Tim Northover | 00ed996 | 2014-03-29 10:18:08 +0000 | [diff] [blame] | 1 | //===-- ARM64TargetTransformInfo.cpp - ARM64 specific TTI pass ------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | /// \file |
| 10 | /// This file implements a TargetTransformInfo analysis pass specific to the |
| 11 | /// ARM64 target machine. It uses the target's detailed information to provide |
| 12 | /// more precise answers to certain TTI queries, while letting the target |
| 13 | /// independent and default TTI implementations handle the rest. |
| 14 | /// |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #define DEBUG_TYPE "arm64tti" |
| 18 | #include "ARM64.h" |
| 19 | #include "ARM64TargetMachine.h" |
| 20 | #include "MCTargetDesc/ARM64AddressingModes.h" |
| 21 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 22 | #include "llvm/Support/Debug.h" |
| 23 | #include "llvm/Target/CostTable.h" |
| 24 | #include "llvm/Target/TargetLowering.h" |
| 25 | using namespace llvm; |
| 26 | |
| 27 | // Declare the pass initialization routine locally as target-specific passes |
| 28 | // don't havve a target-wide initialization entry point, and so we rely on the |
| 29 | // pass constructor initialization. |
| 30 | namespace llvm { |
| 31 | void initializeARM64TTIPass(PassRegistry &); |
| 32 | } |
| 33 | |
| 34 | namespace { |
| 35 | |
| 36 | class ARM64TTI final : public ImmutablePass, public TargetTransformInfo { |
| 37 | const ARM64TargetMachine *TM; |
| 38 | const ARM64Subtarget *ST; |
| 39 | const ARM64TargetLowering *TLI; |
| 40 | |
| 41 | /// Estimate the overhead of scalarizing an instruction. Insert and Extract |
| 42 | /// are set if the result needs to be inserted and/or extracted from vectors. |
| 43 | unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; |
| 44 | |
| 45 | public: |
| 46 | ARM64TTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) { |
| 47 | llvm_unreachable("This pass cannot be directly constructed"); |
| 48 | } |
| 49 | |
| 50 | ARM64TTI(const ARM64TargetMachine *TM) |
| 51 | : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()), |
| 52 | TLI(TM->getTargetLowering()) { |
| 53 | initializeARM64TTIPass(*PassRegistry::getPassRegistry()); |
| 54 | } |
| 55 | |
| 56 | void initializePass() override { pushTTIStack(this); } |
| 57 | |
| 58 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 59 | TargetTransformInfo::getAnalysisUsage(AU); |
| 60 | } |
| 61 | |
| 62 | /// Pass identification. |
| 63 | static char ID; |
| 64 | |
| 65 | /// Provide necessary pointer adjustments for the two base classes. |
| 66 | void *getAdjustedAnalysisPointer(const void *ID) override { |
| 67 | if (ID == &TargetTransformInfo::ID) |
| 68 | return (TargetTransformInfo *)this; |
| 69 | return this; |
| 70 | } |
| 71 | |
| 72 | /// \name Scalar TTI Implementations |
| 73 | /// @{ |
| 74 | |
| 75 | unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override; |
| 76 | PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override; |
| 77 | |
| 78 | /// @} |
| 79 | |
| 80 | /// \name Vector TTI Implementations |
| 81 | /// @{ |
| 82 | |
| 83 | unsigned getNumberOfRegisters(bool Vector) const override { |
| 84 | if (Vector) |
| 85 | return 32; |
| 86 | |
| 87 | return 31; |
| 88 | } |
| 89 | |
| 90 | unsigned getRegisterBitWidth(bool Vector) const override { |
| 91 | if (Vector) |
| 92 | return 128; |
| 93 | |
| 94 | return 64; |
| 95 | } |
| 96 | |
| 97 | unsigned getMaximumUnrollFactor() const override { return 2; } |
| 98 | |
| 99 | unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const |
| 100 | override; |
| 101 | |
| 102 | unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const |
| 103 | override; |
| 104 | |
| 105 | unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, |
| 106 | OperandValueKind Opd1Info = OK_AnyValue, |
| 107 | OperandValueKind Opd2Info = OK_AnyValue) const |
| 108 | override; |
| 109 | |
| 110 | unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const override; |
| 111 | |
| 112 | unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const |
| 113 | override; |
| 114 | |
| 115 | unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, |
| 116 | unsigned AddressSpace) const override; |
| 117 | /// @} |
| 118 | }; |
| 119 | |
| 120 | } // end anonymous namespace |
| 121 | |
| 122 | INITIALIZE_AG_PASS(ARM64TTI, TargetTransformInfo, "arm64tti", |
| 123 | "ARM64 Target Transform Info", true, true, false) |
