blob: 6111bba9d24bc39ee5951c6a07eaa7c4f824e3fa [file] [log] [blame]
Chandler Carruthbf71a342014-02-06 04:37:03 +00001//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/Analysis/LazyCallGraph.h"
Chandler Carruth11b3f602016-09-04 08:34:31 +000011#include "llvm/ADT/ScopeExit.h"
Chandler Carruth49d728a2016-09-16 10:20:17 +000012#include "llvm/ADT/Sequence.h"
Chandler Carruth18eadd922014-04-18 10:50:32 +000013#include "llvm/ADT/STLExtras.h"
Chandler Carruth219b89b2014-03-04 11:01:28 +000014#include "llvm/IR/CallSite.h"
Chandler Carruth7da14f12014-03-06 03:23:41 +000015#include "llvm/IR/InstVisitor.h"
Chandler Carruthbf71a342014-02-06 04:37:03 +000016#include "llvm/IR/Instructions.h"
17#include "llvm/IR/PassManager.h"
Chandler Carruth99b756d2014-04-21 05:04:24 +000018#include "llvm/Support/Debug.h"
Sean Silva7cb30662016-06-18 09:17:32 +000019#include "llvm/Support/GraphWriter.h"
Chandler Carruthbf71a342014-02-06 04:37:03 +000020
21using namespace llvm;
22
Chandler Carruthf1221bd2014-04-22 02:48:03 +000023#define DEBUG_TYPE "lcg"
24
Chandler Carrutha4499e92016-02-02 03:57:13 +000025static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
Chandler Carruthe5944d92016-02-17 00:18:16 +000026 DenseMap<Function *, int> &EdgeIndexMap, Function &F,
Chandler Carrutha4499e92016-02-02 03:57:13 +000027 LazyCallGraph::Edge::Kind EK) {
28 // Note that we consider *any* function with a definition to be a viable
29 // edge. Even if the function's definition is subject to replacement by
30 // some other module (say, a weak definition) there may still be
31 // optimizations which essentially speculate based on the definition and
32 // a way to check that the specific definition is in fact the one being
33 // used. For example, this could be done by moving the weak definition to
34 // a strong (internal) definition and making the weak definition be an
35 // alias. Then a test of the address of the weak function against the new
36 // strong definition's address would be an effective way to determine the
37 // safety of optimizing a direct call edge.
38 if (!F.isDeclaration() &&
Chandler Carruthe5944d92016-02-17 00:18:16 +000039 EdgeIndexMap.insert({&F, Edges.size()}).second) {
Chandler Carrutha4499e92016-02-02 03:57:13 +000040 DEBUG(dbgs() << " Added callable function: " << F.getName() << "\n");
41 Edges.emplace_back(LazyCallGraph::Edge(F, EK));
42 }
43}
44
Chandler Carruth18eadd922014-04-18 10:50:32 +000045LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
46 : G(&G), F(F), DFSNumber(0), LowLink(0) {
Chandler Carruth99b756d2014-04-21 05:04:24 +000047 DEBUG(dbgs() << " Adding functions called by '" << F.getName()
48 << "' to the graph.\n");
49
Chandler Carruthbf71a342014-02-06 04:37:03 +000050 SmallVector<Constant *, 16> Worklist;
Chandler Carrutha4499e92016-02-02 03:57:13 +000051 SmallPtrSet<Function *, 4> Callees;
Chandler Carruthbf71a342014-02-06 04:37:03 +000052 SmallPtrSet<Constant *, 16> Visited;
Chandler Carrutha4499e92016-02-02 03:57:13 +000053
54 // Find all the potential call graph edges in this function. We track both
55 // actual call edges and indirect references to functions. The direct calls
56 // are trivially added, but to accumulate the latter we walk the instructions
57 // and add every operand which is a constant to the worklist to process
58 // afterward.
Chandler Carruthb9e2f8c2014-03-09 12:20:34 +000059 for (BasicBlock &BB : F)
Chandler Carrutha4499e92016-02-02 03:57:13 +000060 for (Instruction &I : BB) {
61 if (auto CS = CallSite(&I))
62 if (Function *Callee = CS.getCalledFunction())
63 if (Callees.insert(Callee).second) {
64 Visited.insert(Callee);
65 addEdge(Edges, EdgeIndexMap, *Callee, LazyCallGraph::Edge::Call);
66 }
67
Chandler Carruthb9e2f8c2014-03-09 12:20:34 +000068 for (Value *Op : I.operand_values())
Chandler Carruth1583e992014-03-03 10:42:58 +000069 if (Constant *C = dyn_cast<Constant>(Op))
David Blaikie70573dc2014-11-19 07:49:26 +000070 if (Visited.insert(C).second)
Chandler Carruthbf71a342014-02-06 04:37:03 +000071 Worklist.push_back(C);
Chandler Carrutha4499e92016-02-02 03:57:13 +000072 }
Chandler Carruthbf71a342014-02-06 04:37:03 +000073
74 // We've collected all the constant (and thus potentially function or
75 // function containing) operands to all of the instructions in the function.
76 // Process them (recursively) collecting every function found.
Chandler Carruth88823462016-08-24 09:37:14 +000077 visitReferences(Worklist, Visited, [&](Function &F) {
78 addEdge(Edges, EdgeIndexMap, F, LazyCallGraph::Edge::Ref);
79 });
Chandler Carruthbf71a342014-02-06 04:37:03 +000080}
81
Chandler Carruthe5944d92016-02-17 00:18:16 +000082void LazyCallGraph::Node::insertEdgeInternal(Function &Target, Edge::Kind EK) {
83 if (Node *N = G->lookup(Target))
Chandler Carrutha4499e92016-02-02 03:57:13 +000084 return insertEdgeInternal(*N, EK);
Chandler Carruth5217c942014-04-30 10:48:36 +000085
Chandler Carruthe5944d92016-02-17 00:18:16 +000086 EdgeIndexMap.insert({&Target, Edges.size()});
87 Edges.emplace_back(Target, EK);
Chandler Carruth5217c942014-04-30 10:48:36 +000088}
89
Chandler Carruthe5944d92016-02-17 00:18:16 +000090void LazyCallGraph::Node::insertEdgeInternal(Node &TargetN, Edge::Kind EK) {
91 EdgeIndexMap.insert({&TargetN.getFunction(), Edges.size()});
92 Edges.emplace_back(TargetN, EK);
Chandler Carruthc00a7ff2014-04-28 11:10:23 +000093}
94
Chandler Carruthe5944d92016-02-17 00:18:16 +000095void LazyCallGraph::Node::setEdgeKind(Function &TargetF, Edge::Kind EK) {
96 Edges[EdgeIndexMap.find(&TargetF)->second].setKind(EK);
97}
98
99void LazyCallGraph::Node::removeEdgeInternal(Function &Target) {
100 auto IndexMapI = EdgeIndexMap.find(&Target);
Chandler Carrutha4499e92016-02-02 03:57:13 +0000101 assert(IndexMapI != EdgeIndexMap.end() &&
Chandler Carruthe5944d92016-02-17 00:18:16 +0000102 "Target not in the edge set for this caller?");
Chandler Carruthaa839b22014-04-27 01:59:50 +0000103
Chandler Carrutha4499e92016-02-02 03:57:13 +0000104 Edges[IndexMapI->second] = Edge();
105 EdgeIndexMap.erase(IndexMapI);
Chandler Carruthaa839b22014-04-27 01:59:50 +0000106}
107
Chandler Carruthdca83402016-06-27 23:26:08 +0000108void LazyCallGraph::Node::dump() const {
109 dbgs() << *this << '\n';
110}
111
Chandler Carruth2174f442014-04-18 20:44:16 +0000112LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
Chandler Carruth99b756d2014-04-21 05:04:24 +0000113 DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
114 << "\n");
Chandler Carruthb9e2f8c2014-03-09 12:20:34 +0000115 for (Function &F : M)
116 if (!F.isDeclaration() && !F.hasLocalLinkage())
Chandler Carruthe5944d92016-02-17 00:18:16 +0000117 if (EntryIndexMap.insert({&F, EntryEdges.size()}).second) {
Chandler Carruth99b756d2014-04-21 05:04:24 +0000118 DEBUG(dbgs() << " Adding '" << F.getName()
119 << "' to entry set of the graph.\n");
Chandler Carrutha4499e92016-02-02 03:57:13 +0000120 EntryEdges.emplace_back(F, Edge::Ref);
Chandler Carruth99b756d2014-04-21 05:04:24 +0000121 }
Chandler Carruthbf71a342014-02-06 04:37:03 +0000122
123 // Now add entry nodes for functions reachable via initializers to globals.
124 SmallVector<Constant *, 16> Worklist;
125 SmallPtrSet<Constant *, 16> Visited;
Chandler Carruthb9e2f8c2014-03-09 12:20:34 +0000126 for (GlobalVariable &GV : M.globals())
127 if (GV.hasInitializer())
David Blaikie70573dc2014-11-19 07:49:26 +0000128 if (Visited.insert(GV.getInitializer()).second)
Chandler Carruthb9e2f8c2014-03-09 12:20:34 +0000129 Worklist.push_back(GV.getInitializer());
Chandler Carruthbf71a342014-02-06 04:37:03 +0000130
Chandler Carruth99b756d2014-04-21 05:04:24 +0000131 DEBUG(dbgs() << " Adding functions referenced by global initializers to the "
132 "entry set.\n");
Chandler Carruth88823462016-08-24 09:37:14 +0000133 visitReferences(Worklist, Visited, [&](Function &F) {
134 addEdge(EntryEdges, EntryIndexMap, F, LazyCallGraph::Edge::Ref);
135 });
Chandler Carruth18eadd922014-04-18 10:50:32 +0000136
Chandler Carrutha4499e92016-02-02 03:57:13 +0000137 for (const Edge &E : EntryEdges)
Chandler Carruthe5944d92016-02-17 00:18:16 +0000138 RefSCCEntryNodes.push_back(&E.getFunction());
Chandler Carruthbf71a342014-02-06 04:37:03 +0000139}
140
Chandler Carruthbf71a342014-02-06 04:37:03 +0000141LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
Chandler Carruth2174f442014-04-18 20:44:16 +0000142 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
Chandler Carrutha4499e92016-02-02 03:57:13 +0000143 EntryEdges(std::move(G.EntryEdges)),
Chandler Carruth0b623ba2014-04-23 04:00:17 +0000144 EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
Chandler Carruthe5944d92016-02-17 00:18:16 +0000145 SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)),
Chandler Carruth18eadd922014-04-18 10:50:32 +0000146 DFSStack(std::move(G.DFSStack)),
Chandler Carruthe5944d92016-02-17 00:18:16 +0000147 RefSCCEntryNodes(std::move(G.RefSCCEntryNodes)),
Chandler Carruth2174f442014-04-18 20:44:16 +0000148 NextDFSNumber(G.NextDFSNumber) {
Chandler Carruthd8d865e2014-04-18 11:02:33 +0000149 updateGraphPtrs();
150}
151
152LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
153 BPA = std::move(G.BPA);
Chandler Carruth2174f442014-04-18 20:44:16 +0000154 NodeMap = std::move(G.NodeMap);
Chandler Carrutha4499e92016-02-02 03:57:13 +0000155 EntryEdges = std::move(G.EntryEdges);
Chandler Carruth0b623ba2014-04-23 04:00:17 +0000156 EntryIndexMap = std::move(G.EntryIndexMap);
Chandler Carruthd8d865e2014-04-18 11:02:33 +0000157 SCCBPA = std::move(G.SCCBPA);
158 SCCMap = std::move(G.SCCMap);
Chandler Carruthe5944d92016-02-17 00:18:16 +0000159 LeafRefSCCs = std::move(G.LeafRefSCCs);
Chandler Carruthd8d865e2014-04-18 11:02:33 +0000160 DFSStack = std::move(G.DFSStack);
Chandler Carruthe5944d92016-02-17 00:18:16 +0000161 RefSCCEntryNodes = std::move(G.RefSCCEntryNodes);
Chandler Carruth2174f442014-04-18 20:44:16 +0000162 NextDFSNumber = G.NextDFSNumber;
Chandler Carruthd8d865e2014-04-18 11:02:33 +0000163 updateGraphPtrs();
164 return *this;
165}
166
Chandler Carruthdca83402016-06-27 23:26:08 +0000167void LazyCallGraph::SCC::dump() const {
168 dbgs() << *this << '\n';
169}
170
Chandler Carruthe5944d92016-02-17 00:18:16 +0000171#ifndef NDEBUG
172void LazyCallGraph::SCC::verify() {
173 assert(OuterRefSCC && "Can't have a null RefSCC!");
174 assert(!Nodes.empty() && "Can't have an empty SCC!");
Chandler Carruth8f92d6d2014-04-26 01:03:46 +0000175
Chandler Carruthe5944d92016-02-17 00:18:16 +0000176 for (Node *N : Nodes) {
177 assert(N && "Can't have a null node!");
178 assert(OuterRefSCC->G->lookupSCC(*N) == this &&
179 "Node does not map to this SCC!");
180 assert(N->DFSNumber == -1 &&
181 "Must set DFS numbers to -1 when adding a node to an SCC!");
182 assert(N->LowLink == -1 &&
183 "Must set low link to -1 when adding a node to an SCC!");
184 for (Edge &E : *N)
185 assert(E.getNode() && "Can't have an edge to a raw function!");
186 }
187}
188#endif
189
Chandler Carruthbae595b2016-11-22 19:23:31 +0000190bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
191 if (this == &C)
192 return false;
193
194 for (Node &N : *this)
195 for (Edge &E : N.calls())
196 if (Node *CalleeN = E.getNode())
197 if (OuterRefSCC->G->lookupSCC(*CalleeN) == &C)
198 return true;
199
200 // No edges found.
