blob: b4dc3f975f118182fd714f25158f3d34ba1f9ef9 [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
Chris Lattner48b383b02003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnerd79749a2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattner0132aff2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000027 <li><a href="#paramattrs">Parameter Attributes</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000028 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000029 </ol>
30 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000031 <li><a href="#typesystem">Type System</a>
32 <ol>
Robert Bocchino820bc75b2006-02-17 21:18:08 +000033 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000034 <ol>
Misha Brukman76307852003-11-08 01:05:38 +000035 <li><a href="#t_classifications">Type Classifications</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000036 </ol>
37 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000038 <li><a href="#t_derived">Derived Types</a>
39 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000040 <li><a href="#t_array">Array Type</a></li>
Misha Brukman76307852003-11-08 01:05:38 +000041 <li><a href="#t_function">Function Type</a></li>
42 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000043 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth8df88e22006-12-08 17:13:00 +000044 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Chris Lattnerc8cb6952004-08-12 19:12:28 +000045 <li><a href="#t_packed">Packed Type</a></li>
Chris Lattner37b6b092005-04-25 17:34:15 +000046 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000047 </ol>
48 </li>
49 </ol>
50 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000051 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000052 <ol>
53 <li><a href="#simpleconstants">Simple Constants</a>
54 <li><a href="#aggregateconstants">Aggregate Constants</a>
55 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
56 <li><a href="#undefvalues">Undefined Values</a>
57 <li><a href="#constantexprs">Constant Expressions</a>
58 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000059 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +000060 <li><a href="#othervalues">Other Values</a>
61 <ol>
62 <li><a href="#inlineasm">Inline Assembler Expressions</a>
63 </ol>
64 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000065 <li><a href="#instref">Instruction Reference</a>
66 <ol>
67 <li><a href="#terminators">Terminator Instructions</a>
68 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000069 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
70 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +000071 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
72 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000073 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +000074 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000075 </ol>
76 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000077 <li><a href="#binaryops">Binary Operations</a>
78 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000079 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
80 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
81 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +000082 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
83 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
84 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +000085 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
86 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
87 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000088 </ol>
89 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000090 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
91 <ol>
Misha Brukman76307852003-11-08 01:05:38 +000092 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000093 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +000094 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
95 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
Reid Spencerfdff9382006-11-08 06:47:33 +000096 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
97 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000098 </ol>
99 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000100 <li><a href="#vectorops">Vector Operations</a>
101 <ol>
102 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
103 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
104 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000105 </ol>
106 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000107 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000108 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000109 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
110 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
111 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000112 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
113 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
114 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000115 </ol>
116 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000117 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000118 <ol>
119 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
120 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
121 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
122 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
123 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000124 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
125 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
126 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
127 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000128 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
129 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000130 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000131 </ol>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000132 <li><a href="#otherops">Other Operations</a>
133 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000134 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
135 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000136 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000137 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000138 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000139 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000140 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000141 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000142 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000143 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000144 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000145 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000146 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
147 <ol>
148 <li><a href="#i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
149 <li><a href="#i_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
150 <li><a href="#i_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
151 </ol>
152 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000153 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
154 <ol>
155 <li><a href="#i_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
156 <li><a href="#i_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
157 <li><a href="#i_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
158 </ol>
159 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000160 <li><a href="#int_codegen">Code Generator Intrinsics</a>
161 <ol>
162 <li><a href="#i_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
163 <li><a href="#i_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
Chris Lattner2f0f0012006-01-13 02:03:13 +0000164 <li><a href="#i_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
165 <li><a href="#i_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
Chris Lattnerc8a2c222005-02-28 19:24:19 +0000166 <li><a href="#i_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
Andrew Lenharthb4427912005-03-28 20:05:49 +0000167 <li><a href="#i_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
Andrew Lenharth01aa5632005-11-11 16:47:30 +0000168 <li><a href="#i_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000169 </ol>
170 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000171 <li><a href="#int_libc">Standard C Library Intrinsics</a>
172 <ol>
Chris Lattner0c8b2592006-03-03 00:07:20 +0000173 <li><a href="#i_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
174 <li><a href="#i_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
175 <li><a href="#i_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
Chris Lattner069b5bd2006-01-16 22:38:59 +0000176 <li><a href="#i_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
Chris Lattner33b73f92006-09-08 06:34:02 +0000177 <li><a href="#i_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000178 </ol>
179 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000180 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000181 <ol>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000182 <li><a href="#i_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000183 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
184 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
185 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000186 </ol>
187 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000188 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000189 </ol>
190 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000191</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000192
193<div class="doc_author">
194 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
195 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000196</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000197
Chris Lattner2f7c9632001-06-06 20:29:01 +0000198<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000199<div class="doc_section"> <a name="abstract">Abstract </a></div>
200<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000201
Misha Brukman76307852003-11-08 01:05:38 +0000202<div class="doc_text">
Chris Lattner48b383b02003-11-25 01:02:51 +0000203<p>This document is a reference manual for the LLVM assembly language.
204LLVM is an SSA based representation that provides type safety,
205low-level operations, flexibility, and the capability of representing
206'all' high-level languages cleanly. It is the common code
207representation used throughout all phases of the LLVM compilation
208strategy.</p>
Misha Brukman76307852003-11-08 01:05:38 +0000209</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000210
Chris Lattner2f7c9632001-06-06 20:29:01 +0000211<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000212<div class="doc_section"> <a name="introduction">Introduction</a> </div>
213<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000214
Misha Brukman76307852003-11-08 01:05:38 +0000215<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000216
Chris Lattner48b383b02003-11-25 01:02:51 +0000217<p>The LLVM code representation is designed to be used in three
218different forms: as an in-memory compiler IR, as an on-disk bytecode
219representation (suitable for fast loading by a Just-In-Time compiler),
220and as a human readable assembly language representation. This allows
221LLVM to provide a powerful intermediate representation for efficient
222compiler transformations and analysis, while providing a natural means
223to debug and visualize the transformations. The three different forms
224of LLVM are all equivalent. This document describes the human readable
225representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000226
John Criswell4a3327e2005-05-13 22:25:59 +0000227<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner48b383b02003-11-25 01:02:51 +0000228while being expressive, typed, and extensible at the same time. It
229aims to be a "universal IR" of sorts, by being at a low enough level
230that high-level ideas may be cleanly mapped to it (similar to how
231microprocessors are "universal IR's", allowing many source languages to
232be mapped to them). By providing type information, LLVM can be used as
233the target of optimizations: for example, through pointer analysis, it
234can be proven that a C automatic variable is never accessed outside of
235the current function... allowing it to be promoted to a simple SSA
236value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000237
Misha Brukman76307852003-11-08 01:05:38 +0000238</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000239
Chris Lattner2f7c9632001-06-06 20:29:01 +0000240<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000241<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000242
Misha Brukman76307852003-11-08 01:05:38 +0000243<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000244
Chris Lattner48b383b02003-11-25 01:02:51 +0000245<p>It is important to note that this document describes 'well formed'
246LLVM assembly language. There is a difference between what the parser
247accepts and what is considered 'well formed'. For example, the
248following instruction is syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000249
250<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000251 %x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000252</pre>
253
Chris Lattner48b383b02003-11-25 01:02:51 +0000254<p>...because the definition of <tt>%x</tt> does not dominate all of
255its uses. The LLVM infrastructure provides a verification pass that may
256be used to verify that an LLVM module is well formed. This pass is
John Criswell4a3327e2005-05-13 22:25:59 +0000257automatically run by the parser after parsing input assembly and by
Chris Lattner48b383b02003-11-25 01:02:51 +0000258the optimizer before it outputs bytecode. The violations pointed out
259by the verifier pass indicate bugs in transformation passes or input to
260the parser.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000261
Chris Lattner48b383b02003-11-25 01:02:51 +0000262<!-- Describe the typesetting conventions here. --> </div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000263
Chris Lattner2f7c9632001-06-06 20:29:01 +0000264<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000265<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000266<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000267
Misha Brukman76307852003-11-08 01:05:38 +0000268<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000269
Chris Lattner48b383b02003-11-25 01:02:51 +0000270<p>LLVM uses three different forms of identifiers, for different
271purposes:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000272
Chris Lattner2f7c9632001-06-06 20:29:01 +0000273<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000274 <li>Named values are represented as a string of characters with a '%' prefix.
275 For example, %foo, %DivisionByZero, %a.really.long.identifier. The actual
276 regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
277 Identifiers which require other characters in their names can be surrounded
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000278 with quotes. In this way, anything except a <tt>&quot;</tt> character can be used
Chris Lattnerd79749a2004-12-09 16:36:40 +0000279 in a name.</li>
280
281 <li>Unnamed values are represented as an unsigned numeric value with a '%'
282 prefix. For example, %12, %2, %44.</li>
283
Reid Spencer8f08d802004-12-09 18:02:53 +0000284 <li>Constants, which are described in a <a href="#constants">section about
285 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000286</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000287
288<p>LLVM requires that values start with a '%' sign for two reasons: Compilers
289don't need to worry about name clashes with reserved words, and the set of
290reserved words may be expanded in the future without penalty. Additionally,
291unnamed identifiers allow a compiler to quickly come up with a temporary
292variable without having to avoid symbol table conflicts.</p>
293
Chris Lattner48b383b02003-11-25 01:02:51 +0000294<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5b950642006-11-11 23:08:07 +0000295languages. There are keywords for different opcodes
296('<tt><a href="#i_add">add</a></tt>',
297 '<tt><a href="#i_bitcast">bitcast</a></tt>',
298 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000299href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnerd79749a2004-12-09 16:36:40 +0000300and others. These reserved words cannot conflict with variable names, because
301none of them start with a '%' character.</p>
302
303<p>Here is an example of LLVM code to multiply the integer variable
304'<tt>%X</tt>' by 8:</p>
305
Misha Brukman76307852003-11-08 01:05:38 +0000306<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000307
308<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000309 %result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000310</pre>
311
Misha Brukman76307852003-11-08 01:05:38 +0000312<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000313
314<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000315 %result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000316</pre>
317
Misha Brukman76307852003-11-08 01:05:38 +0000318<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000319
320<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000321 <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
322 <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
323 %result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000324</pre>
325
Chris Lattner48b383b02003-11-25 01:02:51 +0000326<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
327important lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000328
Chris Lattner2f7c9632001-06-06 20:29:01 +0000329<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000330
331 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
332 line.</li>
333
334 <li>Unnamed temporaries are created when the result of a computation is not
335 assigned to a named value.</li>
336
Misha Brukman76307852003-11-08 01:05:38 +0000337 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000338
Misha Brukman76307852003-11-08 01:05:38 +0000339</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000340
John Criswell02fdc6f2005-05-12 16:52:32 +0000341<p>...and it also shows a convention that we follow in this document. When
Chris Lattnerd79749a2004-12-09 16:36:40 +0000342demonstrating instructions, we will follow an instruction with a comment that
343defines the type and name of value produced. Comments are shown in italic
344text.</p>
345
Misha Brukman76307852003-11-08 01:05:38 +0000346</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000347
348<!-- *********************************************************************** -->
349<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
350<!-- *********************************************************************** -->
351
352<!-- ======================================================================= -->
353<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
354</div>
355
356<div class="doc_text">
357
358<p>LLVM programs are composed of "Module"s, each of which is a
359translation unit of the input programs. Each module consists of
360functions, global variables, and symbol table entries. Modules may be
361combined together with the LLVM linker, which merges function (and
362global variable) definitions, resolves forward declarations, and merges
363symbol table entries. Here is an example of the "hello world" module:</p>
364
365<pre><i>; Declare the string constant as a global constant...</i>
366<a href="#identifiers">%.LC0</a> = <a href="#linkage_internal">internal</a> <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000367 href="#globalvars">constant</a> <a href="#t_array">[13 x i8 ]</a> c"hello world\0A\00" <i>; [13 x i8 ]*</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000368
369<i>; External declaration of the puts function</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000370<a href="#functionstructure">declare</a> i32 %puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000371
Chris Lattnerd2d29a02006-06-13 03:05:47 +0000372<i>; Global variable / Function body section separator</i>
373implementation
374
Chris Lattner6af02f32004-12-09 16:11:40 +0000375<i>; Definition of main function</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000376define i32 %main() { <i>; i32()* </i>
377 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000378 %cast210 = <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000379 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* %.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000380
381 <i>; Call puts function to write out the string to stdout...</i>
382 <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000383 href="#i_call">call</a> i32 %puts(i8 * %cast210) <i>; i32</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000384 <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000385 href="#i_ret">ret</a> i32 0<br>}<br></pre>
Chris Lattner6af02f32004-12-09 16:11:40 +0000386
387<p>This example is made up of a <a href="#globalvars">global variable</a>
388named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
389function, and a <a href="#functionstructure">function definition</a>
390for "<tt>main</tt>".</p>
391
Chris Lattnerd79749a2004-12-09 16:36:40 +0000392<p>In general, a module is made up of a list of global values,
393where both functions and global variables are global values. Global values are
394represented by a pointer to a memory location (in this case, a pointer to an
395array of char, and a pointer to a function), and have one of the following <a
396href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000397
Chris Lattnerd2d29a02006-06-13 03:05:47 +0000398<p>Due to a limitation in the current LLVM assembly parser (it is limited by
399one-token lookahead), modules are split into two pieces by the "implementation"
400keyword. Global variable prototypes and definitions must occur before the
401keyword, and function definitions must occur after it. Function prototypes may
402occur either before or after it. In the future, the implementation keyword may
403become a noop, if the parser gets smarter.</p>
404
Chris Lattnerd79749a2004-12-09 16:36:40 +0000405</div>
406
407<!-- ======================================================================= -->
408<div class="doc_subsection">
409 <a name="linkage">Linkage Types</a>
410</div>
411
412<div class="doc_text">
413
414<p>
415All Global Variables and Functions have one of the following types of linkage:
416</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000417
418<dl>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000419
Chris Lattner6af02f32004-12-09 16:11:40 +0000420 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000421
422 <dd>Global values with internal linkage are only directly accessible by
423 objects in the current module. In particular, linking code into a module with
424 an internal global value may cause the internal to be renamed as necessary to
425 avoid collisions. Because the symbol is internal to the module, all
426 references can be updated. This corresponds to the notion of the
Chris Lattnere20b4702007-01-14 06:51:48 +0000427 '<tt>static</tt>' keyword in C.
Chris Lattner6af02f32004-12-09 16:11:40 +0000428 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000429
Chris Lattner6af02f32004-12-09 16:11:40 +0000430 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000431
Chris Lattnere20b4702007-01-14 06:51:48 +0000432 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
433 the same name when linkage occurs. This is typically used to implement
434 inline functions, templates, or other code which must be generated in each
435 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
436 allowed to be discarded.
Chris Lattner6af02f32004-12-09 16:11:40 +0000437 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000438
Chris Lattner6af02f32004-12-09 16:11:40 +0000439 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000440
441 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
442 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
Chris Lattnere20b4702007-01-14 06:51:48 +0000443 used for globals that may be emitted in multiple translation units, but that
444 are not guaranteed to be emitted into every translation unit that uses them.
445 One example of this are common globals in C, such as "<tt>int X;</tt>" at
446 global scope.
Chris Lattner6af02f32004-12-09 16:11:40 +0000447 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000448
Chris Lattner6af02f32004-12-09 16:11:40 +0000449 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000450
451 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
452 pointer to array type. When two global variables with appending linkage are
453 linked together, the two global arrays are appended together. This is the
454 LLVM, typesafe, equivalent of having the system linker append together
455 "sections" with identical names when .o files are linked.
Chris Lattner6af02f32004-12-09 16:11:40 +0000456 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000457
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000458 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
459 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
460 until linked, if not linked, the symbol becomes null instead of being an
461 undefined reference.
462 </dd>
463</dl>
464
Chris Lattner6af02f32004-12-09 16:11:40 +0000465 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000466
467 <dd>If none of the above identifiers are used, the global is externally
468 visible, meaning that it participates in linkage and can be used to resolve
469 external symbol references.
Chris Lattner6af02f32004-12-09 16:11:40 +0000470 </dd>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000471
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000472 <p>
473 The next two types of linkage are targeted for Microsoft Windows platform
474 only. They are designed to support importing (exporting) symbols from (to)
475 DLLs.
476 </p>
477
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000478 <dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000479 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
480
481 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
482 or variable via a global pointer to a pointer that is set up by the DLL
483 exporting the symbol. On Microsoft Windows targets, the pointer name is
484 formed by combining <code>_imp__</code> and the function or variable name.
485 </dd>
486
487 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
488
489 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
490 pointer to a pointer in a DLL, so that it can be referenced with the
491 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
492 name is formed by combining <code>_imp__</code> and the function or variable
493 name.
494 </dd>
495
Chris Lattner6af02f32004-12-09 16:11:40 +0000496</dl>
497
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000498<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattner6af02f32004-12-09 16:11:40 +0000499variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
500variable and was linked with this one, one of the two would be renamed,
501preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
502external (i.e., lacking any linkage declarations), they are accessible
Reid Spencer92c671e2007-01-05 00:59:10 +0000503outside of the current module.</p>
504<p>It is illegal for a function <i>declaration</i>
505to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000506or <tt>extern_weak</tt>.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000507
Chris Lattner6af02f32004-12-09 16:11:40 +0000508</div>
509
510<!-- ======================================================================= -->
511<div class="doc_subsection">
Chris Lattner0132aff2005-05-06 22:57:40 +0000512 <a name="callingconv">Calling Conventions</a>
513</div>
514
515<div class="doc_text">
516
517<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
518and <a href="#i_invoke">invokes</a> can all have an optional calling convention
519specified for the call. The calling convention of any pair of dynamic
520caller/callee must match, or the behavior of the program is undefined. The
521following calling conventions are supported by LLVM, and more may be added in
522the future:</p>
523
524<dl>
525 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
526
527 <dd>This calling convention (the default if no other calling convention is
528 specified) matches the target C calling conventions. This calling convention
John Criswell02fdc6f2005-05-12 16:52:32 +0000529 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencer72ba4992006-12-31 21:30:18 +0000530 prototype and implemented declaration of the function (as does normal C).
Chris Lattner0132aff2005-05-06 22:57:40 +0000531 </dd>
532
Chris Lattner95ff1952006-05-19 21:15:36 +0000533 <dt><b>"<tt>csretcc</tt>" - The C struct return calling convention</b>:</dt>
534
535 <dd>This calling convention matches the target C calling conventions, except
536 that functions with this convention are required to take a pointer as their
537 first argument, and the return type of the function must be void. This is
538 used for C functions that return aggregates by-value. In this case, the
539 function has been transformed to take a pointer to the struct as the first
540 argument to the function. For targets where the ABI specifies specific
541 behavior for structure-return calls, the calling convention can be used to
542 distinguish between struct return functions and other functions that take a
543 pointer to a struct as the first argument.
544 </dd>
545
Chris Lattner0132aff2005-05-06 22:57:40 +0000546 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
547
548 <dd>This calling convention attempts to make calls as fast as possible
549 (e.g. by passing things in registers). This calling convention allows the
550 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerc792eb32005-05-06 23:08:23 +0000551 without having to conform to an externally specified ABI. Implementations of
552 this convention should allow arbitrary tail call optimization to be supported.
553 This calling convention does not support varargs and requires the prototype of
554 all callees to exactly match the prototype of the function definition.
Chris Lattner0132aff2005-05-06 22:57:40 +0000555 </dd>
556
557 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
558
559 <dd>This calling convention attempts to make code in the caller as efficient
560 as possible under the assumption that the call is not commonly executed. As
561 such, these calls often preserve all registers so that the call does not break
562 any live ranges in the caller side. This calling convention does not support
563 varargs and requires the prototype of all callees to exactly match the
564 prototype of the function definition.
565 </dd>
566
Chris Lattner573f64e2005-05-07 01:46:40 +0000567 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000568
569 <dd>Any calling convention may be specified by number, allowing
570 target-specific calling conventions to be used. Target specific calling
571 conventions start at 64.
