blob: 1176cc9a04bda0f1bf713683e318d58bd43a4f29 [file] [log] [blame]
Chris Lattner476e6df2001-12-03 17:28:42 +00001//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner476e6df2001-12-03 17:28:42 +00009//
Chris Lattnere61b67d2004-04-02 20:24:31 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
Chris Lattnere61b67d2004-04-02 20:24:31 +000014// If the trip count of a loop is computable, this pass also makes the following
15// changes:
16// 1. The exit condition for the loop is canonicalized to compare the
17// induction value against the exit value. This turns loops like:
18// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19// 2. Any use outside of the loop of an expression derived from the indvar
20// is changed to compute the derived value outside of the loop, eliminating
21// the dependence on the exit value of the induction variable. If the only
22// purpose of the loop is to compute the exit value of some derived
23// expression, this transformation will make the loop dead.
24//
Chris Lattner476e6df2001-12-03 17:28:42 +000025//===----------------------------------------------------------------------===//
26
Chris Lattner79a42ac2006-12-19 21:40:18 +000027#define DEBUG_TYPE "indvars"
Chris Lattnerb4cfa7f2002-05-07 20:03:00 +000028#include "llvm/Transforms/Scalar.h"
Chris Lattnere61b67d2004-04-02 20:24:31 +000029#include "llvm/BasicBlock.h"
Chris Lattner0cec5cb2004-04-15 15:21:43 +000030#include "llvm/Constants.h"
Chris Lattner6449dce2003-12-22 05:02:01 +000031#include "llvm/Instructions.h"
Devang Patel45c15052010-03-15 22:23:03 +000032#include "llvm/IntrinsicInst.h"
Owen Andersonb5618da2009-07-03 00:17:18 +000033#include "llvm/LLVMContext.h"
Chris Lattnere61b67d2004-04-02 20:24:31 +000034#include "llvm/Type.h"
Dan Gohmand76d71a2009-05-12 02:17:14 +000035#include "llvm/Analysis/Dominators.h"
36#include "llvm/Analysis/IVUsers.h"
Nate Begeman2bca4d92005-07-30 00:12:19 +000037#include "llvm/Analysis/ScalarEvolutionExpander.h"
John Criswellb22e9b42003-12-18 17:19:19 +000038#include "llvm/Analysis/LoopInfo.h"
Devang Patel2ac57e12007-03-07 06:39:01 +000039#include "llvm/Analysis/LoopPass.h"
Chris Lattner83d485b2002-02-12 22:39:50 +000040#include "llvm/Support/CFG.h"
Andrew Trick56b315a2011-06-28 03:01:46 +000041#include "llvm/Support/CommandLine.h"
Chris Lattner08165592007-01-07 01:14:12 +000042#include "llvm/Support/Debug.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000043#include "llvm/Support/raw_ostream.h"
John Criswellb22e9b42003-12-18 17:19:19 +000044#include "llvm/Transforms/Utils/Local.h"
Dan Gohmand76d71a2009-05-12 02:17:14 +000045#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Andrew Trick3ec331e2011-08-10 03:46:27 +000046#include "llvm/Transforms/Utils/SimplifyIndVar.h"
Andrew Trick1abe2962011-05-04 02:10:13 +000047#include "llvm/Target/TargetData.h"
Andrew Trick32390552011-07-06 20:50:43 +000048#include "llvm/ADT/DenseMap.h"
Reid Spencer7a9c62b2007-01-12 07:05:14 +000049#include "llvm/ADT/SmallVector.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000050#include "llvm/ADT/Statistic.h"
John Criswellb22e9b42003-12-18 17:19:19 +000051using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000052
Andrew Trick69d44522011-06-21 03:22:38 +000053STATISTIC(NumRemoved , "Number of aux indvars removed");
54STATISTIC(NumWidened , "Number of indvars widened");
55STATISTIC(NumInserted , "Number of canonical indvars added");
56STATISTIC(NumReplaced , "Number of exit values replaced");
57STATISTIC(NumLFTR , "Number of loop exit tests replaced");
Andrew Trick69d44522011-06-21 03:22:38 +000058STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
Andrew Trick32390552011-07-06 20:50:43 +000059STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
Chris Lattnerd3678bc2003-12-22 03:58:44 +000060
Benjamin Kramer7ba71be2011-11-26 23:01:57 +000061static cl::opt<bool> EnableIVRewrite(
62 "enable-iv-rewrite", cl::Hidden,
63 cl::desc("Enable canonical induction variable rewriting"));
Andrew Trick1eee7f12011-09-06 20:20:38 +000064
Benjamin Kramer7ba71be2011-11-26 23:01:57 +000065// Trip count verification can be enabled by default under NDEBUG if we
66// implement a strong expression equivalence checker in SCEV. Until then, we
67// use the verify-indvars flag, which may assert in some cases.
68static cl::opt<bool> VerifyIndvars(
69 "verify-indvars", cl::Hidden,
70 cl::desc("Verify the ScalarEvolution result after running indvars"));
Andrew Trick1abe2962011-05-04 02:10:13 +000071
Chris Lattner79a42ac2006-12-19 21:40:18 +000072namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +000073 class IndVarSimplify : public LoopPass {
Dan Gohmand76d71a2009-05-12 02:17:14 +000074 IVUsers *IU;
Chris Lattnere61b67d2004-04-02 20:24:31 +000075 LoopInfo *LI;
76 ScalarEvolution *SE;
Dan Gohmanfe174b62009-06-27 05:16:57 +000077 DominatorTree *DT;
Andrew Trick1abe2962011-05-04 02:10:13 +000078 TargetData *TD;
Andrew Trick69d44522011-06-21 03:22:38 +000079
Andrew Trick87716c92011-03-17 23:51:11 +000080 SmallVector<WeakVH, 16> DeadInsts;
Chris Lattner7e755e42003-12-23 07:47:09 +000081 bool Changed;
Chris Lattnerd3678bc2003-12-22 03:58:44 +000082 public:
Devang Patel09f162c2007-05-01 21:15:47 +000083
Dan Gohmanb0f8e992009-07-15 01:26:32 +000084 static char ID; // Pass identification, replacement for typeid
Andrew Trick69d44522011-06-21 03:22:38 +000085 IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
Andrew Trick8a3c39c2011-06-28 02:49:20 +000086 Changed(false) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +000087 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
88 }
Devang Patel09f162c2007-05-01 21:15:47 +000089
Dan Gohmanb0f8e992009-07-15 01:26:32 +000090 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
Dan Gohman43300342009-02-17 20:49:49 +000091
Dan Gohmanb0f8e992009-07-15 01:26:32 +000092 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
93 AU.addRequired<DominatorTree>();
94 AU.addRequired<LoopInfo>();
95 AU.addRequired<ScalarEvolution>();
96 AU.addRequiredID(LoopSimplifyID);
97 AU.addRequiredID(LCSSAID);
Andrew Trick183013d2011-09-12 18:28:44 +000098 if (EnableIVRewrite)
Andrew Trick56b315a2011-06-28 03:01:46 +000099 AU.addRequired<IVUsers>();
Dan Gohmanb0f8e992009-07-15 01:26:32 +0000100 AU.addPreserved<ScalarEvolution>();
101 AU.addPreservedID(LoopSimplifyID);
102 AU.addPreservedID(LCSSAID);
Andrew Trick183013d2011-09-12 18:28:44 +0000103 if (EnableIVRewrite)
Andrew Trick69d44522011-06-21 03:22:38 +0000104 AU.addPreserved<IVUsers>();
Dan Gohmanb0f8e992009-07-15 01:26:32 +0000105 AU.setPreservesCFG();
106 }
Chris Lattner7e755e42003-12-23 07:47:09 +0000107
Chris Lattnere61b67d2004-04-02 20:24:31 +0000108 private:
Andrew Trick32390552011-07-06 20:50:43 +0000109 virtual void releaseMemory() {
Andrew Trick32390552011-07-06 20:50:43 +0000110 DeadInsts.clear();
111 }
112
Andrew Trick87716c92011-03-17 23:51:11 +0000113 bool isValidRewrite(Value *FromVal, Value *ToVal);
Devang Patel2ac57e12007-03-07 06:39:01 +0000114
Andrew Trickcdc22972011-07-12 00:08:50 +0000115 void HandleFloatingPointIV(Loop *L, PHINode *PH);
116 void RewriteNonIntegerIVs(Loop *L);
117
Andrew Trick3ec331e2011-08-10 03:46:27 +0000118 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
Andrew Trick6d45a012011-08-06 07:00:37 +0000119
Andrew Trick3ec331e2011-08-10 03:46:27 +0000120 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
121
Dan Gohman8c16b382010-02-22 04:11:59 +0000122 void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
Devang Patel92b032f2008-09-09 21:41:07 +0000123
Andrew Trick7da24172011-07-18 20:32:31 +0000124 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
125 PHINode *IndVar, SCEVExpander &Rewriter);
Dan Gohmand76d71a2009-05-12 02:17:14 +0000126
Andrew Trickcdc22972011-07-12 00:08:50 +0000127 void SinkUnusedInvariants(Loop *L);
Chris Lattnerd3678bc2003-12-22 03:58:44 +0000128 };
Chris Lattner4184bcc2002-09-10 05:24:05 +0000129}
Chris Lattner91daaab2001-12-04 04:32:29 +0000130
Dan Gohmand78c4002008-05-13 00:00:25 +0000131char IndVarSimplify::ID = 0;
Owen Anderson8ac477f2010-10-12 19:48:12 +0000132INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
Andrew Trick1abe2962011-05-04 02:10:13 +0000133 "Induction Variable Simplification", false, false)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000134INITIALIZE_PASS_DEPENDENCY(DominatorTree)
135INITIALIZE_PASS_DEPENDENCY(LoopInfo)
136INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
137INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
138INITIALIZE_PASS_DEPENDENCY(LCSSA)
139INITIALIZE_PASS_DEPENDENCY(IVUsers)
140INITIALIZE_PASS_END(IndVarSimplify, "indvars",
Andrew Trick1abe2962011-05-04 02:10:13 +0000141 "Induction Variable Simplification", false, false)
Dan Gohmand78c4002008-05-13 00:00:25 +0000142
Daniel Dunbar7f39e2d2008-10-22 23:32:42 +0000143Pass *llvm::createIndVarSimplifyPass() {
Chris Lattnerd3678bc2003-12-22 03:58:44 +0000144 return new IndVarSimplify();
Chris Lattner91daaab2001-12-04 04:32:29 +0000145}
146
Andrew Trick87716c92011-03-17 23:51:11 +0000147/// isValidRewrite - Return true if the SCEV expansion generated by the
148/// rewriter can replace the original value. SCEV guarantees that it
149/// produces the same value, but the way it is produced may be illegal IR.
150/// Ideally, this function will only be called for verification.
151bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
152 // If an SCEV expression subsumed multiple pointers, its expansion could
153 // reassociate the GEP changing the base pointer. This is illegal because the
154 // final address produced by a GEP chain must be inbounds relative to its
155 // underlying object. Otherwise basic alias analysis, among other things,
156 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
157 // producing an expression involving multiple pointers. Until then, we must
158 // bail out here.
159 //
160 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
161 // because it understands lcssa phis while SCEV does not.
162 Value *FromPtr = FromVal;
163 Value *ToPtr = ToVal;
164 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
165 FromPtr = GEP->getPointerOperand();
166 }
167 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
168 ToPtr = GEP->getPointerOperand();
169 }
170 if (FromPtr != FromVal || ToPtr != ToVal) {
171 // Quickly check the common case
172 if (FromPtr == ToPtr)
173 return true;
174
175 // SCEV may have rewritten an expression that produces the GEP's pointer
176 // operand. That's ok as long as the pointer operand has the same base
177 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
178 // base of a recurrence. This handles the case in which SCEV expansion
179 // converts a pointer type recurrence into a nonrecurrent pointer base
180 // indexed by an integer recurrence.
Nadav Rotem3924cb02011-12-05 06:29:09 +0000181
182 // If the GEP base pointer is a vector of pointers, abort.
183 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
184 return false;
185
Andrew Trick87716c92011-03-17 23:51:11 +0000186 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
187 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
188 if (FromBase == ToBase)
189 return true;
190
191 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
192 << *FromBase << " != " << *ToBase << "\n");
193
194 return false;
195 }
196 return true;
197}
198
Andrew Trick638b3552011-07-20 05:32:06 +0000199/// Determine the insertion point for this user. By default, insert immediately
200/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
201/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
202/// common dominator for the incoming blocks.