201 return false;
202}
203
204bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
205 if (this == &TargetC)
206 return false;
207
208 LazyCallGraph &G = *OuterRefSCC->G;
209
210 // Start with this SCC.
211 SmallPtrSet<const SCC *, 16> Visited = {this};
212 SmallVector<const SCC *, 16> Worklist = {this};
213
214 // Walk down the graph until we run out of edges or find a path to TargetC.
215 do {
216 const SCC &C = *Worklist.pop_back_val();
217 for (Node &N : C)
218 for (Edge &E : N.calls()) {
219 Node *CalleeN = E.getNode();
220 if (!CalleeN)
221 continue;
222 SCC *CalleeC = G.lookupSCC(*CalleeN);
223 if (!CalleeC)
224 continue;
225
226 // If the callee's SCC is the TargetC, we're done.
227 if (CalleeC == &TargetC)
228 return true;
229
230 // If this is the first time we've reached this SCC, put it on the
231 // worklist to recurse through.
232 if (Visited.insert(CalleeC).second)
233 Worklist.push_back(CalleeC);
234 }
235 } while (!Worklist.empty());
236
237 // No paths found.
238 return false;
239}
240
Chandler Carruthe5944d92016-02-17 00:18:16 +0000241LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
242
Chandler Carruthdca83402016-06-27 23:26:08 +0000243void LazyCallGraph::RefSCC::dump() const {
244 dbgs() << *this << '\n';
245}
246
Chandler Carruthe5944d92016-02-17 00:18:16 +0000247#ifndef NDEBUG
248void LazyCallGraph::RefSCC::verify() {
249 assert(G && "Can't have a null graph!");
250 assert(!SCCs.empty() && "Can't have an empty SCC!");
251
252 // Verify basic properties of the SCCs.
Chandler Carruth88823462016-08-24 09:37:14 +0000253 SmallPtrSet<SCC *, 4> SCCSet;
Chandler Carruthe5944d92016-02-17 00:18:16 +0000254 for (SCC *C : SCCs) {
255 assert(C && "Can't have a null SCC!");
256 C->verify();
257 assert(&C->getOuterRefSCC() == this &&
258 "SCC doesn't think it is inside this RefSCC!");
Chandler Carruth88823462016-08-24 09:37:14 +0000259 bool Inserted = SCCSet.insert(C).second;
260 assert(Inserted && "Found a duplicate SCC!");
Chandler Carruthe5944d92016-02-17 00:18:16 +0000261 }
262
263 // Check that our indices map correctly.
264 for (auto &SCCIndexPair : SCCIndices) {
265 SCC *C = SCCIndexPair.first;
266 int i = SCCIndexPair.second;
267 assert(C && "Can't have a null SCC in the indices!");
Chandler Carruth88823462016-08-24 09:37:14 +0000268 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
Chandler Carruthe5944d92016-02-17 00:18:16 +0000269 assert(SCCs[i] == C && "Index doesn't point to SCC!");
270 }
271
272 // Check that the SCCs are in fact in post-order.
273 for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
274 SCC &SourceSCC = *SCCs[i];
275 for (Node &N : SourceSCC)
276 for (Edge &E : N) {
277 if (!E.isCall())
278 continue;
279 SCC &TargetSCC = *G->lookupSCC(*E.getNode());
280 if (&TargetSCC.getOuterRefSCC() == this) {
281 assert(SCCIndices.find(&TargetSCC)->second <= i &&
282 "Edge between SCCs violates post-order relationship.");
283 continue;
284 }
285 assert(TargetSCC.getOuterRefSCC().Parents.count(this) &&
286 "Edge to a RefSCC missing us in its parent set.");
287 }
288 }
289}
290#endif
291
292bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const {
Chandler Carruth4b096742014-05-01 12:12:42 +0000293 // Walk up the parents of this SCC and verify that we eventually find C.
Chandler Carruthe5944d92016-02-17 00:18:16 +0000294 SmallVector<const RefSCC *, 4> AncestorWorklist;
Chandler Carruth4b096742014-05-01 12:12:42 +0000295 AncestorWorklist.push_back(this);
296 do {
Chandler Carruthe5944d92016-02-17 00:18:16 +0000297 const RefSCC *AncestorC = AncestorWorklist.pop_back_val();
Chandler Carruth4b096742014-05-01 12:12:42 +0000298 if (AncestorC->isChildOf(C))
299 return true;
Chandler Carruthe5944d92016-02-17 00:18:16 +0000300 for (const RefSCC *ParentC : AncestorC->Parents)
Chandler Carruth4b096742014-05-01 12:12:42 +0000301 AncestorWorklist.push_back(ParentC);
302 } while (!AncestorWorklist.empty());
303
304 return false;
305}
306
Chandler Carruth1f621f02016-09-04 08:34:24 +0000307/// Generic helper that updates a postorder sequence of SCCs for a potentially
308/// cycle-introducing edge insertion.
309///
310/// A postorder sequence of SCCs of a directed graph has one fundamental
311/// property: all deges in the DAG of SCCs point "up" the sequence. That is,
312/// all edges in the SCC DAG point to prior SCCs in the sequence.
313///
314/// This routine both updates a postorder sequence and uses that sequence to
315/// compute the set of SCCs connected into a cycle. It should only be called to
316/// insert a "downward" edge which will require changing the sequence to
317/// restore it to a postorder.
318///
319/// When inserting an edge from an earlier SCC to a later SCC in some postorder
320/// sequence, all of the SCCs which may be impacted are in the closed range of
321/// those two within the postorder sequence. The algorithm used here to restore
322/// the state is as follows:
323///
324/// 1) Starting from the source SCC, construct a set of SCCs which reach the
325/// source SCC consisting of just the source SCC. Then scan toward the
326/// target SCC in postorder and for each SCC, if it has an edge to an SCC
327/// in the set, add it to the set. Otherwise, the source SCC is not
328/// a successor, move it in the postorder sequence to immediately before
329/// the source SCC, shifting the source SCC and all SCCs in the set one
330/// position toward the target SCC. Stop scanning after processing the
331/// target SCC.
332/// 2) If the source SCC is now past the target SCC in the postorder sequence,
333/// and thus the new edge will flow toward the start, we are done.
334/// 3) Otherwise, starting from the target SCC, walk all edges which reach an
335/// SCC between the source and the target, and add them to the set of
336/// connected SCCs, then recurse through them. Once a complete set of the
337/// SCCs the target connects to is known, hoist the remaining SCCs between
338/// the source and the target to be above the target. Note that there is no
339/// need to process the source SCC, it is already known to connect.
340/// 4) At this point, all of the SCCs in the closed range between the source
341/// SCC and the target SCC in the postorder sequence are connected,
342/// including the target SCC and the source SCC. Inserting the edge from
343/// the source SCC to the target SCC will form a cycle out of precisely
344/// these SCCs. Thus we can merge all of the SCCs in this closed range into
345/// a single SCC.
346///
347/// This process has various important properties:
348/// - Only mutates the SCCs when adding the edge actually changes the SCC
349/// structure.
350/// - Never mutates SCCs which are unaffected by the change.
351/// - Updates the postorder sequence to correctly satisfy the postorder
352/// constraint after the edge is inserted.
353/// - Only reorders SCCs in the closed postorder sequence from the source to
354/// the target, so easy to bound how much has changed even in the ordering.
355/// - Big-O is the number of edges in the closed postorder range of SCCs from
356/// source to target.
357///
358/// This helper routine, in addition to updating the postorder sequence itself
359/// will also update a map from SCCs to indices within that sequecne.
360///
361/// The sequence and the map must operate on pointers to the SCC type.
362///
363/// Two callbacks must be provided. The first computes the subset of SCCs in
364/// the postorder closed range from the source to the target which connect to
365/// the source SCC via some (transitive) set of edges. The second computes the
366/// subset of the same range which the target SCC connects to via some
367/// (transitive) set of edges. Both callbacks should populate the set argument
368/// provided.
369template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
370 typename ComputeSourceConnectedSetCallableT,
371 typename ComputeTargetConnectedSetCallableT>
372static iterator_range<typename PostorderSequenceT::iterator>
373updatePostorderSequenceForEdgeInsertion(
374 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
375 SCCIndexMapT &SCCIndices,
376 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
377 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
378 int SourceIdx = SCCIndices[&SourceSCC];
379 int TargetIdx = SCCIndices[&TargetSCC];
380 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
381
382 SmallPtrSet<SCCT *, 4> ConnectedSet;
383
384 // Compute the SCCs which (transitively) reach the source.
385 ComputeSourceConnectedSet(ConnectedSet);
386
387 // Partition the SCCs in this part of the port-order sequence so only SCCs
388 // connecting to the source remain between it and the target. This is
389 // a benign partition as it preserves postorder.
390 auto SourceI = std::stable_partition(
391 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
392 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
393 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
394 SCCIndices.find(SCCs[i])->second = i;
395
396 // If the target doesn't connect to the source, then we've corrected the
397 // post-order and there are no cycles formed.
398 if (!ConnectedSet.count(&TargetSCC)) {
399 assert(SourceI > (SCCs.begin() + SourceIdx) &&
400 "Must have moved the source to fix the post-order.");
401 assert(*std::prev(SourceI) == &TargetSCC &&
402 "Last SCC to move should have bene the target.");
403
404 // Return an empty range at the target SCC indicating there is nothing to
405 // merge.
406 return make_range(std::prev(SourceI), std::prev(SourceI));
407 }
408
409 assert(SCCs[TargetIdx] == &TargetSCC &&
410 "Should not have moved target if connected!");
411 SourceIdx = SourceI - SCCs.begin();
412 assert(SCCs[SourceIdx] == &SourceSCC &&
413 "Bad updated index computation for the source SCC!");
414
415
416 // See whether there are any remaining intervening SCCs between the source
417 // and target. If so we need to make sure they all are reachable form the
418 // target.
419 if (SourceIdx + 1 < TargetIdx) {
420 ConnectedSet.clear();
421 ComputeTargetConnectedSet(ConnectedSet);
422
423 // Partition SCCs so that only SCCs reached from the target remain between
424 // the source and the target. This preserves postorder.