572 </dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000573</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000574
575<p>More calling conventions can be added/defined on an as-needed basis, to
576support pascal conventions or any other well-known target-independent
577convention.</p>
578
579</div>
580
581<!-- ======================================================================= -->
582<div class="doc_subsection">
Chris Lattner6af02f32004-12-09 16:11:40 +0000583 <a name="globalvars">Global Variables</a>
584</div>
585
586<div class="doc_text">
587
Chris Lattner5d5aede2005-02-12 19:30:21 +0000588<p>Global variables define regions of memory allocated at compilation time
Chris Lattner662c8722005-11-12 00:45:07 +0000589instead of run-time. Global variables may optionally be initialized, may have
590an explicit section to be placed in, and may
Chris Lattner54611b42005-11-06 08:02:57 +0000591have an optional explicit alignment specified. A
John Criswell4c0cf7f2005-10-24 16:17:18 +0000592variable may be defined as a global "constant," which indicates that the
Chris Lattner5d5aede2005-02-12 19:30:21 +0000593contents of the variable will <b>never</b> be modified (enabling better
594optimization, allowing the global data to be placed in the read-only section of
595an executable, etc). Note that variables that need runtime initialization
John Criswell4c0cf7f2005-10-24 16:17:18 +0000596cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000597
598<p>
599LLVM explicitly allows <em>declarations</em> of global variables to be marked
600constant, even if the final definition of the global is not. This capability
601can be used to enable slightly better optimization of the program, but requires
602the language definition to guarantee that optimizations based on the
603'constantness' are valid for the translation units that do not include the
604definition.
605</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000606
607<p>As SSA values, global variables define pointer values that are in
608scope (i.e. they dominate) all basic blocks in the program. Global
609variables always define a pointer to their "content" type because they
610describe a region of memory, and all memory objects in LLVM are
611accessed through pointers.</p>
612
Chris Lattner662c8722005-11-12 00:45:07 +0000613<p>LLVM allows an explicit section to be specified for globals. If the target
614supports it, it will emit globals to the section specified.</p>
615
Chris Lattner54611b42005-11-06 08:02:57 +0000616<p>An explicit alignment may be specified for a global. If not present, or if
617the alignment is set to zero, the alignment of the global is set by the target
618to whatever it feels convenient. If an explicit alignment is specified, the
619global is forced to have at least that much alignment. All alignments must be
620a power of 2.</p>
621
Chris Lattner5760c502007-01-14 00:27:09 +0000622<p>For example, the following defines a global with an initializer, section,
623 and alignment:</p>
624
625<pre>
626 %G = constant float 1.0, section "foo", align 4
627</pre>
628
Chris Lattner6af02f32004-12-09 16:11:40 +0000629</div>
630
631
632<!-- ======================================================================= -->
633<div class="doc_subsection">
634 <a name="functionstructure">Functions</a>
635</div>
636
637<div class="doc_text">
638
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000639<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
640an optional <a href="#linkage">linkage type</a>, an optional
641<a href="#callingconv">calling convention</a>, a return type, an optional
642<a href="#paramattrs">parameter attribute</a> for the return type, a function
643name, a (possibly empty) argument list (each with optional
Reid Spencer58c08712006-12-31 07:18:34 +0000644<a href="#paramattrs">parameter attributes</a>), an optional section, an
645optional alignment, an opening curly brace, a list of basic blocks, and a
646closing curly brace. LLVM function declarations
647consist of the "<tt>declare</tt>" keyword, an optional <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000648 href="#callingconv">calling convention</a>, a return type, an optional
649<a href="#paramattrs">parameter attribute</a> for the return type, a function
650name, a possibly empty list of arguments, and an optional alignment.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000651
652<p>A function definition contains a list of basic blocks, forming the CFG for
653the function. Each basic block may optionally start with a label (giving the
654basic block a symbol table entry), contains a list of instructions, and ends
655with a <a href="#terminators">terminator</a> instruction (such as a branch or
656function return).</p>
657
John Criswell02fdc6f2005-05-12 16:52:32 +0000658<p>The first basic block in a program is special in two ways: it is immediately
Chris Lattner6af02f32004-12-09 16:11:40 +0000659executed on entrance to the function, and it is not allowed to have predecessor
660basic blocks (i.e. there can not be any branches to the entry block of a
661function). Because the block can have no predecessors, it also cannot have any
662<a href="#i_phi">PHI nodes</a>.</p>
663
664<p>LLVM functions are identified by their name and type signature. Hence, two
665functions with the same name but different parameter lists or return values are
Chris Lattner455fc8c2005-03-07 22:13:59 +0000666considered different functions, and LLVM will resolve references to each
Chris Lattner6af02f32004-12-09 16:11:40 +0000667appropriately.</p>
668
Chris Lattner662c8722005-11-12 00:45:07 +0000669<p>LLVM allows an explicit section to be specified for functions. If the target
670supports it, it will emit functions to the section specified.</p>
671
Chris Lattner54611b42005-11-06 08:02:57 +0000672<p>An explicit alignment may be specified for a function. If not present, or if
673the alignment is set to zero, the alignment of the function is set by the target
674to whatever it feels convenient. If an explicit alignment is specified, the
675function is forced to have at least that much alignment. All alignments must be
676a power of 2.</p>
677
Chris Lattner6af02f32004-12-09 16:11:40 +0000678</div>
679
Chris Lattner91c15c42006-01-23 23:23:47 +0000680<!-- ======================================================================= -->
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000681<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
682<div class="doc_text">
683 <p>The return type and each parameter of a function type may have a set of
684 <i>parameter attributes</i> associated with them. Parameter attributes are
685 used to communicate additional information about the result or parameters of
686 a function. Parameter attributes are considered to be part of the function
687 type so two functions types that differ only by the parameter attributes
688 are different function types.</p>
689
Reid Spencer58c08712006-12-31 07:18:34 +0000690 <p>Parameter attributes consist of an at sign (@) followed by either a single
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000691 keyword or a comma separate list of keywords enclosed in parentheses. For
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000692 example:</p><pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000693 %someFunc = i16 @zext (i8 @(sext) %someParam)
Reid Spencer58c08712006-12-31 07:18:34 +0000694 %someFunc = i16 @zext (i8 @zext %someParam)</pre>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000695 <p>Note that the two function types above are unique because the parameter has
696 a different attribute (@sext in the first one, @zext in the second).</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000697
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000698 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000699 <dl>
700 <dt><tt>@zext</tt></dt>
701 <dd>This indicates that the parameter should be zero extended just before
702 a call to this function.</dd>
703 <dt><tt>@sext</tt></dt>
704 <dd>This indicates that the parameter should be sign extended just before
705 a call to this function.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000706 </dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000707
708 <p>The current motivation for parameter attributes is to enable the sign and
709 zero extend information necessary for the C calling convention to be passed
710 from the front end to LLVM. The <tt>@zext</tt> and <tt>@sext</tt> attributes
711 are used by the code generator to perform the required extension. However,
712 parameter attributes are an orthogonal feature to calling conventions and
713 may be used for other purposes in the future.</p>
714</div>
715
716<!-- ======================================================================= -->
Chris Lattner91c15c42006-01-23 23:23:47 +0000717<div class="doc_subsection">
Chris Lattner93564892006-04-08 04:40:53 +0000718 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner91c15c42006-01-23 23:23:47 +0000719</div>
720
721<div class="doc_text">
722<p>
723Modules may contain "module-level inline asm" blocks, which corresponds to the
724GCC "file scope inline asm" blocks. These blocks are internally concatenated by
725LLVM and treated as a single unit, but may be separated in the .ll file if
726desired. The syntax is very simple:
727</p>
728
729<div class="doc_code"><pre>
Chris Lattnera1280ad2006-01-24 00:37:20 +0000730 module asm "inline asm code goes here"
731 module asm "more can go here"
Chris Lattner91c15c42006-01-23 23:23:47 +0000732</pre></div>
733
734<p>The strings can contain any character by escaping non-printable characters.
735 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
736 for the number.
737</p>
738
739<p>
740 The inline asm code is simply printed to the machine code .s file when
741 assembly code is generated.
742</p>
743</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000744
745
Chris Lattner2f7c9632001-06-06 20:29:01 +0000746<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000747<div class="doc_section"> <a name="typesystem">Type System</a> </div>
748<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +0000749
Misha Brukman76307852003-11-08 01:05:38 +0000750<div class="doc_text">
Chris Lattner6af02f32004-12-09 16:11:40 +0000751
Misha Brukman76307852003-11-08 01:05:38 +0000752<p>The LLVM type system is one of the most important features of the
Chris Lattner48b383b02003-11-25 01:02:51 +0000753intermediate representation. Being typed enables a number of
754optimizations to be performed on the IR directly, without having to do
755extra analyses on the side before the transformation. A strong type
756system makes it easier to read the generated code and enables novel
757analyses and transformations that are not feasible to perform on normal
758three address code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000759
760</div>
761
Chris Lattner2f7c9632001-06-06 20:29:01 +0000762<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000763<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +0000764<div class="doc_text">
John Criswell417228d2004-04-09 16:48:45 +0000765<p>The primitive types are the fundamental building blocks of the LLVM
Chris Lattner455fc8c2005-03-07 22:13:59 +0000766system. The current set of primitive types is as follows:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +0000767
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000768<table class="layout">
769 <tr class="layout">
770 <td class="left">
771 <table>
Chris Lattner48b383b02003-11-25 01:02:51 +0000772 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000773 <tr><th>Type</th><th>Description</th></tr>
774 <tr><td><tt>void</tt></td><td>No value</td></tr>
Chris Lattnerc0f423a2007-01-15 01:54:13 +0000775 <tr><td><tt>i8</tt></td><td>8-bit value</td></tr>
776 <tr><td><tt>i32</tt></td><td>32-bit value</td></tr>
Misha Brukman36c6bc12005-04-22 18:02:52 +0000777 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000778 <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +0000779 </tbody>
780 </table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000781 </td>
782 <td class="right">
783 <table>
Chris Lattner48b383b02003-11-25 01:02:51 +0000784 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000785 <tr><th>Type</th><th>Description</th></tr>
Reid Spencer36a15422007-01-12 03:35:51 +0000786 <tr><td><tt>i1</tt></td><td>True or False value</td></tr>
Chris Lattnerc0f423a2007-01-15 01:54:13 +0000787 <tr><td><tt>i16</tt></td><td>16-bit value</td></tr>
788 <tr><td><tt>i64</tt></td><td>64-bit value</td></tr>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000789 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +0000790 </tbody>
791 </table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000792 </td>
793 </tr>
Misha Brukman76307852003-11-08 01:05:38 +0000794</table>
Misha Brukman76307852003-11-08 01:05:38 +0000795</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000796
Chris Lattner2f7c9632001-06-06 20:29:01 +0000797<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000798<div class="doc_subsubsection"> <a name="t_classifications">Type
799Classifications</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +0000800<div class="doc_text">
Chris Lattner48b383b02003-11-25 01:02:51 +0000801<p>These different primitive types fall into a few useful
802classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +0000803
804<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +0000805 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000806 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +0000807 <tr>
Chris Lattner48b383b02003-11-25 01:02:51 +0000808 <td><a name="t_integer">integer</a></td>
Chris Lattnerc0f423a2007-01-15 01:54:13 +0000809 <td><tt>i1, i8, i16, i32, i64</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +0000810 </tr>
811 <tr>
812 <td><a name="t_floating">floating point</a></td>
813 <td><tt>float, double</tt></td>
814 </tr>
815 <tr>
816 <td><a name="t_firstclass">first class</a></td>
Reid Spencer36a15422007-01-12 03:35:51 +0000817 <td><tt>i1, i8, i16, i32, i64, float, double, <br/>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000818 <a href="#t_pointer">pointer</a>,<a href="#t_packed">packed</a></tt>
819 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +0000820 </tr>
821 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +0000822</table>
Misha Brukmanc501f552004-03-01 17:47:27 +0000823
Chris Lattner48b383b02003-11-25 01:02:51 +0000824<p>The <a href="#t_firstclass">first class</a> types are perhaps the
825most important. Values of these types are the only ones which can be
826produced by instructions, passed as arguments, or used as operands to
827instructions. This means that all structures and arrays must be
828manipulated either by pointer or by component.</p>
Misha Brukman76307852003-11-08 01:05:38 +0000829</div>
Chris Lattner74d3f822004-12-09 17:30:23 +0000830
Chris Lattner2f7c9632001-06-06 20:29:01 +0000831<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000832<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +0000833
Misha Brukman76307852003-11-08 01:05:38 +0000834<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +0000835
Chris Lattner48b383b02003-11-25 01:02:51 +0000836<p>The real power in LLVM comes from the derived types in the system.
837This is what allows a programmer to represent arrays, functions,
838pointers, and other useful types. Note that these derived types may be
839recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +0000840
Misha Brukman76307852003-11-08 01:05:38 +0000841</div>
Chris Lattner74d3f822004-12-09 17:30:23 +0000842
Chris Lattner2f7c9632001-06-06 20:29:01 +0000843<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000844<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +0000845
Misha Brukman76307852003-11-08 01:05:38 +0000846<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +0000847
Chris Lattner2f7c9632001-06-06 20:29:01 +0000848<h5>Overview:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +0000849
Misha Brukman76307852003-11-08 01:05:38 +0000850<p>The array type is a very simple derived type that arranges elements
Chris Lattner48b383b02003-11-25 01:02:51 +0000851sequentially in memory. The array type requires a size (number of
852elements) and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +0000853
Chris Lattner590645f2002-04-14 06:13:44 +0000854<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +0000855
856<pre>
857 [&lt;# elements&gt; x &lt;elementtype&gt;]
858</pre>
859
John Criswell02fdc6f2005-05-12 16:52:32 +0000860<p>The number of elements is a constant integer value; elementtype may
Chris Lattner48b383b02003-11-25 01:02:51 +0000861be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +0000862
Chris Lattner590645f2002-04-14 06:13:44 +0000863<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000864<table class="layout">
865 <tr class="layout">
866 <td class="left">
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000867 <tt>[40 x i32 ]</tt><br/>
868 <tt>[41 x i32 ]</tt><br/>
Reid Spencer3e628eb92007-01-04 16:43:23 +0000869 <tt>[40 x i8]</tt><br/>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000870 </td>
871 <td class="left">
Reid Spencer3e628eb92007-01-04 16:43:23 +0000872 Array of 40 32-bit integer values.<br/>
873 Array of 41 32-bit integer values.<br/>
874 Array of 40 8-bit integer values.<br/>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000875 </td>
876 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000877</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000878<p>Here are some examples of multidimensional arrays:</p>
879<table class="layout">
880 <tr class="layout">
881 <td class="left">
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000882 <tt>[3 x [4 x i32]]</tt><br/>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000883 <tt>[12 x [10 x float]]</tt><br/>
Reid Spencer3e628eb92007-01-04 16:43:23 +0000884 <tt>[2 x [3 x [4 x i16]]]</tt><br/>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000885 </td>
886 <td class="left">
Reid Spencer3e628eb92007-01-04 16:43:23 +0000887 3x4 array of 32-bit integer values.<br/>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000888 12x10 array of single precision floating point values.<br/>
Reid Spencer3e628eb92007-01-04 16:43:23 +0000889 2x3x4 array of 16-bit integer values.<br/>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000890 </td>
891 </tr>
892</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +0000893
John Criswell4c0cf7f2005-10-24 16:17:18 +0000894<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
895length array. Normally, accesses past the end of an array are undefined in
Chris Lattnerc0ad71e2005-06-24 17:22:57 +0000896LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
897As a special case, however, zero length arrays are recognized to be variable
898length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000899type "{ i32, [0 x float]}", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +0000900
Misha Brukman76307852003-11-08 01:05:38 +0000901</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000902
Chris Lattner2f7c9632001-06-06 20:29:01 +0000903<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000904<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +0000905<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +0000906<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +0000907<p>The function type can be thought of as a function signature. It
908consists of a return type and a list of formal parameter types.
John Criswella0d50d22003-11-25 21:45:46 +0000909Function types are usually used to build virtual function tables
Chris Lattner48b383b02003-11-25 01:02:51 +0000910(which are structures of pointers to functions), for indirect function
911calls, and when defining a function.</p>
John Criswella0d50d22003-11-25 21:45:46 +0000912<p>
913The return type of a function type cannot be an aggregate type.
914</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000915<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +0000916<pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
John Criswell4c0cf7f2005-10-24 16:17:18 +0000917<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukman20f9a622004-08-12 20:16:08 +0000918specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner5ed60612003-09-03 00:41:47 +0000919which indicates that the function takes a variable number of arguments.
920Variable argument functions can access their arguments with the <a
Chris Lattner48b383b02003-11-25 01:02:51 +0000921 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000922<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000923<table class="layout">
924 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +0000925 <td class="left"><tt>i32 (i32)</tt></td>
926 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000927 </td>
Reid Spencer58c08712006-12-31 07:18:34 +0000928 </tr><tr class="layout">
Reid Spencer655dcc62006-12-31 07:20:23 +0000929 <td class="left"><tt>float&nbsp;(i16&nbsp;@sext,&nbsp;i32&nbsp;*)&nbsp;*
930 </tt></td>
Reid Spencer58c08712006-12-31 07:18:34 +0000931 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
932 an <tt>i16</tt> that should be sign extended and a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000933 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer58c08712006-12-31 07:18:34 +0000934 <tt>float</tt>.
935 </td>
936 </tr><tr class="layout">
937 <td class="left"><tt>i32 (i8*, ...)</tt></td>
938 <td class="left">A vararg function that takes at least one
Reid Spencer3e628eb92007-01-04 16:43:23 +0000939 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer58c08712006-12-31 07:18:34 +0000940 which returns an integer. This is the signature for <tt>printf</tt> in
941 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000942 </td>
943 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000944</table>
Misha Brukmanc501f552004-03-01 17:47:27 +0000945
Misha Brukman76307852003-11-08 01:05:38 +0000946</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000947<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000948<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +0000949<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +0000950<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +0000951<p>The structure type is used to represent a collection of data members
952together in memory. The packing of the field types is defined to match
953the ABI of the underlying processor. The elements of a structure may
954be any type that has a size.</p>
955<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
956and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
957field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
958instruction.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000959<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +0000960<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000961<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000962<table class="layout">
963 <tr class="layout">
964 <td class="left">
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000965 <tt>{ i32, i32, i32 }</tt><br/>
966 <tt>{ float, i32 (i32) * }</tt><br/>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000967 </td>
968 <td class="left">
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000969 a triple of three <tt>i32</tt> values<br/>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000970 A pair, where the first element is a <tt>float</tt> and the second element
971 is a <a href="#t_pointer">pointer</a> to a <a href="#t_function">function</a>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000972 that takes an <tt>i32</tt>, returning an <tt>i32</tt>.<br/>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000973 </td>
974 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000975</table>
Misha Brukman76307852003-11-08 01:05:38 +0000976</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +0000977
Chris Lattner2f7c9632001-06-06 20:29:01 +0000978<!-- _______________________________________________________________________ -->
Andrew Lenharth8df88e22006-12-08 17:13:00 +0000979<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
980</div>
981<div class="doc_text">
982<h5>Overview:</h5>
983<p>The packed structure type is used to represent a collection of data members
984together in memory. There is no padding between fields. Further, the alignment
985of a packed structure is 1 byte. The elements of a packed structure may
986be any type that has a size.</p>
987<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
988and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
989field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
990instruction.</p>
991<h5>Syntax:</h5>
992<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
993<h5>Examples:</h5>
994<table class="layout">
995 <tr class="layout">
996 <td class="left">
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000997 <tt> &lt; { i32, i32, i32 } &gt; </tt><br/>
998 <tt> &lt; { float, i32 (i32) * } &gt; </tt><br/>
Andrew Lenharth8df88e22006-12-08 17:13:00 +0000999 </td>
1000 <td class="left">
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001001 a triple of three <tt>i32</tt> values<br/>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001002 A pair, where the first element is a <tt>float</tt> and the second element
1003 is a <a href="#t_pointer">pointer</a> to a <a href="#t_function">function</a>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001004 that takes an <tt>i32</tt>, returning an <tt>i32</tt>.<br/>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001005 </td>
1006 </tr>
1007</table>
1008</div>
1009
1010<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001011<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001012<div class="doc_text">
Chris Lattner590645f2002-04-14 06:13:44 +00001013<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001014<p>As in many languages, the pointer type represents a pointer or
1015reference to another object, which must live in memory.</p>
Chris Lattner590645f2002-04-14 06:13:44 +00001016<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001017<pre> &lt;type&gt; *<br></pre>
Chris Lattner590645f2002-04-14 06:13:44 +00001018<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001019<table class="layout">
1020 <tr class="layout">
1021 <td class="left">
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001022 <tt>[4x i32]*</tt><br/>
1023 <tt>i32 (i32 *) *</tt><br/>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001024 </td>
1025 <td class="left">
1026 A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001027 four <tt>i32</tt> values<br/>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001028 A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001029 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1030 <tt>i32</tt>.<br/>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001031 </td>
1032 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00001033</table>
Misha Brukman76307852003-11-08 01:05:38 +00001034</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001035
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001036<!-- _______________________________________________________________________ -->
1037<div class="doc_subsubsection"> <a name="t_packed">Packed Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001038<div class="doc_text">
Chris Lattner37b6b092005-04-25 17:34:15 +00001039
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001040<h5>Overview:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001041
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001042<p>A packed type is a simple derived type that represents a vector
1043of elements. Packed types are used when multiple primitive data
1044are operated in parallel using a single instruction (SIMD).
