal = Val;
Chris Lattner871b4e12007-04-04 06:36:34 +0000365
366 bool OverflowOccurred = false;
Chris Lattner5b743d32007-04-04 05:52:58 +0000367 while (s < SuffixBegin) {
Chris Lattner2f5add62007-04-05 06:57:15 +0000368 unsigned C = HexDigitValue(*s++);
Chris Lattner5b743d32007-04-04 05:52:58 +0000369
370 // If this letter is out of bound for this radix, reject it.
Chris Lattner531efa42007-04-04 06:49:26 +0000371 assert(C < radix && "NumericLiteralParser ctor should have rejected this");
Chris Lattner5b743d32007-04-04 05:52:58 +0000372
373 CharVal = C;
374
Chris Lattner871b4e12007-04-04 06:36:34 +0000375 // Add the digit to the value in the appropriate radix. If adding in digits
376 // made the value smaller, then this overflowed.
Chris Lattner5b743d32007-04-04 05:52:58 +0000377 OldVal = Val;
Chris Lattner871b4e12007-04-04 06:36:34 +0000378
379 // Multiply by radix, did overflow occur on the multiply?
Chris Lattner5b743d32007-04-04 05:52:58 +0000380 Val *= RadixVal;
Chris Lattner871b4e12007-04-04 06:36:34 +0000381 OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
382
383 OldVal = Val;
384 // Add value, did overflow occur on the value?
Chris Lattner5b743d32007-04-04 05:52:58 +0000385 Val += CharVal;
Chris Lattner871b4e12007-04-04 06:36:34 +0000386 OverflowOccurred |= Val.ult(OldVal);
387 OverflowOccurred |= Val.ult(CharVal);
Chris Lattner5b743d32007-04-04 05:52:58 +0000388 }
Chris Lattner871b4e12007-04-04 06:36:34 +0000389 return OverflowOccurred;
Chris Lattner5b743d32007-04-04 05:52:58 +0000390}
391
392
Steve Narofff2fb89e2007-03-13 20:29:44 +0000393void NumericLiteralParser::Diag(SourceLocation Loc, unsigned DiagID,
394 const std::string &M) {
395 PP.Diag(Loc, DiagID, M);
396 hadError = true;
397}
Steve Naroff4f88b312007-03-13 22:37:02 +0000398
Chris Lattner2f5add62007-04-05 06:57:15 +0000399
400CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
401 SourceLocation Loc, Preprocessor &PP) {
402 // At this point we know that the character matches the regex "L?'.*'".
403 HadError = false;
404 Value = 0;
405
406 // Determine if this is a wide character.
407 IsWide = begin[0] == 'L';
408 if (IsWide) ++begin;
409
410 // Skip over the entry quote.
411 assert(begin[0] == '\'' && "Invalid token lexed");
412 ++begin;
413
414 // FIXME: This assumes that 'int' is 32-bits in overflow calculation, and the
415 // size of "value".
416 assert(PP.getTargetInfo().getIntWidth(Loc) == 32 &&
417 "Assumes sizeof(int) == 4 for now");
418 // FIXME: This assumes that wchar_t is 32-bits for now.
419 assert(PP.getTargetInfo().getWCharWidth(Loc) == 32 &&
420 "Assumes sizeof(wchar_t) == 4 for now");
421 // FIXME: This extensively assumes that 'char' is 8-bits.
422 assert(PP.getTargetInfo().getCharWidth(Loc) == 8 &&
423 "Assumes char is 8 bits");
424
425 bool isFirstChar = true;
426 bool isMultiChar = false;
427 while (begin[0] != '\'') {
428 unsigned ResultChar;
429 if (begin[0] != '\\') // If this is a normal character, consume it.
430 ResultChar = *begin++;
431 else // Otherwise, this is an escape character.
432 ResultChar = ProcessCharEscape(begin, end, HadError, Loc, PP);
433
434 // If this is a multi-character constant (e.g. 'abc'), handle it. These are
435 // implementation defined (C99 6.4.4.4p10).
