James Molloy | 0cbb2a86 | 2015-03-27 10:36:57 +0000 | [diff] [blame] | 1 | //===- Float2Int.cpp - Demote floating point ops to work on integers ------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the Float2Int pass, which aims to demote floating |
| 11 | // point operations to work on integers, where that is losslessly possible. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #define DEBUG_TYPE "float2int" |
| 16 | #include "llvm/ADT/APInt.h" |
| 17 | #include "llvm/ADT/APSInt.h" |
| 18 | #include "llvm/ADT/DenseMap.h" |
| 19 | #include "llvm/ADT/EquivalenceClasses.h" |
| 20 | #include "llvm/ADT/MapVector.h" |
| 21 | #include "llvm/ADT/SmallVector.h" |
| 22 | #include "llvm/IR/ConstantRange.h" |
| 23 | #include "llvm/IR/Constants.h" |
| 24 | #include "llvm/IR/IRBuilder.h" |
| 25 | #include "llvm/IR/InstIterator.h" |
| 26 | #include "llvm/IR/Instructions.h" |
| 27 | #include "llvm/IR/Module.h" |
| 28 | #include "llvm/Pass.h" |
| 29 | #include "llvm/Support/Debug.h" |
| 30 | #include "llvm/Support/raw_ostream.h" |
| 31 | #include "llvm/Transforms/Scalar.h" |
| 32 | #include <deque> |
| 33 | #include <functional> // For std::function |
| 34 | using namespace llvm; |
| 35 | |
| 36 | // The algorithm is simple. Start at instructions that convert from the |
| 37 | // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use |
| 38 | // graph, using an equivalence datastructure to unify graphs that interfere. |
| 39 | // |
| 40 | // Mappable instructions are those with an integer corrollary that, given |
| 41 | // integer domain inputs, produce an integer output; fadd, for example. |
| 42 | // |
| 43 | // If a non-mappable instruction is seen, this entire def-use graph is marked |
| 44 | // as non-transformable. If we see an instruction that converts from the |
| 45 | // integer domain to FP domain (uitofp,sitofp), we terminate our walk. |
| 46 | |
| 47 | /// The largest integer type worth dealing with. |
| 48 | static cl::opt<unsigned> |
| 49 | MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden, |
| 50 | cl::desc("Max integer bitwidth to consider in float2int" |
| 51 | "(default=64)")); |
| 52 | |
| 53 | namespace { |
| 54 | struct Float2Int : public FunctionPass { |
| 55 | static char ID; // Pass identification, replacement for typeid |
| 56 | Float2Int() : FunctionPass(ID) { |
| 57 | initializeFloat2IntPass(*PassRegistry::getPassRegistry()); |
| 58 | } |
| 59 | |
| 60 | bool runOnFunction(Function &F) override; |
| 61 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 62 | AU.setPreservesCFG(); |
| 63 | } |
| 64 | |
| 65 | void findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots); |
| 66 | ConstantRange seen(Instruction *I, ConstantRange R); |
| 67 | ConstantRange badRange(); |
| 68 | ConstantRange unknownRange(); |
| 69 | ConstantRange validateRange(ConstantRange R); |
| 70 | void walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots); |
| 71 | void walkForwards(); |
| 72 | bool validateAndTransform(); |
| 73 | Value *convert(Instruction *I, Type *ToTy); |
| 74 | void cleanup(); |
| 75 | |
| 76 | MapVector<Instruction*, ConstantRange > SeenInsts; |
| 77 | SmallPtrSet<Instruction*,8> Roots; |
| 78 | EquivalenceClasses<Instruction*> ECs; |
| 79 | MapVector<Instruction*, Value*> ConvertedInsts; |
| 80 | LLVMContext *Ctx; |
| 81 | }; |
Alexander Kornienko | 70bc5f1 | 2015-06-19 15:57:42 +0000 | [diff] [blame] | 82 | } // namespace |
James Molloy | 0cbb2a86 | 2015-03-27 10:36:57 +0000 | [diff] [blame] | 83 | |
| 84 | char Float2Int::ID = 0; |
| 85 | INITIALIZE_PASS(Float2Int, "float2int", "Float to int", false, false) |
| 86 | |
| 87 | // Given a FCmp predicate, return a matching ICmp predicate if one |
| 88 | // exists, otherwise return BAD_ICMP_PREDICATE. |
| 89 | static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) { |
| 90 | switch (P) { |
| 91 | case CmpInst::FCMP_OEQ: |
| 92 | case CmpInst::FCMP_UEQ: |
| 93 | return CmpInst::ICMP_EQ; |