203static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
204 DominatorTree *DT) {
205 PHINode *PHI = dyn_cast<PHINode>(User);
206 if (!PHI)
207 return User;
208
209 Instruction *InsertPt = 0;
210 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
211 if (PHI->getIncomingValue(i) != Def)
212 continue;
213
214 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
215 if (!InsertPt) {
216 InsertPt = InsertBB->getTerminator();
217 continue;
218 }
219 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
220 InsertPt = InsertBB->getTerminator();
221 }
222 assert(InsertPt && "Missing phi operand");
Jay Foad50bfbab2011-07-20 08:15:21 +0000223 assert((!isa<Instruction>(Def) ||
224 DT->dominates(cast<Instruction>(Def), InsertPt)) &&
Andrew Trick638b3552011-07-20 05:32:06 +0000225 "def does not dominate all uses");
226 return InsertPt;
227}
228
Andrew Trickcdc22972011-07-12 00:08:50 +0000229//===----------------------------------------------------------------------===//
230// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
231//===----------------------------------------------------------------------===//
Andrew Trick38c4e342011-05-03 22:24:10 +0000232
Andrew Trickcdc22972011-07-12 00:08:50 +0000233/// ConvertToSInt - Convert APF to an integer, if possible.
234static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
235 bool isExact = false;
236 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
Andrew Trick38c4e342011-05-03 22:24:10 +0000237 return false;
Andrew Trickcdc22972011-07-12 00:08:50 +0000238 // See if we can convert this to an int64_t
239 uint64_t UIntVal;
240 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
241 &isExact) != APFloat::opOK || !isExact)
Andrew Trick38c4e342011-05-03 22:24:10 +0000242 return false;
Andrew Trickcdc22972011-07-12 00:08:50 +0000243 IntVal = UIntVal;
Andrew Trick38c4e342011-05-03 22:24:10 +0000244 return true;
245}
246
Andrew Trickcdc22972011-07-12 00:08:50 +0000247/// HandleFloatingPointIV - If the loop has floating induction variable
248/// then insert corresponding integer induction variable if possible.
249/// For example,
250/// for(double i = 0; i < 10000; ++i)
251/// bar(i)
252/// is converted into
253/// for(int i = 0; i < 10000; ++i)
254/// bar((double)i);
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000255///
Andrew Trickcdc22972011-07-12 00:08:50 +0000256void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
257 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
258 unsigned BackEdge = IncomingEdge^1;
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000259
Andrew Trickcdc22972011-07-12 00:08:50 +0000260 // Check incoming value.
261 ConstantFP *InitValueVal =
262 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000263
Andrew Trickcdc22972011-07-12 00:08:50 +0000264 int64_t InitValue;
265 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
266 return;
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000267
Andrew Trickcdc22972011-07-12 00:08:50 +0000268 // Check IV increment. Reject this PN if increment operation is not
269 // an add or increment value can not be represented by an integer.
270 BinaryOperator *Incr =
271 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
272 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000273
Andrew Trickcdc22972011-07-12 00:08:50 +0000274 // If this is not an add of the PHI with a constantfp, or if the constant fp
275 // is not an integer, bail out.
276 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
277 int64_t IncValue;
278 if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
279 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
280 return;
281
282 // Check Incr uses. One user is PN and the other user is an exit condition
283 // used by the conditional terminator.
284 Value::use_iterator IncrUse = Incr->use_begin();
285 Instruction *U1 = cast<Instruction>(*IncrUse++);
286 if (IncrUse == Incr->use_end()) return;
287 Instruction *U2 = cast<Instruction>(*IncrUse++);
288 if (IncrUse != Incr->use_end()) return;
289
290 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
291 // only used by a branch, we can't transform it.
292 FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
293 if (!Compare)
294 Compare = dyn_cast<FCmpInst>(U2);
295 if (Compare == 0 || !Compare->hasOneUse() ||
296 !isa<BranchInst>(Compare->use_back()))
297 return;
298
299 BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
300
301 // We need to verify that the branch actually controls the iteration count
302 // of the loop. If not, the new IV can overflow and no one will notice.
303 // The branch block must be in the loop and one of the successors must be out
304 // of the loop.
305 assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
306 if (!L->contains(TheBr->getParent()) ||
307 (L->contains(TheBr->getSuccessor(0)) &&
308 L->contains(TheBr->getSuccessor(1))))
309 return;
310
311
312 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
313 // transform it.
314 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
315 int64_t ExitValue;
316 if (ExitValueVal == 0 ||
317 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
318 return;
319
320 // Find new predicate for integer comparison.
321 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
322 switch (Compare->getPredicate()) {
323 default: return; // Unknown comparison.
324 case CmpInst::FCMP_OEQ:
325 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
326 case CmpInst::FCMP_ONE:
327 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
328 case CmpInst::FCMP_OGT:
329 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
330 case CmpInst::FCMP_OGE:
331 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
332 case CmpInst::FCMP_OLT:
333 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
334 case CmpInst::FCMP_OLE:
335 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000336 }
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000337
Andrew Trickcdc22972011-07-12 00:08:50 +0000338 // We convert the floating point induction variable to a signed i32 value if
339 // we can. This is only safe if the comparison will not overflow in a way
340 // that won't be trapped by the integer equivalent operations. Check for this
341 // now.
342 // TODO: We could use i64 if it is native and the range requires it.
Dan Gohman4a645b82010-04-12 21:13:43 +0000343
Andrew Trickcdc22972011-07-12 00:08:50 +0000344 // The start/stride/exit values must all fit in signed i32.
345 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
346 return;
347
348 // If not actually striding (add x, 0.0), avoid touching the code.
349 if (IncValue == 0)
350 return;
351
352 // Positive and negative strides have different safety conditions.
353 if (IncValue > 0) {
354 // If we have a positive stride, we require the init to be less than the
Andrew Trick3de5b8e2011-09-13 01:59:32 +0000355 // exit value.
356 if (InitValue >= ExitValue)
Andrew Trickcdc22972011-07-12 00:08:50 +0000357 return;
358
359 uint32_t Range = uint32_t(ExitValue-InitValue);
Andrew Trick3de5b8e2011-09-13 01:59:32 +0000360 // Check for infinite loop, either:
361 // while (i <= Exit) or until (i > Exit)
362 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
Andrew Trickcdc22972011-07-12 00:08:50 +0000363 if (++Range == 0) return; // Range overflows.
Dan Gohmaneb6be652009-02-12 22:19:27 +0000364 }
Chris Lattner0cec5cb2004-04-15 15:21:43 +0000365
Andrew Trickcdc22972011-07-12 00:08:50 +0000366 unsigned Leftover = Range % uint32_t(IncValue);
367
368 // If this is an equality comparison, we require that the strided value
369 // exactly land on the exit value, otherwise the IV condition will wrap
370 // around and do things the fp IV wouldn't.
371 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
372 Leftover != 0)
373 return;
374
375 // If the stride would wrap around the i32 before exiting, we can't
376 // transform the IV.
377 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
378 return;
379
Chris Lattnerd7a559e2004-04-15 20:26:22 +0000380 } else {
Andrew Trickcdc22972011-07-12 00:08:50 +0000381 // If we have a negative stride, we require the init to be greater than the
Andrew Trick3de5b8e2011-09-13 01:59:32 +0000382 // exit value.
383 if (InitValue <= ExitValue)
Andrew Trickcdc22972011-07-12 00:08:50 +0000384 return;
385
386 uint32_t Range = uint32_t(InitValue-ExitValue);
Andrew Trick3de5b8e2011-09-13 01:59:32 +0000387 // Check for infinite loop, either:
388 // while (i >= Exit) or until (i < Exit)
389 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
Andrew Trickcdc22972011-07-12 00:08:50 +0000390 if (++Range == 0) return; // Range overflows.
391 }
392
393 unsigned Leftover = Range % uint32_t(-IncValue);
394
395 // If this is an equality comparison, we require that the strided value
396 // exactly land on the exit value, otherwise the IV condition will wrap
397 // around and do things the fp IV wouldn't.
398 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
399 Leftover != 0)
400 return;
401
402 // If the stride would wrap around the i32 before exiting, we can't
403 // transform the IV.
404 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
405 return;
Chris Lattnerd7a559e2004-04-15 20:26:22 +0000406 }
Chris Lattner0cec5cb2004-04-15 15:21:43 +0000407
Chris Lattner229907c2011-07-18 04:54:35 +0000408 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
Chris Lattnere61b67d2004-04-02 20:24:31 +0000409
Andrew Trickcdc22972011-07-12 00:08:50 +0000410 // Insert new integer induction variable.
411 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
412 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
413 PN->getIncomingBlock(IncomingEdge));
Chris Lattnere61b67d2004-04-02 20:24:31 +0000414
Andrew Trickcdc22972011-07-12 00:08:50 +0000415 Value *NewAdd =
416 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
417 Incr->getName()+".int", Incr);
418 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
Dan Gohmaneb6be652009-02-12 22:19:27 +0000419
Andrew Trickcdc22972011-07-12 00:08:50 +0000420 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
421 ConstantInt::get(Int32Ty, ExitValue),
422 Compare->getName());
Dan Gohmand76d71a2009-05-12 02:17:14 +0000423
Andrew Trickcdc22972011-07-12 00:08:50 +0000424 // In the following deletions, PN may become dead and may be deleted.
425 // Use a WeakVH to observe whether this happens.
426 WeakVH WeakPH = PN;
427
428 // Delete the old floating point exit comparison. The branch starts using the
429 // new comparison.
430 NewCompare->takeName(Compare);
431 Compare->replaceAllUsesWith(NewCompare);
432 RecursivelyDeleteTriviallyDeadInstructions(Compare);
433
434 // Delete the old floating point increment.
435 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
436 RecursivelyDeleteTriviallyDeadInstructions(Incr);
437
438 // If the FP induction variable still has uses, this is because something else
439 // in the loop uses its value. In order to canonicalize the induction
440 // variable, we chose to eliminate the IV and rewrite it in terms of an
441 // int->fp cast.
442 //
443 // We give preference to sitofp over uitofp because it is faster on most
444 // platforms.
445 if (WeakPH) {
446 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
Bill Wendling0902a682011-08-24 20:28:43 +0000447 PN->getParent()->getFirstInsertionPt());
Andrew Trickcdc22972011-07-12 00:08:50 +0000448 PN->replaceAllUsesWith(Conv);
449 RecursivelyDeleteTriviallyDeadInstructions(PN);
450 }
451
452 // Add a new IVUsers entry for the newly-created integer PHI.
453 if (IU)
454 IU->AddUsersIfInteresting(NewPHI);
Andrew Trick3ec331e2011-08-10 03:46:27 +0000455
456 Changed = true;
Chris Lattnere61b67d2004-04-02 20:24:31 +0000457}
458
Andrew Trickcdc22972011-07-12 00:08:50 +0000459void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
460 // First step. Check to see if there are any floating-point recurrences.
461 // If there are, change them into integer recurrences, permitting analysis by
462 // the SCEV routines.
463 //
464 BasicBlock *Header = L->getHeader();
465
466 SmallVector<WeakVH, 8> PHIs;
467 for (BasicBlock::iterator I = Header->begin();
468 PHINode *PN = dyn_cast<PHINode>(I); ++I)
469 PHIs.push_back(PN);
470
471 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
472 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
473 HandleFloatingPointIV(L, PN);
474
475 // If the loop previously had floating-point IV, ScalarEvolution
476 // may not have been able to compute a trip count. Now that we've done some
477 // re-writing, the trip count may be computable.
478 if (Changed)
479 SE->forgetLoop(L);
480}
481
482//===----------------------------------------------------------------------===//
483// RewriteLoopExitValues - Optimize IV users outside the loop.
484// As a side effect, reduces the amount of IV processing within the loop.
485//===----------------------------------------------------------------------===//
486
Chris Lattnere61b67d2004-04-02 20:24:31 +0000487/// RewriteLoopExitValues - Check to see if this loop has a computable
488/// loop-invariant execution count. If so, this means that we can compute the
489/// final value of any expressions that are recurrent in the loop, and
490/// substitute the exit values from the loop into any instructions outside of
491/// the loop that use the final values of the current expressions.
Dan Gohmand76d71a2009-05-12 02:17:14 +0000492///
493/// This is mostly redundant with the regular IndVarSimplify activities that
494/// happen later, except that it's more powerful in some cases, because it's
495/// able to brute-force evaluate arbitrary instructions as long as they have
496/// constant operands at the beginning of the loop.