425 auto TargetI = std::stable_partition(
426 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
427 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
428 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
429 SCCIndices.find(SCCs[i])->second = i;
430 TargetIdx = std::prev(TargetI) - SCCs.begin();
431 assert(SCCs[TargetIdx] == &TargetSCC &&
432 "Should always end with the target!");
433 }
434
435 // At this point, we know that connecting source to target forms a cycle
436 // because target connects back to source, and we know that all of the SCCs
437 // between the source and target in the postorder sequence participate in that
438 // cycle.
439 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
440}
441
Chandler Carruthe5944d92016-02-17 00:18:16 +0000442SmallVector<LazyCallGraph::SCC *, 1>
443LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) {
444 assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");
Chandler Carruthe5944d92016-02-17 00:18:16 +0000445 SmallVector<SCC *, 1> DeletedSCCs;
Chandler Carruth5217c942014-04-30 10:48:36 +0000446
Chandler Carruth11b3f602016-09-04 08:34:31 +0000447#ifndef NDEBUG
448 // In a debug build, verify the RefSCC is valid to start with and when this
449 // routine finishes.
450 verify();
451 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
452#endif
453
Chandler Carruthe5944d92016-02-17 00:18:16 +0000454 SCC &SourceSCC = *G->lookupSCC(SourceN);
455 SCC &TargetSCC = *G->lookupSCC(TargetN);
456
457 // If the two nodes are already part of the same SCC, we're also done as
458 // we've just added more connectivity.
459 if (&SourceSCC == &TargetSCC) {
460 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
Chandler Carruthe5944d92016-02-17 00:18:16 +0000461 return DeletedSCCs;
462 }
463
464 // At this point we leverage the postorder list of SCCs to detect when the
465 // insertion of an edge changes the SCC structure in any way.
466 //
467 // First and foremost, we can eliminate the need for any changes when the
468 // edge is toward the beginning of the postorder sequence because all edges
469 // flow in that direction already. Thus adding a new one cannot form a cycle.
470 int SourceIdx = SCCIndices[&SourceSCC];
471 int TargetIdx = SCCIndices[&TargetSCC];
472 if (TargetIdx < SourceIdx) {
473 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
Chandler Carruthe5944d92016-02-17 00:18:16 +0000474 return DeletedSCCs;
475 }
476
Chandler Carruthe5944d92016-02-17 00:18:16 +0000477 // Compute the SCCs which (transitively) reach the source.
Chandler Carruth1f621f02016-09-04 08:34:24 +0000478 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
Chandler Carruthe5944d92016-02-17 00:18:16 +0000479#ifndef NDEBUG
Chandler Carruth1f621f02016-09-04 08:34:24 +0000480 // Check that the RefSCC is still valid before computing this as the
481 // results will be nonsensical of we've broken its invariants.
Chandler Carruthe5944d92016-02-17 00:18:16 +0000482 verify();
483#endif
Chandler Carruth1f621f02016-09-04 08:34:24 +0000484 ConnectedSet.insert(&SourceSCC);
485 auto IsConnected = [&](SCC &C) {
486 for (Node &N : C)
487 for (Edge &E : N.calls()) {
488 assert(E.getNode() && "Must have formed a node within an SCC!");
489 if (ConnectedSet.count(G->lookupSCC(*E.getNode())))
490 return true;
491 }
Chandler Carruthe5944d92016-02-17 00:18:16 +0000492
Chandler Carruth1f621f02016-09-04 08:34:24 +0000493 return false;
494 };
Chandler Carruthe5944d92016-02-17 00:18:16 +0000495
Chandler Carruth1f621f02016-09-04 08:34:24 +0000496 for (SCC *C :
497 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
498 if (IsConnected(*C))
499 ConnectedSet.insert(C);
500 };
501
502 // Use a normal worklist to find which SCCs the target connects to. We still
503 // bound the search based on the range in the postorder list we care about,
504 // but because this is forward connectivity we just "recurse" through the
505 // edges.
506 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
Chandler Carruthe5944d92016-02-17 00:18:16 +0000507#ifndef NDEBUG
Chandler Carruth1f621f02016-09-04 08:34:24 +0000508 // Check that the RefSCC is still valid before computing this as the
509 // results will be nonsensical of we've broken its invariants.
510 verify();
Chandler Carruthe5944d92016-02-17 00:18:16 +0000511#endif
Chandler Carruthe5944d92016-02-17 00:18:16 +0000512 ConnectedSet.insert(&TargetSCC);
513 SmallVector<SCC *, 4> Worklist;
514 Worklist.push_back(&TargetSCC);
515 do {
516 SCC &C = *Worklist.pop_back_val();
517 for (Node &N : C)
518 for (Edge &E : N) {
519 assert(E.getNode() && "Must have formed a node within an SCC!");
520 if (!E.isCall())
521 continue;
522 SCC &EdgeC = *G->lookupSCC(*E.getNode());
523 if (&EdgeC.getOuterRefSCC() != this)
524 // Not in this RefSCC...
525 continue;
526 if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
527 // Not in the postorder sequence between source and target.
528 continue;
529
530 if (ConnectedSet.insert(&EdgeC).second)
531 Worklist.push_back(&EdgeC);
532 }
533 } while (!Worklist.empty());
Chandler Carruth1f621f02016-09-04 08:34:24 +0000534 };
Chandler Carruthe5944d92016-02-17 00:18:16 +0000535
Chandler Carruth1f621f02016-09-04 08:34:24 +0000536 // Use a generic helper to update the postorder sequence of SCCs and return
537 // a range of any SCCs connected into a cycle by inserting this edge. This
538 // routine will also take care of updating the indices into the postorder
539 // sequence.
540 auto MergeRange = updatePostorderSequenceForEdgeInsertion(
541 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
542 ComputeTargetConnectedSet);
Chandler Carruthe5944d92016-02-17 00:18:16 +0000543
Chandler Carruth1f621f02016-09-04 08:34:24 +0000544 // If the merge range is empty, then adding the edge didn't actually form any
545 // new cycles. We're done.
546 if (MergeRange.begin() == MergeRange.end()) {
547 // Now that the SCC structure is finalized, flip the kind to call.
548 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
Chandler Carruth1f621f02016-09-04 08:34:24 +0000549 return DeletedSCCs;
Chandler Carruthe5944d92016-02-17 00:18:16 +0000550 }
551
Chandler Carruth1f621f02016-09-04 08:34:24 +0000552#ifndef NDEBUG
553 // Before merging, check that the RefSCC remains valid after all the
554 // postorder updates.
555 verify();
556#endif
557
558 // Otherwise we need to merge all of the SCCs in the cycle into a single
Chandler Carruthe5944d92016-02-17 00:18:16 +0000559 // result SCC.
560 //
561 // NB: We merge into the target because all of these functions were already
562 // reachable from the target, meaning any SCC-wide properties deduced about it
563 // other than the set of functions within it will not have changed.
Chandler Carruthe5944d92016-02-17 00:18:16 +0000564 for (SCC *C : MergeRange) {
565 assert(C != &TargetSCC &&
566 "We merge *into* the target and shouldn't process it here!");
567 SCCIndices.erase(C);
568 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
569 for (Node *N : C->Nodes)
570 G->SCCMap[N] = &TargetSCC;
571 C->clear();
572 DeletedSCCs.push_back(C);
573 }
574
575 // Erase the merged SCCs from the list and update the indices of the
576 // remaining SCCs.
577 int IndexOffset = MergeRange.end() - MergeRange.begin();
578 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
579 for (SCC *C : make_range(EraseEnd, SCCs.end()))
580 SCCIndices[C] -= IndexOffset;
581
582 // Now that the SCC structure is finalized, flip the kind to call.
583 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
584
Chandler Carruth11b3f602016-09-04 08:34:31 +0000585 // And we're done!
Chandler Carruthe5944d92016-02-17 00:18:16 +0000586 return DeletedSCCs;
Chandler Carruth5217c942014-04-30 10:48:36 +0000587}
588
Chandler Carruth88823462016-08-24 09:37:14 +0000589iterator_range<LazyCallGraph::RefSCC::iterator>
590LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
Chandler Carruthe5944d92016-02-17 00:18:16 +0000591 assert(SourceN[TargetN].isCall() && "Must start with a call edge!");
592
Chandler Carruth11b3f602016-09-04 08:34:31 +0000593#ifndef NDEBUG
594 // In a debug build, verify the RefSCC is valid to start with and when this
595 // routine finishes.
596 verify();
597 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
598#endif
599
Chandler Carruthe5944d92016-02-17 00:18:16 +0000600 SCC &SourceSCC = *G->lookupSCC(SourceN);
601 SCC &TargetSCC = *G->lookupSCC(TargetN);
602
603 assert(&SourceSCC.getOuterRefSCC() == this &&
604 "Source must be in this RefSCC.");
605 assert(&TargetSCC.getOuterRefSCC() == this &&
606 "Target must be in this RefSCC.");
607
608 // Set the edge kind.
609 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);
610
611 // If this call edge is just connecting two separate SCCs within this RefSCC,
612 // there is nothing to do.
Chandler Carruth11b3f602016-09-04 08:34:31 +0000613 if (&SourceSCC != &TargetSCC)
Chandler Carruth88823462016-08-24 09:37:14 +0000614 return make_range(SCCs.end(), SCCs.end());
Chandler Carruthe5944d92016-02-17 00:18:16 +0000615
616 // Otherwise we are removing a call edge from a single SCC. This may break
617 // the cycle. In order to compute the new set of SCCs, we need to do a small
618 // DFS over the nodes within the SCC to form any sub-cycles that remain as
619 // distinct SCCs and compute a postorder over the resulting SCCs.
620 //
621 // However, we specially handle the target node. The target node is known to
622 // reach all other nodes in the original SCC by definition. This means that
623 // we want the old SCC to be replaced with an SCC contaning that node as it
624 // will be the root of whatever SCC DAG results from the DFS. Assumptions
625 // about an SCC such as the set of functions called will continue to hold,
626 // etc.
627
628 SCC &OldSCC = TargetSCC;
629 SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
630 SmallVector<Node *, 16> PendingSCCStack;
631 SmallVector<SCC *, 4> NewSCCs;
632
633 // Prepare the nodes for a fresh DFS.
634 SmallVector<Node *, 16> Worklist;
635 Worklist.swap(OldSCC.Nodes);
636 for (Node *N : Worklist) {
637 N->DFSNumber = N->LowLink = 0;
638 G->SCCMap.erase(N);
639 }
640
641 // Force the target node to be in the old SCC. This also enables us to take
642 // a very significant short-cut in the standard Tarjan walk to re-form SCCs
643 // below: whenever we build an edge that reaches the target node, we know
644 // that the target node eventually connects back to all other nodes in our
645 // walk. As a consequence, we can detect and handle participants in that
646 // cycle without walking all the edges that form this connection, and instead
647 // by relying on the fundamental guarantee coming into this operation (all
648 // nodes are reachable from the target due to previously forming an SCC).
649 TargetN.DFSNumber = TargetN.LowLink = -1;
650 OldSCC.Nodes.push_back(&TargetN);
651 G->SCCMap[&TargetN] = &OldSCC;
652
653 // Scan down the stack and DFS across the call edges.
654 for (Node *RootN : Worklist) {
655 assert(DFSStack.empty() &&
656 "Cannot begin a new root with a non-empty DFS stack!");
657 assert(PendingSCCStack.empty() &&
658 "Cannot begin a new root with pending nodes for an SCC!");
659
660 // Skip any nodes we've already reached in the DFS.