436 if (!isFirstChar) {
437 // If this is the second character being processed, do special handling.
438 if (!isMultiChar) {
439 isMultiChar = true;
440
441 // Warn about discarding the top bits for multi-char wide-character
442 // constants (L'abcd').
443 if (IsWide)
444 PP.Diag(Loc, diag::warn_extraneous_wide_char_constant);
445 }
446
447 if (IsWide) {
448 // Emulate GCC's (unintentional?) behavior: L'ab' -> L'b'.
449 Value = 0;
450 } else {
451 // Narrow character literals act as though their value is concatenated
452 // in this implementation.
453 if (((Value << 8) >> 8) != Value)
454 PP.Diag(Loc, diag::warn_char_constant_too_large);
455 Value <<= 8;
456 }
457 }
458
459 Value += ResultChar;
460 isFirstChar = false;
461 }
462
463 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
464 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
465 // character constants are not sign extended in the this implementation:
466 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
467 if (!IsWide && !isMultiChar && (Value & 128) &&
468 PP.getTargetInfo().isCharSigned(Loc))
469 Value = (signed char)Value;
470}
471
472
Steve Naroff4f88b312007-03-13 22:37:02 +0000473/// string-literal: [C99 6.4.5]
474/// " [s-char-sequence] "
475/// L" [s-char-sequence] "
476/// s-char-sequence:
477/// s-char
478/// s-char-sequence s-char
479/// s-char:
480/// any source character except the double quote ",
481/// backslash \, or newline character
482/// escape-character
483/// universal-character-name
484/// escape-character: [C99 6.4.4.4]
485/// \ escape-code
486/// universal-character-name
487/// escape-code:
488/// character-escape-code
489/// octal-escape-code
490/// hex-escape-code
491/// character-escape-code: one of
492/// n t b r f v a
493/// \ ' " ?
494/// octal-escape-code:
495/// octal-digit
496/// octal-digit octal-digit
497/// octal-digit octal-digit octal-digit
498/// hex-escape-code:
499/// x hex-digit
500/// hex-escape-code hex-digit
501/// universal-character-name:
502/// \u hex-quad
503/// \U hex-quad hex-quad
504/// hex-quad:
505/// hex-digit hex-digit hex-digit hex-digit
Chris Lattner2f5add62007-04-05 06:57:15 +0000506///
Steve Naroff4f88b312007-03-13 22:37:02 +0000507StringLiteralParser::
508StringLiteralParser(const LexerToken *StringToks, unsigned NumStringToks,
Chris Lattner2f5add62007-04-05 06:57:15 +0000509 Preprocessor &pp, TargetInfo &t)
510 : PP(pp), Target(t) {
Steve Naroff4f88b312007-03-13 22:37:02 +0000511 // Scan all of the string portions, remember the max individual token length,
512 // computing a bound on the concatenated string length, and see whether any
513 // piece is a wide-string. If any of the string portions is a wide-string
514 // literal, the result is a wide-string literal [C99 6.4.5p4].
515 MaxTokenLength = StringToks[0].getLength();
516 SizeBound = StringToks[0].getLength()-2; // -2 for "".
517 AnyWide = StringToks[0].getKind() == tok::wide_string_literal;
518
Steve Narofff1e53692007-03-23 22:27:02 +0000519 hadError = false;
Chris Lattner2f5add62007-04-05 06:57:15 +0000520
521 // Implement Translation Phase #6: concatenation of string literals
522 /// (C99 5.1.1.2p1). The common case is only one string fragment.
Steve Naroff4f88b312007-03-13 22:37:02 +0000523 for (unsigned i = 1; i != NumStringToks; ++i) {
524 // The string could be shorter than this if it needs cleaning, but this is a
525 // reasonable bound, which is all we need.
526 SizeBound += StringToks[i].getLength()-2; // -2 for "".
527
528 // Remember maximum string piece length.
529 if (StringToks[i].getLength() > MaxTokenLength)
530 MaxTokenLength = StringToks[i].getLength();
531
532 // Remember if we see any wide strings.