1045A packed type requires a size (number of
Chris Lattner330ce692005-11-10 01:44:22 +00001046elements) and an underlying primitive data type. Vectors must have a power
1047of two length (1, 2, 4, 8, 16 ...). Packed types are
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001048considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001049
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001050<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001051
1052<pre>
1053 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1054</pre>
1055
John Criswell4a3327e2005-05-13 22:25:59 +00001056<p>The number of elements is a constant integer value; elementtype may
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001057be any integer or floating point type.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001058
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001059<h5>Examples:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001060
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001061<table class="layout">
1062 <tr class="layout">
1063 <td class="left">
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001064 <tt>&lt;4 x i32&gt;</tt><br/>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001065 <tt>&lt;8 x float&gt;</tt><br/>
Reid Spencer3e628eb92007-01-04 16:43:23 +00001066 <tt>&lt;2 x i64&gt;</tt><br/>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001067 </td>
1068 <td class="left">
Reid Spencer3e628eb92007-01-04 16:43:23 +00001069 Packed vector of 4 32-bit integer values.<br/>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001070 Packed vector of 8 floating-point values.<br/>
Reid Spencer3e628eb92007-01-04 16:43:23 +00001071 Packed vector of 2 64-bit integer values.<br/>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001072 </td>
1073 </tr>
1074</table>
Misha Brukman76307852003-11-08 01:05:38 +00001075</div>
1076
Chris Lattner37b6b092005-04-25 17:34:15 +00001077<!-- _______________________________________________________________________ -->
1078<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1079<div class="doc_text">
1080
1081<h5>Overview:</h5>
1082
1083<p>Opaque types are used to represent unknown types in the system. This
1084corresponds (for example) to the C notion of a foward declared structure type.
1085In LLVM, opaque types can eventually be resolved to any type (not just a
1086structure type).</p>
1087
1088<h5>Syntax:</h5>
1089
1090<pre>
1091 opaque
1092</pre>
1093
1094<h5>Examples:</h5>
1095
1096<table class="layout">
1097 <tr class="layout">
1098 <td class="left">
1099 <tt>opaque</tt>
1100 </td>
1101 <td class="left">
1102 An opaque type.<br/>
1103 </td>
1104 </tr>
1105</table>
1106</div>
1107
1108
Chris Lattner74d3f822004-12-09 17:30:23 +00001109<!-- *********************************************************************** -->
1110<div class="doc_section"> <a name="constants">Constants</a> </div>
1111<!-- *********************************************************************** -->
1112
1113<div class="doc_text">
1114
1115<p>LLVM has several different basic types of constants. This section describes
1116them all and their syntax.</p>
1117
1118</div>
1119
1120<!-- ======================================================================= -->
Reid Spencer8f08d802004-12-09 18:02:53 +00001121<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001122
1123<div class="doc_text">
1124
1125<dl>
1126 <dt><b>Boolean constants</b></dt>
1127
1128 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencer36a15422007-01-12 03:35:51 +00001129 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattner74d3f822004-12-09 17:30:23 +00001130 </dd>
1131
1132 <dt><b>Integer constants</b></dt>
1133
Reid Spencer8f08d802004-12-09 18:02:53 +00001134 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencer3e628eb92007-01-04 16:43:23 +00001135 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattner74d3f822004-12-09 17:30:23 +00001136 integer types.
1137 </dd>
1138
1139 <dt><b>Floating point constants</b></dt>
1140
1141 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1142 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattner74d3f822004-12-09 17:30:23 +00001143 notation (see below). Floating point constants must have a <a
1144 href="#t_floating">floating point</a> type. </dd>
1145
1146 <dt><b>Null pointer constants</b></dt>
1147
John Criswelldfe6a862004-12-10 15:51:16 +00001148 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattner74d3f822004-12-09 17:30:23 +00001149 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1150
1151</dl>
1152
John Criswelldfe6a862004-12-10 15:51:16 +00001153<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattner74d3f822004-12-09 17:30:23 +00001154of floating point constants. For example, the form '<tt>double
11550x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
11564.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencer8f08d802004-12-09 18:02:53 +00001157(and the only time that they are generated by the disassembler) is when a
1158floating point constant must be emitted but it cannot be represented as a
1159decimal floating point number. For example, NaN's, infinities, and other
1160special values are represented in their IEEE hexadecimal format so that
1161assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001162
1163</div>
1164
1165<!-- ======================================================================= -->
1166<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1167</div>
1168
1169<div class="doc_text">
Chris Lattner455fc8c2005-03-07 22:13:59 +00001170<p>Aggregate constants arise from aggregation of simple constants
1171and smaller aggregate constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001172
1173<dl>
1174 <dt><b>Structure constants</b></dt>
1175
1176 <dd>Structure constants are represented with notation similar to structure
1177 type definitions (a comma separated list of elements, surrounded by braces
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001178 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>",
1179 where "<tt>%G</tt>" is declared as "<tt>%G = external global i32</tt>". Structure constants
Chris Lattner455fc8c2005-03-07 22:13:59 +00001180 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattner74d3f822004-12-09 17:30:23 +00001181 types of elements must match those specified by the type.
1182 </dd>
1183
1184 <dt><b>Array constants</b></dt>
1185
1186 <dd>Array constants are represented with notation similar to array type
1187 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001188 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattner74d3f822004-12-09 17:30:23 +00001189 constants must have <a href="#t_array">array type</a>, and the number and
1190 types of elements must match those specified by the type.
1191 </dd>
1192
1193 <dt><b>Packed constants</b></dt>
1194
1195 <dd>Packed constants are represented with notation similar to packed type
1196 definitions (a comma separated list of elements, surrounded by
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001197 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1198 i32 11, i32 74, i32 100 &gt;</tt>". Packed constants must have <a
Chris Lattner74d3f822004-12-09 17:30:23 +00001199 href="#t_packed">packed type</a>, and the number and types of elements must
1200 match those specified by the type.
1201 </dd>
1202
1203 <dt><b>Zero initialization</b></dt>
1204
1205 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1206 value to zero of <em>any</em> type, including scalar and aggregate types.
1207 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell4c0cf7f2005-10-24 16:17:18 +00001208 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattner74d3f822004-12-09 17:30:23 +00001209 initializers.
1210 </dd>
1211</dl>
1212
1213</div>
1214
1215<!-- ======================================================================= -->
1216<div class="doc_subsection">
1217 <a name="globalconstants">Global Variable and Function Addresses</a>
1218</div>
1219
1220<div class="doc_text">
1221
1222<p>The addresses of <a href="#globalvars">global variables</a> and <a
1223href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswelldfe6a862004-12-10 15:51:16 +00001224constants. These constants are explicitly referenced when the <a
1225href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattner74d3f822004-12-09 17:30:23 +00001226href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1227file:</p>
1228
1229<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001230 %X = global i32 17
1231 %Y = global i32 42
1232 %Z = global [2 x i32*] [ i32* %X, i32* %Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00001233</pre>
1234
1235</div>
1236
1237<!-- ======================================================================= -->
Reid Spencer641f5c92004-12-09 18:13:12 +00001238<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001239<div class="doc_text">
Reid Spencer641f5c92004-12-09 18:13:12 +00001240 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswell4a3327e2005-05-13 22:25:59 +00001241 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer641f5c92004-12-09 18:13:12 +00001242 a constant is permitted.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001243
Reid Spencer641f5c92004-12-09 18:13:12 +00001244 <p>Undefined values indicate to the compiler that the program is well defined
1245 no matter what value is used, giving the compiler more freedom to optimize.
1246 </p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001247</div>
1248
1249<!-- ======================================================================= -->
1250<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1251</div>
1252
1253<div class="doc_text">
1254
1255<p>Constant expressions are used to allow expressions involving other constants
1256to be used as constants. Constant expressions may be of any <a
John Criswell4a3327e2005-05-13 22:25:59 +00001257href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattner74d3f822004-12-09 17:30:23 +00001258that does not have side effects (e.g. load and call are not supported). The
1259following is the syntax for constant expressions:</p>
1260
1261<dl>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001262 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1263 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001264 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001265
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001266 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1267 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001268 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001269
1270 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1271 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001272 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001273
1274 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1275 <dd>Truncate a floating point constant to another floating point type. The
1276 size of CST must be larger than the size of TYPE. Both types must be
1277 floating point.</dd>
1278
1279 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1280 <dd>Floating point extend a constant to another type. The size of CST must be
1281 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1282
1283 <dt><b><tt>fp2uint ( CST to TYPE )</tt></b></dt>
1284 <dd>Convert a floating point constant to the corresponding unsigned integer
1285 constant. TYPE must be an integer type. CST must be floating point. If the
1286 value won't fit in the integer type, the results are undefined.</dd>
1287
Reid Spencer51b07252006-11-09 23:03:26 +00001288 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001289 <dd>Convert a floating point constant to the corresponding signed integer
1290 constant. TYPE must be an integer type. CST must be floating point. If the
1291 value won't fit in the integer type, the results are undefined.</dd>
1292
Reid Spencer51b07252006-11-09 23:03:26 +00001293 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001294 <dd>Convert an unsigned integer constant to the corresponding floating point
1295 constant. TYPE must be floating point. CST must be of integer type. If the
1296 value won't fit in the floating point type, the results are undefined.</dd>
1297
Reid Spencer51b07252006-11-09 23:03:26 +00001298 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001299 <dd>Convert a signed integer constant to the corresponding floating point
1300 constant. TYPE must be floating point. CST must be of integer type. If the
1301 value won't fit in the floating point type, the results are undefined.</dd>
1302
Reid Spencer5b950642006-11-11 23:08:07 +00001303 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1304 <dd>Convert a pointer typed constant to the corresponding integer constant
1305 TYPE must be an integer type. CST must be of pointer type. The CST value is
1306 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1307
1308 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1309 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1310 pointer type. CST must be of integer type. The CST value is zero extended,
1311 truncated, or unchanged to make it fit in a pointer size. This one is
1312 <i>really</i> dangerous!</dd>
1313
1314 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001315 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1316 identical (same number of bits). The conversion is done as if the CST value
1317 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5b950642006-11-11 23:08:07 +00001318 with this operator, just the type. This can be used for conversion of
1319 packed types to any other type, as long as they have the same bit width. For
1320 pointers it is only valid to cast to another pointer type.
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001321 </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001322
1323 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1324
1325 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1326 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1327 instruction, the index list may have zero or more indexes, which are required
1328 to make sense for the type of "CSTPTR".</dd>
1329
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00001330 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1331
1332 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer9965ee72006-12-04 19:23:19 +00001333 constants.</dd>
1334
1335 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1336 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1337
1338 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1339 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00001340
1341 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1342
1343 <dd>Perform the <a href="#i_extractelement">extractelement
1344 operation</a> on constants.
1345
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00001346 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1347
1348 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer9965ee72006-12-04 19:23:19 +00001349 operation</a> on constants.</dd>
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00001350
Chris Lattner016a0e52006-04-08 00:13:41 +00001351
1352 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1353
1354 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer9965ee72006-12-04 19:23:19 +00001355 operation</a> on constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00001356
Chris Lattner74d3f822004-12-09 17:30:23 +00001357 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1358
Reid Spencer641f5c92004-12-09 18:13:12 +00001359 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1360 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattner74d3f822004-12-09 17:30:23 +00001361 binary</a> operations. The constraints on operands are the same as those for
1362 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswell02fdc6f2005-05-12 16:52:32 +00001363 values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001364</dl>
Chris Lattner74d3f822004-12-09 17:30:23 +00001365</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00001366
Chris Lattner2f7c9632001-06-06 20:29:01 +00001367<!-- *********************************************************************** -->
Chris Lattner98f013c2006-01-25 23:47:57 +00001368<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1369<!-- *********************************************************************** -->
1370
1371<!-- ======================================================================= -->
1372<div class="doc_subsection">
1373<a name="inlineasm">Inline Assembler Expressions</a>
1374</div>
1375
1376<div class="doc_text">
1377
1378<p>
1379LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1380Module-Level Inline Assembly</a>) through the use of a special value. This
1381value represents the inline assembler as a string (containing the instructions
1382to emit), a list of operand constraints (stored as a string), and a flag that
1383indicates whether or not the inline asm expression has side effects. An example
1384inline assembler expression is:
1385</p>
1386
1387<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001388 i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00001389</pre>
1390
1391<p>
1392Inline assembler expressions may <b>only</b> be used as the callee operand of
1393a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1394</p>
1395
1396<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001397 %X = call i32 asm "<a href="#i_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00001398</pre>
1399
1400<p>
1401Inline asms with side effects not visible in the constraint list must be marked
1402as having side effects. This is done through the use of the
1403'<tt>sideeffect</tt>' keyword, like so:
1404</p>
1405
1406<pre>
1407 call void asm sideeffect "eieio", ""()
1408</pre>
1409
1410<p>TODO: The format of the asm and constraints string still need to be
1411documented here. Constraints on what can be done (e.g. duplication, moving, etc
1412need to be documented).
1413</p>
1414
1415</div>
1416
1417<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001418<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1419<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00001420
Misha Brukman76307852003-11-08 01:05:38 +00001421<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001422
Chris Lattner48b383b02003-11-25 01:02:51 +00001423<p>The LLVM instruction set consists of several different
1424classifications of instructions: <a href="#terminators">terminator
John Criswell4a3327e2005-05-13 22:25:59 +00001425instructions</a>, <a href="#binaryops">binary instructions</a>,
1426<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner48b383b02003-11-25 01:02:51 +00001427 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1428instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001429
Misha Brukman76307852003-11-08 01:05:38 +00001430</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001431
Chris Lattner2f7c9632001-06-06 20:29:01 +00001432<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001433<div class="doc_subsection"> <a name="terminators">Terminator
1434Instructions</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001435
Misha Brukman76307852003-11-08 01:05:38 +00001436<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001437
Chris Lattner48b383b02003-11-25 01:02:51 +00001438<p>As mentioned <a href="#functionstructure">previously</a>, every
1439basic block in a program ends with a "Terminator" instruction, which
1440indicates which block should be executed after the current block is
1441finished. These terminator instructions typically yield a '<tt>void</tt>'
1442value: they produce control flow, not values (the one exception being
1443the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswelldfe6a862004-12-10 15:51:16 +00001444<p>There are six different terminator instructions: the '<a
Chris Lattner48b383b02003-11-25 01:02:51 +00001445 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1446instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner08b7d5b2004-10-16 18:04:13 +00001447the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1448 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1449 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001450
Misha Brukman76307852003-11-08 01:05:38 +00001451</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001452
Chris Lattner2f7c9632001-06-06 20:29:01 +00001453<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001454<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1455Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001456<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001457<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001458<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00001459 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001460</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001461<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001462<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
John Criswell4a3327e2005-05-13 22:25:59 +00001463value) from a function back to the caller.</p>
John Criswell417228d2004-04-09 16:48:45 +00001464<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattner48b383b02003-11-25 01:02:51 +00001465returns a value and then causes control flow, and one that just causes
1466control flow to occur.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001467<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001468<p>The '<tt>ret</tt>' instruction may return any '<a
1469 href="#t_firstclass">first class</a>' type. Notice that a function is
1470not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1471instruction inside of the function that returns a value that does not
1472match the return type of the function.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001473<h5>Semantics:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001474<p>When the '<tt>ret</tt>' instruction is executed, control flow
1475returns back to the calling function's context. If the caller is a "<a
John Criswell40db33f2004-06-25 15:16:57 +00001476 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner48b383b02003-11-25 01:02:51 +00001477the instruction after the call. If the caller was an "<a
1478 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswell02fdc6f2005-05-12 16:52:32 +00001479at the beginning of the "normal" destination block. If the instruction
Chris Lattner48b383b02003-11-25 01:02:51 +00001480returns a value, that value shall set the call or invoke instruction's
1481return value.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001482<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001483<pre> ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00001484 ret void <i>; Return from a void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001485</pre>
Misha Brukman76307852003-11-08 01:05:38 +00001486</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001487<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001488<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001489<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001490<h5>Syntax:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00001491<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001492</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001493<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001494<p>The '<tt>br</tt>' instruction is used to cause control flow to
1495transfer to a different basic block in the current function. There are
1496two forms of this instruction, corresponding to a conditional branch
1497and an unconditional branch.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001498<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001499<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencer36a15422007-01-12 03:35:51 +00001500single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Chris Lattner48b383b02003-11-25 01:02:51 +00001501unconditional form of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>'
1502value as a target.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001503<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00001504<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00001505argument is evaluated. If the value is <tt>true</tt>, control flows
1506to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1507control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001508<h5>Example:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00001509<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001510 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman76307852003-11-08 01:05:38 +00001511</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001512<!-- _______________________________________________________________________ -->
Chris Lattnercf96c6c2004-02-24 04:54:45 +00001513<div class="doc_subsubsection">
1514 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1515</div>
1516
Misha Brukman76307852003-11-08 01:05:38 +00001517<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001518<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00001519
1520<pre>
1521 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1522</pre>
1523
Chris Lattner2f7c9632001-06-06 20:29:01 +00001524<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00001525
1526<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1527several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman76307852003-11-08 01:05:38 +00001528instruction, allowing a branch to occur to one of many possible
1529destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00001530
1531
Chris Lattner2f7c9632001-06-06 20:29:01 +00001532<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00001533
1534<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1535comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1536an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1537table is not allowed to contain duplicate constant entries.</p>
1538
Chris Lattner2f7c9632001-06-06 20:29:01 +00001539<h5>Semantics:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00001540
Chris Lattner48b383b02003-11-25 01:02:51 +00001541<p>The <tt>switch</tt> instruction specifies a table of values and
1542destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswellbcbb18c2004-06-25 16:05:06 +00001543table is searched for the given value. If the value is found, control flow is
1544transfered to the corresponding destination; otherwise, control flow is
1545transfered to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001546
Chris Lattnercf96c6c2004-02-24 04:54:45 +00001547<h5>Implementation:</h5>
1548
1549<p>Depending on properties of the target machine and the particular
1550<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswellbcbb18c2004-06-25 16:05:06 +00001551ways. For example, it could be generated as a series of chained conditional
1552branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00001553
1554<h5>Example:</h5>
1555
1556<pre>
1557 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00001558 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001559 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00001560
1561 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001562 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00001563
1564 <i>; Implement a jump table:</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001565 switch i32 %val, label %otherwise [ i32 0, label %onzero
1566 i32 1, label %onone
1567 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00001568</pre>
Misha Brukman76307852003-11-08 01:05:38 +00001569</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00001570
Chris Lattner2f7c9632001-06-06 20:29:01 +00001571<!-- _______________________________________________________________________ -->
Chris Lattner0132aff2005-05-06 22:57:40 +00001572<div class="doc_subsubsection">
1573 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1574</div>
1575
Misha Brukman76307852003-11-08 01:05:38 +00001576<div class="doc_text">
Chris Lattner0132aff2005-05-06 22:57:40 +00001577
Chris Lattner2f7c9632001-06-06 20:29:01 +00001578<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00001579
1580<pre>
1581 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner6b7a0082006-05-14 18:23:06 +00001582 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00001583</pre>
1584
Chris Lattnera8292f32002-05-06 22:08:29 +00001585<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00001586
1587<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1588function, with the possibility of control flow transfer to either the
John Criswell02fdc6f2005-05-12 16:52:32 +00001589'<tt>normal</tt>' label or the
1590'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattner0132aff2005-05-06 22:57:40 +00001591"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1592"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswell02fdc6f2005-05-12 16:52:32 +00001593href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1594continued at the dynamically nearest "exception" label.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00001595
Chris Lattner2f7c9632001-06-06 20:29:01 +00001596<h5>Arguments:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00001597
Misha Brukman76307852003-11-08 01:05:38 +00001598<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00001599
Chris Lattner2f7c9632001-06-06 20:29:01 +00001600<ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00001601 <li>
John Criswell4a3327e2005-05-13 22:25:59 +00001602 The optional "cconv" marker indicates which <a href="callingconv">calling
Chris Lattner0132aff2005-05-06 22:57:40 +00001603 convention</a> the call should use. If none is specified, the call defaults
1604 to using C calling conventions.