| 94 | case CmpInst::FCMP_OGT: |
| 95 | case CmpInst::FCMP_UGT: |
| 96 | return CmpInst::ICMP_SGT; |
| 97 | case CmpInst::FCMP_OGE: |
| 98 | case CmpInst::FCMP_UGE: |
| 99 | return CmpInst::ICMP_SGE; |
| 100 | case CmpInst::FCMP_OLT: |
| 101 | case CmpInst::FCMP_ULT: |
| 102 | return CmpInst::ICMP_SLT; |
| 103 | case CmpInst::FCMP_OLE: |
| 104 | case CmpInst::FCMP_ULE: |
| 105 | return CmpInst::ICMP_SLE; |
| 106 | case CmpInst::FCMP_ONE: |
| 107 | case CmpInst::FCMP_UNE: |
| 108 | return CmpInst::ICMP_NE; |
| 109 | default: |
| 110 | return CmpInst::BAD_ICMP_PREDICATE; |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | // Given a floating point binary operator, return the matching |
| 115 | // integer version. |
| 116 | static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) { |
| 117 | switch (Opcode) { |
| 118 | default: llvm_unreachable("Unhandled opcode!"); |
| 119 | case Instruction::FAdd: return Instruction::Add; |
| 120 | case Instruction::FSub: return Instruction::Sub; |
| 121 | case Instruction::FMul: return Instruction::Mul; |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | // Find the roots - instructions that convert from the FP domain to |
| 126 | // integer domain. |
| 127 | void Float2Int::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) { |
| 128 | for (auto &I : inst_range(F)) { |
| 129 | switch (I.getOpcode()) { |
| 130 | default: break; |
| 131 | case Instruction::FPToUI: |
| 132 | case Instruction::FPToSI: |
| 133 | Roots.insert(&I); |
| 134 | break; |
| 135 | case Instruction::FCmp: |
| 136 | if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) != |
| 137 | CmpInst::BAD_ICMP_PREDICATE) |
| 138 | Roots.insert(&I); |
| 139 | break; |
| 140 | } |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | // Helper - mark I as having been traversed, having range R. |
| 145 | ConstantRange Float2Int::seen(Instruction *I, ConstantRange R) { |
| 146 | DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n"); |
| 147 | if (SeenInsts.find(I) != SeenInsts.end()) |
| 148 | SeenInsts.find(I)->second = R; |
| 149 | else |
| 150 | SeenInsts.insert(std::make_pair(I, R)); |
| 151 | return R; |
| 152 | } |
| 153 | |
| 154 | // Helper - get a range representing a poison value. |
| 155 | ConstantRange Float2Int::badRange() { |
| 156 | return ConstantRange(MaxIntegerBW + 1, true); |
| 157 | } |
| 158 | ConstantRange Float2Int::unknownRange() { |
| 159 | return ConstantRange(MaxIntegerBW + 1, false); |
| 160 | } |
| 161 | ConstantRange Float2Int::validateRange(ConstantRange R) { |
| 162 | if (R.getBitWidth() > MaxIntegerBW + 1) |
| 163 | return badRange(); |
| 164 | return R; |
| 165 | } |
| 166 | |
| 167 | // The most obvious way to structure the search is a depth-first, eager |
| 168 | // search from each root. However, that require direct recursion and so |
| 169 | // can only handle small instruction sequences. Instead, we split the search |
| 170 | // up into two phases: |
| 171 | // - walkBackwards: A breadth-first walk of the use-def graph starting from |
| 172 | // the roots. Populate "SeenInsts" with interesting |
| 173 | // instructions and poison values if they're obvious and |
| 174 | // cheap to compute. Calculate the equivalance set structure |
| 175 | // while we're here too. |
| 176 | // - walkForwards: Iterate over SeenInsts in reverse order, so we visit |
| 177 | // defs before their uses. Calculate the real range info. |
| 178 | |
| 179 | // Breadth-first walk of the use-def graph; determine the set of nodes |
| 180 | // we care about and eagerly determine if some of them are poisonous. |
| 181 | void Float2Int::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) { |
| 182 | std::deque<Instruction*> Worklist(Roots.begin(), Roots.end()); |
| 183 | while (!Worklist.empty()) { |
| 184 | Instruction *I = Worklist.back(); |
| 185 | Worklist.pop_back(); |
| 186 | |
| 187 | if (SeenInsts.find(I) != SeenInsts.end()) |
| 188 | // Seen already. |
| 189 | continue; |