Chris Lattnera337f5e2011-01-09 02:16:18 +0000497void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
Dan Gohmand76d71a2009-05-12 02:17:14 +0000498 // Verify the input to the pass in already in LCSSA form.
Dan Gohman2734ebd2010-03-10 19:38:49 +0000499 assert(L->isLCSSAForm(*DT));
Dan Gohmand76d71a2009-05-12 02:17:14 +0000500
Devang Patelb5933bb2007-08-21 00:31:24 +0000501 SmallVector<BasicBlock*, 8> ExitBlocks;
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000502 L->getUniqueExitBlocks(ExitBlocks);
Misha Brukmanb1c93172005-04-21 23:48:37 +0000503
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000504 // Find all values that are computed inside the loop, but used outside of it.
505 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
506 // the exit blocks of the loop to find them.
507 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
508 BasicBlock *ExitBB = ExitBlocks[i];
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000509
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000510 // If there are no PHI nodes in this exit block, then no values defined
511 // inside the loop are used on this path, skip it.
512 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
513 if (!PN) continue;
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000514
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000515 unsigned NumPreds = PN->getNumIncomingValues();
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000516
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000517 // Iterate over all of the PHI nodes.
518 BasicBlock::iterator BBI = ExitBB->begin();
519 while ((PN = dyn_cast<PHINode>(BBI++))) {
Torok Edwin5349cf52009-05-24 19:36:09 +0000520 if (PN->use_empty())
521 continue; // dead use, don't replace it
Dan Gohmanc43d2642010-02-18 21:34:02 +0000522
523 // SCEV only supports integer expressions for now.
524 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
525 continue;
526
Dale Johannesen1d6827a2010-02-19 07:14:22 +0000527 // It's necessary to tell ScalarEvolution about this explicitly so that
528 // it can walk the def-use list and forget all SCEVs, as it may not be
529 // watching the PHI itself. Once the new exit value is in place, there
530 // may not be a def-use connection between the loop and every instruction
531 // which got a SCEVAddRecExpr for that loop.
532 SE->forgetValue(PN);
533
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000534 // Iterate over all of the values in all the PHI nodes.
535 for (unsigned i = 0; i != NumPreds; ++i) {
536 // If the value being merged in is not integer or is not defined
537 // in the loop, skip it.
538 Value *InVal = PN->getIncomingValue(i);
Dan Gohmanc43d2642010-02-18 21:34:02 +0000539 if (!isa<Instruction>(InVal))
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000540 continue;
Chris Lattnere61b67d2004-04-02 20:24:31 +0000541
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000542 // If this pred is for a subloop, not L itself, skip it.
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000543 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000544 continue; // The Block is in a subloop, skip it.
545
546 // Check that InVal is defined in the loop.
547 Instruction *Inst = cast<Instruction>(InVal);
Dan Gohman18fa5682009-12-18 01:24:09 +0000548 if (!L->contains(Inst))
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000549 continue;
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000550
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000551 // Okay, this instruction has a user outside of the current loop
552 // and varies predictably *inside* the loop. Evaluate the value it
553 // contains when the loop exits, if possible.
Dan Gohmanaf752342009-07-07 17:06:11 +0000554 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +0000555 if (!SE->isLoopInvariant(ExitValue, L))
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000556 continue;
Chris Lattner1f7648e2007-03-04 01:00:28 +0000557
Dan Gohmandaafbe62009-06-26 22:53:46 +0000558 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000559
David Greene0dd384c2010-01-05 01:27:06 +0000560 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
Chris Lattnerb25de3f2009-08-23 04:37:46 +0000561 << " LoopVal = " << *Inst << "\n");
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000562
Andrew Trick87716c92011-03-17 23:51:11 +0000563 if (!isValidRewrite(Inst, ExitVal)) {
564 DeadInsts.push_back(ExitVal);
565 continue;
566 }
567 Changed = true;
568 ++NumReplaced;
569
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000570 PN->setIncomingValue(i, ExitVal);
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000571
Dan Gohmand76d71a2009-05-12 02:17:14 +0000572 // If this instruction is dead now, delete it.
573 RecursivelyDeleteTriviallyDeadInstructions(Inst);
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000574
Dan Gohman03d5d0f2009-07-14 01:09:02 +0000575 if (NumPreds == 1) {
576 // Completely replace a single-pred PHI. This is safe, because the
577 // NewVal won't be variant in the loop, so we don't need an LCSSA phi
578 // node anymore.
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000579 PN->replaceAllUsesWith(ExitVal);
Dan Gohmand76d71a2009-05-12 02:17:14 +0000580 RecursivelyDeleteTriviallyDeadInstructions(PN);
Chris Lattnered30abf2007-03-03 22:48:48 +0000581 }
582 }
Dan Gohman03d5d0f2009-07-14 01:09:02 +0000583 if (NumPreds != 1) {
Dan Gohmandaafbe62009-06-26 22:53:46 +0000584 // Clone the PHI and delete the original one. This lets IVUsers and
585 // any other maps purge the original user from their records.
Devang Patel11cf3f42009-10-27 22:16:29 +0000586 PHINode *NewPN = cast<PHINode>(PN->clone());
Dan Gohmandaafbe62009-06-26 22:53:46 +0000587 NewPN->takeName(PN);
588 NewPN->insertBefore(PN);
589 PN->replaceAllUsesWith(NewPN);
590 PN->eraseFromParent();
591 }
Chris Lattnered30abf2007-03-03 22:48:48 +0000592 }
593 }
Dan Gohman1a2abe52010-03-20 03:53:53 +0000594
595 // The insertion point instruction may have been deleted; clear it out
596 // so that the rewriter doesn't trip over it later.
597 Rewriter.clearInsertPoint();
Chris Lattnere61b67d2004-04-02 20:24:31 +0000598}
599
Andrew Trickcdc22972011-07-12 00:08:50 +0000600//===----------------------------------------------------------------------===//
601// Rewrite IV users based on a canonical IV.
Andrew Trick183013d2011-09-12 18:28:44 +0000602// Only for use with -enable-iv-rewrite.
Andrew Trickcdc22972011-07-12 00:08:50 +0000603//===----------------------------------------------------------------------===//
Dale Johannesena71daa82009-04-15 23:31:51 +0000604
Andrew Trick465f42f2011-09-09 17:35:10 +0000605/// FIXME: It is an extremely bad idea to indvar substitute anything more
606/// complex than affine induction variables. Doing so will put expensive
607/// polynomial evaluations inside of the loop, and the str reduction pass
608/// currently can only reduce affine polynomials. For now just disable
609/// indvar subst on anything more complex than an affine addrec, unless
610/// it can be expanded to a trivial value.
Andrew Trickcdc22972011-07-12 00:08:50 +0000611static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
612 // Loop-invariant values are safe.
613 if (SE->isLoopInvariant(S, L)) return true;
614
615 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
616 // to transform them into efficient code.
617 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
618 return AR->isAffine();
619
620 // An add is safe it all its operands are safe.
Andrew Trick465f42f2011-09-09 17:35:10 +0000621 if (const SCEVCommutativeExpr *Commutative
622 = dyn_cast<SCEVCommutativeExpr>(S)) {
Andrew Trickcdc22972011-07-12 00:08:50 +0000623 for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
624 E = Commutative->op_end(); I != E; ++I)
625 if (!isSafe(*I, L, SE)) return false;
626 return true;
627 }
628
629 // A cast is safe if its operand is.
630 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
631 return isSafe(C->getOperand(), L, SE);
632
633 // A udiv is safe if its operands are.
634 if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
635 return isSafe(UD->getLHS(), L, SE) &&
636 isSafe(UD->getRHS(), L, SE);
637
638 // SCEVUnknown is always safe.
639 if (isa<SCEVUnknown>(S))
640 return true;
641
642 // Nothing else is safe.
643 return false;
644}
645
646void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
647 // Rewrite all induction variable expressions in terms of the canonical
648 // induction variable.
649 //
650 // If there were induction variables of other sizes or offsets, manually
651 // add the offsets to the primary induction variable and cast, avoiding
652 // the need for the code evaluation methods to insert induction variables
653 // of different sizes.
654 for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
655 Value *Op = UI->getOperandValToReplace();
Chris Lattner229907c2011-07-18 04:54:35 +0000656 Type *UseTy = Op->getType();
Andrew Trickcdc22972011-07-12 00:08:50 +0000657 Instruction *User = UI->getUser();
658
659 // Compute the final addrec to expand into code.
660 const SCEV *AR = IU->getReplacementExpr(*UI);
661
662 // Evaluate the expression out of the loop, if possible.
663 if (!L->contains(UI->getUser())) {
664 const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
665 if (SE->isLoopInvariant(ExitVal, L))
666 AR = ExitVal;
667 }
668
669 // FIXME: It is an extremely bad idea to indvar substitute anything more
670 // complex than affine induction variables. Doing so will put expensive
671 // polynomial evaluations inside of the loop, and the str reduction pass
672 // currently can only reduce affine polynomials. For now just disable
673 // indvar subst on anything more complex than an affine addrec, unless
674 // it can be expanded to a trivial value.
675 if (!isSafe(AR, L, SE))
676 continue;
677
678 // Determine the insertion point for this user. By default, insert
679 // immediately before the user. The SCEVExpander class will automatically
680 // hoist loop invariants out of the loop. For PHI nodes, there may be
681 // multiple uses, so compute the nearest common dominator for the
682 // incoming blocks.
Andrew Trick638b3552011-07-20 05:32:06 +0000683 Instruction *InsertPt = getInsertPointForUses(User, Op, DT);
Andrew Trickcdc22972011-07-12 00:08:50 +0000684
685 // Now expand it into actual Instructions and patch it into place.
686 Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
687
688 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
689 << " into = " << *NewVal << "\n");
690
691 if (!isValidRewrite(Op, NewVal)) {
692 DeadInsts.push_back(NewVal);
693 continue;
694 }
695 // Inform ScalarEvolution that this value is changing. The change doesn't
696 // affect its value, but it does potentially affect which use lists the
697 // value will be on after the replacement, which affects ScalarEvolution's
698 // ability to walk use lists and drop dangling pointers when a value is
699 // deleted.
700 SE->forgetValue(User);
701
702 // Patch the new value into place.
703 if (Op->hasName())
704 NewVal->takeName(Op);
705 if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
706 NewValI->setDebugLoc(User->getDebugLoc());
707 User->replaceUsesOfWith(Op, NewVal);
708 UI->setOperandValToReplace(NewVal);
709
710 ++NumRemoved;
711 Changed = true;
712
713 // The old value may be dead now.
714 DeadInsts.push_back(Op);
715 }
716}
717
718//===----------------------------------------------------------------------===//
719// IV Widening - Extend the width of an IV to cover its widest uses.
720//===----------------------------------------------------------------------===//
721
Andrew Trickf44aadf2011-05-20 18:25:42 +0000722namespace {
723 // Collect information about induction variables that are used by sign/zero
724 // extend operations. This information is recorded by CollectExtend and
725 // provides the input to WidenIV.
726 struct WideIVInfo {
Andrew Trickd50861c2011-10-15 01:38:14 +0000727 PHINode *NarrowIV;
Chris Lattner229907c2011-07-18 04:54:35 +0000728 Type *WidestNativeType; // Widest integer type created [sz]ext
Andrew Trick3ec331e2011-08-10 03:46:27 +0000729 bool IsSigned; // Was an sext user seen before a zext?
Andrew Trickf44aadf2011-05-20 18:25:42 +0000730
Andrew Trickd50861c2011-10-15 01:38:14 +0000731 WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
Andrew Trickf44aadf2011-05-20 18:25:42 +0000732 };
Andrew Trick3ec331e2011-08-10 03:46:27 +0000733
734 class WideIVVisitor : public IVVisitor {
735 ScalarEvolution *SE;
736 const TargetData *TD;
737
738 public:
739 WideIVInfo WI;
740
Andrew Trickd50861c2011-10-15 01:38:14 +0000741 WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
742 const TargetData *TData) :
743 SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
Andrew Trick3ec331e2011-08-10 03:46:27 +0000744
745 // Implement the interface used by simplifyUsersOfIV.
746 virtual void visitCast(CastInst *Cast);
747 };
Andrew Trickf44aadf2011-05-20 18:25:42 +0000748}
749
Andrew Trick3ec331e2011-08-10 03:46:27 +0000750/// visitCast - Update information about the induction variable that is
Andrew Trickf44aadf2011-05-20 18:25:42 +0000751/// extended by this sign or zero extend operation. This is used to determine
752/// the final width of the IV before actually widening it.