1605 </li>
1606 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1607 function value being invoked. In most cases, this is a direct function
1608 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1609 an arbitrary pointer to function value.
1610 </li>
1611
1612 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1613 function to be invoked. </li>
1614
1615 <li>'<tt>function args</tt>': argument list whose types match the function
1616 signature argument types. If the function signature indicates the function
1617 accepts a variable number of arguments, the extra arguments can be
1618 specified. </li>
1619
1620 <li>'<tt>normal label</tt>': the label reached when the called function
1621 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1622
1623 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1624 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1625
Chris Lattner2f7c9632001-06-06 20:29:01 +00001626</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00001627
Chris Lattner2f7c9632001-06-06 20:29:01 +00001628<h5>Semantics:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00001629
Misha Brukman76307852003-11-08 01:05:38 +00001630<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattner0132aff2005-05-06 22:57:40 +00001631href="#i_call">call</a></tt>' instruction in most regards. The primary
1632difference is that it establishes an association with a label, which is used by
1633the runtime library to unwind the stack.</p>
1634
1635<p>This instruction is used in languages with destructors to ensure that proper
1636cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1637exception. Additionally, this is important for implementation of
1638'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1639
Chris Lattner2f7c9632001-06-06 20:29:01 +00001640<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00001641<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001642 %retval = invoke i32 %Test(i32 15) to label %Continue
1643 unwind label %TestCleanup <i>; {i32}:retval set</i>
1644 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1645 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001646</pre>
Misha Brukman76307852003-11-08 01:05:38 +00001647</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00001648
1649
Chris Lattner5ed60612003-09-03 00:41:47 +00001650<!-- _______________________________________________________________________ -->
Chris Lattner08b7d5b2004-10-16 18:04:13 +00001651
Chris Lattner48b383b02003-11-25 01:02:51 +00001652<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1653Instruction</a> </div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00001654
Misha Brukman76307852003-11-08 01:05:38 +00001655<div class="doc_text">
Chris Lattner08b7d5b2004-10-16 18:04:13 +00001656
Chris Lattner5ed60612003-09-03 00:41:47 +00001657<h5>Syntax:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00001658<pre>
1659 unwind
1660</pre>
1661
Chris Lattner5ed60612003-09-03 00:41:47 +00001662<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00001663
1664<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1665at the first callee in the dynamic call stack which used an <a
1666href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1667primarily used to implement exception handling.</p>
1668
Chris Lattner5ed60612003-09-03 00:41:47 +00001669<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00001670
1671<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1672immediately halt. The dynamic call stack is then searched for the first <a
1673href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1674execution continues at the "exceptional" destination block specified by the
1675<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1676dynamic call chain, undefined behavior results.</p>
Misha Brukman76307852003-11-08 01:05:38 +00001677</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00001678
1679<!-- _______________________________________________________________________ -->
1680
1681<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1682Instruction</a> </div>
1683
1684<div class="doc_text">
1685
1686<h5>Syntax:</h5>
1687<pre>
1688 unreachable
1689</pre>
1690
1691<h5>Overview:</h5>
1692
1693<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
1694instruction is used to inform the optimizer that a particular portion of the
1695code is not reachable. This can be used to indicate that the code after a
1696no-return function cannot be reached, and other facts.</p>
1697
1698<h5>Semantics:</h5>
1699
1700<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1701</div>
1702
1703
1704
Chris Lattner2f7c9632001-06-06 20:29:01 +00001705<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001706<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001707<div class="doc_text">
Chris Lattner48b383b02003-11-25 01:02:51 +00001708<p>Binary operators are used to do most of the computation in a
1709program. They require two operands, execute an operation on them, and
John Criswelldfe6a862004-12-10 15:51:16 +00001710produce a single value. The operands might represent
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001711multiple data, as is the case with the <a href="#t_packed">packed</a> data type.
1712The result value of a binary operator is not
Chris Lattner48b383b02003-11-25 01:02:51 +00001713necessarily the same type as its operands.</p>
Misha Brukman76307852003-11-08 01:05:38 +00001714<p>There are several different binary operators:</p>
Misha Brukman76307852003-11-08 01:05:38 +00001715</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001716<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001717<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1718Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001719<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001720<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001721<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001722</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001723<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001724<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001725<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001726<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001727 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
1728 This instruction can also take <a href="#t_packed">packed</a> versions of the values.
1729Both arguments must have identical types.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001730<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001731<p>The value produced is the integer or floating point sum of the two
1732operands.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001733<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001734<pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001735</pre>
Misha Brukman76307852003-11-08 01:05:38 +00001736</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001737<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001738<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1739Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001740<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001741<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001742<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001743</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001744<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001745<p>The '<tt>sub</tt>' instruction returns the difference of its two
1746operands.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00001747<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1748instruction present in most other intermediate representations.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001749<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001750<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
Chris Lattner48b383b02003-11-25 01:02:51 +00001751 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001752values.
1753This instruction can also take <a href="#t_packed">packed</a> versions of the values.
1754Both arguments must have identical types.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001755<h5>Semantics:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001756<p>The value produced is the integer or floating point difference of
1757the two operands.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001758<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001759<pre> &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
1760 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001761</pre>
Misha Brukman76307852003-11-08 01:05:38 +00001762</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001763<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001764<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
1765Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001766<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001767<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001768<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001769</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001770<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001771<p>The '<tt>mul</tt>' instruction returns the product of its two
1772operands.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001773<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001774<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
Chris Lattner48b383b02003-11-25 01:02:51 +00001775 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001776values.
1777This instruction can also take <a href="#t_packed">packed</a> versions of the values.
1778Both arguments must have identical types.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001779<h5>Semantics:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001780<p>The value produced is the integer or floating point product of the
Misha Brukman76307852003-11-08 01:05:38 +00001781two operands.</p>
Reid Spencer3e628eb92007-01-04 16:43:23 +00001782<p>Because the operands are the same width, the result of an integer
1783multiplication is the same whether the operands should be deemed unsigned or
1784signed.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001785<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001786<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001787</pre>
Misha Brukman76307852003-11-08 01:05:38 +00001788</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001789<!-- _______________________________________________________________________ -->
Reid Spencer7e80b0b2006-10-26 06:15:43 +00001790<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
1791</a></div>
1792<div class="doc_text">
1793<h5>Syntax:</h5>
1794<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1795</pre>
1796<h5>Overview:</h5>
1797<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
1798operands.</p>
1799<h5>Arguments:</h5>
1800<p>The two arguments to the '<tt>udiv</tt>' instruction must be
1801<a href="#t_integer">integer</a> values. Both arguments must have identical
1802types. This instruction can also take <a href="#t_packed">packed</a> versions
1803of the values in which case the elements must be integers.</p>
1804<h5>Semantics:</h5>
1805<p>The value produced is the unsigned integer quotient of the two operands. This
1806instruction always performs an unsigned division operation, regardless of
1807whether the arguments are unsigned or not.</p>
1808<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001809<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00001810</pre>
1811</div>
1812<!-- _______________________________________________________________________ -->
1813<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
1814</a> </div>
1815<div class="doc_text">
1816<h5>Syntax:</h5>
1817<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1818</pre>
1819<h5>Overview:</h5>
1820<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
1821operands.</p>
1822<h5>Arguments:</h5>
1823<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
1824<a href="#t_integer">integer</a> values. Both arguments must have identical
1825types. This instruction can also take <a href="#t_packed">packed</a> versions
1826of the values in which case the elements must be integers.</p>
1827<h5>Semantics:</h5>
1828<p>The value produced is the signed integer quotient of the two operands. This
1829instruction always performs a signed division operation, regardless of whether
1830the arguments are signed or not.</p>
1831<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001832<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00001833</pre>
1834</div>
1835<!-- _______________________________________________________________________ -->
1836<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00001837Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001838<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001839<h5>Syntax:</h5>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00001840<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00001841</pre>
1842<h5>Overview:</h5>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00001843<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner48b383b02003-11-25 01:02:51 +00001844operands.</p>
1845<h5>Arguments:</h5>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00001846<p>The two arguments to the '<tt>div</tt>' instruction must be
1847<a href="#t_floating">floating point</a> values. Both arguments must have
1848identical types. This instruction can also take <a href="#t_packed">packed</a>
1849versions of the values in which case the elements must be floating point.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00001850<h5>Semantics:</h5>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00001851<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00001852<h5>Example:</h5>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00001853<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00001854</pre>
1855</div>
1856<!-- _______________________________________________________________________ -->
Reid Spencer7eb55b32006-11-02 01:53:59 +00001857<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
1858</div>
1859<div class="doc_text">
1860<h5>Syntax:</h5>
1861<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1862</pre>
1863<h5>Overview:</h5>
1864<p>The '<tt>urem</tt>' instruction returns the remainder from the
1865unsigned division of its two arguments.</p>
1866<h5>Arguments:</h5>
1867<p>The two arguments to the '<tt>urem</tt>' instruction must be
1868<a href="#t_integer">integer</a> values. Both arguments must have identical
1869types.</p>
1870<h5>Semantics:</h5>
1871<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
1872This instruction always performs an unsigned division to get the remainder,
1873regardless of whether the arguments are unsigned or not.</p>
1874<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001875<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00001876</pre>
1877
1878</div>
1879<!-- _______________________________________________________________________ -->
1880<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00001881Instruction</a> </div>
1882<div class="doc_text">
1883<h5>Syntax:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00001884<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00001885</pre>
1886<h5>Overview:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00001887<p>The '<tt>srem</tt>' instruction returns the remainder from the
1888signed division of its two operands.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00001889<h5>Arguments:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00001890<p>The two arguments to the '<tt>srem</tt>' instruction must be
1891<a href="#t_integer">integer</a> values. Both arguments must have identical
1892types.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00001893<h5>Semantics:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00001894<p>This instruction returns the <i>remainder</i> of a division (where the result
Chris Lattner48b383b02003-11-25 01:02:51 +00001895has the same sign as the divisor), not the <i>modulus</i> (where the
1896result has the same sign as the dividend) of a value. For more
John Criswell4c0cf7f2005-10-24 16:17:18 +00001897information about the difference, see <a
Chris Lattner48b383b02003-11-25 01:02:51 +00001898 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
1899Math Forum</a>.</p>
1900<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001901<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00001902</pre>
1903
1904</div>
1905<!-- _______________________________________________________________________ -->
1906<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
1907Instruction</a> </div>
1908<div class="doc_text">
1909<h5>Syntax:</h5>
1910<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1911</pre>
1912<h5>Overview:</h5>
1913<p>The '<tt>frem</tt>' instruction returns the remainder from the
1914division of its two operands.</p>
1915<h5>Arguments:</h5>
1916<p>The two arguments to the '<tt>frem</tt>' instruction must be
1917<a href="#t_floating">floating point</a> values. Both arguments must have
1918identical types.</p>
1919<h5>Semantics:</h5>
1920<p>This instruction returns the <i>remainder</i> of a division.</p>
1921<h5>Example:</h5>
1922<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00001923</pre>
Misha Brukman76307852003-11-08 01:05:38 +00001924</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00001925
Chris Lattner2f7c9632001-06-06 20:29:01 +00001926<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001927<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
1928Operations</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001929<div class="doc_text">
Chris Lattner48b383b02003-11-25 01:02:51 +00001930<p>Bitwise binary operators are used to do various forms of
1931bit-twiddling in a program. They are generally very efficient
John Criswelldfe6a862004-12-10 15:51:16 +00001932instructions and can commonly be strength reduced from other
Chris Lattner48b383b02003-11-25 01:02:51 +00001933instructions. They require two operands, execute an operation on them,
1934and produce a single value. The resulting value of the bitwise binary
1935operators is always the same type as its first operand.</p>
Misha Brukman76307852003-11-08 01:05:38 +00001936</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001937<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001938<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
1939Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001940<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001941<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001942<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001943</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001944<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001945<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
1946its two operands.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001947<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001948<p>The two arguments to the '<tt>and</tt>' instruction must be <a
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001949 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner48b383b02003-11-25 01:02:51 +00001950identical types.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001951<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001952<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00001953<p> </p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001954<div style="align: center">
Misha Brukman76307852003-11-08 01:05:38 +00001955<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001956 <tbody>
1957 <tr>
1958 <td>In0</td>
1959 <td>In1</td>
1960 <td>Out</td>
1961 </tr>
1962 <tr>
1963 <td>0</td>
1964 <td>0</td>
1965 <td>0</td>
1966 </tr>
1967 <tr>
1968 <td>0</td>
1969 <td>1</td>
1970 <td>0</td>
1971 </tr>
1972 <tr>
1973 <td>1</td>
1974 <td>0</td>
1975 <td>0</td>
1976 </tr>
1977 <tr>
1978 <td>1</td>
1979 <td>1</td>
1980 <td>1</td>
1981 </tr>
1982 </tbody>
1983</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001984</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001985<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001986<pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
1987 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
1988 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001989</pre>
Misha Brukman76307852003-11-08 01:05:38 +00001990</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001991<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001992<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001993<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001994<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001995<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001996</pre>
Chris Lattner48b383b02003-11-25 01:02:51 +00001997<h5>Overview:</h5>
1998<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
1999or of its two operands.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002000<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002001<p>The two arguments to the '<tt>or</tt>' instruction must be <a
Chris Lattnerc0f423a2007-01-15 01:54:13 +00002002 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner48b383b02003-11-25 01:02:51 +00002003identical types.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002004<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002005<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00002006<p> </p>
Misha Brukmanc501f552004-03-01 17:47:27 +00002007<div style="align: center">
Chris Lattner48b383b02003-11-25 01:02:51 +00002008<table border="1" cellspacing="0" cellpadding="4">
2009 <tbody>
2010 <tr>
2011 <td>In0</td>
2012 <td>In1</td>
2013 <td>Out</td>
2014 </tr>
2015 <tr>
2016 <td>0</td>
2017 <td>0</td>
2018 <td>0</td>
2019 </tr>
2020 <tr>
2021 <td>0</td>
2022 <td>1</td>
2023 <td>1</td>
2024 </tr>
2025 <tr>
2026 <td>1</td>
2027 <td>0</td>
2028 <td>1</td>
2029 </tr>
2030 <tr>
2031 <td>1</td>
2032 <td>1</td>
2033 <td>1</td>
2034 </tr>
2035 </tbody>
2036</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00002037</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002038<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002039<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2040 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2041 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002042</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002043</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002044<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002045<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2046Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002047<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002048<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002049<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002050</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002051<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002052<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2053or of its two operands. The <tt>xor</tt> is used to implement the
2054"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002055<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002056<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
Chris Lattnerc0f423a2007-01-15 01:54:13 +00002057 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner48b383b02003-11-25 01:02:51 +00002058identical types.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002059<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002060<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00002061<p> </p>
Misha Brukmanc501f552004-03-01 17:47:27 +00002062<div style="align: center">
Chris Lattner48b383b02003-11-25 01:02:51 +00002063<table border="1" cellspacing="0" cellpadding="4">
2064 <tbody>
2065 <tr>
2066 <td>In0</td>
2067 <td>In1</td>
2068 <td>Out</td>
2069 </tr>
2070 <tr>
2071 <td>0</td>
2072 <td>0</td>
2073 <td>0</td>
2074 </tr>
2075 <tr>
2076 <td>0</td>
2077 <td>1</td>
2078 <td>1</td>
2079 </tr>
2080 <tr>
2081 <td>1</td>
2082 <td>0</td>
2083 <td>1</td>
2084 </tr>
2085 <tr>
2086 <td>1</td>
2087 <td>1</td>
2088 <td>0</td>
2089 </tr>
2090 </tbody>
2091</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00002092</div>
Chris Lattner48b383b02003-11-25 01:02:51 +00002093<p> </p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002094<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002095<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2096 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2097 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2098 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002099</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002100</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002101<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002102<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2103Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002104<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002105<h5>Syntax:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002106<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, i8 &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002107</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002108<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002109<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2110the left a specified number of bits.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002111<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002112<p>The first argument to the '<tt>shl</tt>' instruction must be an <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002113 href="#t_integer">integer</a> type. The second argument must be an '<tt>i8</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00002114type.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002115<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002116<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002117<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002118<pre> &lt;result&gt; = shl i32 4, i8 %var <i>; yields {i32}:result = 4 &lt;&lt; %var</i>
2119 &lt;result&gt; = shl i32 4, i8 2 <i>; yields {i32}:result = 16</i>
2120 &lt;result&gt; = shl i32 1, i8 10 <i>; yields {i32}:result = 1024</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002121</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002122</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002123<!-- _______________________________________________________________________ -->
Reid Spencerfdff9382006-11-08 06:47:33 +00002124<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00002125Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002126<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002127<h5>Syntax:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002128<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, i8 &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002129</pre>
Reid Spencerfdff9382006-11-08 06:47:33 +00002130
Chris Lattner2f7c9632001-06-06 20:29:01 +00002131<h5>Overview:</h5>
Reid Spencerfdff9382006-11-08 06:47:33 +00002132<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2133operand shifted to the right a specified number of bits.</p>
2134
Chris Lattner2f7c9632001-06-06 20:29:01 +00002135<h5>Arguments:</h5>
Reid Spencerfdff9382006-11-08 06:47:33 +00002136<p>The first argument to the '<tt>lshr</tt>' instruction must be an <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002137 href="#t_integer">integer</a> type. The second argument must be an '<tt>i8</tt>' type.</p>
Reid Spencerfdff9382006-11-08 06:47:33 +00002138
Chris Lattner2f7c9632001-06-06 20:29:01 +00002139<h5>Semantics:</h5>
Reid Spencer3e628eb92007-01-04 16:43:23 +00002140<p>This instruction always performs a logical shift right operation. The
2141<tt>var2</tt> most significant bits will be filled with zero bits after the
2142shift.</p>
Reid Spencerfdff9382006-11-08 06:47:33 +00002143
Chris Lattner2f7c9632001-06-06 20:29:01 +00002144<h5>Example:</h5>
Reid Spencerfdff9382006-11-08 06:47:33 +00002145<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002146 &lt;result&gt; = lshr i32 4, i8 1 <i>; yields {i32}:result = 2</i>
2147 &lt;result&gt; = lshr i32 4, i8 2 <i>; yields {i32}:result = 1</i>
2148 &lt;result&gt; = lshr i8 4, i8 3 <i>; yields {i8 }:result = 0</i>
2149 &lt;result&gt; = lshr i8 -2, i8 1 <i>; yields {i8 }:result = 0x7FFFFFFF </i>
Reid Spencerfdff9382006-11-08 06:47:33 +00002150</pre>
2151</div>
2152
2153<!-- ======================================================================= -->
2154<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2155Instruction</a> </div>
2156<div class="doc_text">
2157
2158<h5>Syntax:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002159<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, i8 &lt;var2&gt; <i>; yields {ty}:result</i>
Reid Spencerfdff9382006-11-08 06:47:33 +00002160</pre>
2161
2162<h5>Overview:</h5>
2163<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2164operand shifted to the right a specified number of bits.</p>
2165
2166<h5>Arguments:</h5>
2167<p>The first argument to the '<tt>ashr</tt>' instruction must be an
2168<a href="#t_integer">integer</a> type. The second argument must be an
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002169'<tt>i8</tt>' type.</p>
Reid Spencerfdff9382006-11-08 06:47:33 +00002170
2171<h5>Semantics:</h5>
2172<p>This instruction always performs an arithmetic shift right operation,
2173regardless of whether the arguments are signed or not. The <tt>var2</tt> most
2174significant bits will be filled with the sign bit of <tt>var1</tt>.</p>
2175
2176<h5>Example:</h5>
2177<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002178 &lt;result&gt; = ashr i32 4, i8 1 <i>; yields {i32}:result = 2</i>
2179 &lt;result&gt; = ashr i32 4, i8 2 <i>; yields {i32}:result = 1</i>
2180 &lt;result&gt; = ashr i8 4, i8 3 <i>; yields {i8}:result = 0</i>
2181 &lt;result&gt; = ashr i8 -2, i8 1 <i>; yields {i8 }:result = -1</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002182</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002183</div>
Chris Lattner54611b42005-11-06 08:02:57 +00002184
Chris Lattner2f7c9632001-06-06 20:29:01 +00002185<!-- ======================================================================= -->
Chris Lattner54611b42005-11-06 08:02:57 +00002186<div class="doc_subsection">
Chris Lattnerce83bff2006-04-08 23:07:04 +00002187 <a name="vectorops">Vector Operations</a>
2188</div>
2189
2190<div class="doc_text">
2191
2192<p>LLVM supports several instructions to represent vector operations in a
2193target-independent manner. This instructions cover the element-access and
2194vector-specific operations needed to process vectors effectively. While LLVM
2195does directly support these vector operations, many sophisticated algorithms
2196will want to use target-specific intrinsics to take full advantage of a specific
2197target.</p>
2198
2199</div>
2200
2201<!-- _______________________________________________________________________ -->
2202<div class="doc_subsubsection">
2203 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2204</div>
2205
2206<div class="doc_text">
2207
2208<h5>Syntax:</h5>
2209
2210<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002211 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00002212</pre>
2213
2214<h5>Overview:</h5>
2215
2216<p>
2217The '<tt>extractelement</tt>' instruction extracts a single scalar
2218element from a packed vector at a specified index.