661 if (RootN->DFSNumber != 0) {
662 assert(RootN->DFSNumber == -1 &&
663 "Shouldn't have any mid-DFS root nodes!");
664 continue;
665 }
666
667 RootN->DFSNumber = RootN->LowLink = 1;
668 int NextDFSNumber = 2;
669
670 DFSStack.push_back({RootN, RootN->call_begin()});
671 do {
672 Node *N;
673 call_edge_iterator I;
674 std::tie(N, I) = DFSStack.pop_back_val();
675 auto E = N->call_end();
676 while (I != E) {
677 Node &ChildN = *I->getNode();
678 if (ChildN.DFSNumber == 0) {
679 // We haven't yet visited this child, so descend, pushing the current
680 // node onto the stack.
681 DFSStack.push_back({N, I});
682
683 assert(!G->SCCMap.count(&ChildN) &&
684 "Found a node with 0 DFS number but already in an SCC!");
685 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
686 N = &ChildN;
687 I = N->call_begin();
688 E = N->call_end();
689 continue;
690 }
691
692 // Check for the child already being part of some component.
693 if (ChildN.DFSNumber == -1) {
694 if (G->lookupSCC(ChildN) == &OldSCC) {
695 // If the child is part of the old SCC, we know that it can reach
696 // every other node, so we have formed a cycle. Pull the entire DFS
697 // and pending stacks into it. See the comment above about setting
698 // up the old SCC for why we do this.
699 int OldSize = OldSCC.size();
700 OldSCC.Nodes.push_back(N);
701 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
702 PendingSCCStack.clear();
703 while (!DFSStack.empty())
704 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
705 for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
706 N.DFSNumber = N.LowLink = -1;
707 G->SCCMap[&N] = &OldSCC;
708 }
709 N = nullptr;
710 break;
711 }
712
713 // If the child has already been added to some child component, it
714 // couldn't impact the low-link of this parent because it isn't
715 // connected, and thus its low-link isn't relevant so skip it.
716 ++I;
717 continue;
718 }
719
720 // Track the lowest linked child as the lowest link for this node.
721 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
722 if (ChildN.LowLink < N->LowLink)
723 N->LowLink = ChildN.LowLink;
724
725 // Move to the next edge.
726 ++I;
727 }
728 if (!N)
729 // Cleared the DFS early, start another round.
730 break;
731
732 // We've finished processing N and its descendents, put it on our pending
733 // SCC stack to eventually get merged into an SCC of nodes.
734 PendingSCCStack.push_back(N);
735
736 // If this node is linked to some lower entry, continue walking up the
737 // stack.
738 if (N->LowLink != N->DFSNumber)
739 continue;
740
741 // Otherwise, we've completed an SCC. Append it to our post order list of
742 // SCCs.
743 int RootDFSNumber = N->DFSNumber;
744 // Find the range of the node stack by walking down until we pass the
745 // root DFS number.
746 auto SCCNodes = make_range(
747 PendingSCCStack.rbegin(),
David Majnemer42531262016-08-12 03:55:06 +0000748 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
749 return N->DFSNumber < RootDFSNumber;
750 }));
Chandler Carruthe5944d92016-02-17 00:18:16 +0000751
752 // Form a new SCC out of these nodes and then clear them off our pending
753 // stack.
754 NewSCCs.push_back(G->createSCC(*this, SCCNodes));
755 for (Node &N : *NewSCCs.back()) {
756 N.DFSNumber = N.LowLink = -1;
757 G->SCCMap[&N] = NewSCCs.back();
758 }
759 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
760 } while (!DFSStack.empty());
761 }
762
763 // Insert the remaining SCCs before the old one. The old SCC can reach all
764 // other SCCs we form because it contains the target node of the removed edge
765 // of the old SCC. This means that we will have edges into all of the new
766 // SCCs, which means the old one must come last for postorder.
767 int OldIdx = SCCIndices[&OldSCC];
768 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
769
770 // Update the mapping from SCC* to index to use the new SCC*s, and remove the
771 // old SCC from the mapping.
772 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
773 SCCIndices[SCCs[Idx]] = Idx;
774
Chandler Carruth88823462016-08-24 09:37:14 +0000775 return make_range(SCCs.begin() + OldIdx,
776 SCCs.begin() + OldIdx + NewSCCs.size());
Chandler Carruthe5944d92016-02-17 00:18:16 +0000777}
778
779void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
780 Node &TargetN) {
781 assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");
782
783 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
784 assert(G->lookupRefSCC(TargetN) != this &&
785 "Target must not be in this RefSCC.");
786 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
787 "Target must be a descendant of the Source.");
788
789 // Edges between RefSCCs are the same regardless of call or ref, so we can
790 // just flip the edge here.
791 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
792
793#ifndef NDEBUG
794 // Check that the RefSCC is still valid.
795 verify();
796#endif
797}
798
799void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
800 Node &TargetN) {
801 assert(SourceN[TargetN].isCall() && "Must start with a call edge!");
802
803 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
804 assert(G->lookupRefSCC(TargetN) != this &&
805 "Target must not be in this RefSCC.");
806 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
807 "Target must be a descendant of the Source.");
808
809 // Edges between RefSCCs are the same regardless of call or ref, so we can
810 // just flip the edge here.
811 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);
812
813#ifndef NDEBUG
814 // Check that the RefSCC is still valid.
815 verify();
816#endif
817}
818
819void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
820 Node &TargetN) {
821 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
822 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
823
824 SourceN.insertEdgeInternal(TargetN, Edge::Ref);
825
826#ifndef NDEBUG
827 // Check that the RefSCC is still valid.
828 verify();
829#endif
830}
831
832void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
833 Edge::Kind EK) {
Chandler Carruth7cc4ed82014-05-01 12:18:20 +0000834 // First insert it into the caller.
Chandler Carruthe5944d92016-02-17 00:18:16 +0000835 SourceN.insertEdgeInternal(TargetN, EK);
Chandler Carruth7cc4ed82014-05-01 12:18:20 +0000836
Chandler Carruthe5944d92016-02-17 00:18:16 +0000837 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
Chandler Carruth7cc4ed82014-05-01 12:18:20 +0000838
Chandler Carruthe5944d92016-02-17 00:18:16 +0000839 RefSCC &TargetC = *G->lookupRefSCC(TargetN);
840 assert(&TargetC != this && "Target must not be in this RefSCC.");
841 assert(TargetC.isDescendantOf(*this) &&
842 "Target must be a descendant of the Source.");
Chandler Carruth7cc4ed82014-05-01 12:18:20 +0000843
Chandler Carruth91539112015-12-28 01:54:20 +0000844 // The only change required is to add this SCC to the parent set of the
845 // callee.
Chandler Carruthe5944d92016-02-17 00:18:16 +0000846 TargetC.Parents.insert(this);
847
848#ifndef NDEBUG
849 // Check that the RefSCC is still valid.
850 verify();
851#endif
Chandler Carruth7cc4ed82014-05-01 12:18:20 +0000852}
853
Chandler Carruthe5944d92016-02-17 00:18:16 +0000854SmallVector<LazyCallGraph::RefSCC *, 1>
855LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
Chandler Carruth49d728a2016-09-16 10:20:17 +0000856 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
857 RefSCC &SourceC = *G->lookupRefSCC(SourceN);
858 assert(&SourceC != this && "Source must not be in this RefSCC.");
859 assert(SourceC.isDescendantOf(*this) &&
860 "Source must be a descendant of the Target.");
861
862 SmallVector<RefSCC *, 1> DeletedRefSCCs;
Chandler Carruth312dddf2014-05-04 09:38:32 +0000863
Chandler Carruth11b3f602016-09-04 08:34:31 +0000864#ifndef NDEBUG
865 // In a debug build, verify the RefSCC is valid to start with and when this
866 // routine finishes.
867 verify();
868 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
869#endif
870
Chandler Carruth49d728a2016-09-16 10:20:17 +0000871 int SourceIdx = G->RefSCCIndices[&SourceC];
872 int TargetIdx = G->RefSCCIndices[this];
873 assert(SourceIdx < TargetIdx &&
874 "Postorder list doesn't see edge as incoming!");
Chandler Carruth312dddf2014-05-04 09:38:32 +0000875
Chandler Carruth49d728a2016-09-16 10:20:17 +0000876 // Compute the RefSCCs which (transitively) reach the source. We do this by
877 // working backwards from the source using the parent set in each RefSCC,
878 // skipping any RefSCCs that don't fall in the postorder range. This has the
879 // advantage of walking the sparser parent edge (in high fan-out graphs) but
880 // more importantly this removes examining all forward edges in all RefSCCs
881 // within the postorder range which aren't in fact connected. Only connected
882 // RefSCCs (and their edges) are visited here.
883 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
884 Set.insert(&SourceC);
885 SmallVector<RefSCC *, 4> Worklist;
886 Worklist.push_back(&SourceC);
887 do {
888 RefSCC &RC = *Worklist.pop_back_val();
889 for (RefSCC &ParentRC : RC.parents()) {
890 // Skip any RefSCCs outside the range of source to target in the
891 // postorder sequence.
892 int ParentIdx = G->getRefSCCIndex(ParentRC);
893 assert(ParentIdx > SourceIdx && "Parent cannot precede source in postorder!");
894 if (ParentIdx > TargetIdx)
895 continue;
896 if (Set.insert(&ParentRC).second)
897 // First edge connecting to this parent, add it to our worklist.
898 Worklist.push_back(&ParentRC);
Chandler Carruth312dddf2014-05-04 09:38:32 +0000899 }
Chandler Carruth49d728a2016-09-16 10:20:17 +0000900 } while (!Worklist.empty());
901 };
Chandler Carruth312dddf2014-05-04 09:38:32 +0000902
Chandler Carruth49d728a2016-09-16 10:20:17 +0000903 // Use a normal worklist to find which SCCs the target connects to. We still
904 // bound the search based on the range in the postorder list we care about,
905 // but because this is forward connectivity we just "recurse" through the
906 // edges.
907 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
908 Set.insert(this);
909 SmallVector<RefSCC *, 4> Worklist;
910 Worklist.push_back(this);
911 do {
912 RefSCC &RC = *Worklist.pop_back_val();
913 for (SCC &C : RC)
914 for (Node &N : C)
915 for (Edge &E : N) {
916 assert(E.getNode() && "Must have formed a node!");
917 RefSCC &EdgeRC = *G->lookupRefSCC(*E.getNode());
918 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
919 // Not in the postorder sequence between source and target.
920 continue;
Chandler Carruth312dddf2014-05-04 09:38:32 +0000921
Chandler Carruth49d728a2016-09-16 10:20:17 +0000922 if (Set.insert(&EdgeRC).second)
923 Worklist.push_back(&EdgeRC);
924 }
925 } while (!Worklist.empty());
926 };
927
928 // Use a generic helper to update the postorder sequence of RefSCCs and return
929 // a range of any RefSCCs connected into a cycle by inserting this edge. This
930 // routine will also take care of updating the indices into the postorder
931 // sequence.
932 iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
933 updatePostorderSequenceForEdgeInsertion(
934 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
935 ComputeSourceConnectedSet, ComputeTargetConnectedSet);
936
937 // Build a set so we can do fast tests for whether a merge is occuring.
938 SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
Chandler Carruth312dddf2014-05-04 09:38:32 +0000939
940 // Now that we have identified all of the SCCs which need to be merged into
941 // a connected set with the inserted edge, merge all of them into this SCC.
Chandler Carruthe5944d92016-02-17 00:18:16 +0000942 SmallVector<SCC *, 16> MergedSCCs;
943 int SCCIndex = 0;
Chandler Carruth49d728a2016-09-16 10:20:17 +0000944 for (RefSCC *RC : MergeRange) {
945 assert(RC != this && "We're merging into the target RefSCC, so it "
946 "shouldn't be in the range.");
Chandler Carruth312dddf2014-05-04 09:38:32 +0000947
Chandler Carruthe5944d92016-02-17 00:18:16 +0000948 // Merge the parents which aren't part of the merge into the our parents.