| 124 | char ARM64TTI::ID = 0; |
| 125 | |
| 126 | ImmutablePass * |
| 127 | llvm::createARM64TargetTransformInfoPass(const ARM64TargetMachine *TM) { |
| 128 | return new ARM64TTI(TM); |
| 129 | } |
| 130 | |
| 131 | unsigned ARM64TTI::getIntImmCost(const APInt &Imm, Type *Ty) const { |
| 132 | assert(Ty->isIntegerTy()); |
| 133 | |
| 134 | unsigned BitSize = Ty->getPrimitiveSizeInBits(); |
| 135 | if (BitSize == 0) |
| 136 | return ~0U; |
| 137 | |
| 138 | int64_t Val = Imm.getSExtValue(); |
| 139 | if (Val == 0 || ARM64_AM::isLogicalImmediate(Val, BitSize)) |
| 140 | return 1; |
| 141 | |
| 142 | if ((int64_t)Val < 0) |
| 143 | Val = ~Val; |
| 144 | if (BitSize == 32) |
| 145 | Val &= (1LL << 32) - 1; |
| 146 | |
| 147 | unsigned LZ = countLeadingZeros((uint64_t)Val); |
| 148 | unsigned Shift = (63 - LZ) / 16; |
| 149 | // MOVZ is free so return true for one or fewer MOVK. |
| 150 | return (Shift == 0) ? 1 : Shift; |
| 151 | } |
| 152 | |
| 153 | ARM64TTI::PopcntSupportKind ARM64TTI::getPopcntSupport(unsigned TyWidth) const { |
| 154 | assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); |
| 155 | if (TyWidth == 32 || TyWidth == 64) |
| 156 | return PSK_FastHardware; |
| 157 | // TODO: ARM64TargetLowering::LowerCTPOP() supports 128bit popcount. |
| 158 | return PSK_Software; |
| 159 | } |
| 160 | |
| 161 | unsigned ARM64TTI::getCastInstrCost(unsigned Opcode, Type *Dst, |
| 162 | Type *Src) const { |
| 163 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| 164 | assert(ISD && "Invalid opcode"); |
| 165 | |
| 166 | EVT SrcTy = TLI->getValueType(Src); |
| 167 | EVT DstTy = TLI->getValueType(Dst); |
| 168 | |
| 169 | if (!SrcTy.isSimple() || !DstTy.isSimple()) |
| 170 | return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); |
| 171 | |
| 172 | static const TypeConversionCostTblEntry<MVT> ConversionTbl[] = { |
| 173 | // LowerVectorINT_TO_FP: |
| 174 | { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, |
| 175 | { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 1 }, |
| 176 | { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 1 }, |
| 177 | { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 }, |
| 178 | { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, |
| 179 | { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, |
| 180 | { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 1 }, |
| 181 | { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 1 }, |
| 182 | { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 }, |
| 183 | { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, |
| 184 | // LowerVectorFP_TO_INT |
| 185 | { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, |
| 186 | { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, |
| 187 | { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, |
| 188 | { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, |
| 189 | { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 1 }, |
| 190 | { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 1 }, |
| 191 | { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 4 }, |
| 192 | { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 4 }, |
| 193 | }; |
| 194 | |
| 195 | int Idx = ConvertCostTableLookup<MVT>( |
| 196 | ConversionTbl, array_lengthof(ConversionTbl), ISD, DstTy.getSimpleVT(), |
| 197 | SrcTy.getSimpleVT()); |
| 198 | if (Idx != -1) |
| 199 | return ConversionTbl[Idx].Cost; |
| 200 | |
| 201 | return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); |
| 202 | } |
| 203 | |
| 204 | unsigned ARM64TTI::getVectorInstrCost(unsigned Opcode, Type *Val, |
| 205 | unsigned Index) const { |
| 206 | assert(Val->isVectorTy() && "This must be a vector type"); |
| 207 | |
| 208 | if (Index != -1U) { |
| 209 | // Legalize the type. |
| 210 | std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val); |
| 211 | |
| 212 | // This type is legalized to a scalar type. |
| 213 | if (!LT.second.isVector()) |
| 214 | return 0; |
| 215 | |
| 216 | // The type may be split. Normalize the index to the new type. |
| 217 | unsigned Width = LT.second.getVectorNumElements(); |
| 218 | Index = Index % Width; |
| 219 | |
| 220 | // The element at index zero is already inside the vector. |
| 221 | if (Index == 0) |
| 222 | return 0; |
| 223 | } |
| 224 | |
| 225 | // All other insert/extracts cost this much. |
| 226 | return 2; |
| 227 | } |
| 228 | |
| 229 | unsigned ARM64TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty, |