2219</p>
2220
2221
2222<h5>Arguments:</h5>
2223
2224<p>
2225The first operand of an '<tt>extractelement</tt>' instruction is a
2226value of <a href="#t_packed">packed</a> type. The second operand is
2227an index indicating the position from which to extract the element.
2228The index may be a variable.</p>
2229
2230<h5>Semantics:</h5>
2231
2232<p>
2233The result is a scalar of the same type as the element type of
2234<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2235<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2236results are undefined.
2237</p>
2238
2239<h5>Example:</h5>
2240
2241<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002242 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00002243</pre>
2244</div>
2245
2246
2247<!-- _______________________________________________________________________ -->
2248<div class="doc_subsubsection">
2249 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2250</div>
2251
2252<div class="doc_text">
2253
2254<h5>Syntax:</h5>
2255
2256<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002257 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00002258</pre>
2259
2260<h5>Overview:</h5>
2261
2262<p>
2263The '<tt>insertelement</tt>' instruction inserts a scalar
2264element into a packed vector at a specified index.
2265</p>
2266
2267
2268<h5>Arguments:</h5>
2269
2270<p>
2271The first operand of an '<tt>insertelement</tt>' instruction is a
2272value of <a href="#t_packed">packed</a> type. The second operand is a
2273scalar value whose type must equal the element type of the first
2274operand. The third operand is an index indicating the position at
2275which to insert the value. The index may be a variable.</p>
2276
2277<h5>Semantics:</h5>
2278
2279<p>
2280The result is a packed vector of the same type as <tt>val</tt>. Its
2281element values are those of <tt>val</tt> except at position
2282<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2283exceeds the length of <tt>val</tt>, the results are undefined.
2284</p>
2285
2286<h5>Example:</h5>
2287
2288<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002289 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00002290</pre>
2291</div>
2292
2293<!-- _______________________________________________________________________ -->
2294<div class="doc_subsubsection">
2295 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2296</div>
2297
2298<div class="doc_text">
2299
2300<h5>Syntax:</h5>
2301
2302<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002303 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00002304</pre>
2305
2306<h5>Overview:</h5>
2307
2308<p>
2309The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2310from two input vectors, returning a vector of the same type.
2311</p>
2312
2313<h5>Arguments:</h5>
2314
2315<p>
2316The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2317with types that match each other and types that match the result of the
2318instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002319of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattnerce83bff2006-04-08 23:07:04 +00002320</p>
2321
2322<p>
2323The shuffle mask operand is required to be a constant vector with either
2324constant integer or undef values.
2325</p>
2326
2327<h5>Semantics:</h5>
2328
2329<p>
2330The elements of the two input vectors are numbered from left to right across
2331both of the vectors. The shuffle mask operand specifies, for each element of
2332the result vector, which element of the two input registers the result element
2333gets. The element selector may be undef (meaning "don't care") and the second
2334operand may be undef if performing a shuffle from only one vector.
2335</p>
2336
2337<h5>Example:</h5>
2338
2339<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002340 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2341 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2342 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2343 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattnerce83bff2006-04-08 23:07:04 +00002344</pre>
2345</div>
2346
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00002347
Chris Lattnerce83bff2006-04-08 23:07:04 +00002348<!-- ======================================================================= -->
2349<div class="doc_subsection">
Chris Lattner6ab66722006-08-15 00:45:58 +00002350 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner54611b42005-11-06 08:02:57 +00002351</div>
2352
Misha Brukman76307852003-11-08 01:05:38 +00002353<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00002354
Chris Lattner48b383b02003-11-25 01:02:51 +00002355<p>A key design point of an SSA-based representation is how it
2356represents memory. In LLVM, no memory locations are in SSA form, which
2357makes things very simple. This section describes how to read, write,
John Criswelldfe6a862004-12-10 15:51:16 +00002358allocate, and free memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00002359
Misha Brukman76307852003-11-08 01:05:38 +00002360</div>
Chris Lattner54611b42005-11-06 08:02:57 +00002361
Chris Lattner2f7c9632001-06-06 20:29:01 +00002362<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00002363<div class="doc_subsubsection">
2364 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2365</div>
2366
Misha Brukman76307852003-11-08 01:05:38 +00002367<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00002368
Chris Lattner2f7c9632001-06-06 20:29:01 +00002369<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00002370
2371<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002372 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002373</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00002374
Chris Lattner2f7c9632001-06-06 20:29:01 +00002375<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00002376
Chris Lattner48b383b02003-11-25 01:02:51 +00002377<p>The '<tt>malloc</tt>' instruction allocates memory from the system
2378heap and returns a pointer to it.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00002379
Chris Lattner2f7c9632001-06-06 20:29:01 +00002380<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00002381
2382<p>The '<tt>malloc</tt>' instruction allocates
2383<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswella92e5862004-02-24 16:13:56 +00002384bytes of memory from the operating system and returns a pointer of the
Chris Lattner54611b42005-11-06 08:02:57 +00002385appropriate type to the program. If "NumElements" is specified, it is the
2386number of elements allocated. If an alignment is specified, the value result
2387of the allocation is guaranteed to be aligned to at least that boundary. If
2388not specified, or if zero, the target can choose to align the allocation on any
2389convenient boundary.</p>
2390
Misha Brukman76307852003-11-08 01:05:38 +00002391<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00002392
Chris Lattner2f7c9632001-06-06 20:29:01 +00002393<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00002394
Chris Lattner48b383b02003-11-25 01:02:51 +00002395<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2396a pointer is returned.</p>
Misha Brukman76307852003-11-08 01:05:38 +00002397
Chris Lattner54611b42005-11-06 08:02:57 +00002398<h5>Example:</h5>
2399
2400<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002401 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner54611b42005-11-06 08:02:57 +00002402
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002403 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2404 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2405 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2406 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2407 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002408</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002409</div>
Chris Lattner54611b42005-11-06 08:02:57 +00002410
Chris Lattner2f7c9632001-06-06 20:29:01 +00002411<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00002412<div class="doc_subsubsection">
2413 <a name="i_free">'<tt>free</tt>' Instruction</a>
2414</div>
2415
Misha Brukman76307852003-11-08 01:05:38 +00002416<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00002417
Chris Lattner2f7c9632001-06-06 20:29:01 +00002418<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00002419
2420<pre>
2421 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002422</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00002423
Chris Lattner2f7c9632001-06-06 20:29:01 +00002424<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00002425
Chris Lattner48b383b02003-11-25 01:02:51 +00002426<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswell4a3327e2005-05-13 22:25:59 +00002427memory heap to be reallocated in the future.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00002428
Chris Lattner2f7c9632001-06-06 20:29:01 +00002429<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00002430
Chris Lattner48b383b02003-11-25 01:02:51 +00002431<p>'<tt>value</tt>' shall be a pointer value that points to a value
2432that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2433instruction.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00002434
Chris Lattner2f7c9632001-06-06 20:29:01 +00002435<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00002436
John Criswelldfe6a862004-12-10 15:51:16 +00002437<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner48b383b02003-11-25 01:02:51 +00002438after this instruction executes.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00002439
Chris Lattner2f7c9632001-06-06 20:29:01 +00002440<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00002441
2442<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002443 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2444 free [4 x i8]* %array
Chris Lattner2f7c9632001-06-06 20:29:01 +00002445</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002446</div>
Chris Lattner54611b42005-11-06 08:02:57 +00002447
Chris Lattner2f7c9632001-06-06 20:29:01 +00002448<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00002449<div class="doc_subsubsection">
2450 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2451</div>
2452
Misha Brukman76307852003-11-08 01:05:38 +00002453<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00002454
Chris Lattner2f7c9632001-06-06 20:29:01 +00002455<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00002456
2457<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002458 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002459</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00002460
Chris Lattner2f7c9632001-06-06 20:29:01 +00002461<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00002462
Chris Lattner48b383b02003-11-25 01:02:51 +00002463<p>The '<tt>alloca</tt>' instruction allocates memory on the current
2464stack frame of the procedure that is live until the current function
2465returns to its caller.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00002466
Chris Lattner2f7c9632001-06-06 20:29:01 +00002467<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00002468
John Criswelldfe6a862004-12-10 15:51:16 +00002469<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner48b383b02003-11-25 01:02:51 +00002470bytes of memory on the runtime stack, returning a pointer of the
Chris Lattner54611b42005-11-06 08:02:57 +00002471appropriate type to the program. If "NumElements" is specified, it is the
2472number of elements allocated. If an alignment is specified, the value result
2473of the allocation is guaranteed to be aligned to at least that boundary. If
2474not specified, or if zero, the target can choose to align the allocation on any
2475convenient boundary.</p>
2476
Misha Brukman76307852003-11-08 01:05:38 +00002477<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00002478
Chris Lattner2f7c9632001-06-06 20:29:01 +00002479<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00002480
John Criswell4a3327e2005-05-13 22:25:59 +00002481<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
Chris Lattner48b383b02003-11-25 01:02:51 +00002482memory is automatically released when the function returns. The '<tt>alloca</tt>'
2483instruction is commonly used to represent automatic variables that must
2484have an address available. When the function returns (either with the <tt><a
John Criswellc932bef2005-05-12 16:55:34 +00002485 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Misha Brukman76307852003-11-08 01:05:38 +00002486instructions), the memory is reclaimed.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00002487
Chris Lattner2f7c9632001-06-06 20:29:01 +00002488<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00002489
2490<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002491 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
2492 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2493 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
2494 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002495</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002496</div>
Chris Lattner54611b42005-11-06 08:02:57 +00002497
Chris Lattner2f7c9632001-06-06 20:29:01 +00002498<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002499<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2500Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002501<div class="doc_text">
Chris Lattner095735d2002-05-06 03:03:22 +00002502<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002503<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;<br></pre>
Chris Lattner095735d2002-05-06 03:03:22 +00002504<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002505<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00002506<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002507<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell4c0cf7f2005-10-24 16:17:18 +00002508address from which to load. The pointer must point to a <a
Chris Lattner10ee9652004-06-03 22:57:15 +00002509 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell4c0cf7f2005-10-24 16:17:18 +00002510marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner48b383b02003-11-25 01:02:51 +00002511the number or order of execution of this <tt>load</tt> with other
2512volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2513instructions. </p>
Chris Lattner095735d2002-05-06 03:03:22 +00002514<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002515<p>The location of memory pointed to is loaded.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00002516<h5>Examples:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002517<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002518 <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002519 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2520 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00002521</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002522</div>
Chris Lattner095735d2002-05-06 03:03:22 +00002523<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002524<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2525Instruction</a> </div>
Reid Spencera89fb182006-11-09 21:18:01 +00002526<div class="doc_text">
Chris Lattner095735d2002-05-06 03:03:22 +00002527<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002528<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; <i>; yields {void}</i>
Chris Lattner12d456c2003-09-08 18:27:49 +00002529 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00002530</pre>
Chris Lattner095735d2002-05-06 03:03:22 +00002531<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002532<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00002533<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002534<p>There are two arguments to the '<tt>store</tt>' instruction: a value
John Criswell4c0cf7f2005-10-24 16:17:18 +00002535to store and an address in which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00002536operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
John Criswell4a3327e2005-05-13 22:25:59 +00002537operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner48b383b02003-11-25 01:02:51 +00002538optimizer is not allowed to modify the number or order of execution of
2539this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2540 href="#i_store">store</a></tt> instructions.</p>
2541<h5>Semantics:</h5>
2542<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2543at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00002544<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002545<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002546 <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002547 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2548 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00002549</pre>
Reid Spencer443460a2006-11-09 21:15:49 +00002550</div>
2551
Chris Lattner095735d2002-05-06 03:03:22 +00002552<!-- _______________________________________________________________________ -->
Chris Lattner33fd7022004-04-05 01:30:49 +00002553<div class="doc_subsubsection">
2554 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2555</div>
2556
Misha Brukman76307852003-11-08 01:05:38 +00002557<div class="doc_text">
Chris Lattner590645f2002-04-14 06:13:44 +00002558<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00002559<pre>
2560 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2561</pre>
2562
Chris Lattner590645f2002-04-14 06:13:44 +00002563<h5>Overview:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00002564
2565<p>
2566The '<tt>getelementptr</tt>' instruction is used to get the address of a
2567subelement of an aggregate data structure.</p>
2568
Chris Lattner590645f2002-04-14 06:13:44 +00002569<h5>Arguments:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00002570
Reid Spencercee005c2006-12-04 21:29:24 +00002571<p>This instruction takes a list of integer operands that indicate what
Chris Lattner33fd7022004-04-05 01:30:49 +00002572elements of the aggregate object to index to. The actual types of the arguments
2573provided depend on the type of the first pointer argument. The
2574'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswell88190562005-05-16 16:17:45 +00002575levels of a structure or to a specific index in an array. When indexing into a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002576structure, only <tt>i32</tt> integer constants are allowed. When indexing
Reid Spencercee005c2006-12-04 21:29:24 +00002577into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2578be sign extended to 64-bit values.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00002579
Chris Lattner48b383b02003-11-25 01:02:51 +00002580<p>For example, let's consider a C code fragment and how it gets
2581compiled to LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00002582
2583<pre>
2584 struct RT {
2585 char A;
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002586 i32 B[10][20];
Chris Lattner33fd7022004-04-05 01:30:49 +00002587 char C;
2588 };
2589 struct ST {
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002590 i32 X;
Chris Lattner33fd7022004-04-05 01:30:49 +00002591 double Y;
2592 struct RT Z;
2593 };
2594
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002595 define i32 *foo(struct ST *s) {
Chris Lattner33fd7022004-04-05 01:30:49 +00002596 return &amp;s[1].Z.B[5][13];
2597 }
2598</pre>
2599
Misha Brukman76307852003-11-08 01:05:38 +00002600<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00002601
2602<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002603 %RT = type { i8 , [10 x [20 x i32]], i8 }
2604 %ST = type { i32, double, %RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00002605
Brian Gaeke317ef962004-07-02 21:08:14 +00002606 implementation
2607
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002608 define i32* %foo(%ST* %s) {
Brian Gaeke317ef962004-07-02 21:08:14 +00002609 entry:
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002610 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2611 ret i32* %reg
Chris Lattner33fd7022004-04-05 01:30:49 +00002612 }
2613</pre>
2614
Chris Lattner590645f2002-04-14 06:13:44 +00002615<h5>Semantics:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00002616
2617<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswell4a3327e2005-05-13 22:25:59 +00002618on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencercee005c2006-12-04 21:29:24 +00002619and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
Reid Spencerc0312692006-12-03 16:53:48 +00002620<a href="#t_integer">integer</a> type but the value will always be sign extended
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002621to 64-bits. <a href="#t_struct">Structure</a> types, require <tt>i32</tt>
Reid Spencerc0312692006-12-03 16:53:48 +00002622<b>constants</b>.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00002623
Misha Brukman76307852003-11-08 01:05:38 +00002624<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002625type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattner33fd7022004-04-05 01:30:49 +00002626}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002627the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2628i8 }</tt>' type, another structure. The third index indexes into the second
2629element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattner33fd7022004-04-05 01:30:49 +00002630array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002631'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
2632to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00002633
Chris Lattner48b383b02003-11-25 01:02:51 +00002634<p>Note that it is perfectly legal to index partially through a
2635structure, returning a pointer to an inner element. Because of this,
2636the LLVM code for the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00002637
2638<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002639 define i32* %foo(%ST* %s) {
2640 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
2641 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
2642 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
2643 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
2644 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
2645 ret i32* %t5
Chris Lattner33fd7022004-04-05 01:30:49 +00002646 }
Chris Lattnera8292f32002-05-06 22:08:29 +00002647</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00002648
2649<p>Note that it is undefined to access an array out of bounds: array and
2650pointer indexes must always be within the defined bounds of the array type.