Chandler Carruth49d728a2016-09-16 10:20:17 +0000949 for (RefSCC *ParentRC : RC->Parents)
950 if (!MergeSet.count(ParentRC))
951 Parents.insert(ParentRC);
952 RC->Parents.clear();
Chandler Carruthe5944d92016-02-17 00:18:16 +0000953
954 // Walk the inner SCCs to update their up-pointer and walk all the edges to
955 // update any parent sets.
956 // FIXME: We should try to find a way to avoid this (rather expensive) edge
957 // walk by updating the parent sets in some other manner.
Chandler Carruth49d728a2016-09-16 10:20:17 +0000958 for (SCC &InnerC : *RC) {
Chandler Carruthe5944d92016-02-17 00:18:16 +0000959 InnerC.OuterRefSCC = this;
960 SCCIndices[&InnerC] = SCCIndex++;
961 for (Node &N : InnerC) {
962 G->SCCMap[&N] = &InnerC;
963 for (Edge &E : N) {
964 assert(E.getNode() &&
965 "Cannot have a null node within a visited SCC!");
966 RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
Chandler Carruth49d728a2016-09-16 10:20:17 +0000967 if (MergeSet.count(&ChildRC))
Chandler Carruthe5944d92016-02-17 00:18:16 +0000968 continue;
Chandler Carruth49d728a2016-09-16 10:20:17 +0000969 ChildRC.Parents.erase(RC);
Chandler Carruthe5944d92016-02-17 00:18:16 +0000970 ChildRC.Parents.insert(this);
971 }
Chandler Carruth312dddf2014-05-04 09:38:32 +0000972 }
Chandler Carruth312dddf2014-05-04 09:38:32 +0000973 }
Chandler Carruthe5944d92016-02-17 00:18:16 +0000974
975 // Now merge in the SCCs. We can actually move here so try to reuse storage
976 // the first time through.
977 if (MergedSCCs.empty())
Chandler Carruth49d728a2016-09-16 10:20:17 +0000978 MergedSCCs = std::move(RC->SCCs);
Chandler Carruthe5944d92016-02-17 00:18:16 +0000979 else
Chandler Carruth49d728a2016-09-16 10:20:17 +0000980 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
981 RC->SCCs.clear();
982 DeletedRefSCCs.push_back(RC);
Chandler Carruth312dddf2014-05-04 09:38:32 +0000983 }
Chandler Carruthe5944d92016-02-17 00:18:16 +0000984
Chandler Carruth49d728a2016-09-16 10:20:17 +0000985 // Append our original SCCs to the merged list and move it into place.
Chandler Carruthe5944d92016-02-17 00:18:16 +0000986 for (SCC &InnerC : *this)
987 SCCIndices[&InnerC] = SCCIndex++;
988 MergedSCCs.append(SCCs.begin(), SCCs.end());
989 SCCs = std::move(MergedSCCs);
990
Chandler Carruth49d728a2016-09-16 10:20:17 +0000991 // Remove the merged away RefSCCs from the post order sequence.
992 for (RefSCC *RC : MergeRange)
993 G->RefSCCIndices.erase(RC);
994 int IndexOffset = MergeRange.end() - MergeRange.begin();
995 auto EraseEnd =
996 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
997 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
998 G->RefSCCIndices[RC] -= IndexOffset;
999
Chandler Carruthe5944d92016-02-17 00:18:16 +00001000 // At this point we have a merged RefSCC with a post-order SCCs list, just
1001 // connect the nodes to form the new edge.
1002 SourceN.insertEdgeInternal(TargetN, Edge::Ref);
1003
Chandler Carruth312dddf2014-05-04 09:38:32 +00001004 // We return the list of SCCs which were merged so that callers can
1005 // invalidate any data they have associated with those SCCs. Note that these
1006 // SCCs are no longer in an interesting state (they are totally empty) but
1007 // the pointers will remain stable for the life of the graph itself.
Chandler Carruth49d728a2016-09-16 10:20:17 +00001008 return DeletedRefSCCs;
Chandler Carruth312dddf2014-05-04 09:38:32 +00001009}
1010
Chandler Carruthe5944d92016-02-17 00:18:16 +00001011void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
1012 assert(G->lookupRefSCC(SourceN) == this &&
1013 "The source must be a member of this RefSCC.");
1014
1015 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1016 assert(&TargetRC != this && "The target must not be a member of this RefSCC");
1017
David Majnemer0d955d02016-08-11 22:21:41 +00001018 assert(!is_contained(G->LeafRefSCCs, this) &&
Chandler Carruthe5944d92016-02-17 00:18:16 +00001019 "Cannot have a leaf RefSCC source.");
1020
Chandler Carruth11b3f602016-09-04 08:34:31 +00001021#ifndef NDEBUG
1022 // In a debug build, verify the RefSCC is valid to start with and when this
1023 // routine finishes.
1024 verify();
1025 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1026#endif
1027
Chandler Carruthaa839b22014-04-27 01:59:50 +00001028 // First remove it from the node.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001029 SourceN.removeEdgeInternal(TargetN.getFunction());
Chandler Carruthaa839b22014-04-27 01:59:50 +00001030
Chandler Carruthe5944d92016-02-17 00:18:16 +00001031 bool HasOtherEdgeToChildRC = false;
1032 bool HasOtherChildRC = false;
1033 for (SCC *InnerC : SCCs) {
1034 for (Node &N : *InnerC) {
1035 for (Edge &E : N) {
1036 assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
1037 RefSCC &OtherChildRC = *G->lookupRefSCC(*E.getNode());
1038 if (&OtherChildRC == &TargetRC) {
1039 HasOtherEdgeToChildRC = true;
1040 break;
1041 }
1042 if (&OtherChildRC != this)
1043 HasOtherChildRC = true;
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001044 }
Chandler Carruthe5944d92016-02-17 00:18:16 +00001045 if (HasOtherEdgeToChildRC)
1046 break;
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001047 }
Chandler Carruthe5944d92016-02-17 00:18:16 +00001048 if (HasOtherEdgeToChildRC)
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001049 break;
1050 }
1051 // Because the SCCs form a DAG, deleting such an edge cannot change the set
1052 // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
Chandler Carruthe5944d92016-02-17 00:18:16 +00001053 // the source SCC no longer connected to the target SCC. If so, we need to
1054 // update the target SCC's map of its parents.
1055 if (!HasOtherEdgeToChildRC) {
1056 bool Removed = TargetRC.Parents.erase(this);
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001057 (void)Removed;
1058 assert(Removed &&
Chandler Carruthe5944d92016-02-17 00:18:16 +00001059 "Did not find the source SCC in the target SCC's parent list!");
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001060
1061 // It may orphan an SCC if it is the last edge reaching it, but that does
1062 // not violate any invariants of the graph.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001063 if (TargetRC.Parents.empty())
1064 DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName()
1065 << " -> " << TargetN.getFunction().getName()
Chandler Carruthaa839b22014-04-27 01:59:50 +00001066 << " edge orphaned the callee's SCC!\n");
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001067
Chandler Carruthe5944d92016-02-17 00:18:16 +00001068 // It may make the Source SCC a leaf SCC.
1069 if (!HasOtherChildRC)
1070 G->LeafRefSCCs.push_back(this);
Chandler Carruthaca48d02014-04-26 09:06:53 +00001071 }
1072}
1073
Chandler Carruthe5944d92016-02-17 00:18:16 +00001074SmallVector<LazyCallGraph::RefSCC *, 1>
1075LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) {
1076 assert(!SourceN[TargetN].isCall() &&
1077 "Cannot remove a call edge, it must first be made a ref edge");
Chandler Carruthaa839b22014-04-27 01:59:50 +00001078
Chandler Carruth11b3f602016-09-04 08:34:31 +00001079#ifndef NDEBUG
1080 // In a debug build, verify the RefSCC is valid to start with and when this
1081 // routine finishes.
1082 verify();
1083 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1084#endif
1085
Chandler Carruthe5944d92016-02-17 00:18:16 +00001086 // First remove the actual edge.
1087 SourceN.removeEdgeInternal(TargetN.getFunction());
1088
1089 // We return a list of the resulting *new* RefSCCs in post-order.
1090 SmallVector<RefSCC *, 1> Result;
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001091
Chandler Carrutha7205b62014-04-26 03:36:37 +00001092 // Direct recursion doesn't impact the SCC graph at all.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001093 if (&SourceN == &TargetN)
1094 return Result;
Chandler Carrutha7205b62014-04-26 03:36:37 +00001095
Chandler Carruthe5944d92016-02-17 00:18:16 +00001096 // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1097 // for each inner SCC. We also store these associated with *nodes* rather
1098 // than SCCs because this saves a round-trip through the node->SCC map and in
1099 // the common case, SCCs are small. We will verify that we always give the
1100 // same number to every node in the SCC such that these are equivalent.
1101 const int RootPostOrderNumber = 0;
1102 int PostOrderNumber = RootPostOrderNumber + 1;
1103 SmallDenseMap<Node *, int> PostOrderMapping;
1104
1105 // Every node in the target SCC can already reach every node in this RefSCC
1106 // (by definition). It is the only node we know will stay inside this RefSCC.
1107 // Everything which transitively reaches Target will also remain in the
1108 // RefSCC. We handle this by pre-marking that the nodes in the target SCC map
1109 // back to the root post order number.
1110 //
1111 // This also enables us to take a very significant short-cut in the standard
1112 // Tarjan walk to re-form RefSCCs below: whenever we build an edge that
1113 // references the target node, we know that the target node eventually
1114 // references all other nodes in our walk. As a consequence, we can detect
1115 // and handle participants in that cycle without walking all the edges that
1116 // form the connections, and instead by relying on the fundamental guarantee
1117 // coming into this operation.
1118 SCC &TargetC = *G->lookupSCC(TargetN);
1119 for (Node &N : TargetC)
1120 PostOrderMapping[&N] = RootPostOrderNumber;
1121
1122 // Reset all the other nodes to prepare for a DFS over them, and add them to
1123 // our worklist.
1124 SmallVector<Node *, 8> Worklist;
1125 for (SCC *C : SCCs) {
1126 if (C == &TargetC)
1127 continue;
1128
1129 for (Node &N : *C)
1130 N.DFSNumber = N.LowLink = 0;
1131
1132 Worklist.append(C->Nodes.begin(), C->Nodes.end());
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001133 }
1134
Chandler Carruthe5944d92016-02-17 00:18:16 +00001135 auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) {
1136 N.DFSNumber = N.LowLink = -1;
1137 PostOrderMapping[&N] = Number;
1138 };
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001139
Chandler Carruthe5944d92016-02-17 00:18:16 +00001140 SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack;
1141 SmallVector<Node *, 4> PendingRefSCCStack;
Chandler Carruthaca48d02014-04-26 09:06:53 +00001142 do {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001143 assert(DFSStack.empty() &&
1144 "Cannot begin a new root with a non-empty DFS stack!");
1145 assert(PendingRefSCCStack.empty() &&
1146 "Cannot begin a new root with pending nodes for an SCC!");
1147
1148 Node *RootN = Worklist.pop_back_val();
1149 // Skip any nodes we've already reached in the DFS.
1150 if (RootN->DFSNumber != 0) {
1151 assert(RootN->DFSNumber == -1 &&
1152 "Shouldn't have any mid-DFS root nodes!");
1153 continue;
1154 }
1155
1156 RootN->DFSNumber = RootN->LowLink = 1;
1157 int NextDFSNumber = 2;
1158
1159 DFSStack.push_back({RootN, RootN->begin()});
1160 do {
1161 Node *N;
1162 edge_iterator I;
1163 std::tie(N, I) = DFSStack.pop_back_val();
1164 auto E = N->end();
1165
1166 assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1167 "before processing a node.");
1168
1169 while (I != E) {
1170 Node &ChildN = I->getNode(*G);
1171 if (ChildN.DFSNumber == 0) {
1172 // Mark that we should start at this child when next this node is the
1173 // top of the stack. We don't start at the next child to ensure this
1174 // child's lowlink is reflected.