Andrew Trick3ec331e2011-08-10 03:46:27 +0000753void WideIVVisitor::visitCast(CastInst *Cast) {
754 bool IsSigned = Cast->getOpcode() == Instruction::SExt;
755 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
756 return;
757
Chris Lattner229907c2011-07-18 04:54:35 +0000758 Type *Ty = Cast->getType();
Andrew Trickf44aadf2011-05-20 18:25:42 +0000759 uint64_t Width = SE->getTypeSizeInBits(Ty);
760 if (TD && !TD->isLegalInteger(Width))
761 return;
762
Andrew Trick69d44522011-06-21 03:22:38 +0000763 if (!WI.WidestNativeType) {
764 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
765 WI.IsSigned = IsSigned;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000766 return;
767 }
768
769 // We extend the IV to satisfy the sign of its first user, arbitrarily.
Andrew Trick69d44522011-06-21 03:22:38 +0000770 if (WI.IsSigned != IsSigned)
Andrew Trickf44aadf2011-05-20 18:25:42 +0000771 return;
772
Andrew Trick69d44522011-06-21 03:22:38 +0000773 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
774 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000775}
776
777namespace {
Andrew Trick22104482011-07-20 04:39:24 +0000778
779/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
780/// WideIV that computes the same value as the Narrow IV def. This avoids
781/// caching Use* pointers.
782struct NarrowIVDefUse {
783 Instruction *NarrowDef;
784 Instruction *NarrowUse;
785 Instruction *WideDef;
786
787 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
788
789 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
790 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
791};
792
Andrew Trickf44aadf2011-05-20 18:25:42 +0000793/// WidenIV - The goal of this transform is to remove sign and zero extends
794/// without creating any new induction variables. To do this, it creates a new
795/// phi of the wider type and redirects all users, either removing extends or
796/// inserting truncs whenever we stop propagating the type.
797///
798class WidenIV {
Andrew Trick69d44522011-06-21 03:22:38 +0000799 // Parameters
Andrew Trickf44aadf2011-05-20 18:25:42 +0000800 PHINode *OrigPhi;
Chris Lattner229907c2011-07-18 04:54:35 +0000801 Type *WideType;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000802 bool IsSigned;
803
Andrew Trick69d44522011-06-21 03:22:38 +0000804 // Context
805 LoopInfo *LI;
806 Loop *L;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000807 ScalarEvolution *SE;
Andrew Trick69d44522011-06-21 03:22:38 +0000808 DominatorTree *DT;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000809
Andrew Trick69d44522011-06-21 03:22:38 +0000810 // Result
Andrew Trickf44aadf2011-05-20 18:25:42 +0000811 PHINode *WidePhi;
812 Instruction *WideInc;
813 const SCEV *WideIncExpr;
Andrew Trick69d44522011-06-21 03:22:38 +0000814 SmallVectorImpl<WeakVH> &DeadInsts;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000815
Andrew Trick69d44522011-06-21 03:22:38 +0000816 SmallPtrSet<Instruction*,16> Widened;
Andrew Trick22104482011-07-20 04:39:24 +0000817 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000818
819public:
Andrew Trickd50861c2011-10-15 01:38:14 +0000820 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
Andrew Trick69d44522011-06-21 03:22:38 +0000821 ScalarEvolution *SEv, DominatorTree *DTree,
Andrew Trick7fac79e2011-05-26 00:46:11 +0000822 SmallVectorImpl<WeakVH> &DI) :
Andrew Trickd50861c2011-10-15 01:38:14 +0000823 OrigPhi(WI.NarrowIV),
Andrew Trick69d44522011-06-21 03:22:38 +0000824 WideType(WI.WidestNativeType),
825 IsSigned(WI.IsSigned),
Andrew Trickf44aadf2011-05-20 18:25:42 +0000826 LI(LInfo),
827 L(LI->getLoopFor(OrigPhi->getParent())),
828 SE(SEv),
Andrew Trick7fac79e2011-05-26 00:46:11 +0000829 DT(DTree),
Andrew Trickf44aadf2011-05-20 18:25:42 +0000830 WidePhi(0),
831 WideInc(0),
Andrew Trick69d44522011-06-21 03:22:38 +0000832 WideIncExpr(0),
833 DeadInsts(DI) {
Andrew Trickf44aadf2011-05-20 18:25:42 +0000834 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
835 }
836
Andrew Trick69d44522011-06-21 03:22:38 +0000837 PHINode *CreateWideIV(SCEVExpander &Rewriter);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000838
839protected:
Andrew Tricke0e30532011-09-28 01:35:36 +0000840 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
841 Instruction *Use);
842
Andrew Trick22104482011-07-20 04:39:24 +0000843 Instruction *CloneIVUser(NarrowIVDefUse DU);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000844
Andrew Trick92905a12011-07-05 18:19:39 +0000845 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
846
Andrew Trickc7868bf02011-09-10 01:24:17 +0000847 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
848
Andrew Trick22104482011-07-20 04:39:24 +0000849 Instruction *WidenIVUse(NarrowIVDefUse DU);
Andrew Trick6d123092011-07-02 02:34:25 +0000850
851 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000852};
853} // anonymous namespace
854
Andrew Tricke0e30532011-09-28 01:35:36 +0000855/// isLoopInvariant - Perform a quick domtree based check for loop invariance
856/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
857/// gratuitous for this purpose.
858static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
859 Instruction *Inst = dyn_cast<Instruction>(V);
860 if (!Inst)
861 return true;
862
863 return DT->properlyDominates(Inst->getParent(), L->getHeader());
864}
865
866Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
867 Instruction *Use) {
868 // Set the debug location and conservative insertion point.
869 IRBuilder<> Builder(Use);
870 // Hoist the insertion point into loop preheaders as far as possible.
871 for (const Loop *L = LI->getLoopFor(Use->getParent());
872 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
873 L = L->getParentLoop())
874 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
875
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000876 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
877 Builder.CreateZExt(NarrowOper, WideType);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000878}
879
880/// CloneIVUser - Instantiate a wide operation to replace a narrow
881/// operation. This only needs to handle operations that can evaluation to
882/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
Andrew Trick22104482011-07-20 04:39:24 +0000883Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
884 unsigned Opcode = DU.NarrowUse->getOpcode();
Andrew Trickf44aadf2011-05-20 18:25:42 +0000885 switch (Opcode) {
886 default:
887 return 0;
888 case Instruction::Add:
889 case Instruction::Mul:
890 case Instruction::UDiv:
891 case Instruction::Sub:
892 case Instruction::And:
893 case Instruction::Or:
894 case Instruction::Xor:
895 case Instruction::Shl:
896 case Instruction::LShr:
897 case Instruction::AShr:
Andrew Trick22104482011-07-20 04:39:24 +0000898 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
Andrew Trickf44aadf2011-05-20 18:25:42 +0000899
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000900 // Replace NarrowDef operands with WideDef. Otherwise, we don't know
901 // anything about the narrow operand yet so must insert a [sz]ext. It is
902 // probably loop invariant and will be folded or hoisted. If it actually
903 // comes from a widened IV, it should be removed during a future call to
904 // WidenIVUse.
Andrew Trick22104482011-07-20 04:39:24 +0000905 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
Andrew Tricke0e30532011-09-28 01:35:36 +0000906 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
Andrew Trick22104482011-07-20 04:39:24 +0000907 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
Andrew Tricke0e30532011-09-28 01:35:36 +0000908 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000909
Andrew Trick22104482011-07-20 04:39:24 +0000910 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000911 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000912 LHS, RHS,
Andrew Trickf44aadf2011-05-20 18:25:42 +0000913 NarrowBO->getName());
Andrew Tricke0e30532011-09-28 01:35:36 +0000914 IRBuilder<> Builder(DU.NarrowUse);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000915 Builder.Insert(WideBO);
Andrew Trickefe89ad2011-06-30 19:02:17 +0000916 if (const OverflowingBinaryOperator *OBO =
917 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
918 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
919 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
920 }
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000921 return WideBO;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000922 }
923 llvm_unreachable(0);
924}
925
Andrew Trickc7868bf02011-09-10 01:24:17 +0000926/// No-wrap operations can transfer sign extension of their result to their
927/// operands. Generate the SCEV value for the widened operation without
928/// actually modifying the IR yet. If the expression after extending the
929/// operands is an AddRec for this loop, return it.
930const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
931 // Handle the common case of add<nsw/nuw>
932 if (DU.NarrowUse->getOpcode() != Instruction::Add)
933 return 0;
934
935 // One operand (NarrowDef) has already been extended to WideDef. Now determine
936 // if extending the other will lead to a recurrence.
937 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
938 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
939
940 const SCEV *ExtendOperExpr = 0;
941 const OverflowingBinaryOperator *OBO =
942 cast<OverflowingBinaryOperator>(DU.NarrowUse);
943 if (IsSigned && OBO->hasNoSignedWrap())
944 ExtendOperExpr = SE->getSignExtendExpr(
945 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
946 else if(!IsSigned && OBO->hasNoUnsignedWrap())
947 ExtendOperExpr = SE->getZeroExtendExpr(
948 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
949 else
950 return 0;
951
Andrew Trickd25089f2011-11-29 02:16:38 +0000952 // When creating this AddExpr, don't apply the current operations NSW or NUW
953 // flags. This instruction may be guarded by control flow that the no-wrap
954 // behavior depends on. Non-control-equivalent instructions can be mapped to
955 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
956 // semantics to those operations.
Andrew Trickc7868bf02011-09-10 01:24:17 +0000957 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
Andrew Trickd25089f2011-11-29 02:16:38 +0000958 SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
Andrew Trickc7868bf02011-09-10 01:24:17 +0000959
960 if (!AddRec || AddRec->getLoop() != L)
961 return 0;
962 return AddRec;
963}
964
Andrew Trick465f42f2011-09-09 17:35:10 +0000965/// GetWideRecurrence - Is this instruction potentially interesting from
966/// IVUsers' perspective after widening it's type? In other words, can the
967/// extend be safely hoisted out of the loop with SCEV reducing the value to a
968/// recurrence on the same loop. If so, return the sign or zero extended
969/// recurrence. Otherwise return NULL.
Andrew Trick92905a12011-07-05 18:19:39 +0000970const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
971 if (!SE->isSCEVable(NarrowUse->getType()))
972 return 0;
973
974 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
975 if (SE->getTypeSizeInBits(NarrowExpr->getType())
976 >= SE->getTypeSizeInBits(WideType)) {
977 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
978 // index. So don't follow this use.
979 return 0;
980 }
981
982 const SCEV *WideExpr = IsSigned ?
983 SE->getSignExtendExpr(NarrowExpr, WideType) :
984 SE->getZeroExtendExpr(NarrowExpr, WideType);
985 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
986 if (!AddRec || AddRec->getLoop() != L)
987 return 0;
Andrew Trick92905a12011-07-05 18:19:39 +0000988 return AddRec;
989}
990
Andrew Trickf44aadf2011-05-20 18:25:42 +0000991/// WidenIVUse - Determine whether an individual user of the narrow IV can be
992/// widened. If so, return the wide clone of the user.
Andrew Trick22104482011-07-20 04:39:24 +0000993Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU) {
Andrew Trickecdd6e42011-06-29 23:03:57 +0000994
Andrew Trick6d123092011-07-02 02:34:25 +0000995 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
Andrew Trick22104482011-07-20 04:39:24 +0000996 if (isa<PHINode>(DU.NarrowUse) &&
997 LI->getLoopFor(DU.NarrowUse->getParent()) != L)
Andrew Trickf44aadf2011-05-20 18:25:42 +0000998 return 0;
999
Andrew Trickf44aadf2011-05-20 18:25:42 +00001000 // Our raison d'etre! Eliminate sign and zero extension.
Andrew Trick22104482011-07-20 04:39:24 +00001001 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1002 Value *NewDef = DU.WideDef;
1003 if (DU.NarrowUse->getType() != WideType) {
1004 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
Andrew Trickeb3c36e2011-05-25 04:42:22 +00001005 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1006 if (CastWidth < IVWidth) {
1007 // The cast isn't as wide as the IV, so insert a Trunc.
Andrew Trick22104482011-07-20 04:39:24 +00001008 IRBuilder<> Builder(DU.NarrowUse);
1009 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
Andrew Trickeb3c36e2011-05-25 04:42:22 +00001010 }
1011 else {
1012 // A wider extend was hidden behind a narrower one. This may induce
1013 // another round of IV widening in which the intermediate IV becomes
1014 // dead. It should be very rare.