| 190 | |
| 191 | switch (I->getOpcode()) { |
| 192 | // FIXME: Handle select and phi nodes. |
| 193 | default: |
| 194 | // Path terminated uncleanly. |
| 195 | seen(I, badRange()); |
| 196 | break; |
| 197 | |
| 198 | case Instruction::UIToFP: { |
| 199 | // Path terminated cleanly. |
| 200 | unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); |
| 201 | APInt Min = APInt::getMinValue(BW).zextOrSelf(MaxIntegerBW+1); |
| 202 | APInt Max = APInt::getMaxValue(BW).zextOrSelf(MaxIntegerBW+1); |
| 203 | seen(I, validateRange(ConstantRange(Min, Max))); |
| 204 | continue; |
| 205 | } |
| 206 | |
| 207 | case Instruction::SIToFP: { |
| 208 | // Path terminated cleanly. |
| 209 | unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits(); |
| 210 | APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(MaxIntegerBW+1); |
| 211 | APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(MaxIntegerBW+1); |
| 212 | seen(I, validateRange(ConstantRange(SMin, SMax))); |
| 213 | continue; |
| 214 | } |
| 215 | |
| 216 | case Instruction::FAdd: |
| 217 | case Instruction::FSub: |
| 218 | case Instruction::FMul: |
| 219 | case Instruction::FPToUI: |
| 220 | case Instruction::FPToSI: |
| 221 | case Instruction::FCmp: |
| 222 | seen(I, unknownRange()); |
| 223 | break; |
| 224 | } |
| 225 | |
| 226 | for (Value *O : I->operands()) { |
| 227 | if (Instruction *OI = dyn_cast<Instruction>(O)) { |
| 228 | // Unify def-use chains if they interfere. |
| 229 | ECs.unionSets(I, OI); |
| 230 | if (SeenInsts.find(I)->second != badRange()) |
| 231 | Worklist.push_back(OI); |
| 232 | } else if (!isa<ConstantFP>(O)) { |
| 233 | // Not an instruction or ConstantFP? we can't do anything. |
| 234 | seen(I, badRange()); |
| 235 | } |
| 236 | } |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | // Walk forwards down the list of seen instructions, so we visit defs before |
| 241 | // uses. |
| 242 | void Float2Int::walkForwards() { |
| 243 | for (auto It = SeenInsts.rbegin(), E = SeenInsts.rend(); It != E; ++It) { |
| 244 | if (It->second != unknownRange()) |
| 245 | continue; |
| 246 | |
| 247 | Instruction *I = It->first; |
| 248 | std::function<ConstantRange(ArrayRef<ConstantRange>)> Op; |
| 249 | switch (I->getOpcode()) { |
| 250 | // FIXME: Handle select and phi nodes. |
| 251 | default: |
| 252 | case Instruction::UIToFP: |
| 253 | case Instruction::SIToFP: |
| 254 | llvm_unreachable("Should have been handled in walkForwards!"); |
| 255 | |
| 256 | case Instruction::FAdd: |
| 257 | Op = [](ArrayRef<ConstantRange> Ops) { |
| 258 | assert(Ops.size() == 2 && "FAdd is a binary operator!"); |
| 259 | return Ops[0].add(Ops[1]); |
| 260 | }; |
| 261 | break; |
| 262 | |
| 263 | case Instruction::FSub: |
| 264 | Op = [](ArrayRef<ConstantRange> Ops) { |
| 265 | assert(Ops.size() == 2 && "FSub is a binary operator!"); |
| 266 | return Ops[0].sub(Ops[1]); |
| 267 | }; |
| 268 | break; |
| 269 | |
| 270 | case Instruction::FMul: |
| 271 | Op = [](ArrayRef<ConstantRange> Ops) { |
| 272 | assert(Ops.size() == 2 && "FMul is a binary operator!"); |
| 273 | return Ops[0].multiply(Ops[1]); |
| 274 | }; |
| 275 | break; |
| 276 | |
| 277 | // |
| 278 | // Root-only instructions - we'll only see these if they're the |
| 279 | // first node in a walk. |
| 280 | // |
| 281 | case Instruction::FPToUI: |
| 282 | case Instruction::FPToSI: |
| 283 | Op = [](ArrayRef<ConstantRange> Ops) { |
| 284 | assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!"); |
| 285 | return Ops[0]; |
| 286 | }; |
| 287 | break; |
| 288 | |
| 289 | case Instruction::FCmp: |
| 290 | Op = [](ArrayRef<ConstantRange> Ops) { |
| 291 | assert(Ops.size() == 2 && "FCmp is a binary operator!"); |
| 292 | return Ops[0].unionWith(Ops[1]); |
| 293 | }; |
| 294 | break; |
| 295 | } |
| 296 | |
| 297 | bool Abort = false; |
| 298 | SmallVector<ConstantRange,4> OpRanges; |
| 299 | for (Value *O : I->operands()) { |
| 300 | if (Instruction *OI = dyn_cast<Instruction>(O)) { |