1175 DFSStack.push_back({N, I});
1176
1177 // Continue, resetting to the child node.
1178 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1179 N = &ChildN;
1180 I = ChildN.begin();
1181 E = ChildN.end();
1182 continue;
1183 }
1184 if (ChildN.DFSNumber == -1) {
1185 // Check if this edge's target node connects to the deleted edge's
1186 // target node. If so, we know that every node connected will end up
1187 // in this RefSCC, so collapse the entire current stack into the root
1188 // slot in our SCC numbering. See above for the motivation of
1189 // optimizing the target connected nodes in this way.
1190 auto PostOrderI = PostOrderMapping.find(&ChildN);
1191 if (PostOrderI != PostOrderMapping.end() &&
1192 PostOrderI->second == RootPostOrderNumber) {
1193 MarkNodeForSCCNumber(*N, RootPostOrderNumber);
1194 while (!PendingRefSCCStack.empty())
1195 MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(),
1196 RootPostOrderNumber);
1197 while (!DFSStack.empty())
1198 MarkNodeForSCCNumber(*DFSStack.pop_back_val().first,
1199 RootPostOrderNumber);
1200 // Ensure we break all the way out of the enclosing loop.
1201 N = nullptr;
1202 break;
1203 }
1204
1205 // If this child isn't currently in this RefSCC, no need to process
1206 // it.
1207 // However, we do need to remove this RefSCC from its RefSCC's parent
1208 // set.
1209 RefSCC &ChildRC = *G->lookupRefSCC(ChildN);
1210 ChildRC.Parents.erase(this);
1211 ++I;
1212 continue;
1213 }
1214
1215 // Track the lowest link of the children, if any are still in the stack.
1216 // Any child not on the stack will have a LowLink of -1.
1217 assert(ChildN.LowLink != 0 &&
1218 "Low-link must not be zero with a non-zero DFS number.");
1219 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1220 N->LowLink = ChildN.LowLink;
1221 ++I;
1222 }
1223 if (!N)
1224 // We short-circuited this node.
1225 break;
1226
1227 // We've finished processing N and its descendents, put it on our pending
1228 // stack to eventually get merged into a RefSCC.
1229 PendingRefSCCStack.push_back(N);
1230
1231 // If this node is linked to some lower entry, continue walking up the
1232 // stack.
1233 if (N->LowLink != N->DFSNumber) {
1234 assert(!DFSStack.empty() &&
1235 "We never found a viable root for a RefSCC to pop off!");
1236 continue;
1237 }
1238
1239 // Otherwise, form a new RefSCC from the top of the pending node stack.
1240 int RootDFSNumber = N->DFSNumber;
1241 // Find the range of the node stack by walking down until we pass the
1242 // root DFS number.
1243 auto RefSCCNodes = make_range(
1244 PendingRefSCCStack.rbegin(),
David Majnemer42531262016-08-12 03:55:06 +00001245 find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) {
1246 return N->DFSNumber < RootDFSNumber;
1247 }));
Chandler Carruthe5944d92016-02-17 00:18:16 +00001248
1249 // Mark the postorder number for these nodes and clear them off the
1250 // stack. We'll use the postorder number to pull them into RefSCCs at the
1251 // end. FIXME: Fuse with the loop above.
1252 int RefSCCNumber = PostOrderNumber++;
1253 for (Node *N : RefSCCNodes)
1254 MarkNodeForSCCNumber(*N, RefSCCNumber);
1255
1256 PendingRefSCCStack.erase(RefSCCNodes.end().base(),
1257 PendingRefSCCStack.end());
1258 } while (!DFSStack.empty());
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001259
Chandler Carruthaca48d02014-04-26 09:06:53 +00001260 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
Chandler Carruthe5944d92016-02-17 00:18:16 +00001261 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
Chandler Carruthaca48d02014-04-26 09:06:53 +00001262 } while (!Worklist.empty());
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001263
Chandler Carruthe5944d92016-02-17 00:18:16 +00001264 // We now have a post-order numbering for RefSCCs and a mapping from each
1265 // node in this RefSCC to its final RefSCC. We create each new RefSCC node
1266 // (re-using this RefSCC node for the root) and build a radix-sort style map
1267 // from postorder number to the RefSCC. We then append SCCs to each of these
1268 // RefSCCs in the order they occured in the original SCCs container.
1269 for (int i = 1; i < PostOrderNumber; ++i)
1270 Result.push_back(G->createRefSCC(*G));
1271
Chandler Carruth49d728a2016-09-16 10:20:17 +00001272 // Insert the resulting postorder sequence into the global graph postorder
1273 // sequence before the current RefSCC in that sequence. The idea being that
1274 // this RefSCC is the target of the reference edge removed, and thus has
1275 // a direct or indirect edge to every other RefSCC formed and so must be at
1276 // the end of any postorder traversal.
1277 //
1278 // FIXME: It'd be nice to change the APIs so that we returned an iterator
1279 // range over the global postorder sequence and generally use that sequence
1280 // rather than building a separate result vector here.
1281 if (!Result.empty()) {
1282 int Idx = G->getRefSCCIndex(*this);
1283 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx,
1284 Result.begin(), Result.end());
1285 for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1286 G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
1287 assert(G->PostOrderRefSCCs[G->getRefSCCIndex(*this)] == this &&
1288 "Failed to update this RefSCC's index after insertion!");
1289 }
1290
Chandler Carruthe5944d92016-02-17 00:18:16 +00001291 for (SCC *C : SCCs) {
1292 auto PostOrderI = PostOrderMapping.find(&*C->begin());
1293 assert(PostOrderI != PostOrderMapping.end() &&
1294 "Cannot have missing mappings for nodes!");
1295 int SCCNumber = PostOrderI->second;
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001296#ifndef NDEBUG
Chandler Carruthe5944d92016-02-17 00:18:16 +00001297 for (Node &N : *C)
1298 assert(PostOrderMapping.find(&N)->second == SCCNumber &&
1299 "Cannot have different numbers for nodes in the same SCC!");
1300#endif
1301 if (SCCNumber == 0)
1302 // The root node is handled separately by removing the SCCs.
1303 continue;
1304
1305 RefSCC &RC = *Result[SCCNumber - 1];
1306 int SCCIndex = RC.SCCs.size();
1307 RC.SCCs.push_back(C);
1308 SCCIndices[C] = SCCIndex;
1309 C->OuterRefSCC = &RC;
1310 }
1311
1312 // FIXME: We re-walk the edges in each RefSCC to establish whether it is
1313 // a leaf and connect it to the rest of the graph's parents lists. This is
1314 // really wasteful. We should instead do this during the DFS to avoid yet
1315 // another edge walk.
1316 for (RefSCC *RC : Result)
1317 G->connectRefSCC(*RC);
1318
1319 // Now erase all but the root's SCCs.
David Majnemer42531262016-08-12 03:55:06 +00001320 SCCs.erase(remove_if(SCCs,
1321 [&](SCC *C) {
1322 return PostOrderMapping.lookup(&*C->begin()) !=
1323 RootPostOrderNumber;
1324 }),
Chandler Carruthe5944d92016-02-17 00:18:16 +00001325 SCCs.end());
Chandler Carruth88823462016-08-24 09:37:14 +00001326 SCCIndices.clear();
1327 for (int i = 0, Size = SCCs.size(); i < Size; ++i)
1328 SCCIndices[SCCs[i]] = i;
Chandler Carruthe5944d92016-02-17 00:18:16 +00001329
1330#ifndef NDEBUG
1331 // Now we need to reconnect the current (root) SCC to the graph. We do this
1332 // manually because we can special case our leaf handling and detect errors.
1333 bool IsLeaf = true;
1334#endif
1335 for (SCC *C : SCCs)
1336 for (Node &N : *C) {
1337 for (Edge &E : N) {
1338 assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
1339 RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
1340 if (&ChildRC == this)
1341 continue;
1342 ChildRC.Parents.insert(this);
1343#ifndef NDEBUG
1344 IsLeaf = false;
1345#endif
1346 }
1347 }
1348#ifndef NDEBUG
1349 if (!Result.empty())
1350 assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new "
1351 "SCCs by removing this edge.");
David Majnemer0a16c222016-08-11 21:15:00 +00001352 if (none_of(G->LeafRefSCCs, [&](RefSCC *C) { return C == this; }))
Chandler Carruthe5944d92016-02-17 00:18:16 +00001353 assert(!IsLeaf && "This SCC cannot be a leaf as it already had child "
1354 "SCCs before we removed this edge.");
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001355#endif
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001356 // And connect both this RefSCC and all the new ones to the correct parents.
1357 // The easiest way to do this is just to re-analyze the old parent set.
1358 SmallVector<RefSCC *, 4> OldParents(Parents.begin(), Parents.end());
1359 Parents.clear();
1360 for (RefSCC *ParentRC : OldParents)
1361 for (SCC *ParentC : ParentRC->SCCs)
1362 for (Node &ParentN : *ParentC)
1363 for (Edge &E : ParentN) {
1364 assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
1365 RefSCC &RC = *G->lookupRefSCC(*E.getNode());
1366 RC.Parents.insert(ParentRC);
1367 }
1368
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001369 // If this SCC stopped being a leaf through this edge removal, remove it from
Chandler Carruthe5944d92016-02-17 00:18:16 +00001370 // the leaf SCC list. Note that this DTRT in the case where this was never
1371 // a leaf.
1372 // FIXME: As LeafRefSCCs could be very large, we might want to not walk the
1373 // entire list if this RefSCC wasn't a leaf before the edge removal.
1374 if (!Result.empty())
1375 G->LeafRefSCCs.erase(
1376 std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this),
1377 G->LeafRefSCCs.end());
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001378
1379 // Return the new list of SCCs.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001380 return Result;
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001381}
1382
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001383void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN,
1384 Node &TargetN) {
1385 // The only trivial case that requires any graph updates is when we add new
1386 // ref edge and may connect different RefSCCs along that path. This is only
1387 // because of the parents set. Every other part of the graph remains constant
1388 // after this edge insertion.
1389 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
1390 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1391 if (&TargetRC == this) {
1392
1393 return;
1394 }
1395
1396 assert(TargetRC.isDescendantOf(*this) &&
1397 "Target must be a descendant of the Source.");
1398 // The only change required is to add this RefSCC to the parent set of the
1399 // target. This is a set and so idempotent if the edge already existed.
1400 TargetRC.Parents.insert(this);
1401}
1402
1403void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
1404 Node &TargetN) {
1405#ifndef NDEBUG
1406 // Check that the RefSCC is still valid when we finish.
1407 auto ExitVerifier = make_scope_exit([this] { verify(); });
Chandler Carruthbae595b2016-11-22 19:23:31 +00001408
1409 // Check that we aren't breaking some invariants of the SCC graph.
1410 SCC &SourceC = *G->lookupSCC(SourceN);
1411 SCC &TargetC = *G->lookupSCC(TargetN);
1412 if (&SourceC != &TargetC)
1413 assert(SourceC.isAncestorOf(TargetC) &&
1414 "Call edge is not trivial in the SCC graph!");
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001415#endif
1416 // First insert it into the source or find the existing edge.
1417 auto InsertResult = SourceN.EdgeIndexMap.insert(
1418 {&TargetN.getFunction(), SourceN.Edges.size()});
1419 if (!InsertResult.second) {
1420 // Already an edge, just update it.
1421 Edge &E = SourceN.Edges[InsertResult.first->second];
1422 if (E.isCall())
1423 return; // Nothing to do!
1424 E.setKind(Edge::Call);
1425 } else {
1426 // Create the new edge.
1427 SourceN.Edges.emplace_back(TargetN, Edge::Call);
1428 }
1429
1430 // Now that we have the edge, handle the graph fallout.
1431 handleTrivialEdgeInsertion(SourceN, TargetN);
1432}
1433
1434void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
1435#ifndef NDEBUG
1436 // Check that the RefSCC is still valid when we finish.