1015 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
Andrew Trick22104482011-07-20 04:39:24 +00001016 << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1017 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1018 NewDef = DU.NarrowUse;
Andrew Trickeb3c36e2011-05-25 04:42:22 +00001019 }
1020 }
Andrew Trick22104482011-07-20 04:39:24 +00001021 if (NewDef != DU.NarrowUse) {
1022 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1023 << " replaced by " << *DU.WideDef << "\n");
Andrew Trickeb3c36e2011-05-25 04:42:22 +00001024 ++NumElimExt;
Andrew Trick22104482011-07-20 04:39:24 +00001025 DU.NarrowUse->replaceAllUsesWith(NewDef);
1026 DeadInsts.push_back(DU.NarrowUse);
Andrew Trickeb3c36e2011-05-25 04:42:22 +00001027 }
Andrew Trick69d44522011-06-21 03:22:38 +00001028 // Now that the extend is gone, we want to expose it's uses for potential
1029 // further simplification. We don't need to directly inform SimplifyIVUsers
1030 // of the new users, because their parent IV will be processed later as a
1031 // new loop phi. If we preserved IVUsers analysis, we would also want to
1032 // push the uses of WideDef here.
Andrew Trickf44aadf2011-05-20 18:25:42 +00001033
1034 // No further widening is needed. The deceased [sz]ext had done it for us.
1035 return 0;
1036 }
Andrew Trick6d123092011-07-02 02:34:25 +00001037
1038 // Does this user itself evaluate to a recurrence after widening?
Andrew Trick22104482011-07-20 04:39:24 +00001039 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
Andrew Trickf44aadf2011-05-20 18:25:42 +00001040 if (!WideAddRec) {
Andrew Trickc7868bf02011-09-10 01:24:17 +00001041 WideAddRec = GetExtendedOperandRecurrence(DU);
1042 }
1043 if (!WideAddRec) {
Andrew Trickf44aadf2011-05-20 18:25:42 +00001044 // This user does not evaluate to a recurence after widening, so don't
1045 // follow it. Instead insert a Trunc to kill off the original use,
1046 // eventually isolating the original narrow IV so it can be removed.
Andrew Trick638b3552011-07-20 05:32:06 +00001047 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
Andrew Trick22104482011-07-20 04:39:24 +00001048 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1049 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
Andrew Trickf44aadf2011-05-20 18:25:42 +00001050 return 0;
1051 }
Andrew Trick7da24172011-07-18 20:32:31 +00001052 // Assume block terminators cannot evaluate to a recurrence. We can't to
Andrew Trick6d123092011-07-02 02:34:25 +00001053 // insert a Trunc after a terminator if there happens to be a critical edge.
Andrew Trick22104482011-07-20 04:39:24 +00001054 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
Andrew Trick6d123092011-07-02 02:34:25 +00001055 "SCEV is not expected to evaluate a block terminator");
Andrew Trickecdd6e42011-06-29 23:03:57 +00001056
Andrew Trick7fac79e2011-05-26 00:46:11 +00001057 // Reuse the IV increment that SCEVExpander created as long as it dominates
1058 // NarrowUse.
Andrew Trickf44aadf2011-05-20 18:25:42 +00001059 Instruction *WideUse = 0;
Andrew Trickf9201c52011-10-11 02:28:51 +00001060 if (WideAddRec == WideIncExpr
1061 && SCEVExpander::hoistStep(WideInc, DU.NarrowUse, DT))
Andrew Trickf44aadf2011-05-20 18:25:42 +00001062 WideUse = WideInc;
Andrew Trickf44aadf2011-05-20 18:25:42 +00001063 else {
Andrew Trick22104482011-07-20 04:39:24 +00001064 WideUse = CloneIVUser(DU);
Andrew Trickf44aadf2011-05-20 18:25:42 +00001065 if (!WideUse)
1066 return 0;
1067 }
Andrew Trick6d123092011-07-02 02:34:25 +00001068 // Evaluation of WideAddRec ensured that the narrow expression could be
1069 // extended outside the loop without overflow. This suggests that the wide use
Andrew Trickf44aadf2011-05-20 18:25:42 +00001070 // evaluates to the same expression as the extended narrow use, but doesn't
1071 // absolutely guarantee it. Hence the following failsafe check. In rare cases
Andrew Trick69d44522011-06-21 03:22:38 +00001072 // where it fails, we simply throw away the newly created wide use.
Andrew Trickf44aadf2011-05-20 18:25:42 +00001073 if (WideAddRec != SE->getSCEV(WideUse)) {
1074 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1075 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1076 DeadInsts.push_back(WideUse);
1077 return 0;
1078 }
1079
1080 // Returning WideUse pushes it on the worklist.
1081 return WideUse;
1082}
1083
Andrew Trick6d123092011-07-02 02:34:25 +00001084/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1085///
1086void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1087 for (Value::use_iterator UI = NarrowDef->use_begin(),
1088 UE = NarrowDef->use_end(); UI != UE; ++UI) {
Andrew Trick22104482011-07-20 04:39:24 +00001089 Instruction *NarrowUse = cast<Instruction>(*UI);
Andrew Trick6d123092011-07-02 02:34:25 +00001090
1091 // Handle data flow merges and bizarre phi cycles.
Andrew Trick22104482011-07-20 04:39:24 +00001092 if (!Widened.insert(NarrowUse))
Andrew Trick6d123092011-07-02 02:34:25 +00001093 continue;
1094
Andrew Trick22104482011-07-20 04:39:24 +00001095 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
Andrew Trick6d123092011-07-02 02:34:25 +00001096 }
1097}
1098
Andrew Trickf44aadf2011-05-20 18:25:42 +00001099/// CreateWideIV - Process a single induction variable. First use the
1100/// SCEVExpander to create a wide induction variable that evaluates to the same
1101/// recurrence as the original narrow IV. Then use a worklist to forward
Andrew Trick69d44522011-06-21 03:22:38 +00001102/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
Andrew Trickf44aadf2011-05-20 18:25:42 +00001103/// interesting IV users, the narrow IV will be isolated for removal by
1104/// DeleteDeadPHIs.
1105///
1106/// It would be simpler to delete uses as they are processed, but we must avoid
1107/// invalidating SCEV expressions.
1108///
Andrew Trick69d44522011-06-21 03:22:38 +00001109PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
Andrew Trickf44aadf2011-05-20 18:25:42 +00001110 // Is this phi an induction variable?
1111 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1112 if (!AddRec)
Andrew Trick69d44522011-06-21 03:22:38 +00001113 return NULL;
Andrew Trickf44aadf2011-05-20 18:25:42 +00001114
1115 // Widen the induction variable expression.
1116 const SCEV *WideIVExpr = IsSigned ?
1117 SE->getSignExtendExpr(AddRec, WideType) :
1118 SE->getZeroExtendExpr(AddRec, WideType);
1119
1120 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1121 "Expect the new IV expression to preserve its type");
1122
1123 // Can the IV be extended outside the loop without overflow?
1124 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1125 if (!AddRec || AddRec->getLoop() != L)
Andrew Trick69d44522011-06-21 03:22:38 +00001126 return NULL;
Andrew Trickf44aadf2011-05-20 18:25:42 +00001127
Andrew Trick69d44522011-06-21 03:22:38 +00001128 // An AddRec must have loop-invariant operands. Since this AddRec is
Andrew Trickf44aadf2011-05-20 18:25:42 +00001129 // materialized by a loop header phi, the expression cannot have any post-loop
1130 // operands, so they must dominate the loop header.
1131 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1132 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1133 && "Loop header phi recurrence inputs do not dominate the loop");
1134
1135 // The rewriter provides a value for the desired IV expression. This may
1136 // either find an existing phi or materialize a new one. Either way, we
1137 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1138 // of the phi-SCC dominates the loop entry.
1139 Instruction *InsertPt = L->getHeader()->begin();
1140 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1141
1142 // Remembering the WideIV increment generated by SCEVExpander allows
1143 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1144 // employ a general reuse mechanism because the call above is the only call to
1145 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
Andrew Trick7fac79e2011-05-26 00:46:11 +00001146 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1147 WideInc =
1148 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1149 WideIncExpr = SE->getSCEV(WideInc);
1150 }
Andrew Trickf44aadf2011-05-20 18:25:42 +00001151
1152 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1153 ++NumWidened;
1154
1155 // Traverse the def-use chain using a worklist starting at the original IV.
Andrew Trick6d123092011-07-02 02:34:25 +00001156 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
Andrew Trickf44aadf2011-05-20 18:25:42 +00001157
Andrew Trick6d123092011-07-02 02:34:25 +00001158 Widened.insert(OrigPhi);
1159 pushNarrowIVUsers(OrigPhi, WidePhi);
1160
Andrew Trickf44aadf2011-05-20 18:25:42 +00001161 while (!NarrowIVUsers.empty()) {
Andrew Trick22104482011-07-20 04:39:24 +00001162 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
Andrew Trickf44aadf2011-05-20 18:25:42 +00001163
Andrew Trick7fac79e2011-05-26 00:46:11 +00001164 // Process a def-use edge. This may replace the use, so don't hold a
1165 // use_iterator across it.
Andrew Trick22104482011-07-20 04:39:24 +00001166 Instruction *WideUse = WidenIVUse(DU);
Andrew Trickf44aadf2011-05-20 18:25:42 +00001167
Andrew Trick7fac79e2011-05-26 00:46:11 +00001168 // Follow all def-use edges from the previous narrow use.
Andrew Trick6d123092011-07-02 02:34:25 +00001169 if (WideUse)
Andrew Trick22104482011-07-20 04:39:24 +00001170 pushNarrowIVUsers(DU.NarrowUse, WideUse);
Andrew Trick6d123092011-07-02 02:34:25 +00001171
Andrew Trick7fac79e2011-05-26 00:46:11 +00001172 // WidenIVUse may have removed the def-use edge.
Andrew Trick22104482011-07-20 04:39:24 +00001173 if (DU.NarrowDef->use_empty())
1174 DeadInsts.push_back(DU.NarrowDef);
Andrew Trickf44aadf2011-05-20 18:25:42 +00001175 }
Andrew Trick69d44522011-06-21 03:22:38 +00001176 return WidePhi;
Andrew Trickf44aadf2011-05-20 18:25:42 +00001177}
1178
Andrew Trickcdc22972011-07-12 00:08:50 +00001179//===----------------------------------------------------------------------===//
1180// Simplification of IV users based on SCEV evaluation.
1181//===----------------------------------------------------------------------===//
1182
Andrew Trick81683ed2011-05-12 00:04:28 +00001183
Andrew Trick3ec331e2011-08-10 03:46:27 +00001184/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1185/// users. Each successive simplification may push more users which may
Andrew Trick69d44522011-06-21 03:22:38 +00001186/// themselves be candidates for simplification.
1187///
Andrew Trick3ec331e2011-08-10 03:46:27 +00001188/// Sign/Zero extend elimination is interleaved with IV simplification.
Andrew Trick69d44522011-06-21 03:22:38 +00001189///
Andrew Trick3ec331e2011-08-10 03:46:27 +00001190void IndVarSimplify::SimplifyAndExtend(Loop *L,
1191 SCEVExpander &Rewriter,
1192 LPPassManager &LPM) {
Andrew Trickd50861c2011-10-15 01:38:14 +00001193 SmallVector<WideIVInfo, 8> WideIVs;
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001194
Andrew Trick69d44522011-06-21 03:22:38 +00001195 SmallVector<PHINode*, 8> LoopPhis;
1196 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1197 LoopPhis.push_back(cast<PHINode>(I));
1198 }
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001199 // Each round of simplification iterates through the SimplifyIVUsers worklist
1200 // for all current phis, then determines whether any IVs can be
1201 // widened. Widening adds new phis to LoopPhis, inducing another round of
1202 // simplification on the wide IVs.
Andrew Trick69d44522011-06-21 03:22:38 +00001203 while (!LoopPhis.empty()) {
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001204 // Evaluate as many IV expressions as possible before widening any IVs. This
Andrew Trick4426f5b2011-06-28 16:45:04 +00001205 // forces SCEV to set no-wrap flags before evaluating sign/zero
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001206 // extension. The first time SCEV attempts to normalize sign/zero extension,
1207 // the result becomes final. So for the most predictable results, we delay
1208 // evaluation of sign/zero extend evaluation until needed, and avoid running
Andrew Trick3ec331e2011-08-10 03:46:27 +00001209 // other SCEV based analysis prior to SimplifyAndExtend.
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001210 do {
1211 PHINode *CurrIV = LoopPhis.pop_back_val();
Andrew Trick69d44522011-06-21 03:22:38 +00001212
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001213 // Information about sign/zero extensions of CurrIV.