| 230 | OperandValueKind Opd1Info, |
| 231 | OperandValueKind Opd2Info) const { |
| 232 | // Legalize the type. |
| 233 | std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty); |
| 234 | |
| 235 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| 236 | |
| 237 | switch (ISD) { |
| 238 | default: |
| 239 | return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Opd1Info, |
| 240 | Opd2Info); |
| 241 | case ISD::ADD: |
| 242 | case ISD::MUL: |
| 243 | case ISD::XOR: |
| 244 | case ISD::OR: |
| 245 | case ISD::AND: |
| 246 | // These nodes are marked as 'custom' for combining purposes only. |
| 247 | // We know that they are legal. See LowerAdd in ISelLowering. |
| 248 | return 1 * LT.first; |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | unsigned ARM64TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const { |
| 253 | // Address computations in vectorized code with non-consecutive addresses will |
| 254 | // likely result in more instructions compared to scalar code where the |
| 255 | // computation can more often be merged into the index mode. The resulting |
| 256 | // extra micro-ops can significantly decrease throughput. |
| 257 | unsigned NumVectorInstToHideOverhead = 10; |
| 258 | |
| 259 | if (Ty->isVectorTy() && IsComplex) |
| 260 | return NumVectorInstToHideOverhead; |
| 261 | |
| 262 | // In many cases the address computation is not merged into the instruction |
| 263 | // addressing mode. |
| 264 | return 1; |
| 265 | } |
| 266 | |
| 267 | unsigned ARM64TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, |
| 268 | Type *CondTy) const { |
| 269 | |
| 270 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| 271 | // We don't lower vector selects well that are wider than the register width. |
| 272 | if (ValTy->isVectorTy() && ISD == ISD::SELECT) { |
| 273 | // We would need this many instructions to hide the scalarization happening. |
| 274 | unsigned AmortizationCost = 20; |
| 275 | static const TypeConversionCostTblEntry<MVT::SimpleValueType> |
| 276 | VectorSelectTbl[] = { |
| 277 | { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 * AmortizationCost }, |
| 278 | { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 * AmortizationCost }, |
| 279 | { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 * AmortizationCost }, |
| 280 | { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost }, |
| 281 | { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost }, |
| 282 | { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost } |
| 283 | }; |
| 284 | |
| 285 | EVT SelCondTy = TLI->getValueType(CondTy); |
| 286 | EVT SelValTy = TLI->getValueType(ValTy); |
| 287 | if (SelCondTy.isSimple() && SelValTy.isSimple()) { |
| 288 | int Idx = |
| 289 | ConvertCostTableLookup(VectorSelectTbl, ISD, SelCondTy.getSimpleVT(), |
| 290 | SelValTy.getSimpleVT()); |
| 291 | if (Idx != -1) |
| 292 | return VectorSelectTbl[Idx].Cost; |
| 293 | } |
| 294 | } |
| 295 | return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy); |
| 296 | } |
| 297 | |
| 298 | unsigned ARM64TTI::getMemoryOpCost(unsigned Opcode, Type *Src, |
| 299 | unsigned Alignment, |
| 300 | unsigned AddressSpace) const { |
| 301 | std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src); |
| 302 | |
| 303 | if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 && |
| 304 | Src->getVectorElementType()->isIntegerTy(64)) { |
| 305 | // Unaligned stores are extremely inefficient. We don't split |
| 306 | // unaligned v2i64 stores because the negative impact that has shown in |
| 307 | // practice on inlined memcpy code. |
| 308 | // We make v2i64 stores expensive so that we will only vectorize if there |
| 309 | // are 6 other instructions getting vectorized. |
| 310 | unsigned AmortizationCost = 6; |
| 311 | |
| 312 | return LT.first * 2 * AmortizationCost; |
| 313 | } |
| 314 | |
| 315 | if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) && |
| 316 | Src->getVectorNumElements() < 8) { |
| 317 | // We scalarize the loads/stores because there is not v.4b register and we |
| 318 | // have to promote the elements to v.4h. |
| 319 | unsigned NumVecElts = Src->getVectorNumElements(); |
| 320 | unsigned NumVectorizableInstsToAmortize = NumVecElts * 2; |
| 321 | // We generate 2 instructions per vector element. |
| 322 | return NumVectorizableInstsToAmortize * NumVecElts * 2; |
| 323 | } |
| 324 | |
| 325 | return LT.first; |
| 326 | } |