533 AnyWide |= StringToks[i].getKind() == tok::wide_string_literal;
534 }
535
536
537 // Include space for the null terminator.
538 ++SizeBound;
539
540 // TODO: K&R warning: "traditional C rejects string constant concatenation"
541
542 // Get the width in bytes of wchar_t. If no wchar_t strings are used, do not
543 // query the target. As such, wchar_tByteWidth is only valid if AnyWide=true.
544 wchar_tByteWidth = ~0U;
Chris Lattner2f5add62007-04-05 06:57:15 +0000545 if (AnyWide) {
Steve Naroff4f88b312007-03-13 22:37:02 +0000546 wchar_tByteWidth = Target.getWCharWidth(StringToks[0].getLocation());
Chris Lattner2f5add62007-04-05 06:57:15 +0000547 assert((wchar_tByteWidth & 7) == 0 && "Assumes wchar_t is byte multiple!");
548 wchar_tByteWidth /= 8;
549 }
Steve Naroff4f88b312007-03-13 22:37:02 +0000550
551 // The output buffer size needs to be large enough to hold wide characters.
552 // This is a worst-case assumption which basically corresponds to L"" "long".
553 if (AnyWide)
554 SizeBound *= wchar_tByteWidth;
555
556 // Size the temporary buffer to hold the result string data.
557 ResultBuf.resize(SizeBound);
558
559 // Likewise, but for each string piece.
560 SmallString<512> TokenBuf;
561 TokenBuf.resize(MaxTokenLength);
562
563 // Loop over all the strings, getting their spelling, and expanding them to
564 // wide strings as appropriate.
565 ResultPtr = &ResultBuf[0]; // Next byte to fill in.
566
567 for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
568 const char *ThisTokBuf = &TokenBuf[0];
569 // Get the spelling of the token, which eliminates trigraphs, etc. We know
570 // that ThisTokBuf points to a buffer that is big enough for the whole token
571 // and 'spelled' tokens can only shrink.
572 unsigned ThisTokLen = PP.getSpelling(StringToks[i], ThisTokBuf);
573 const char *ThisTokEnd = ThisTokBuf+ThisTokLen-1; // Skip end quote.
574
575 // TODO: Input character set mapping support.
576
577 // Skip L marker for wide strings.
578 if (ThisTokBuf[0] == 'L') ++ThisTokBuf;
579
580 assert(ThisTokBuf[0] == '"' && "Expected quote, lexer broken?");
581 ++ThisTokBuf;
582
583 while (ThisTokBuf != ThisTokEnd) {
584 // Is this a span of non-escape characters?
585 if (ThisTokBuf[0] != '\\') {
586 const char *InStart = ThisTokBuf;
587 do {
588 ++ThisTokBuf;
589 } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
590
591 // Copy the character span over.
592 unsigned Len = ThisTokBuf-InStart;
593 if (!AnyWide) {
594 memcpy(ResultPtr, InStart, Len);
595 ResultPtr += Len;
596 } else {
597 // Note: our internal rep of wide char tokens is always little-endian.
598 for (; Len; --Len, ++InStart) {
599 *ResultPtr++ = InStart[0];
600 // Add zeros at the end.
601 for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
602 *ResultPtr++ = 0;
603 }
604 }
605 continue;
606 }
607
Chris Lattner2f5add62007-04-05 06:57:15 +0000608 // Otherwise, this is an escape character. Process it.
609 unsigned ResultChar = ProcessCharEscape(ThisTokBuf, ThisTokEnd, hadError,
610 StringToks[i].getLocation(), PP);
Steve Naroff4f88b312007-03-13 22:37:02 +0000611
612 // Note: our internal rep of wide char tokens is always little-endian.
613 *ResultPtr++ = ResultChar & 0xFF;
614
615 if (AnyWide) {
616 for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
617 *ResultPtr++ = ResultChar >> i*8;
618 }
619 }
620 }
621
622 // Add zero terminator.
623 *ResultPtr = 0;
624 if (AnyWide) {
625 for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
626 *ResultPtr++ = 0;
627 }
628}