2651The one exception for this rules is zero length arrays. These arrays are
2652defined to be accessible as variable length arrays, which requires access
2653beyond the zero'th element.</p>
2654
Chris Lattner6ab66722006-08-15 00:45:58 +00002655<p>The getelementptr instruction is often confusing. For some more insight
2656into how it works, see <a href="GetElementPtr.html">the getelementptr
2657FAQ</a>.</p>
2658
Chris Lattner590645f2002-04-14 06:13:44 +00002659<h5>Example:</h5>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00002660
Chris Lattner33fd7022004-04-05 01:30:49 +00002661<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002662 <i>; yields [12 x i8]*:aptr</i>
2663 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
Chris Lattner33fd7022004-04-05 01:30:49 +00002664</pre>
Chris Lattner33fd7022004-04-05 01:30:49 +00002665</div>
Reid Spencer443460a2006-11-09 21:15:49 +00002666
Chris Lattner2f7c9632001-06-06 20:29:01 +00002667<!-- ======================================================================= -->
Reid Spencer97c5fa42006-11-08 01:18:52 +00002668<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman76307852003-11-08 01:05:38 +00002669</div>
Misha Brukman76307852003-11-08 01:05:38 +00002670<div class="doc_text">
Reid Spencer97c5fa42006-11-08 01:18:52 +00002671<p>The instructions in this category are the conversion instructions (casting)
2672which all take a single operand and a type. They perform various bit conversions
2673on the operand.</p>
Misha Brukman76307852003-11-08 01:05:38 +00002674</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00002675
Chris Lattnera8292f32002-05-06 22:08:29 +00002676<!-- _______________________________________________________________________ -->
Chris Lattnerb53c28d2004-03-12 05:50:16 +00002677<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002678 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2679</div>
2680<div class="doc_text">
2681
2682<h5>Syntax:</h5>
2683<pre>
2684 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2685</pre>
2686
2687<h5>Overview:</h5>
2688<p>
2689The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2690</p>
2691
2692<h5>Arguments:</h5>
2693<p>
2694The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
2695be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattnerc0f423a2007-01-15 01:54:13 +00002696and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencer51b07252006-11-09 23:03:26 +00002697type. The bit size of <tt>value</tt> must be larger than the bit size of
2698<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002699
2700<h5>Semantics:</h5>
2701<p>
2702The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencer51b07252006-11-09 23:03:26 +00002703and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
2704larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
2705It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002706
2707<h5>Example:</h5>
2708<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002709 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencer36a15422007-01-12 03:35:51 +00002710 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
2711 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002712</pre>
2713</div>
2714
2715<!-- _______________________________________________________________________ -->
2716<div class="doc_subsubsection">
2717 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2718</div>
2719<div class="doc_text">
2720
2721<h5>Syntax:</h5>
2722<pre>
2723 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2724</pre>
2725
2726<h5>Overview:</h5>
2727<p>The '<tt>zext</tt>' instruction zero extends its operand to type
2728<tt>ty2</tt>.</p>
2729
2730
2731<h5>Arguments:</h5>
2732<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattnerc0f423a2007-01-15 01:54:13 +00002733<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2734also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencer51b07252006-11-09 23:03:26 +00002735<tt>value</tt> must be smaller than the bit size of the destination type,
2736<tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002737
2738<h5>Semantics:</h5>
2739<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
2740bits until it reaches the size of the destination type, <tt>ty2</tt>. When the
2741the operand and the type are the same size, no bit filling is done and the
2742cast is considered a <i>no-op cast</i> because no bits change (only the type
2743changes).</p>
2744
Reid Spencer07c9c682007-01-12 15:46:11 +00002745<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002746
2747<h5>Example:</h5>
2748<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002749 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00002750 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002751</pre>
2752</div>
2753
2754<!-- _______________________________________________________________________ -->
2755<div class="doc_subsubsection">
2756 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
2757</div>
2758<div class="doc_text">
2759
2760<h5>Syntax:</h5>
2761<pre>
2762 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2763</pre>
2764
2765<h5>Overview:</h5>
2766<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
2767
2768<h5>Arguments:</h5>
2769<p>
2770The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattnerc0f423a2007-01-15 01:54:13 +00002771<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2772also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencer51b07252006-11-09 23:03:26 +00002773<tt>value</tt> must be smaller than the bit size of the destination type,
2774<tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002775
2776<h5>Semantics:</h5>
2777<p>
2778The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
2779bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
2780the type <tt>ty2</tt>. When the the operand and the type are the same size,
2781no bit filling is done and the cast is considered a <i>no-op cast</i> because
2782no bits change (only the type changes).</p>
2783
Reid Spencer36a15422007-01-12 03:35:51 +00002784<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002785
2786<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002787<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002788 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00002789 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002790</pre>
2791</div>
2792
2793<!-- _______________________________________________________________________ -->
2794<div class="doc_subsubsection">
Reid Spencer2e2740d2006-11-09 21:48:10 +00002795 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
2796</div>
2797
2798<div class="doc_text">
2799
2800<h5>Syntax:</h5>
2801
2802<pre>
2803 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2804</pre>
2805
2806<h5>Overview:</h5>
2807<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
2808<tt>ty2</tt>.</p>
2809
2810
2811<h5>Arguments:</h5>
2812<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
2813 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
2814cast it to. The size of <tt>value</tt> must be larger than the size of
2815<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
2816<i>no-op cast</i>.</p>
2817
2818<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00002819<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
2820<a href="#t_floating">floating point</a> type to a smaller
2821<a href="#t_floating">floating point</a> type. If the value cannot fit within
2822the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00002823
2824<h5>Example:</h5>
2825<pre>
2826 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
2827 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
2828</pre>
2829</div>
2830
2831<!-- _______________________________________________________________________ -->
2832<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002833 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
2834</div>
2835<div class="doc_text">
2836
2837<h5>Syntax:</h5>
2838<pre>
2839 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2840</pre>
2841
2842<h5>Overview:</h5>
2843<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
2844floating point value.</p>
2845
2846<h5>Arguments:</h5>
2847<p>The '<tt>fpext</tt>' instruction takes a
2848<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencer51b07252006-11-09 23:03:26 +00002849and a <a href="#t_floating">floating point</a> type to cast it to. The source
2850type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002851
2852<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00002853<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
2854<a href="t_floating">floating point</a> type to a larger
2855<a href="t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
2856used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5b950642006-11-11 23:08:07 +00002857<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002858
2859<h5>Example:</h5>
2860<pre>
2861 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
2862 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
2863</pre>
2864</div>
2865
2866<!-- _______________________________________________________________________ -->
2867<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00002868 <a name="i_fp2uint">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002869</div>
2870<div class="doc_text">
2871
2872<h5>Syntax:</h5>
2873<pre>
2874 &lt;result&gt; = fp2uint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2875</pre>
2876
2877<h5>Overview:</h5>
2878<p>The '<tt>fp2uint</tt>' converts a floating point <tt>value</tt> to its
2879unsigned integer equivalent of type <tt>ty2</tt>.
2880</p>
2881
2882<h5>Arguments:</h5>
2883<p>The '<tt>fp2uint</tt>' instruction takes a value to cast, which must be a
2884<a href="#t_floating">floating point</a> value, and a type to cast it to, which
Chris Lattnerc0f423a2007-01-15 01:54:13 +00002885must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002886
2887<h5>Semantics:</h5>
2888<p> The '<tt>fp2uint</tt>' instruction converts its
2889<a href="#t_floating">floating point</a> operand into the nearest (rounding
2890towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
2891the results are undefined.</p>
2892
Reid Spencer36a15422007-01-12 03:35:51 +00002893<p>When converting to i1, the conversion is done as a comparison against
2894zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
2895If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002896
2897<h5>Example:</h5>
2898<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00002899 %X = fp2uint double 123.0 to i32 <i>; yields i32:123</i>
2900 %Y = fp2uint float 1.0E+300 to i1 <i>; yields i1:true</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002901 %X = fp2uint float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002902</pre>
2903</div>
2904
2905<!-- _______________________________________________________________________ -->
2906<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00002907 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002908</div>
2909<div class="doc_text">
2910
2911<h5>Syntax:</h5>
2912<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00002913 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002914</pre>
2915
2916<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00002917<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002918<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00002919</p>
2920
2921
Chris Lattnera8292f32002-05-06 22:08:29 +00002922<h5>Arguments:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00002923<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002924<a href="#t_floating">floating point</a> value, and a type to cast it to, which
Chris Lattnerc0f423a2007-01-15 01:54:13 +00002925must also be an <a href="#t_integer">integer</a> type.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00002926
Chris Lattnera8292f32002-05-06 22:08:29 +00002927<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00002928<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002929<a href="#t_floating">floating point</a> operand into the nearest (rounding
2930towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
2931the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00002932
Reid Spencer36a15422007-01-12 03:35:51 +00002933<p>When converting to i1, the conversion is done as a comparison against
2934zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
2935If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00002936
Chris Lattner70de6632001-07-09 00:26:23 +00002937<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00002938<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00002939 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
2940 %Y = fptosi float 1.0E-247 to i1 <i>; yields i1:true</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002941 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002942</pre>
2943</div>
2944
2945<!-- _______________________________________________________________________ -->
2946<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00002947 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002948</div>
2949<div class="doc_text">
2950
2951<h5>Syntax:</h5>
2952<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00002953 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002954</pre>
2955
2956<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00002957<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002958integer and converts that value to the <tt>ty2</tt> type.</p>
2959
2960
2961<h5>Arguments:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00002962<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
Chris Lattnerc0f423a2007-01-15 01:54:13 +00002963<a href="#t_integer">integer</a> value, and a type to cast it to, which must
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002964be a <a href="#t_floating">floating point</a> type.</p>
2965
2966<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00002967<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002968integer quantity and converts it to the corresponding floating point value. If
2969the value cannot fit in the floating point value, the results are undefined.</p>
2970
2971
2972<h5>Example:</h5>
2973<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002974 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
2975 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002976</pre>
2977</div>
2978
2979<!-- _______________________________________________________________________ -->
2980<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00002981 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002982</div>
2983<div class="doc_text">
2984
2985<h5>Syntax:</h5>
2986<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00002987 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002988</pre>
2989
2990<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00002991<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002992integer and converts that value to the <tt>ty2</tt> type.</p>
2993
2994<h5>Arguments:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00002995<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
Chris Lattnerc0f423a2007-01-15 01:54:13 +00002996<a href="#t_integer">integer</a> value, and a type to cast it to, which must be
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002997a <a href="#t_floating">floating point</a> type.</p>
2998
2999<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003000<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003001integer quantity and converts it to the corresponding floating point value. If
3002the value cannot fit in the floating point value, the results are undefined.</p>
3003
3004<h5>Example:</h5>
3005<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003006 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3007 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003008</pre>
3009</div>
3010
3011<!-- _______________________________________________________________________ -->
3012<div class="doc_subsubsection">
Reid Spencerb7344ff2006-11-11 21:00:47 +00003013 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3014</div>
3015<div class="doc_text">
3016
3017<h5>Syntax:</h5>
3018<pre>
3019 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3020</pre>
3021
3022<h5>Overview:</h5>
3023<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3024the integer type <tt>ty2</tt>.</p>
3025
3026<h5>Arguments:</h5>
3027<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3028must be a <a href="t_pointer">pointer</a> value, and a type to cast it to
3029<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3030
3031<h5>Semantics:</h5>
3032<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3033<tt>ty2</tt> by interpreting the pointer value as an integer and either
3034truncating or zero extending that value to the size of the integer type. If
3035<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3036<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3037are the same size, then nothing is done (<i>no-op cast</i>).</p>
3038
3039<h5>Example:</h5>
3040<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003041 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit</i>
3042 %Y = ptrtoint i32* %x to i64 <i>; yields zero extend on 32-bit</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00003043</pre>
3044</div>
3045
3046<!-- _______________________________________________________________________ -->
3047<div class="doc_subsubsection">
3048 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3049</div>
3050<div class="doc_text">
3051
3052<h5>Syntax:</h5>
3053<pre>
3054 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3055</pre>
3056
3057<h5>Overview:</h5>
3058<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3059a pointer type, <tt>ty2</tt>.</p>
3060
3061<h5>Arguments:</h5>
3062<p>The '<tt>inttoptr</tt>' instruction takes an <a href="i_integer">integer</a>
3063value to cast, and a type to cast it to, which must be a
Anton Korobeynikova0554d92007-01-12 19:20:47 +00003064<a href="#t_pointer">pointer</a> type.
Reid Spencerb7344ff2006-11-11 21:00:47 +00003065
3066<h5>Semantics:</h5>
3067<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3068<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3069the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3070size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3071the size of a pointer then a zero extension is done. If they are the same size,
3072nothing is done (<i>no-op cast</i>).</p>
3073
3074<h5>Example:</h5>
3075<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003076 %X = inttoptr i32 255 to i32* <i>; yields zero extend on 64-bit</i>
3077 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit </i>
3078 %Y = inttoptr i16 0 to i32* <i>; yields zero extend on 32-bit</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00003079</pre>
3080</div>
3081
3082<!-- _______________________________________________________________________ -->
3083<div class="doc_subsubsection">
Reid Spencer5b950642006-11-11 23:08:07 +00003084 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003085</div>
3086<div class="doc_text">
3087
3088<h5>Syntax:</h5>
3089<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00003090 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003091</pre>
3092
3093<h5>Overview:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00003094<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003095<tt>ty2</tt> without changing any bits.</p>
3096
3097<h5>Arguments:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00003098<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003099a first class value, and a type to cast it to, which must also be a <a
3100 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
Reid Spencere3db84c2007-01-09 20:08:58 +00003101and the destination type, <tt>ty2</tt>, must be identical. If the source
3102type is a pointer, the destination type must also be a pointer.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003103
3104<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00003105<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencerb7344ff2006-11-11 21:00:47 +00003106<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3107this conversion. The conversion is done as if the <tt>value</tt> had been
3108stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3109converted to other pointer types with this instruction. To convert pointers to
3110other types, use the <a href="#i_inttoptr">inttoptr</a> or
3111<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003112
3113<h5>Example:</h5>
3114<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003115 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3116 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3117 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner70de6632001-07-09 00:26:23 +00003118</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003119</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003120
Reid Spencer97c5fa42006-11-08 01:18:52 +00003121<!-- ======================================================================= -->
3122<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3123<div class="doc_text">
3124<p>The instructions in this category are the "miscellaneous"
3125instructions, which defy better classification.</p>
3126</div>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003127
3128<!-- _______________________________________________________________________ -->
3129<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3130</div>
3131<div class="doc_text">
3132<h5>Syntax:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00003133<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;
3134<i>; yields {i1}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003135</pre>
3136<h5>Overview:</h5>
3137<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3138of its two integer operands.</p>
3139<h5>Arguments:</h5>
3140<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3141the condition code which indicates the kind of comparison to perform. It is not
3142a value, just a keyword. The possibilities for the condition code are:
3143<ol>
3144 <li><tt>eq</tt>: equal</li>
3145 <li><tt>ne</tt>: not equal </li>
3146 <li><tt>ugt</tt>: unsigned greater than</li>
3147 <li><tt>uge</tt>: unsigned greater or equal</li>
3148 <li><tt>ult</tt>: unsigned less than</li>
3149 <li><tt>ule</tt>: unsigned less or equal</li>
3150 <li><tt>sgt</tt>: signed greater than</li>
3151 <li><tt>sge</tt>: signed greater or equal</li>
3152 <li><tt>slt</tt>: signed less than</li>
3153 <li><tt>sle</tt>: signed less or equal</li>
3154</ol>
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003155<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Reid Spencer784ef792007-01-04 05:19:58 +00003156<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003157<h5>Semantics:</h5>
3158<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3159the condition code given as <tt>cond</tt>. The comparison performed always
Reid Spencer36a15422007-01-12 03:35:51 +00003160yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerc828a0e2006-11-18 21:50:54 +00003161<ol>
3162 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3163 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3164 </li>
3165 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3166 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3167 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3168 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3169 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3170 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3171 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3172 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3173 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3174 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3175 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3176 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3177 <li><tt>sge</tt>: interprets the operands as signed values and yields
3178 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3179 <li><tt>slt</tt>: interprets the operands as signed values and yields
3180 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3181 <li><tt>sle</tt>: interprets the operands as signed values and yields
3182 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003183</ol>
3184<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3185values are treated as integers and then compared.</p>
3186<p>If the operands are <a href="#t_packed">packed</a> typed, the elements of
Reid Spencerf69acf32006-11-19 03:00:14 +00003187the vector are compared in turn and the predicate must hold for all
3188elements.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003189
3190<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003191<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3192 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3193 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3194 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3195 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3196 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003197</pre>
3198</div>
3199
3200<!-- _______________________________________________________________________ -->
3201<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3202</div>
3203<div class="doc_text">
3204<h5>Syntax:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00003205<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;
3206<i>; yields {i1}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003207</pre>
3208<h5>Overview:</h5>
3209<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3210of its floating point operands.</p>
3211<h5>Arguments:</h5>
3212<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3213the condition code which indicates the kind of comparison to perform. It is not
3214a value, just a keyword. The possibilities for the condition code are:
3215<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00003216 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003217 <li><tt>oeq</tt>: ordered and equal</li>
3218 <li><tt>ogt</tt>: ordered and greater than </li>
3219 <li><tt>oge</tt>: ordered and greater than or equal</li>
3220 <li><tt>olt</tt>: ordered and less than </li>
3221 <li><tt>ole</tt>: ordered and less than or equal</li>
3222 <li><tt>one</tt>: ordered and not equal</li>
3223 <li><tt>ord</tt>: ordered (no nans)</li>
3224 <li><tt>ueq</tt>: unordered or equal</li>
3225 <li><tt>ugt</tt>: unordered or greater than </li>
3226 <li><tt>uge</tt>: unordered or greater than or equal</li>
3227 <li><tt>ult</tt>: unordered or less than </li>
3228 <li><tt>ule</tt>: unordered or less than or equal</li>
3229 <li><tt>une</tt>: unordered or not equal</li>
3230 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00003231 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003232</ol>
Reid Spencer02e0d1d2006-12-06 07:08:07 +00003233<p>In the preceding, <i>ordered</i> means that neither operand is a QNAN while
3234<i>unordered</i> means that either operand may be a QNAN.</p>
Reid Spencer784ef792007-01-04 05:19:58 +00003235<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3236<a href="#t_floating">floating point</a> typed. They must have identical
3237types.</p>
Reid Spencerf69acf32006-11-19 03:00:14 +00003238<p>In the foregoing, <i>ordered</i> means that neither operand is a QNAN and
3239<i>unordered</i> means that either operand is a QNAN.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003240<h5>Semantics:</h5>
3241<p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3242the condition code given as <tt>cond</tt>. The comparison performed always
Reid Spencer36a15422007-01-12 03:35:51 +00003243yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerc828a0e2006-11-18 21:50:54 +00003244<ol>
3245 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00003246 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerc828a0e2006-11-18 21:50:54 +00003247 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00003248 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerc828a0e2006-11-18 21:50:54 +00003249 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00003250 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerc828a0e2006-11-18 21:50:54 +00003251 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00003252 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerc828a0e2006-11-18 21:50:54 +00003253 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00003254 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerc828a0e2006-11-18 21:50:54 +00003255 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00003256 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerc828a0e2006-11-18 21:50:54 +00003257 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00003258 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3259 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerc828a0e2006-11-18 21:50:54 +00003260 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00003261 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerc828a0e2006-11-18 21:50:54 +00003262 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00003263 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerc828a0e2006-11-18 21:50:54 +00003264 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00003265 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerc828a0e2006-11-18 21:50:54 +00003266 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00003267 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerc828a0e2006-11-18 21:50:54 +00003268 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00003269 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerc828a0e2006-11-18 21:50:54 +00003270 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00003271 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003272 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3273</ol>
3274<p>If the operands are <a href="#t_packed">packed</a> typed, the elements of
3275the vector are compared in turn and the predicate must hold for all elements.
Reid Spencerf69acf32006-11-19 03:00:14 +00003276</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003277
3278<h5>Example:</h5>
3279<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3280 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3281 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3282 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3283</pre>
3284</div>
3285
Reid Spencer97c5fa42006-11-08 01:18:52 +00003286<!-- _______________________________________________________________________ -->
3287<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3288Instruction</a> </div>
3289<div class="doc_text">
3290<h5>Syntax:</h5>
3291<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3292<h5>Overview:</h5>
3293<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3294the SSA graph representing the function.</p>
3295<h5>Arguments:</h5>
3296<p>The type of the incoming values are specified with the first type
3297field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3298as arguments, with one pair for each predecessor basic block of the
3299current block. Only values of <a href="#t_firstclass">first class</a>
3300type may be used as the value arguments to the PHI node. Only labels
3301may be used as the label arguments.</p>
3302<p>There must be no non-phi instructions between the start of a basic
3303block and the PHI instructions: i.e. PHI instructions must be first in
3304a basic block.</p>
3305<h5>Semantics:</h5>
3306<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the
3307value specified by the parameter, depending on which basic block we
3308came from in the last <a href="#terminators">terminator</a> instruction.</p>
3309<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003310<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
Reid Spencer97c5fa42006-11-08 01:18:52 +00003311</div>
3312
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003313<!-- _______________________________________________________________________ -->
3314<div class="doc_subsubsection">
3315 <a name="i_select">'<tt>select</tt>' Instruction</a>
3316</div>
3317
3318<div class="doc_text">
3319
3320<h5>Syntax:</h5>
3321
3322<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00003323 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003324</pre>
3325
3326<h5>Overview:</h5>
3327
3328<p>
3329The '<tt>select</tt>' instruction is used to choose one value based on a
3330condition, without branching.