Andrew Trickd50861c2011-10-15 01:38:14 +00001214 WideIVVisitor WIV(CurrIV, SE, TD);
Andrew Trick69d44522011-06-21 03:22:38 +00001215
Andrew Tricke629d002011-08-10 04:22:26 +00001216 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
Andrew Trick69d44522011-06-21 03:22:38 +00001217
Andrew Trick3ec331e2011-08-10 03:46:27 +00001218 if (WIV.WI.WidestNativeType) {
Andrew Trickd50861c2011-10-15 01:38:14 +00001219 WideIVs.push_back(WIV.WI);
Andrew Trick69d44522011-06-21 03:22:38 +00001220 }
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001221 } while(!LoopPhis.empty());
1222
Andrew Trickd50861c2011-10-15 01:38:14 +00001223 for (; !WideIVs.empty(); WideIVs.pop_back()) {
1224 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
Andrew Trick69d44522011-06-21 03:22:38 +00001225 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1226 Changed = true;
1227 LoopPhis.push_back(WidePhi);
1228 }
1229 }
1230 }
1231}
1232
Andrew Trickcdc22972011-07-12 00:08:50 +00001233//===----------------------------------------------------------------------===//
1234// LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1235//===----------------------------------------------------------------------===//
1236
Andrew Trick465f42f2011-09-09 17:35:10 +00001237/// Check for expressions that ScalarEvolution generates to compute
1238/// BackedgeTakenInfo. If these expressions have not been reduced, then
1239/// expanding them may incur additional cost (albeit in the loop preheader).
Andrew Tricka27d8b12011-07-18 18:21:35 +00001240static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1241 ScalarEvolution *SE) {
1242 // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1243 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1244 // precise expression, rather than a UDiv from the user's code. If we can't
1245 // find a UDiv in the code with some simple searching, assume the former and
1246 // forego rewriting the loop.
1247 if (isa<SCEVUDivExpr>(S)) {
1248 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1249 if (!OrigCond) return true;
1250 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1251 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1252 if (R != S) {
1253 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1254 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1255 if (L != S)
1256 return true;
1257 }
1258 }
1259
Andrew Trick183013d2011-09-12 18:28:44 +00001260 if (EnableIVRewrite)
Andrew Tricka27d8b12011-07-18 18:21:35 +00001261 return false;
1262
1263 // Recurse past add expressions, which commonly occur in the
1264 // BackedgeTakenCount. They may already exist in program code, and if not,
1265 // they are not too expensive rematerialize.
1266 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1267 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1268 I != E; ++I) {
1269 if (isHighCostExpansion(*I, BI, SE))
1270 return true;
1271 }
1272 return false;
1273 }
1274
1275 // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1276 // the exit condition.
1277 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1278 return true;
1279
1280 // If we haven't recognized an expensive SCEV patter, assume its an expression
1281 // produced by program code.
1282 return false;
1283}
1284
Andrew Trickcdc22972011-07-12 00:08:50 +00001285/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1286/// count expression can be safely and cheaply expanded into an instruction
1287/// sequence that can be used by LinearFunctionTestReplace.
Andrew Trickc2c79c92011-11-02 17:19:57 +00001288///
1289/// TODO: This fails for pointer-type loop counters with greater than one byte
1290/// strides, consequently preventing LFTR from running. For the purpose of LFTR
1291/// we could skip this check in the case that the LFTR loop counter (chosen by
1292/// FindLoopCounter) is also pointer type. Instead, we could directly convert
1293/// the loop test to an inequality test by checking the target data's alignment
1294/// of element types (given that the initial pointer value originates from or is
1295/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1296/// However, we don't yet have a strong motivation for converting loop tests
1297/// into inequality tests.
Andrew Trickcdc22972011-07-12 00:08:50 +00001298static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1299 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1300 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1301 BackedgeTakenCount->isZero())
1302 return false;
1303
1304 if (!L->getExitingBlock())
1305 return false;
1306
1307 // Can't rewrite non-branch yet.
1308 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1309 if (!BI)
1310 return false;
1311
Andrew Tricka27d8b12011-07-18 18:21:35 +00001312 if (isHighCostExpansion(BackedgeTakenCount, BI, SE))
1313 return false;
1314
Andrew Trickcdc22972011-07-12 00:08:50 +00001315 return true;
1316}
1317
1318/// getBackedgeIVType - Get the widest type used by the loop test after peeking
1319/// through Truncs.
1320///
Andrew Trick7da24172011-07-18 20:32:31 +00001321/// TODO: Unnecessary when ForceLFTR is removed.
Chris Lattner229907c2011-07-18 04:54:35 +00001322static Type *getBackedgeIVType(Loop *L) {
Andrew Trickcdc22972011-07-12 00:08:50 +00001323 if (!L->getExitingBlock())
1324 return 0;
1325
1326 // Can't rewrite non-branch yet.
1327 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1328 if (!BI)
1329 return 0;
1330
1331 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1332 if (!Cond)
1333 return 0;
1334
Chris Lattner229907c2011-07-18 04:54:35 +00001335 Type *Ty = 0;
Andrew Trickcdc22972011-07-12 00:08:50 +00001336 for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
1337 OI != OE; ++OI) {
1338 assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
1339 TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
1340 if (!Trunc)
1341 continue;
1342
1343 return Trunc->getSrcTy();
1344 }
1345 return Ty;
1346}
1347
Andrew Trick7da24172011-07-18 20:32:31 +00001348/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1349/// invariant value to the phi.
1350static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1351 Instruction *IncI = dyn_cast<Instruction>(IncV);
1352 if (!IncI)
1353 return 0;
1354
1355 switch (IncI->getOpcode()) {
1356 case Instruction::Add:
1357 case Instruction::Sub:
1358 break;
1359 case Instruction::GetElementPtr:
1360 // An IV counter must preserve its type.
1361 if (IncI->getNumOperands() == 2)
1362 break;
1363 default:
1364 return 0;
1365 }
1366
1367 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1368 if (Phi && Phi->getParent() == L->getHeader()) {
1369 if (isLoopInvariant(IncI->getOperand(1), L, DT))
1370 return Phi;
1371 return 0;
1372 }
1373 if (IncI->getOpcode() == Instruction::GetElementPtr)
1374 return 0;
1375
1376 // Allow add/sub to be commuted.
1377 Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1378 if (Phi && Phi->getParent() == L->getHeader()) {
1379 if (isLoopInvariant(IncI->getOperand(0), L, DT))
1380 return Phi;
1381 }
1382 return 0;
1383}
1384
1385/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1386/// that the current exit test is already sufficiently canonical.
1387static bool needsLFTR(Loop *L, DominatorTree *DT) {
1388 assert(L->getExitingBlock() && "expected loop exit");
1389
1390 BasicBlock *LatchBlock = L->getLoopLatch();
1391 // Don't bother with LFTR if the loop is not properly simplified.
1392 if (!LatchBlock)
1393 return false;
1394
1395 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1396 assert(BI && "expected exit branch");
1397
1398 // Do LFTR to simplify the exit condition to an ICMP.
1399 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1400 if (!Cond)
1401 return true;
1402
1403 // Do LFTR to simplify the exit ICMP to EQ/NE
1404 ICmpInst::Predicate Pred = Cond->getPredicate();
1405 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1406 return true;
1407
1408 // Look for a loop invariant RHS
1409 Value *LHS = Cond->getOperand(0);
1410 Value *RHS = Cond->getOperand(1);
1411 if (!isLoopInvariant(RHS, L, DT)) {
1412 if (!isLoopInvariant(LHS, L, DT))
1413 return true;
1414 std::swap(LHS, RHS);
1415 }
1416 // Look for a simple IV counter LHS
1417 PHINode *Phi = dyn_cast<PHINode>(LHS);
1418 if (!Phi)
1419 Phi = getLoopPhiForCounter(LHS, L, DT);
1420
1421 if (!Phi)
1422 return true;
1423
1424 // Do LFTR if the exit condition's IV is *not* a simple counter.
1425 Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
1426 return Phi != getLoopPhiForCounter(IncV, L, DT);
1427}
1428
1429/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1430/// be rewritten) loop exit test.
1431static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1432 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1433 Value *IncV = Phi->getIncomingValue(LatchIdx);
1434
1435 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1436 UI != UE; ++UI) {
1437 if (*UI != Cond && *UI != IncV) return false;
1438 }
1439
1440 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1441 UI != UE; ++UI) {
1442 if (*UI != Cond && *UI != Phi) return false;
1443 }
1444 return true;
1445}
1446
1447/// FindLoopCounter - Find an affine IV in canonical form.
1448///
Andrew Trickc2c79c92011-11-02 17:19:57 +00001449/// BECount may be an i8* pointer type. The pointer difference is already
1450/// valid count without scaling the address stride, so it remains a pointer
1451/// expression as far as SCEV is concerned.
1452///
Andrew Trick7da24172011-07-18 20:32:31 +00001453/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1454///
1455/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1456/// This is difficult in general for SCEV because of potential overflow. But we
1457/// could at least handle constant BECounts.
1458static PHINode *
1459FindLoopCounter(Loop *L, const SCEV *BECount,
1460 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
Andrew Trick7da24172011-07-18 20:32:31 +00001461 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1462
1463 Value *Cond =
1464 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1465
1466 // Loop over all of the PHI nodes, looking for a simple counter.
1467 PHINode *BestPhi = 0;
1468 const SCEV *BestInit = 0;
1469 BasicBlock *LatchBlock = L->getLoopLatch();
1470 assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1471
1472 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1473 PHINode *Phi = cast<PHINode>(I);
1474 if (!SE->isSCEVable(Phi->getType()))
1475 continue;
1476
Andrew Trickc2c79c92011-11-02 17:19:57 +00001477 // Avoid comparing an integer IV against a pointer Limit.
1478 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1479 continue;
1480
Andrew Trick7da24172011-07-18 20:32:31 +00001481 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1482 if (!AR || AR->getLoop() != L || !AR->isAffine())
1483 continue;
1484
1485 // AR may be a pointer type, while BECount is an integer type.
1486 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1487 // AR may not be a narrower type, or we may never exit.
1488 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1489 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1490 continue;
1491
1492 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1493 if (!Step || !Step->isOne())
1494 continue;
1495
1496 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1497 Value *IncV = Phi->getIncomingValue(LatchIdx);
1498 if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1499 continue;
1500
1501 const SCEV *Init = AR->getStart();
1502
1503 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1504 // Don't force a live loop counter if another IV can be used.
1505 if (AlmostDeadIV(Phi, LatchBlock, Cond))
1506 continue;
1507
1508 // Prefer to count-from-zero. This is a more "canonical" counter form. It
1509 // also prefers integer to pointer IVs.
1510 if (BestInit->isZero() != Init->isZero()) {
1511 if (BestInit->isZero())
1512 continue;
1513 }
1514 // If two IVs both count from zero or both count from nonzero then the
1515 // narrower is likely a dead phi that has been widened. Use the wider phi
1516 // to allow the other to be eliminated.
1517 if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1518 continue;
1519 }
1520 BestPhi = Phi;
1521 BestInit = Init;
1522 }
1523 return BestPhi;
1524}
1525
Andrew Trickc2c79c92011-11-02 17:19:57 +00001526/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1527/// holds the RHS of the new loop test.
1528static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1529 SCEVExpander &Rewriter, ScalarEvolution *SE) {
1530 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1531 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1532 const SCEV *IVInit = AR->getStart();
1533
1534 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1535 // finds a valid pointer IV. Sign extend BECount in order to materialize a
1536 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1537 // the existing GEPs whenever possible.
1538 if (IndVar->getType()->isPointerTy()
1539 && !IVCount->getType()->isPointerTy()) {
1540
1541 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1542 const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy);
1543
1544 // Expand the code for the iteration count.
1545 assert(SE->isLoopInvariant(IVOffset, L) &&
1546 "Computed iteration count is not loop invariant!");
1547 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1548 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1549
1550 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1551 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1552 // We could handle pointer IVs other than i8*, but we need to compensate for
1553 // gep index scaling. See canExpandBackedgeTakenCount comments.
1554 assert(SE->getSizeOfExpr(
1555 cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1556 && "unit stride pointer IV must be i8*");
1557
1558 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1559 return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
1560 }
1561 else {
1562 // In any other case, convert both IVInit and IVCount to integers before
1563 // comparing. This may result in SCEV expension of pointers, but in practice
1564 // SCEV will fold the pointer arithmetic away as such:
1565 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1566 //
1567 // Valid Cases: (1) both integers is most common; (2) both may be pointers
1568 // for simple memset-style loops; (3) IVInit is an integer and IVCount is a
1569 // pointer may occur when enable-iv-rewrite generates a canonical IV on top
1570 // of case #2.