1437 auto ExitVerifier = make_scope_exit([this] { verify(); });
Chandler Carruth9eb857c2016-11-22 21:40:10 +00001438
1439 // Check that we aren't breaking some invariants of the RefSCC graph.
1440 RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
1441 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1442 if (&SourceRC != &TargetRC)
1443 assert(SourceRC.isAncestorOf(TargetRC) &&
1444 "Ref edge is not trivial in the RefSCC graph!");
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001445#endif
1446 // First insert it into the source or find the existing edge.
1447 auto InsertResult = SourceN.EdgeIndexMap.insert(
1448 {&TargetN.getFunction(), SourceN.Edges.size()});
1449 if (!InsertResult.second)
1450 // Already an edge, we're done.
1451 return;
1452
1453 // Create the new edge.
1454 SourceN.Edges.emplace_back(TargetN, Edge::Ref);
1455
1456 // Now that we have the edge, handle the graph fallout.
1457 handleTrivialEdgeInsertion(SourceN, TargetN);
1458}
1459
Chandler Carruthe5944d92016-02-17 00:18:16 +00001460void LazyCallGraph::insertEdge(Node &SourceN, Function &Target, Edge::Kind EK) {
Chandler Carruthc00a7ff2014-04-28 11:10:23 +00001461 assert(SCCMap.empty() && DFSStack.empty() &&
1462 "This method cannot be called after SCCs have been formed!");
1463
Chandler Carruthe5944d92016-02-17 00:18:16 +00001464 return SourceN.insertEdgeInternal(Target, EK);
Chandler Carruthc00a7ff2014-04-28 11:10:23 +00001465}
1466
Chandler Carruthe5944d92016-02-17 00:18:16 +00001467void LazyCallGraph::removeEdge(Node &SourceN, Function &Target) {
Chandler Carruthaa839b22014-04-27 01:59:50 +00001468 assert(SCCMap.empty() && DFSStack.empty() &&
1469 "This method cannot be called after SCCs have been formed!");
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001470
Chandler Carruthe5944d92016-02-17 00:18:16 +00001471 return SourceN.removeEdgeInternal(Target);
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001472}
1473
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001474void LazyCallGraph::removeDeadFunction(Function &F) {
1475 // FIXME: This is unnecessarily restrictive. We should be able to remove
1476 // functions which recursively call themselves.
1477 assert(F.use_empty() &&
1478 "This routine should only be called on trivially dead functions!");
1479
1480 auto EII = EntryIndexMap.find(&F);
1481 if (EII != EntryIndexMap.end()) {
1482 EntryEdges[EII->second] = Edge();
1483 EntryIndexMap.erase(EII);
1484 }
1485
1486 // It's safe to just remove un-visited functions from the RefSCC entry list.
1487 // FIXME: This is a linear operation which could become hot and benefit from
1488 // an index map.
1489 auto RENI = find(RefSCCEntryNodes, &F);
1490 if (RENI != RefSCCEntryNodes.end())
1491 RefSCCEntryNodes.erase(RENI);
1492
1493 auto NI = NodeMap.find(&F);
1494 if (NI == NodeMap.end())
1495 // Not in the graph at all!
1496 return;
1497
1498 Node &N = *NI->second;
1499 NodeMap.erase(NI);
1500
1501 if (SCCMap.empty() && DFSStack.empty()) {
1502 // No SCC walk has begun, so removing this is fine and there is nothing
1503 // else necessary at this point but clearing out the node.
1504 N.clear();
1505 return;
1506 }
1507
1508 // Check that we aren't going to break the DFS walk.
1509 assert(all_of(DFSStack,
1510 [&N](const std::pair<Node *, edge_iterator> &Element) {
1511 return Element.first != &N;
1512 }) &&
1513 "Tried to remove a function currently in the DFS stack!");
1514 assert(find(PendingRefSCCStack, &N) == PendingRefSCCStack.end() &&
1515 "Tried to remove a function currently pending to add to a RefSCC!");
1516
1517 // Cannot remove a function which has yet to be visited in the DFS walk, so
1518 // if we have a node at all then we must have an SCC and RefSCC.
1519 auto CI = SCCMap.find(&N);
1520 assert(CI != SCCMap.end() &&
1521 "Tried to remove a node without an SCC after DFS walk started!");
1522 SCC &C = *CI->second;
1523 SCCMap.erase(CI);
1524 RefSCC &RC = C.getOuterRefSCC();
1525
1526 // This node must be the only member of its SCC as it has no callers, and
1527 // that SCC must be the only member of a RefSCC as it has no references.
1528 // Validate these properties first.
1529 assert(C.size() == 1 && "Dead functions must be in a singular SCC");
1530 assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");
1531 assert(RC.Parents.empty() && "Cannot have parents of a dead RefSCC!");
1532
1533 // Now remove this RefSCC from any parents sets and the leaf list.
1534 for (Edge &E : N)
1535 if (Node *TargetN = E.getNode())
1536 if (RefSCC *TargetRC = lookupRefSCC(*TargetN))
1537 TargetRC->Parents.erase(&RC);
1538 // FIXME: This is a linear operation which could become hot and benefit from
1539 // an index map.
1540 auto LRI = find(LeafRefSCCs, &RC);
1541 if (LRI != LeafRefSCCs.end())
1542 LeafRefSCCs.erase(LRI);
1543
1544 auto RCIndexI = RefSCCIndices.find(&RC);
1545 int RCIndex = RCIndexI->second;
1546 PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex);
1547 RefSCCIndices.erase(RCIndexI);
1548 for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i)
1549 RefSCCIndices[PostOrderRefSCCs[i]] = i;
1550
1551 // Finally clear out all the data structures from the node down through the
1552 // components.
1553 N.clear();
1554 C.clear();
1555 RC.clear();
1556
1557 // Nothing to delete as all the objects are allocated in stable bump pointer
1558 // allocators.
1559}
1560
Chandler Carruth2a898e02014-04-23 23:20:36 +00001561LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1562 return *new (MappedN = BPA.Allocate()) Node(*this, F);
Chandler Carruthd8d865e2014-04-18 11:02:33 +00001563}
1564
1565void LazyCallGraph::updateGraphPtrs() {
Chandler Carruthb60cb312014-04-17 07:25:59 +00001566 // Process all nodes updating the graph pointers.
Chandler Carruthaa839b22014-04-27 01:59:50 +00001567 {
1568 SmallVector<Node *, 16> Worklist;
Chandler Carrutha4499e92016-02-02 03:57:13 +00001569 for (Edge &E : EntryEdges)
1570 if (Node *EntryN = E.getNode())
Chandler Carruthaa839b22014-04-27 01:59:50 +00001571 Worklist.push_back(EntryN);
Chandler Carruthb60cb312014-04-17 07:25:59 +00001572
Chandler Carruthaa839b22014-04-27 01:59:50 +00001573 while (!Worklist.empty()) {
1574 Node *N = Worklist.pop_back_val();
1575 N->G = this;
Chandler Carrutha4499e92016-02-02 03:57:13 +00001576 for (Edge &E : N->Edges)
Chandler Carruthe5944d92016-02-17 00:18:16 +00001577 if (Node *TargetN = E.getNode())
1578 Worklist.push_back(TargetN);
Chandler Carruthaa839b22014-04-27 01:59:50 +00001579 }
1580 }
1581
1582 // Process all SCCs updating the graph pointers.
1583 {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001584 SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end());
Chandler Carruthaa839b22014-04-27 01:59:50 +00001585
1586 while (!Worklist.empty()) {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001587 RefSCC &C = *Worklist.pop_back_val();
1588 C.G = this;
1589 for (RefSCC &ParentC : C.parents())
1590 Worklist.push_back(&ParentC);
Chandler Carruthaa839b22014-04-27 01:59:50 +00001591 }
Chandler Carruthb60cb312014-04-17 07:25:59 +00001592 }
Chandler Carruthbf71a342014-02-06 04:37:03 +00001593}
Chandler Carruthbf71a342014-02-06 04:37:03 +00001594
Chandler Carruthe5944d92016-02-17 00:18:16 +00001595/// Build the internal SCCs for a RefSCC from a sequence of nodes.
1596///
1597/// Appends the SCCs to the provided vector and updates the map with their
1598/// indices. Both the vector and map must be empty when passed into this
1599/// routine.
1600void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1601 assert(RC.SCCs.empty() && "Already built SCCs!");
1602 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
Chandler Carruth3f9869a2014-04-23 06:09:03 +00001603
Chandler Carruthe5944d92016-02-17 00:18:16 +00001604 for (Node *N : Nodes) {
1605 assert(N->LowLink >= (*Nodes.begin())->LowLink &&
Chandler Carruthcace6622014-04-23 10:31:17 +00001606 "We cannot have a low link in an SCC lower than its root on the "
1607 "stack!");
Chandler Carruth3f9869a2014-04-23 06:09:03 +00001608
Chandler Carruthe5944d92016-02-17 00:18:16 +00001609 // This node will go into the next RefSCC, clear out its DFS and low link
1610 // as we scan.
1611 N->DFSNumber = N->LowLink = 0;
1612 }
1613
1614 // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1615 // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1616 // internal storage as we won't need it for the outer graph's DFS any longer.
1617
1618 SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
1619 SmallVector<Node *, 16> PendingSCCStack;
1620
1621 // Scan down the stack and DFS across the call edges.
1622 for (Node *RootN : Nodes) {
1623 assert(DFSStack.empty() &&
1624 "Cannot begin a new root with a non-empty DFS stack!");
1625 assert(PendingSCCStack.empty() &&
1626 "Cannot begin a new root with pending nodes for an SCC!");
1627
1628 // Skip any nodes we've already reached in the DFS.
1629 if (RootN->DFSNumber != 0) {
1630 assert(RootN->DFSNumber == -1 &&
1631 "Shouldn't have any mid-DFS root nodes!");
1632 continue;
Chandler Carruth3f9869a2014-04-23 06:09:03 +00001633 }
1634
Chandler Carruthe5944d92016-02-17 00:18:16 +00001635 RootN->DFSNumber = RootN->LowLink = 1;
1636 int NextDFSNumber = 2;
Chandler Carruth3f9869a2014-04-23 06:09:03 +00001637
Chandler Carruthe5944d92016-02-17 00:18:16 +00001638 DFSStack.push_back({RootN, RootN->call_begin()});
1639 do {
1640 Node *N;
1641 call_edge_iterator I;
1642 std::tie(N, I) = DFSStack.pop_back_val();
1643 auto E = N->call_end();
1644 while (I != E) {
1645 Node &ChildN = *I->getNode();
1646 if (ChildN.DFSNumber == 0) {
1647 // We haven't yet visited this child, so descend, pushing the current
1648 // node onto the stack.
1649 DFSStack.push_back({N, I});
1650
1651 assert(!lookupSCC(ChildN) &&
1652 "Found a node with 0 DFS number but already in an SCC!");
1653 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1654 N = &ChildN;
1655 I = N->call_begin();
1656 E = N->call_end();
1657 continue;
1658 }
1659
1660 // If the child has already been added to some child component, it
1661 // couldn't impact the low-link of this parent because it isn't
1662 // connected, and thus its low-link isn't relevant so skip it.
1663 if (ChildN.DFSNumber == -1) {
1664 ++I;
1665 continue;
1666 }
1667
1668 // Track the lowest linked child as the lowest link for this node.
1669 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1670 if (ChildN.LowLink < N->LowLink)
1671 N->LowLink = ChildN.LowLink;
1672
1673 // Move to the next edge.
1674 ++I;
1675 }
1676
1677 // We've finished processing N and its descendents, put it on our pending
1678 // SCC stack to eventually get merged into an SCC of nodes.
1679 PendingSCCStack.push_back(N);
1680
1681 // If this node is linked to some lower entry, continue walking up the
1682 // stack.
1683 if (N->LowLink != N->DFSNumber)
1684 continue;
1685
1686 // Otherwise, we've completed an SCC. Append it to our post order list of
1687 // SCCs.