3331</p>
3332
3333
3334<h5>Arguments:</h5>
3335
3336<p>
3337The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3338</p>
3339
3340<h5>Semantics:</h5>
3341
3342<p>
3343If the boolean condition evaluates to true, the instruction returns the first
John Criswell88190562005-05-16 16:17:45 +00003344value argument; otherwise, it returns the second value argument.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003345</p>
3346
3347<h5>Example:</h5>
3348
3349<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00003350 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003351</pre>
3352</div>
3353
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00003354
3355<!-- _______________________________________________________________________ -->
3356<div class="doc_subsubsection">
Chris Lattnere23c1392005-05-06 05:47:36 +00003357 <a name="i_call">'<tt>call</tt>' Instruction</a>
3358</div>
3359
Misha Brukman76307852003-11-08 01:05:38 +00003360<div class="doc_text">
Chris Lattnere23c1392005-05-06 05:47:36 +00003361
Chris Lattner2f7c9632001-06-06 20:29:01 +00003362<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00003363<pre>
Chris Lattner0132aff2005-05-06 22:57:40 +00003364 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt;* &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattnere23c1392005-05-06 05:47:36 +00003365</pre>
3366
Chris Lattner2f7c9632001-06-06 20:29:01 +00003367<h5>Overview:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00003368
Misha Brukman76307852003-11-08 01:05:38 +00003369<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00003370
Chris Lattner2f7c9632001-06-06 20:29:01 +00003371<h5>Arguments:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00003372
Misha Brukman76307852003-11-08 01:05:38 +00003373<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00003374
Chris Lattnera8292f32002-05-06 22:08:29 +00003375<ol>
Chris Lattner48b383b02003-11-25 01:02:51 +00003376 <li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003377 <p>The optional "tail" marker indicates whether the callee function accesses
3378 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattnere23c1392005-05-06 05:47:36 +00003379 function call is eligible for tail call optimization. Note that calls may
3380 be marked "tail" even if they do not occur before a <a
3381 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner48b383b02003-11-25 01:02:51 +00003382 </li>
3383 <li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003384 <p>The optional "cconv" marker indicates which <a href="callingconv">calling
3385 convention</a> the call should use. If none is specified, the call defaults
3386 to using C calling conventions.
3387 </li>
3388 <li>
Chris Lattnere23c1392005-05-06 05:47:36 +00003389 <p>'<tt>ty</tt>': shall be the signature of the pointer to function value
3390 being invoked. The argument types must match the types implied by this
John Criswell88190562005-05-16 16:17:45 +00003391 signature. This type can be omitted if the function is not varargs and
3392 if the function type does not return a pointer to a function.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00003393 </li>
3394 <li>
3395 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3396 be invoked. In most cases, this is a direct function invocation, but
3397 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswell88190562005-05-16 16:17:45 +00003398 to function value.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00003399 </li>
3400 <li>
3401 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencerd845d162005-05-01 22:22:57 +00003402 function signature argument types. All arguments must be of
3403 <a href="#t_firstclass">first class</a> type. If the function signature
3404 indicates the function accepts a variable number of arguments, the extra
3405 arguments can be specified.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00003406 </li>
Chris Lattnera8292f32002-05-06 22:08:29 +00003407</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00003408
Chris Lattner2f7c9632001-06-06 20:29:01 +00003409<h5>Semantics:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00003410
Chris Lattner48b383b02003-11-25 01:02:51 +00003411<p>The '<tt>call</tt>' instruction is used to cause control flow to
3412transfer to a specified function, with its incoming arguments bound to
3413the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3414instruction in the called function, control flow continues with the
3415instruction after the function call, and the return value of the
3416function is bound to the result argument. This is a simpler case of
3417the <a href="#i_invoke">invoke</a> instruction.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00003418
Chris Lattner2f7c9632001-06-06 20:29:01 +00003419<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00003420
3421<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003422 %retval = call i32 %test(i32 %argc)
3423 call i32(i8 *, ...) *%printf(i8 * %msg, i32 12, i8 42);
3424 %X = tail call i32 %foo()
3425 %Y = tail call <a href="#callingconv">fastcc</a> i32 %foo()
Chris Lattnere23c1392005-05-06 05:47:36 +00003426</pre>
3427
Misha Brukman76307852003-11-08 01:05:38 +00003428</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00003429
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00003430<!-- _______________________________________________________________________ -->
Chris Lattner6a4a0492004-09-27 21:51:25 +00003431<div class="doc_subsubsection">
Chris Lattner33337472006-01-13 23:26:01 +00003432 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattner6a4a0492004-09-27 21:51:25 +00003433</div>
3434
Misha Brukman76307852003-11-08 01:05:38 +00003435<div class="doc_text">
Chris Lattner6a4a0492004-09-27 21:51:25 +00003436
Chris Lattner26ca62e2003-10-18 05:51:36 +00003437<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00003438
3439<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00003440 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00003441</pre>
3442
Chris Lattner26ca62e2003-10-18 05:51:36 +00003443<h5>Overview:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00003444
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00003445<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattner6a4a0492004-09-27 21:51:25 +00003446the "variable argument" area of a function call. It is used to implement the
3447<tt>va_arg</tt> macro in C.</p>
3448
Chris Lattner26ca62e2003-10-18 05:51:36 +00003449<h5>Arguments:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00003450
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00003451<p>This instruction takes a <tt>va_list*</tt> value and the type of
3452the argument. It returns a value of the specified argument type and
Jeff Cohendc6bfea2005-11-11 02:15:27 +00003453increments the <tt>va_list</tt> to point to the next argument. Again, the
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00003454actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00003455
Chris Lattner26ca62e2003-10-18 05:51:36 +00003456<h5>Semantics:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00003457
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00003458<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3459type from the specified <tt>va_list</tt> and causes the
3460<tt>va_list</tt> to point to the next argument. For more information,
3461see the variable argument handling <a href="#int_varargs">Intrinsic
3462Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00003463
3464<p>It is legal for this instruction to be called in a function which does not
3465take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman76307852003-11-08 01:05:38 +00003466function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00003467
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00003468<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswell88190562005-05-16 16:17:45 +00003469href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattner6a4a0492004-09-27 21:51:25 +00003470argument.</p>
3471
Chris Lattner26ca62e2003-10-18 05:51:36 +00003472<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00003473
3474<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3475
Misha Brukman76307852003-11-08 01:05:38 +00003476</div>
Chris Lattner941515c2004-01-06 05:31:32 +00003477
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00003478<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003479<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3480<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00003481
Misha Brukman76307852003-11-08 01:05:38 +00003482<div class="doc_text">
Chris Lattnerfee11462004-02-12 17:01:32 +00003483
3484<p>LLVM supports the notion of an "intrinsic function". These functions have
John Criswell88190562005-05-16 16:17:45 +00003485well known names and semantics and are required to follow certain
Chris Lattnerfee11462004-02-12 17:01:32 +00003486restrictions. Overall, these instructions represent an extension mechanism for
3487the LLVM language that does not require changing all of the transformations in
3488LLVM to add to the language (or the bytecode reader/writer, the parser,
3489etc...).</p>
3490
John Criswell88190562005-05-16 16:17:45 +00003491<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3492prefix is reserved in LLVM for intrinsic names; thus, functions may not be named
Chris Lattnerfee11462004-02-12 17:01:32 +00003493this. Intrinsic functions must always be external functions: you cannot define
3494the body of intrinsic functions. Intrinsic functions may only be used in call
3495or invoke instructions: it is illegal to take the address of an intrinsic
3496function. Additionally, because intrinsic functions are part of the LLVM
3497language, it is required that they all be documented here if any are added.</p>
3498
3499
John Criswell88190562005-05-16 16:17:45 +00003500<p>To learn how to add an intrinsic function, please see the <a
Chris Lattner90391c12005-05-11 03:35:57 +00003501href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattnerfee11462004-02-12 17:01:32 +00003502</p>
3503
Misha Brukman76307852003-11-08 01:05:38 +00003504</div>
Chris Lattner941515c2004-01-06 05:31:32 +00003505
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00003506<!-- ======================================================================= -->
Chris Lattner941515c2004-01-06 05:31:32 +00003507<div class="doc_subsection">
3508 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3509</div>
3510
Misha Brukman76307852003-11-08 01:05:38 +00003511<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00003512
Misha Brukman76307852003-11-08 01:05:38 +00003513<p>Variable argument support is defined in LLVM with the <a
Chris Lattner33337472006-01-13 23:26:01 +00003514 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner48b383b02003-11-25 01:02:51 +00003515intrinsic functions. These functions are related to the similarly
3516named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00003517
Chris Lattner48b383b02003-11-25 01:02:51 +00003518<p>All of these functions operate on arguments that use a
3519target-specific value type "<tt>va_list</tt>". The LLVM assembly
3520language reference manual does not define what this type is, so all
3521transformations should be prepared to handle intrinsics with any type
3522used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00003523
Chris Lattner30b868d2006-05-15 17:26:46 +00003524<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner48b383b02003-11-25 01:02:51 +00003525instruction and the variable argument handling intrinsic functions are
3526used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00003527
Chris Lattnerfee11462004-02-12 17:01:32 +00003528<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003529define i32 %test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00003530 ; Initialize variable argument processing
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003531 %ap = alloca i8 *
Chris Lattnerdb0790c2007-01-08 07:55:15 +00003532 %ap2 = bitcast i8** %ap to i8*
3533 call void %<a href="#i_va_start">llvm.va_start</a>(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00003534
3535 ; Read a single integer argument
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003536 %tmp = va_arg i8 ** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00003537
3538 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003539 %aq = alloca i8 *
Chris Lattnerdb0790c2007-01-08 07:55:15 +00003540 %aq2 = bitcast i8** %aq to i8*
3541 call void %<a href="#i_va_copy">llvm.va_copy</a>(i8 *%aq2, i8* %ap2)
3542 call void %<a href="#i_va_end">llvm.va_end</a>(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00003543
3544 ; Stop processing of arguments.
Chris Lattnerdb0790c2007-01-08 07:55:15 +00003545 call void %<a href="#i_va_end">llvm.va_end</a>(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003546 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00003547}
3548</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003549</div>
Chris Lattner941515c2004-01-06 05:31:32 +00003550
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00003551<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00003552<div class="doc_subsubsection">
3553 <a name="i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
3554</div>
3555
3556
Misha Brukman76307852003-11-08 01:05:38 +00003557<div class="doc_text">
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00003558<h5>Syntax:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00003559<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00003560<h5>Overview:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00003561<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3562<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3563href="#i_va_arg">va_arg</a></tt>.</p>
3564
3565<h5>Arguments:</h5>
3566
3567<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3568
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00003569<h5>Semantics:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00003570
3571<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3572macro available in C. In a target-dependent way, it initializes the
3573<tt>va_list</tt> element the argument points to, so that the next call to
3574<tt>va_arg</tt> will produce the first variable argument passed to the function.
3575Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3576last argument of the function, the compiler can figure that out.</p>
3577
Misha Brukman76307852003-11-08 01:05:38 +00003578</div>
Chris Lattner941515c2004-01-06 05:31:32 +00003579
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00003580<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00003581<div class="doc_subsubsection">
3582 <a name="i_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
3583</div>
3584
Misha Brukman76307852003-11-08 01:05:38 +00003585<div class="doc_text">
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00003586<h5>Syntax:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00003587<pre> declare void %llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00003588<h5>Overview:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00003589
Chris Lattner48b383b02003-11-25 01:02:51 +00003590<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>&lt;arglist&gt;</tt>
3591which has been initialized previously with <tt><a href="#i_va_start">llvm.va_start</a></tt>
3592or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00003593
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00003594<h5>Arguments:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00003595
Misha Brukman76307852003-11-08 01:05:38 +00003596<p>The argument is a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00003597
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00003598<h5>Semantics:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00003599
Misha Brukman76307852003-11-08 01:05:38 +00003600<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Chris Lattner48b383b02003-11-25 01:02:51 +00003601macro available in C. In a target-dependent way, it destroys the <tt>va_list</tt>.
3602Calls to <a href="#i_va_start"><tt>llvm.va_start</tt></a> and <a
3603 href="#i_va_copy"><tt>llvm.va_copy</tt></a> must be matched exactly
3604with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00003605
Misha Brukman76307852003-11-08 01:05:38 +00003606</div>
Chris Lattner941515c2004-01-06 05:31:32 +00003607
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00003608<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00003609<div class="doc_subsubsection">
3610 <a name="i_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
3611</div>
3612
Misha Brukman76307852003-11-08 01:05:38 +00003613<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00003614
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00003615<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00003616
3617<pre>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00003618 declare void %llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00003619</pre>
3620
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00003621<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00003622
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00003623<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position from
3624the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00003625
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00003626<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00003627
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00003628<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharth5305ea52005-06-22 20:38:11 +00003629The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00003630
Chris Lattner757528b0b2004-05-23 21:06:01 +00003631
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00003632<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00003633
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00003634<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt> macro
3635available in C. In a target-dependent way, it copies the source
3636<tt>va_list</tt> element into the destination list. This intrinsic is necessary
3637because the <tt><a href="i_va_begin">llvm.va_begin</a></tt> intrinsic may be
Chris Lattner757528b0b2004-05-23 21:06:01 +00003638arbitrarily complex and require memory allocation, for example.</p>
3639
Misha Brukman76307852003-11-08 01:05:38 +00003640</div>
Chris Lattner941515c2004-01-06 05:31:32 +00003641
Chris Lattnerfee11462004-02-12 17:01:32 +00003642<!-- ======================================================================= -->
3643<div class="doc_subsection">
Chris Lattner757528b0b2004-05-23 21:06:01 +00003644 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3645</div>
3646
3647<div class="doc_text">
3648
3649<p>
3650LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3651Collection</a> requires the implementation and generation of these intrinsics.
3652These intrinsics allow identification of <a href="#i_gcroot">GC roots on the
3653stack</a>, as well as garbage collector implementations that require <a
3654href="#i_gcread">read</a> and <a href="#i_gcwrite">write</a> barriers.
3655Front-ends for type-safe garbage collected languages should generate these
3656intrinsics to make use of the LLVM garbage collectors. For more details, see <a
3657href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3658</p>
3659</div>
3660
3661<!-- _______________________________________________________________________ -->
3662<div class="doc_subsubsection">
3663 <a name="i_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
3664</div>
3665
3666<div class="doc_text">
3667
3668<h5>Syntax:</h5>
3669
3670<pre>
Reid Spencer7821d062005-04-26 20:50:44 +00003671 declare void %llvm.gcroot(&lt;ty&gt;** %ptrloc, &lt;ty2&gt;* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00003672</pre>
3673
3674<h5>Overview:</h5>
3675
John Criswelldfe6a862004-12-10 15:51:16 +00003676<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattner757528b0b2004-05-23 21:06:01 +00003677the code generator, and allows some metadata to be associated with it.</p>
3678
3679<h5>Arguments:</h5>
3680
3681<p>The first argument specifies the address of a stack object that contains the
3682root pointer. The second pointer (which must be either a constant or a global
3683value address) contains the meta-data to be associated with the root.</p>
3684
3685<h5>Semantics:</h5>
3686
3687<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3688location. At compile-time, the code generator generates information to allow
3689the runtime to find the pointer at GC safe points.
3690</p>
3691
3692</div>
3693
3694
3695<!-- _______________________________________________________________________ -->
3696<div class="doc_subsubsection">
3697 <a name="i_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
3698</div>
3699
3700<div class="doc_text">
3701
3702<h5>Syntax:</h5>
3703
3704<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003705 declare i8 * %llvm.gcread(i8 * %ObjPtr, i8 ** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00003706</pre>
3707
3708<h5>Overview:</h5>
3709
3710<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3711locations, allowing garbage collector implementations that require read
3712barriers.</p>
3713
3714<h5>Arguments:</h5>
3715
Chris Lattnerf9228072006-03-14 20:02:51 +00003716<p>The second argument is the address to read from, which should be an address
3717allocated from the garbage collector. The first object is a pointer to the
3718start of the referenced object, if needed by the language runtime (otherwise
3719null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00003720
3721<h5>Semantics:</h5>
3722
3723<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3724instruction, but may be replaced with substantially more complex code by the
3725garbage collector runtime, as needed.</p>
3726
3727</div>
3728
3729
3730<!-- _______________________________________________________________________ -->
3731<div class="doc_subsubsection">
3732 <a name="i_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
3733</div>
3734
3735<div class="doc_text">
3736
3737<h5>Syntax:</h5>
3738
3739<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003740 declare void %llvm.gcwrite(i8 * %P1, i8 * %Obj, i8 ** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00003741</pre>
3742
3743<h5>Overview:</h5>
3744
3745<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
3746locations, allowing garbage collector implementations that require write
3747barriers (such as generational or reference counting collectors).</p>
3748
3749<h5>Arguments:</h5>
3750
Chris Lattnerf9228072006-03-14 20:02:51 +00003751<p>The first argument is the reference to store, the second is the start of the
3752object to store it to, and the third is the address of the field of Obj to
3753store to. If the runtime does not require a pointer to the object, Obj may be
3754null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00003755
3756<h5>Semantics:</h5>
3757
3758<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
3759instruction, but may be replaced with substantially more complex code by the
3760garbage collector runtime, as needed.</p>
3761
3762</div>
3763
3764
3765
3766<!-- ======================================================================= -->
3767<div class="doc_subsection">
Chris Lattner3649c3a2004-02-14 04:08:35 +00003768 <a name="int_codegen">Code Generator Intrinsics</a>
3769</div>
3770
3771<div class="doc_text">
3772<p>
3773These intrinsics are provided by LLVM to expose special features that may only
3774be implemented with code generator support.
3775</p>
3776
3777</div>
3778
3779<!-- _______________________________________________________________________ -->
3780<div class="doc_subsubsection">
3781 <a name="i_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
3782</div>
3783
3784<div class="doc_text">
3785
3786<h5>Syntax:</h5>
3787<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003788 declare i8 *%llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00003789</pre>
3790
3791<h5>Overview:</h5>
3792
3793<p>
Chris Lattnerc1fb4262006-10-15 20:05:59 +00003794The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
3795target-specific value indicating the return address of the current function
3796or one of its callers.
Chris Lattner3649c3a2004-02-14 04:08:35 +00003797</p>
3798
3799<h5>Arguments:</h5>
3800
3801<p>
3802The argument to this intrinsic indicates which function to return the address
3803for. Zero indicates the calling function, one indicates its caller, etc. The
3804argument is <b>required</b> to be a constant integer value.
3805</p>
3806
3807<h5>Semantics:</h5>
3808
3809<p>
3810The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
3811the return address of the specified call frame, or zero if it cannot be
3812identified. The value returned by this intrinsic is likely to be incorrect or 0
3813for arguments other than zero, so it should only be used for debugging purposes.
3814</p>
3815
3816<p>
3817Note that calling this intrinsic does not prevent function inlining or other
Chris Lattner2e6eb5f2005-03-07 20:30:51 +00003818aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner3649c3a2004-02-14 04:08:35 +00003819source-language caller.
3820</p>
3821</div>
3822
3823
3824<!-- _______________________________________________________________________ -->
3825<div class="doc_subsubsection">
3826 <a name="i_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
3827</div>
3828
3829<div class="doc_text">
3830
3831<h5>Syntax:</h5>
3832<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003833 declare i8 *%llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00003834</pre>
3835
3836<h5>Overview:</h5>
3837
3838<p>
Chris Lattnerc1fb4262006-10-15 20:05:59 +00003839The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
3840target-specific frame pointer value for the specified stack frame.
Chris Lattner3649c3a2004-02-14 04:08:35 +00003841</p>
3842
3843<h5>Arguments:</h5>
3844
3845<p>
3846The argument to this intrinsic indicates which function to return the frame
3847pointer for. Zero indicates the calling function, one indicates its caller,
3848etc. The argument is <b>required</b> to be a constant integer value.