1571
1572 const SCEV *IVLimit = 0;
1573 // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1574 // For non-zero Start, compute IVCount here.
1575 if (AR->getStart()->isZero())
1576 IVLimit = IVCount;
1577 else {
1578 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1579 const SCEV *IVInit = AR->getStart();
1580
1581 // For integer IVs, truncate the IV before computing IVInit + BECount.
1582 if (SE->getTypeSizeInBits(IVInit->getType())
1583 > SE->getTypeSizeInBits(IVCount->getType()))
1584 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1585
1586 IVLimit = SE->getAddExpr(IVInit, IVCount);
1587 }
1588 // Expand the code for the iteration count.
1589 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1590 IRBuilder<> Builder(BI);
1591 assert(SE->isLoopInvariant(IVLimit, L) &&
1592 "Computed iteration count is not loop invariant!");
1593 // Ensure that we generate the same type as IndVar, or a smaller integer
1594 // type. In the presence of null pointer values, we have an integer type
1595 // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1596 Type *LimitTy = IVCount->getType()->isPointerTy() ?
1597 IndVar->getType() : IVCount->getType();
1598 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1599 }
1600}
1601
Andrew Trickcdc22972011-07-12 00:08:50 +00001602/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1603/// loop to be a canonical != comparison against the incremented loop induction
1604/// variable. This pass is able to rewrite the exit tests of any loop where the
1605/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1606/// is actually a much broader range than just linear tests.
Andrew Trick7da24172011-07-18 20:32:31 +00001607Value *IndVarSimplify::
Andrew Trickcdc22972011-07-12 00:08:50 +00001608LinearFunctionTestReplace(Loop *L,
1609 const SCEV *BackedgeTakenCount,
1610 PHINode *IndVar,
1611 SCEVExpander &Rewriter) {
1612 assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
Andrew Trickcdc22972011-07-12 00:08:50 +00001613
Andrew Trick183013d2011-09-12 18:28:44 +00001614 // LFTR can ignore IV overflow and truncate to the width of
Andrew Trick7da24172011-07-18 20:32:31 +00001615 // BECount. This avoids materializing the add(zext(add)) expression.
Andrew Trick183013d2011-09-12 18:28:44 +00001616 Type *CntTy = !EnableIVRewrite ?
Andrew Trick7da24172011-07-18 20:32:31 +00001617 BackedgeTakenCount->getType() : IndVar->getType();
1618
Andrew Trickc2c79c92011-11-02 17:19:57 +00001619 const SCEV *IVCount = BackedgeTakenCount;
Andrew Trick7da24172011-07-18 20:32:31 +00001620
Andrew Trickc2c79c92011-11-02 17:19:57 +00001621 // If the exiting block is the same as the backedge block, we prefer to
1622 // compare against the post-incremented value, otherwise we must compare
1623 // against the preincremented value.
Andrew Trickcdc22972011-07-12 00:08:50 +00001624 Value *CmpIndVar;
Andrew Trickcdc22972011-07-12 00:08:50 +00001625 if (L->getExitingBlock() == L->getLoopLatch()) {
1626 // Add one to the "backedge-taken" count to get the trip count.
1627 // If this addition may overflow, we have to be more pessimistic and
1628 // cast the induction variable before doing the add.
Andrew Trickcdc22972011-07-12 00:08:50 +00001629 const SCEV *N =
Andrew Trickc2c79c92011-11-02 17:19:57 +00001630 SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1));
1631 if (CntTy == IVCount->getType())
1632 IVCount = N;
Andrew Trick7da24172011-07-18 20:32:31 +00001633 else {
Andrew Trickc2c79c92011-11-02 17:19:57 +00001634 const SCEV *Zero = SE->getConstant(IVCount->getType(), 0);
Andrew Trick7da24172011-07-18 20:32:31 +00001635 if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1636 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1637 // No overflow. Cast the sum.
Andrew Trickc2c79c92011-11-02 17:19:57 +00001638 IVCount = SE->getTruncateOrZeroExtend(N, CntTy);
Andrew Trick7da24172011-07-18 20:32:31 +00001639 } else {
1640 // Potential overflow. Cast before doing the add.
Andrew Trickc2c79c92011-11-02 17:19:57 +00001641 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
1642 IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1));
Andrew Trick7da24172011-07-18 20:32:31 +00001643 }
Andrew Trickcdc22972011-07-12 00:08:50 +00001644 }
Andrew Trickcdc22972011-07-12 00:08:50 +00001645 // The BackedgeTaken expression contains the number of times that the
1646 // backedge branches to the loop header. This is one less than the
1647 // number of times the loop executes, so use the incremented indvar.
1648 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1649 } else {
Andrew Trickc2c79c92011-11-02 17:19:57 +00001650 // We must use the preincremented value...
1651 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
Andrew Trickcdc22972011-07-12 00:08:50 +00001652 CmpIndVar = IndVar;
1653 }
1654
Andrew Trickc2c79c92011-11-02 17:19:57 +00001655 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1656 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1657 && "genLoopLimit missed a cast");
Andrew Trickcdc22972011-07-12 00:08:50 +00001658
1659 // Insert a new icmp_ne or icmp_eq instruction before the branch.
Andrew Trickc2c79c92011-11-02 17:19:57 +00001660 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
Andrew Trick7da24172011-07-18 20:32:31 +00001661 ICmpInst::Predicate P;
Andrew Trickcdc22972011-07-12 00:08:50 +00001662 if (L->contains(BI->getSuccessor(0)))
Andrew Trick7da24172011-07-18 20:32:31 +00001663 P = ICmpInst::ICMP_NE;
Andrew Trickcdc22972011-07-12 00:08:50 +00001664 else
Andrew Trick7da24172011-07-18 20:32:31 +00001665 P = ICmpInst::ICMP_EQ;
Andrew Trickcdc22972011-07-12 00:08:50 +00001666
1667 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1668 << " LHS:" << *CmpIndVar << '\n'
1669 << " op:\t"
Andrew Trick7da24172011-07-18 20:32:31 +00001670 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1671 << " RHS:\t" << *ExitCnt << "\n"
Andrew Trickc2c79c92011-11-02 17:19:57 +00001672 << " IVCount:\t" << *IVCount << "\n");
Andrew Trickcdc22972011-07-12 00:08:50 +00001673
Andrew Trickc2c79c92011-11-02 17:19:57 +00001674 IRBuilder<> Builder(BI);
Andrew Trick7da24172011-07-18 20:32:31 +00001675 if (SE->getTypeSizeInBits(CmpIndVar->getType())
Andrew Trickc2c79c92011-11-02 17:19:57 +00001676 > SE->getTypeSizeInBits(ExitCnt->getType())) {
1677 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1678 "lftr.wideiv");
Andrew Trick7da24172011-07-18 20:32:31 +00001679 }
1680
1681 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
Andrew Trickcdc22972011-07-12 00:08:50 +00001682 Value *OrigCond = BI->getCondition();
1683 // It's tempting to use replaceAllUsesWith here to fully replace the old
1684 // comparison, but that's not immediately safe, since users of the old
1685 // comparison may not be dominated by the new comparison. Instead, just
1686 // update the branch to use the new comparison; in the common case this
1687 // will make old comparison dead.
1688 BI->setCondition(Cond);
1689 DeadInsts.push_back(OrigCond);
1690
1691 ++NumLFTR;
1692 Changed = true;
1693 return Cond;
1694}
1695
1696//===----------------------------------------------------------------------===//
1697// SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1698//===----------------------------------------------------------------------===//
1699
1700/// If there's a single exit block, sink any loop-invariant values that
1701/// were defined in the preheader but not used inside the loop into the
1702/// exit block to reduce register pressure in the loop.
1703void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1704 BasicBlock *ExitBlock = L->getExitBlock();
1705 if (!ExitBlock) return;
1706
1707 BasicBlock *Preheader = L->getLoopPreheader();
1708 if (!Preheader) return;
1709
Bill Wendling0902a682011-08-24 20:28:43 +00001710 Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
Andrew Trickcdc22972011-07-12 00:08:50 +00001711 BasicBlock::iterator I = Preheader->getTerminator();
1712 while (I != Preheader->begin()) {
1713 --I;
1714 // New instructions were inserted at the end of the preheader.
1715 if (isa<PHINode>(I))
1716 break;
1717
1718 // Don't move instructions which might have side effects, since the side
1719 // effects need to complete before instructions inside the loop. Also don't
1720 // move instructions which might read memory, since the loop may modify
1721 // memory. Note that it's okay if the instruction might have undefined
1722 // behavior: LoopSimplify guarantees that the preheader dominates the exit
1723 // block.
1724 if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1725 continue;
1726
1727 // Skip debug info intrinsics.
1728 if (isa<DbgInfoIntrinsic>(I))
1729 continue;
1730
Bill Wendlingeed1e892011-08-26 20:40:15 +00001731 // Skip landingpad instructions.
1732 if (isa<LandingPadInst>(I))
1733 continue;
1734
Eli Friedman73beaf72011-10-27 01:33:51 +00001735 // Don't sink alloca: we never want to sink static alloca's out of the
1736 // entry block, and correctly sinking dynamic alloca's requires
1737 // checks for stacksave/stackrestore intrinsics.
1738 // FIXME: Refactor this check somehow?
1739 if (isa<AllocaInst>(I))
1740 continue;
Andrew Trickcdc22972011-07-12 00:08:50 +00001741
1742 // Determine if there is a use in or before the loop (direct or
1743 // otherwise).
1744 bool UsedInLoop = false;
1745 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1746 UI != UE; ++UI) {
1747 User *U = *UI;
1748 BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1749 if (PHINode *P = dyn_cast<PHINode>(U)) {
1750 unsigned i =
1751 PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1752 UseBB = P->getIncomingBlock(i);
1753 }
1754 if (UseBB == Preheader || L->contains(UseBB)) {
1755 UsedInLoop = true;
1756 break;
1757 }
1758 }
1759
1760 // If there is, the def must remain in the preheader.
1761 if (UsedInLoop)
1762 continue;
1763
1764 // Otherwise, sink it to the exit block.
1765 Instruction *ToMove = I;
1766 bool Done = false;
1767
1768 if (I != Preheader->begin()) {
1769 // Skip debug info intrinsics.
1770 do {
1771 --I;
1772 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1773
1774 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1775 Done = true;
1776 } else {
1777 Done = true;
1778 }
1779
1780 ToMove->moveBefore(InsertPt);
1781 if (Done) break;
1782 InsertPt = ToMove;
1783 }
1784}
1785
1786//===----------------------------------------------------------------------===//
1787// IndVarSimplify driver. Manage several subpasses of IV simplification.
1788//===----------------------------------------------------------------------===//
1789
Dan Gohmaneb6be652009-02-12 22:19:27 +00001790bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
Dan Gohmanf3aea7a2010-06-18 01:35:11 +00001791 // If LoopSimplify form is not available, stay out of trouble. Some notes:
1792 // - LSR currently only supports LoopSimplify-form loops. Indvars'
1793 // canonicalization can be a pessimization without LSR to "clean up"
1794 // afterwards.
1795 // - We depend on having a preheader; in particular,
1796 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
1797 // and we're in trouble if we can't find the induction variable even when
1798 // we've manually inserted one.
1799 if (!L->isLoopSimplifyForm())
1800 return false;
1801
Andrew Trick183013d2011-09-12 18:28:44 +00001802 if (EnableIVRewrite)
Andrew Trick69d44522011-06-21 03:22:38 +00001803 IU = &getAnalysis<IVUsers>();
Devang Patel2ac57e12007-03-07 06:39:01 +00001804 LI = &getAnalysis<LoopInfo>();
1805 SE = &getAnalysis<ScalarEvolution>();
Dan Gohmanfe174b62009-06-27 05:16:57 +00001806 DT = &getAnalysis<DominatorTree>();
Andrew Trick1abe2962011-05-04 02:10:13 +00001807 TD = getAnalysisIfAvailable<TargetData>();
1808
Andrew Trick87716c92011-03-17 23:51:11 +00001809 DeadInsts.clear();
Devang Patel2ac57e12007-03-07 06:39:01 +00001810 Changed = false;
Dan Gohman43300342009-02-17 20:49:49 +00001811
Dan Gohman0a40ad92009-04-16 03:18:22 +00001812 // If there are any floating-point recurrences, attempt to
Dan Gohman43300342009-02-17 20:49:49 +00001813 // transform them to use integer recurrences.