1688 int RootDFSNumber = N->DFSNumber;
1689 // Find the range of the node stack by walking down until we pass the
1690 // root DFS number.
1691 auto SCCNodes = make_range(
1692 PendingSCCStack.rbegin(),
David Majnemer42531262016-08-12 03:55:06 +00001693 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1694 return N->DFSNumber < RootDFSNumber;
1695 }));
Chandler Carruthe5944d92016-02-17 00:18:16 +00001696 // Form a new SCC out of these nodes and then clear them off our pending
1697 // stack.
1698 RC.SCCs.push_back(createSCC(RC, SCCNodes));
1699 for (Node &N : *RC.SCCs.back()) {
1700 N.DFSNumber = N.LowLink = -1;
1701 SCCMap[&N] = RC.SCCs.back();
1702 }
1703 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1704 } while (!DFSStack.empty());
1705 }
1706
1707 // Wire up the SCC indices.
1708 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
1709 RC.SCCIndices[RC.SCCs[i]] = i;
Chandler Carruth3f9869a2014-04-23 06:09:03 +00001710}
1711
Chandler Carruthe5944d92016-02-17 00:18:16 +00001712// FIXME: We should move callers of this to embed the parent linking and leaf
1713// tracking into their DFS in order to remove a full walk of all edges.
1714void LazyCallGraph::connectRefSCC(RefSCC &RC) {
1715 // Walk all edges in the RefSCC (this remains linear as we only do this once
1716 // when we build the RefSCC) to connect it to the parent sets of its
1717 // children.
1718 bool IsLeaf = true;
1719 for (SCC &C : RC)
1720 for (Node &N : C)
1721 for (Edge &E : N) {
1722 assert(E.getNode() &&
1723 "Cannot have a missing node in a visited part of the graph!");
1724 RefSCC &ChildRC = *lookupRefSCC(*E.getNode());
1725 if (&ChildRC == &RC)
1726 continue;
1727 ChildRC.Parents.insert(&RC);
1728 IsLeaf = false;
1729 }
1730
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001731 // For the SCCs where we find no child SCCs, add them to the leaf list.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001732 if (IsLeaf)
1733 LeafRefSCCs.push_back(&RC);
1734}
1735
Chandler Carruth49d728a2016-09-16 10:20:17 +00001736bool LazyCallGraph::buildNextRefSCCInPostOrder() {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001737 if (DFSStack.empty()) {
1738 Node *N;
Chandler Carruth90821c22014-04-26 09:45:55 +00001739 do {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001740 // If we've handled all candidate entry nodes to the SCC forest, we're
1741 // done.
1742 if (RefSCCEntryNodes.empty())
Chandler Carruth49d728a2016-09-16 10:20:17 +00001743 return false;
Chandler Carruth18eadd922014-04-18 10:50:32 +00001744
Chandler Carruthe5944d92016-02-17 00:18:16 +00001745 N = &get(*RefSCCEntryNodes.pop_back_val());
Chandler Carruth90821c22014-04-26 09:45:55 +00001746 } while (N->DFSNumber != 0);
Chandler Carruthe5944d92016-02-17 00:18:16 +00001747
1748 // Found a new root, begin the DFS here.
Chandler Carruth5e2d70b2014-04-26 09:28:00 +00001749 N->LowLink = N->DFSNumber = 1;
Chandler Carruth09751bf2014-04-24 09:59:59 +00001750 NextDFSNumber = 2;
Chandler Carruthe5944d92016-02-17 00:18:16 +00001751 DFSStack.push_back({N, N->begin()});
Chandler Carruth18eadd922014-04-18 10:50:32 +00001752 }
1753
Chandler Carruth91dcf0f2014-04-24 21:19:30 +00001754 for (;;) {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001755 Node *N;
1756 edge_iterator I;
1757 std::tie(N, I) = DFSStack.pop_back_val();
1758
1759 assert(N->DFSNumber > 0 && "We should always assign a DFS number "
1760 "before placing a node onto the stack.");
Chandler Carruth24553932014-04-24 11:05:20 +00001761
Chandler Carrutha4499e92016-02-02 03:57:13 +00001762 auto E = N->end();
Chandler Carruth5e2d70b2014-04-26 09:28:00 +00001763 while (I != E) {
Chandler Carrutha4499e92016-02-02 03:57:13 +00001764 Node &ChildN = I->getNode(*this);
Chandler Carruthbd5d3082014-04-23 23:34:48 +00001765 if (ChildN.DFSNumber == 0) {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001766 // We haven't yet visited this child, so descend, pushing the current
1767 // node onto the stack.
1768 DFSStack.push_back({N, N->begin()});
Chandler Carruth18eadd922014-04-18 10:50:32 +00001769
Chandler Carruth09751bf2014-04-24 09:59:59 +00001770 assert(!SCCMap.count(&ChildN) &&
1771 "Found a node with 0 DFS number but already in an SCC!");
1772 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
Chandler Carruth5e2d70b2014-04-26 09:28:00 +00001773 N = &ChildN;
Chandler Carruthe5944d92016-02-17 00:18:16 +00001774 I = N->begin();
1775 E = N->end();
Chandler Carruth5e2d70b2014-04-26 09:28:00 +00001776 continue;
Chandler Carruthcace6622014-04-23 10:31:17 +00001777 }
1778
Chandler Carruthe5944d92016-02-17 00:18:16 +00001779 // If the child has already been added to some child component, it
1780 // couldn't impact the low-link of this parent because it isn't
1781 // connected, and thus its low-link isn't relevant so skip it.
1782 if (ChildN.DFSNumber == -1) {
1783 ++I;
1784 continue;
1785 }
1786
1787 // Track the lowest linked child as the lowest link for this node.
1788 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1789 if (ChildN.LowLink < N->LowLink)
Chandler Carruthbd5d3082014-04-23 23:34:48 +00001790 N->LowLink = ChildN.LowLink;
Chandler Carruthe5944d92016-02-17 00:18:16 +00001791
1792 // Move to the next edge.
Chandler Carruth5e2d70b2014-04-26 09:28:00 +00001793 ++I;
Chandler Carruth18eadd922014-04-18 10:50:32 +00001794 }
1795
Chandler Carruthe5944d92016-02-17 00:18:16 +00001796 // We've finished processing N and its descendents, put it on our pending
1797 // SCC stack to eventually get merged into an SCC of nodes.
1798 PendingRefSCCStack.push_back(N);
Chandler Carruth18eadd922014-04-18 10:50:32 +00001799
Chandler Carruthe5944d92016-02-17 00:18:16 +00001800 // If this node is linked to some lower entry, continue walking up the
1801 // stack.
1802 if (N->LowLink != N->DFSNumber) {
1803 assert(!DFSStack.empty() &&
1804 "We never found a viable root for an SCC to pop off!");
1805 continue;
1806 }
Chandler Carruth5e2d70b2014-04-26 09:28:00 +00001807
Chandler Carruthe5944d92016-02-17 00:18:16 +00001808 // Otherwise, form a new RefSCC from the top of the pending node stack.
1809 int RootDFSNumber = N->DFSNumber;
1810 // Find the range of the node stack by walking down until we pass the
1811 // root DFS number.
1812 auto RefSCCNodes = node_stack_range(
1813 PendingRefSCCStack.rbegin(),
David Majnemer42531262016-08-12 03:55:06 +00001814 find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) {
1815 return N->DFSNumber < RootDFSNumber;
1816 }));
Chandler Carruthe5944d92016-02-17 00:18:16 +00001817 // Form a new RefSCC out of these nodes and then clear them off our pending
1818 // stack.
1819 RefSCC *NewRC = createRefSCC(*this);
1820 buildSCCs(*NewRC, RefSCCNodes);
1821 connectRefSCC(*NewRC);
1822 PendingRefSCCStack.erase(RefSCCNodes.end().base(),
1823 PendingRefSCCStack.end());
1824
Chandler Carruth49d728a2016-09-16 10:20:17 +00001825 // Push the new node into the postorder list and return true indicating we
1826 // successfully grew the postorder sequence by one.
1827 bool Inserted =
1828 RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
1829 (void)Inserted;
1830 assert(Inserted && "Cannot already have this RefSCC in the index map!");
1831 PostOrderRefSCCs.push_back(NewRC);
1832 return true;
Chandler Carruth91dcf0f2014-04-24 21:19:30 +00001833 }
Chandler Carruth18eadd922014-04-18 10:50:32 +00001834}
1835
Chandler Carruthb4faf132016-03-11 10:22:49 +00001836char LazyCallGraphAnalysis::PassID;
NAKAMURA Takumidf0cd722016-02-28 17:17:00 +00001837
Chandler Carruthbf71a342014-02-06 04:37:03 +00001838LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1839
Chandler Carruthe5944d92016-02-17 00:18:16 +00001840static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
Chandler Carrutha4499e92016-02-02 03:57:13 +00001841 OS << " Edges in function: " << N.getFunction().getName() << "\n";
1842 for (const LazyCallGraph::Edge &E : N)
1843 OS << " " << (E.isCall() ? "call" : "ref ") << " -> "
1844 << E.getFunction().getName() << "\n";
Chandler Carruth11f50322015-01-14 00:27:45 +00001845
1846 OS << "\n";
1847}
1848
Chandler Carruthe5944d92016-02-17 00:18:16 +00001849static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1850 ptrdiff_t Size = std::distance(C.begin(), C.end());
1851 OS << " SCC with " << Size << " functions:\n";
Chandler Carruth11f50322015-01-14 00:27:45 +00001852
Chandler Carruthe5944d92016-02-17 00:18:16 +00001853 for (LazyCallGraph::Node &N : C)
1854 OS << " " << N.getFunction().getName() << "\n";
1855}
1856
1857static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
1858 ptrdiff_t Size = std::distance(C.begin(), C.end());
1859 OS << " RefSCC with " << Size << " call SCCs:\n";
1860
1861 for (LazyCallGraph::SCC &InnerC : C)
1862 printSCC(OS, InnerC);
Chandler Carruth11f50322015-01-14 00:27:45 +00001863
1864 OS << "\n";
1865}
1866
Chandler Carruthd174ce42015-01-05 02:47:05 +00001867PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
Chandler Carruthb47f8012016-03-11 11:05:24 +00001868 ModuleAnalysisManager &AM) {
1869 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
Chandler Carruth11f50322015-01-14 00:27:45 +00001870
1871 OS << "Printing the call graph for module: " << M.getModuleIdentifier()
1872 << "\n\n";
1873
Chandler Carruthe5944d92016-02-17 00:18:16 +00001874 for (Function &F : M)
1875 printNode(OS, G.get(F));
Chandler Carruth11f50322015-01-14 00:27:45 +00001876
Chandler Carruthe5944d92016-02-17 00:18:16 +00001877 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
1878 printRefSCC(OS, C);
Chandler Carruth18eadd922014-04-18 10:50:32 +00001879
Chandler Carruthbf71a342014-02-06 04:37:03 +00001880 return PreservedAnalyses::all();
Chandler Carruthbf71a342014-02-06 04:37:03 +00001881}
Sean Silva7cb30662016-06-18 09:17:32 +00001882
1883LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
1884 : OS(OS) {}
1885
1886static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
1887 std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";
1888
1889 for (const LazyCallGraph::Edge &E : N) {
1890 OS << " " << Name << " -> \""
1891 << DOT::EscapeString(E.getFunction().getName()) << "\"";
1892 if (!E.isCall()) // It is a ref edge.
1893 OS << " [style=dashed,label=\"ref\"]";
1894 OS << ";\n";
1895 }
1896
1897 OS << "\n";
1898}
1899
1900PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
1901 ModuleAnalysisManager &AM) {
1902 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1903
1904 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
1905
1906 for (Function &F : M)
1907 printNodeDOT(OS, G.get(F));
1908
1909 OS << "}\n";
1910
1911 return PreservedAnalyses::all();
1912}