3849</p>
3850
3851<h5>Semantics:</h5>
3852
3853<p>
3854The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
3855the frame address of the specified call frame, or zero if it cannot be
3856identified. The value returned by this intrinsic is likely to be incorrect or 0
3857for arguments other than zero, so it should only be used for debugging purposes.
3858</p>
3859
3860<p>
3861Note that calling this intrinsic does not prevent function inlining or other
Chris Lattner2e6eb5f2005-03-07 20:30:51 +00003862aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner3649c3a2004-02-14 04:08:35 +00003863source-language caller.
3864</p>
3865</div>
3866
Chris Lattnerc8a2c222005-02-28 19:24:19 +00003867<!-- _______________________________________________________________________ -->
3868<div class="doc_subsubsection">
Chris Lattner2f0f0012006-01-13 02:03:13 +00003869 <a name="i_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
3870</div>
3871
3872<div class="doc_text">
3873
3874<h5>Syntax:</h5>
3875<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003876 declare i8 *%llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00003877</pre>
3878
3879<h5>Overview:</h5>
3880
3881<p>
3882The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
3883the function stack, for use with <a href="#i_stackrestore">
3884<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
3885features like scoped automatic variable sized arrays in C99.
3886</p>
3887
3888<h5>Semantics:</h5>
3889
3890<p>
3891This intrinsic returns a opaque pointer value that can be passed to <a
3892href="#i_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
3893<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
3894<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
3895state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
3896practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
3897that were allocated after the <tt>llvm.stacksave</tt> was executed.
3898</p>
3899
3900</div>
3901
3902<!-- _______________________________________________________________________ -->
3903<div class="doc_subsubsection">
3904 <a name="i_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
3905</div>
3906
3907<div class="doc_text">
3908
3909<h5>Syntax:</h5>
3910<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003911 declare void %llvm.stackrestore(i8 * %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00003912</pre>
3913
3914<h5>Overview:</h5>
3915
3916<p>
3917The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
3918the function stack to the state it was in when the corresponding <a
3919href="#llvm.stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
3920useful for implementing language features like scoped automatic variable sized
3921arrays in C99.
3922</p>
3923
3924<h5>Semantics:</h5>
3925
3926<p>
3927See the description for <a href="#i_stacksave"><tt>llvm.stacksave</tt></a>.
3928</p>
3929
3930</div>
3931
3932
3933<!-- _______________________________________________________________________ -->
3934<div class="doc_subsubsection">
Chris Lattnerc8a2c222005-02-28 19:24:19 +00003935 <a name="i_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
3936</div>
3937
3938<div class="doc_text">
3939
3940<h5>Syntax:</h5>
3941<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003942 declare void %llvm.prefetch(i8 * &lt;address&gt;,
3943 i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00003944</pre>
3945
3946<h5>Overview:</h5>
3947
3948
3949<p>
3950The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswell88190562005-05-16 16:17:45 +00003951a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
3952no
3953effect on the behavior of the program but can change its performance
Chris Lattnerff851072005-02-28 19:47:14 +00003954characteristics.
Chris Lattnerc8a2c222005-02-28 19:24:19 +00003955</p>
3956
3957<h5>Arguments:</h5>
3958
3959<p>
3960<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
3961determining if the fetch should be for a read (0) or write (1), and
3962<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattnerd3e641c2005-03-07 20:31:38 +00003963locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattnerc8a2c222005-02-28 19:24:19 +00003964<tt>locality</tt> arguments must be constant integers.
3965</p>
3966
3967<h5>Semantics:</h5>
3968
3969<p>
3970This intrinsic does not modify the behavior of the program. In particular,
3971prefetches cannot trap and do not produce a value. On targets that support this
3972intrinsic, the prefetch can provide hints to the processor cache for better
3973performance.
3974</p>
3975
3976</div>
3977
Andrew Lenharthb4427912005-03-28 20:05:49 +00003978<!-- _______________________________________________________________________ -->
3979<div class="doc_subsubsection">
3980 <a name="i_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
3981</div>
3982
3983<div class="doc_text">
3984
3985<h5>Syntax:</h5>
3986<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003987 declare void %llvm.pcmarker( i32 &lt;id&gt; )
Andrew Lenharthb4427912005-03-28 20:05:49 +00003988</pre>
3989
3990<h5>Overview:</h5>
3991
3992
3993<p>
John Criswell88190562005-05-16 16:17:45 +00003994The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
3995(PC) in a region of
Andrew Lenharthb4427912005-03-28 20:05:49 +00003996code to simulators and other tools. The method is target specific, but it is
3997expected that the marker will use exported symbols to transmit the PC of the marker.
Jeff Cohendc6bfea2005-11-11 02:15:27 +00003998The marker makes no guarantees that it will remain with any specific instruction
Chris Lattnere64d41d2005-11-15 06:07:55 +00003999after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb40261e2006-03-24 07:16:10 +00004000optimizations. The intended use is to be inserted after optimizations to allow
John Criswell88190562005-05-16 16:17:45 +00004001correlations of simulation runs.
Andrew Lenharthb4427912005-03-28 20:05:49 +00004002</p>
4003
4004<h5>Arguments:</h5>
4005
4006<p>
4007<tt>id</tt> is a numerical id identifying the marker.
4008</p>
4009
4010<h5>Semantics:</h5>
4011
4012<p>
4013This intrinsic does not modify the behavior of the program. Backends that do not
4014support this intrinisic may ignore it.
4015</p>
4016
4017</div>
4018
Andrew Lenharth01aa5632005-11-11 16:47:30 +00004019<!-- _______________________________________________________________________ -->
4020<div class="doc_subsubsection">
4021 <a name="i_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4022</div>
4023
4024<div class="doc_text">
4025
4026<h5>Syntax:</h5>
4027<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004028 declare i64 %llvm.readcyclecounter( )
Andrew Lenharth01aa5632005-11-11 16:47:30 +00004029</pre>
4030
4031<h5>Overview:</h5>
4032
4033
4034<p>
4035The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4036counter register (or similar low latency, high accuracy clocks) on those targets
4037that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4038As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4039should only be used for small timings.
4040</p>
4041
4042<h5>Semantics:</h5>
4043
4044<p>
4045When directly supported, reading the cycle counter should not modify any memory.
4046Implementations are allowed to either return a application specific value or a
4047system wide value. On backends without support, this is lowered to a constant 0.
4048</p>
4049
4050</div>
4051
Chris Lattner3649c3a2004-02-14 04:08:35 +00004052<!-- ======================================================================= -->
4053<div class="doc_subsection">
Chris Lattnerfee11462004-02-12 17:01:32 +00004054 <a name="int_libc">Standard C Library Intrinsics</a>
4055</div>
4056
4057<div class="doc_text">
4058<p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00004059LLVM provides intrinsics for a few important standard C library functions.
4060These intrinsics allow source-language front-ends to pass information about the
4061alignment of the pointer arguments to the code generator, providing opportunity
4062for more efficient code generation.
Chris Lattnerfee11462004-02-12 17:01:32 +00004063</p>
4064
4065</div>
4066
4067<!-- _______________________________________________________________________ -->
4068<div class="doc_subsubsection">
4069 <a name="i_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4070</div>
4071
4072<div class="doc_text">
4073
4074<h5>Syntax:</h5>
4075<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004076 declare void %llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4077 i32 &lt;len&gt;, i32 &lt;align&gt;)
4078 declare void %llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4079 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00004080</pre>
4081
4082<h5>Overview:</h5>
4083
4084<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00004085The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerfee11462004-02-12 17:01:32 +00004086location to the destination location.
4087</p>
4088
4089<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00004090Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4091intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattnerfee11462004-02-12 17:01:32 +00004092</p>
4093
4094<h5>Arguments:</h5>
4095
4096<p>
4097The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner0c8b2592006-03-03 00:07:20 +00004098the source. The third argument is an integer argument
Chris Lattnerfee11462004-02-12 17:01:32 +00004099specifying the number of bytes to copy, and the fourth argument is the alignment
4100of the source and destination locations.
4101</p>
4102
Chris Lattner4c67c482004-02-12 21:18:15 +00004103<p>
4104If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00004105the caller guarantees that both the source and destination pointers are aligned
4106to that boundary.
Chris Lattner4c67c482004-02-12 21:18:15 +00004107</p>
4108
Chris Lattnerfee11462004-02-12 17:01:32 +00004109<h5>Semantics:</h5>
4110
4111<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00004112The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerfee11462004-02-12 17:01:32 +00004113location to the destination location, which are not allowed to overlap. It
4114copies "len" bytes of memory over. If the argument is known to be aligned to
4115some boundary, this can be specified as the fourth argument, otherwise it should
4116be set to 0 or 1.
4117</p>
4118</div>
4119
4120
Chris Lattnerf30152e2004-02-12 18:10:10 +00004121<!-- _______________________________________________________________________ -->
4122<div class="doc_subsubsection">
4123 <a name="i_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
4124</div>
4125
4126<div class="doc_text">
4127
4128<h5>Syntax:</h5>
4129<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004130 declare void %llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4131 i32 &lt;len&gt;, i32 &lt;align&gt;)
4132 declare void %llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4133 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00004134</pre>
4135
4136<h5>Overview:</h5>
4137
4138<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00004139The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4140location to the destination location. It is similar to the
4141'<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattnerf30152e2004-02-12 18:10:10 +00004142</p>
4143
4144<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00004145Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4146intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattnerf30152e2004-02-12 18:10:10 +00004147</p>
4148
4149<h5>Arguments:</h5>
4150
4151<p>
4152The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner0c8b2592006-03-03 00:07:20 +00004153the source. The third argument is an integer argument
Chris Lattnerf30152e2004-02-12 18:10:10 +00004154specifying the number of bytes to copy, and the fourth argument is the alignment
4155of the source and destination locations.
4156</p>
4157
Chris Lattner4c67c482004-02-12 21:18:15 +00004158<p>
4159If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00004160the caller guarantees that the source and destination pointers are aligned to
4161that boundary.
Chris Lattner4c67c482004-02-12 21:18:15 +00004162</p>
4163
Chris Lattnerf30152e2004-02-12 18:10:10 +00004164<h5>Semantics:</h5>
4165
4166<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00004167The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerf30152e2004-02-12 18:10:10 +00004168location to the destination location, which may overlap. It
4169copies "len" bytes of memory over. If the argument is known to be aligned to
4170some boundary, this can be specified as the fourth argument, otherwise it should
4171be set to 0 or 1.
4172</p>
4173</div>
4174
Chris Lattner941515c2004-01-06 05:31:32 +00004175
Chris Lattner3649c3a2004-02-14 04:08:35 +00004176<!-- _______________________________________________________________________ -->
4177<div class="doc_subsubsection">
Chris Lattner0c8b2592006-03-03 00:07:20 +00004178 <a name="i_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00004179</div>
4180
4181<div class="doc_text">
4182
4183<h5>Syntax:</h5>
4184<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004185 declare void %llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4186 i32 &lt;len&gt;, i32 &lt;align&gt;)
4187 declare void %llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4188 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00004189</pre>
4190
4191<h5>Overview:</h5>
4192
4193<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00004194The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner3649c3a2004-02-14 04:08:35 +00004195byte value.
4196</p>
4197
4198<p>
4199Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4200does not return a value, and takes an extra alignment argument.
4201</p>
4202
4203<h5>Arguments:</h5>
4204
4205<p>
4206The first argument is a pointer to the destination to fill, the second is the
Chris Lattner0c8b2592006-03-03 00:07:20 +00004207byte value to fill it with, the third argument is an integer
Chris Lattner3649c3a2004-02-14 04:08:35 +00004208argument specifying the number of bytes to fill, and the fourth argument is the
4209known alignment of destination location.
4210</p>
4211
4212<p>
4213If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00004214the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner3649c3a2004-02-14 04:08:35 +00004215</p>
4216
4217<h5>Semantics:</h5>
4218
4219<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00004220The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4221the
Chris Lattner3649c3a2004-02-14 04:08:35 +00004222destination location. If the argument is known to be aligned to some boundary,
4223this can be specified as the fourth argument, otherwise it should be set to 0 or
42241.
4225</p>
4226</div>
4227
4228
Chris Lattner3b4f4372004-06-11 02:28:03 +00004229<!-- _______________________________________________________________________ -->
4230<div class="doc_subsubsection">
Chris Lattner069b5bd2006-01-16 22:38:59 +00004231 <a name="i_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00004232</div>
4233
4234<div class="doc_text">
4235
4236<h5>Syntax:</h5>
4237<pre>
Chris Lattner33b73f92006-09-08 06:34:02 +00004238 declare float %llvm.sqrt.f32(float %Val)
4239 declare double %llvm.sqrt.f64(double %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00004240</pre>
4241
4242<h5>Overview:</h5>
4243
4244<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00004245The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Chris Lattner8a8f2e52005-07-21 01:29:16 +00004246returning the same value as the libm '<tt>sqrt</tt>' function would. Unlike
4247<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4248negative numbers (which allows for better optimization).
4249</p>
4250
4251<h5>Arguments:</h5>
4252
4253<p>
4254The argument and return value are floating point numbers of the same type.
4255</p>
4256
4257<h5>Semantics:</h5>
4258
4259<p>
4260This function returns the sqrt of the specified operand if it is a positive
4261floating point number.
4262</p>
4263</div>
4264
Chris Lattner33b73f92006-09-08 06:34:02 +00004265<!-- _______________________________________________________________________ -->
4266<div class="doc_subsubsection">
4267 <a name="i_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4268</div>
4269
4270<div class="doc_text">
4271
4272<h5>Syntax:</h5>
4273<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004274 declare float %llvm.powi.f32(float %Val, i32 %power)
4275 declare double %llvm.powi.f64(double %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00004276</pre>
4277
4278<h5>Overview:</h5>
4279
4280<p>
4281The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4282specified (positive or negative) power. The order of evaluation of
4283multiplications is not defined.
4284</p>
4285
4286<h5>Arguments:</h5>
4287
4288<p>
4289The second argument is an integer power, and the first is a value to raise to
4290that power.
4291</p>
4292
4293<h5>Semantics:</h5>
4294
4295<p>
4296This function returns the first value raised to the second power with an
4297unspecified sequence of rounding operations.</p>
4298</div>
4299
4300
Andrew Lenharth1d463522005-05-03 18:01:48 +00004301<!-- ======================================================================= -->
4302<div class="doc_subsection">
Nate Begeman0f223bb2006-01-13 23:26:38 +00004303 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00004304</div>
4305
4306<div class="doc_text">
4307<p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00004308LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharth1d463522005-05-03 18:01:48 +00004309These allow efficient code generation for some algorithms.
4310</p>
4311
4312</div>
4313
4314<!-- _______________________________________________________________________ -->
4315<div class="doc_subsubsection">
Nate Begeman0f223bb2006-01-13 23:26:38 +00004316 <a name="i_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4317</div>
4318
4319<div class="doc_text">
4320
4321<h5>Syntax:</h5>
4322<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004323 declare i16 %llvm.bswap.i16(i16 &lt;id&gt;)
4324 declare i32 %llvm.bswap.i32(i32 &lt;id&gt;)
4325 declare i64 %llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00004326</pre>
4327
4328<h5>Overview:</h5>
4329
4330<p>
4331The '<tt>llvm.bwsap</tt>' family of intrinsics is used to byteswap a 16, 32 or
433264 bit quantity. These are useful for performing operations on data that is not
4333in the target's native byte order.
4334</p>
4335
4336<h5>Semantics:</h5>
4337
4338<p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004339The <tt>llvm.bswap.16</tt> intrinsic returns an i16 value that has the high
4340and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4341intrinsic returns an i32 value that has the four bytes of the input i32
4342swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
4343i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i64</tt>
4344intrinsic extends this concept to 64 bits.
Nate Begeman0f223bb2006-01-13 23:26:38 +00004345</p>
4346
4347</div>
4348
4349<!-- _______________________________________________________________________ -->
4350<div class="doc_subsubsection">
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00004351 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00004352</div>
4353
4354<div class="doc_text">
4355
4356<h5>Syntax:</h5>
4357<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004358 declare i8 %llvm.ctpop.i8 (i8 &lt;src&gt;)
4359 declare i16 %llvm.ctpop.i16(i16 &lt;src&gt;)
4360 declare i32 %llvm.ctpop.i32(i32 &lt;src&gt;)
4361 declare i64 %llvm.ctpop.i64(i64 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00004362</pre>
4363
4364<h5>Overview:</h5>
4365
4366<p>
Chris Lattner069b5bd2006-01-16 22:38:59 +00004367The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4368value.
Andrew Lenharth1d463522005-05-03 18:01:48 +00004369</p>
4370
4371<h5>Arguments:</h5>
4372
4373<p>
Chris Lattner573f64e2005-05-07 01:46:40 +00004374The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00004375integer type. The return type must match the argument type.
Andrew Lenharth1d463522005-05-03 18:01:48 +00004376</p>
4377
4378<h5>Semantics:</h5>
4379
4380<p>
4381The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4382</p>
4383</div>
4384
4385<!-- _______________________________________________________________________ -->
4386<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00004387 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00004388</div>
4389
4390<div class="doc_text">
4391
4392<h5>Syntax:</h5>
4393<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004394 declare i8 %llvm.ctlz.i8 (i8 &lt;src&gt;)
4395 declare i16 %llvm.ctlz.i16(i16 &lt;src&gt;)
4396 declare i32 %llvm.ctlz.i32(i32 &lt;src&gt;)
4397 declare i64 %llvm.ctlz.i64(i64 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00004398</pre>
4399
4400<h5>Overview:</h5>
4401
4402<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00004403The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4404leading zeros in a variable.
Andrew Lenharth1d463522005-05-03 18:01:48 +00004405</p>
4406
4407<h5>Arguments:</h5>
4408
4409<p>
Chris Lattner573f64e2005-05-07 01:46:40 +00004410The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00004411integer type. The return type must match the argument type.
Andrew Lenharth1d463522005-05-03 18:01:48 +00004412</p>
4413
4414<h5>Semantics:</h5>
4415
4416<p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00004417The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4418in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004419of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharth1d463522005-05-03 18:01:48 +00004420</p>
4421</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00004422
4423
Chris Lattnerefa20fa2005-05-15 19:39:26 +00004424
4425<!-- _______________________________________________________________________ -->
4426<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00004427 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00004428</div>
4429
4430<div class="doc_text">
4431
4432<h5>Syntax:</h5>
4433<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004434 declare i8 %llvm.cttz.i8 (i8 &lt;src&gt;)
4435 declare i16 %llvm.cttz.i16(i16 &lt;src&gt;)
4436 declare i32 %llvm.cttz.i32(i32 &lt;src&gt;)
4437 declare i64 %llvm.cttz.i64(i64 &lt;src&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00004438</pre>
4439
4440<h5>Overview:</h5>
4441
4442<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00004443The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4444trailing zeros.
Chris Lattnerefa20fa2005-05-15 19:39:26 +00004445</p>
4446
4447<h5>Arguments:</h5>
4448
4449<p>
4450The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00004451integer type. The return type must match the argument type.
Chris Lattnerefa20fa2005-05-15 19:39:26 +00004452</p>
4453
4454<h5>Semantics:</h5>
4455
4456<p>
4457The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4458in a variable. If the src == 0 then the result is the size in bits of the type
4459of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4460</p>
4461</div>
4462
Chris Lattner941515c2004-01-06 05:31:32 +00004463<!-- ======================================================================= -->
4464<div class="doc_subsection">
4465 <a name="int_debugger">Debugger Intrinsics</a>
4466</div>
4467
4468<div class="doc_text">
4469<p>
4470The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4471are described in the <a
4472href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4473Debugging</a> document.
4474</p>
4475</div>
4476
4477
Chris Lattner2f7c9632001-06-06 20:29:01 +00004478<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00004479<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00004480<address>
4481 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
4482 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
4483 <a href="http://validator.w3.org/check/referer"><img
4484 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
4485
4486 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencerca058542006-03-14 05:39:39 +00004487 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00004488 Last modified: $Date$
4489</address>
Misha Brukman76307852003-11-08 01:05:38 +00004490</body>
4491</html>