1814 RewriteNonIntegerIVs(L);
1815
Dan Gohmanaf752342009-07-07 17:06:11 +00001816 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
Chris Lattner1f7648e2007-03-04 01:00:28 +00001817
Dan Gohmandaafbe62009-06-26 22:53:46 +00001818 // Create a rewriter object which we'll use to transform the code with.
Andrew Trick411daa52011-06-28 05:07:32 +00001819 SCEVExpander Rewriter(*SE, "indvars");
Andrew Trickf9201c52011-10-11 02:28:51 +00001820#ifndef NDEBUG
1821 Rewriter.setDebugType(DEBUG_TYPE);
1822#endif
Andrew Trick163b4a72011-06-27 23:17:44 +00001823
1824 // Eliminate redundant IV users.
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001825 //
1826 // Simplification works best when run before other consumers of SCEV. We
1827 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1828 // other expressions involving loop IVs have been evaluated. This helps SCEV
Andrew Trick4426f5b2011-06-28 16:45:04 +00001829 // set no-wrap flags before normalizing sign/zero extension.
Andrew Trick183013d2011-09-12 18:28:44 +00001830 if (!EnableIVRewrite) {
Andrew Trick1abe2962011-05-04 02:10:13 +00001831 Rewriter.disableCanonicalMode();
Andrew Trick3ec331e2011-08-10 03:46:27 +00001832 SimplifyAndExtend(L, Rewriter, LPM);
Andrew Trick163b4a72011-06-27 23:17:44 +00001833 }
Andrew Trick1abe2962011-05-04 02:10:13 +00001834
Chris Lattnere61b67d2004-04-02 20:24:31 +00001835 // Check to see if this loop has a computable loop-invariant execution count.
1836 // If so, this means that we can compute the final value of any expressions
1837 // that are recurrent in the loop, and substitute the exit values from the
1838 // loop into any instructions outside of the loop that use the final values of
1839 // the current expressions.
Chris Lattner0b18c1d2002-05-10 15:38:35 +00001840 //
Dan Gohman0bddac12009-02-24 18:55:53 +00001841 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
Dan Gohman8c16b382010-02-22 04:11:59 +00001842 RewriteLoopExitValues(L, Rewriter);
Chris Lattner476e6df2001-12-03 17:28:42 +00001843
Andrew Trickf44aadf2011-05-20 18:25:42 +00001844 // Eliminate redundant IV users.
Andrew Trick183013d2011-09-12 18:28:44 +00001845 if (EnableIVRewrite)
Andrew Tricke629d002011-08-10 04:22:26 +00001846 Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts);
Dan Gohman5867a562010-04-13 01:46:36 +00001847
Andrew Trick9ea55dc2011-07-16 01:06:48 +00001848 // Eliminate redundant IV cycles.
Andrew Trick183013d2011-09-12 18:28:44 +00001849 if (!EnableIVRewrite)
Andrew Trickf9201c52011-10-11 02:28:51 +00001850 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
Andrew Trick32390552011-07-06 20:50:43 +00001851
Dan Gohmand76d71a2009-05-12 02:17:14 +00001852 // Compute the type of the largest recurrence expression, and decide whether
1853 // a canonical induction variable should be inserted.
Chris Lattner229907c2011-07-18 04:54:35 +00001854 Type *LargestType = 0;
Dan Gohmand76d71a2009-05-12 02:17:14 +00001855 bool NeedCannIV = false;
Andrew Trickeb3c36e2011-05-25 04:42:22 +00001856 bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
Andrew Trick183013d2011-09-12 18:28:44 +00001857 if (EnableIVRewrite && ExpandBECount) {
Dan Gohmand76d71a2009-05-12 02:17:14 +00001858 // If we have a known trip count and a single exit block, we'll be
1859 // rewriting the loop exit test condition below, which requires a
1860 // canonical induction variable.
Andrew Trick38c4e342011-05-03 22:24:10 +00001861 NeedCannIV = true;
Chris Lattner229907c2011-07-18 04:54:35 +00001862 Type *Ty = BackedgeTakenCount->getType();
Andrew Trick183013d2011-09-12 18:28:44 +00001863 if (!EnableIVRewrite) {
Andrew Trickeb3c36e2011-05-25 04:42:22 +00001864 // In this mode, SimplifyIVUsers may have already widened the IV used by
1865 // the backedge test and inserted a Trunc on the compare's operand. Get
1866 // the wider type to avoid creating a redundant narrow IV only used by the
1867 // loop test.
1868 LargestType = getBackedgeIVType(L);
1869 }
Andrew Trick38c4e342011-05-03 22:24:10 +00001870 if (!LargestType ||
1871 SE->getTypeSizeInBits(Ty) >
1872 SE->getTypeSizeInBits(LargestType))
1873 LargestType = SE->getEffectiveSCEVType(Ty);
Chris Lattner885a6eb2004-04-17 18:08:33 +00001874 }
Andrew Trick183013d2011-09-12 18:28:44 +00001875 if (EnableIVRewrite) {
Andrew Trick1abe2962011-05-04 02:10:13 +00001876 for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
1877 NeedCannIV = true;
Chris Lattner229907c2011-07-18 04:54:35 +00001878 Type *Ty =
Andrew Trick1abe2962011-05-04 02:10:13 +00001879 SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
1880 if (!LargestType ||
1881 SE->getTypeSizeInBits(Ty) >
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001882 SE->getTypeSizeInBits(LargestType))
Andrew Trick1abe2962011-05-04 02:10:13 +00001883 LargestType = Ty;
1884 }
Chris Lattner476e6df2001-12-03 17:28:42 +00001885 }
1886
Dan Gohman4a618822010-02-10 16:03:48 +00001887 // Now that we know the largest of the induction variable expressions
Dan Gohmand76d71a2009-05-12 02:17:14 +00001888 // in this loop, insert a canonical induction variable of the largest size.
Dan Gohman12725c72010-07-20 17:18:52 +00001889 PHINode *IndVar = 0;
Dan Gohmand76d71a2009-05-12 02:17:14 +00001890 if (NeedCannIV) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00001891 // Check to see if the loop already has any canonical-looking induction
1892 // variables. If any are present and wider than the planned canonical
1893 // induction variable, temporarily remove them, so that the Rewriter
1894 // doesn't attempt to reuse them.
1895 SmallVector<PHINode *, 2> OldCannIVs;
1896 while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
Dan Gohman426901a2009-06-13 16:25:49 +00001897 if (SE->getTypeSizeInBits(OldCannIV->getType()) >
1898 SE->getTypeSizeInBits(LargestType))
1899 OldCannIV->removeFromParent();
1900 else
Dan Gohmana9c205c2010-02-25 06:57:05 +00001901 break;
1902 OldCannIVs.push_back(OldCannIV);
Dan Gohman426901a2009-06-13 16:25:49 +00001903 }
1904
Dan Gohmandaafbe62009-06-26 22:53:46 +00001905 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
Dan Gohman426901a2009-06-13 16:25:49 +00001906
Dan Gohmaneb6be652009-02-12 22:19:27 +00001907 ++NumInserted;
1908 Changed = true;
David Greene0dd384c2010-01-05 01:27:06 +00001909 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
Dan Gohman426901a2009-06-13 16:25:49 +00001910
1911 // Now that the official induction variable is established, reinsert
Dan Gohmana9c205c2010-02-25 06:57:05 +00001912 // any old canonical-looking variables after it so that the IR remains
1913 // consistent. They will be deleted as part of the dead-PHI deletion at
Dan Gohman426901a2009-06-13 16:25:49 +00001914 // the end of the pass.
Dan Gohmana9c205c2010-02-25 06:57:05 +00001915 while (!OldCannIVs.empty()) {
1916 PHINode *OldCannIV = OldCannIVs.pop_back_val();
Bill Wendling0902a682011-08-24 20:28:43 +00001917 OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt());
Dan Gohmana9c205c2010-02-25 06:57:05 +00001918 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001919 }
Andrew Trick183013d2011-09-12 18:28:44 +00001920 else if (!EnableIVRewrite && ExpandBECount && needsLFTR(L, DT)) {
Andrew Trick7da24172011-07-18 20:32:31 +00001921 IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
1922 }
Dan Gohmaneb6be652009-02-12 22:19:27 +00001923 // If we have a trip count expression, rewrite the loop's exit condition
1924 // using it. We can currently only handle loops with a single exit.
Andrew Trick7da24172011-07-18 20:32:31 +00001925 Value *NewICmp = 0;
1926 if (ExpandBECount && IndVar) {
Andrew Trickc591f3a2011-07-16 01:18:53 +00001927 // Check preconditions for proper SCEVExpander operation. SCEV does not
1928 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1929 // pass that uses the SCEVExpander must do it. This does not work well for
1930 // loop passes because SCEVExpander makes assumptions about all loops, while
1931 // LoopPassManager only forces the current loop to be simplified.
1932 //
1933 // FIXME: SCEV expansion has no way to bail out, so the caller must
1934 // explicitly check any assumptions made by SCEV. Brittle.
1935 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1936 if (!AR || AR->getLoop()->getLoopPreheader())
1937 NewICmp =
1938 LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
Chris Lattnerc1a682d2004-04-22 14:59:40 +00001939 }
Andrew Trick87716c92011-03-17 23:51:11 +00001940 // Rewrite IV-derived expressions.
Andrew Trick183013d2011-09-12 18:28:44 +00001941 if (EnableIVRewrite)
Andrew Trick1abe2962011-05-04 02:10:13 +00001942 RewriteIVExpressions(L, Rewriter);
Dan Gohmaneb6be652009-02-12 22:19:27 +00001943
Andrew Trick87716c92011-03-17 23:51:11 +00001944 // Clear the rewriter cache, because values that are in the rewriter's cache
1945 // can be deleted in the loop below, causing the AssertingVH in the cache to
1946 // trigger.
1947 Rewriter.clear();
1948
1949 // Now that we're done iterating through lists, clean up any instructions
1950 // which are now dead.
1951 while (!DeadInsts.empty())
1952 if (Instruction *Inst =
1953 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1954 RecursivelyDeleteTriviallyDeadInstructions(Inst);
1955
Dan Gohmandaafbe62009-06-26 22:53:46 +00001956 // The Rewriter may not be used from this point on.
Torok Edwin26895b52009-05-24 20:08:21 +00001957
Dan Gohmand76d71a2009-05-12 02:17:14 +00001958 // Loop-invariant instructions in the preheader that aren't used in the
1959 // loop may be sunk below the loop to reduce register pressure.
Dan Gohmandaafbe62009-06-26 22:53:46 +00001960 SinkUnusedInvariants(L);
Dan Gohmand76d71a2009-05-12 02:17:14 +00001961
1962 // For completeness, inform IVUsers of the IV use in the newly-created
1963 // loop exit test instruction.
Andrew Trick7da24172011-07-18 20:32:31 +00001964 if (IU && NewICmp) {
1965 ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp);
1966 if (NewICmpInst)
1967 IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)));
1968 }
Dan Gohmand76d71a2009-05-12 02:17:14 +00001969 // Clean up dead instructions.
Dan Gohmanb5358002010-01-05 16:31:45 +00001970 Changed |= DeleteDeadPHIs(L->getHeader());
Dan Gohmand76d71a2009-05-12 02:17:14 +00001971 // Check a post-condition.
Andrew Trick494c5492011-07-18 18:44:20 +00001972 assert(L->isLCSSAForm(*DT) &&
1973 "Indvars did not leave the loop in lcssa form!");
1974
1975 // Verify that LFTR, and any other change have not interfered with SCEV's
1976 // ability to compute trip count.
1977#ifndef NDEBUG
Andrew Trick183013d2011-09-12 18:28:44 +00001978 if (!EnableIVRewrite && VerifyIndvars &&
Andrew Trick1eee7f12011-09-06 20:20:38 +00001979 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
Andrew Trick494c5492011-07-18 18:44:20 +00001980 SE->forgetLoop(L);
1981 const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1982 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1983 SE->getTypeSizeInBits(NewBECount->getType()))
1984 NewBECount = SE->getTruncateOrNoop(NewBECount,
1985 BackedgeTakenCount->getType());
1986 else
1987 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1988 NewBECount->getType());
1989 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
1990 }
1991#endif
1992
Devang Patel2ac57e12007-03-07 06:39:01 +00001993 return Changed;
Chris Lattner476e6df2001-12-03 17:28:42 +00001994}