| 301 | assert(SeenInsts.find(OI) != SeenInsts.end() && |
| 302 | "def not seen before use!"); |
| 303 | OpRanges.push_back(SeenInsts.find(OI)->second); |
| 304 | } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) { |
| 305 | // Work out if the floating point number can be losslessly represented |
| 306 | // as an integer. |
| 307 | // APFloat::convertToInteger(&Exact) purports to do what we want, but |
| 308 | // the exactness can be too precise. For example, negative zero can |
| 309 | // never be exactly converted to an integer. |
| 310 | // |
| 311 | // Instead, we ask APFloat to round itself to an integral value - this |
| 312 | // preserves sign-of-zero - then compare the result with the original. |
| 313 | // |
| 314 | APFloat F = CF->getValueAPF(); |
| 315 | |
| 316 | // First, weed out obviously incorrect values. Non-finite numbers |
| 317 | // can't be represented and neither can negative zero, unless |
| 318 | // we're in fast math mode. |
| 319 | if (!F.isFinite() || |
| 320 | (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) && |
| 321 | !I->hasNoSignedZeros())) { |
| 322 | seen(I, badRange()); |
| 323 | Abort = true; |
| 324 | break; |
| 325 | } |
| 326 | |
| 327 | APFloat NewF = F; |
| 328 | auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven); |
| 329 | if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) { |
| 330 | seen(I, badRange()); |
| 331 | Abort = true; |
| 332 | break; |
| 333 | } |
| 334 | // OK, it's representable. Now get it. |
| 335 | APSInt Int(MaxIntegerBW+1, false); |
| 336 | bool Exact; |
| 337 | CF->getValueAPF().convertToInteger(Int, |
| 338 | APFloat::rmNearestTiesToEven, |
| 339 | &Exact); |
| 340 | OpRanges.push_back(ConstantRange(Int)); |
| 341 | } else { |
| 342 | llvm_unreachable("Should have already marked this as badRange!"); |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | // Reduce the operands' ranges to a single range and return. |
| 347 | if (!Abort) |
| 348 | seen(I, Op(OpRanges)); |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | // If there is a valid transform to be done, do it. |
| 353 | bool Float2Int::validateAndTransform() { |
| 354 | bool MadeChange = false; |
| 355 | |
| 356 | // Iterate over every disjoint partition of the def-use graph. |
| 357 | for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) { |
| 358 | ConstantRange R(MaxIntegerBW + 1, false); |
| 359 | bool Fail = false; |
| 360 | Type *ConvertedToTy = nullptr; |
| 361 | |
| 362 | // For every member of the partition, union all the ranges together. |
| 363 | for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); |
| 364 | MI != ME; ++MI) { |
| 365 | Instruction *I = *MI; |
| 366 | auto SeenI = SeenInsts.find(I); |
| 367 | if (SeenI == SeenInsts.end()) |
| 368 | continue; |
| 369 | |
| 370 | R = R.unionWith(SeenI->second); |
| 371 | // We need to ensure I has no users that have not been seen. |
| 372 | // If it does, transformation would be illegal. |
| 373 | // |
| 374 | // Don't count the roots, as they terminate the graphs. |
| 375 | if (Roots.count(I) == 0) { |
| 376 | // Set the type of the conversion while we're here. |
| 377 | if (!ConvertedToTy) |
| 378 | ConvertedToTy = I->getType(); |
| 379 | for (User *U : I->users()) { |
| 380 | Instruction *UI = dyn_cast<Instruction>(U); |
| 381 | if (!UI || SeenInsts.find(UI) == SeenInsts.end()) { |
| 382 | DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n"); |
| 383 | Fail = true; |
| 384 | break; |
| 385 | } |
| 386 | } |
| 387 | } |
| 388 | if (Fail) |
| 389 | break; |
| 390 | } |
| 391 | |
| 392 | // If the set was empty, or we failed, or the range is poisonous, |
| 393 | // bail out. |
| 394 | if (ECs.member_begin(It) == ECs.member_end() || Fail || |
| 395 | R.isFullSet() || R.isSignWrappedSet()) |
| 396 | continue; |
| 397 | assert(ConvertedToTy && "Must have set the convertedtoty by this point!"); |
| 398 | |
| 399 | // The number of bits required is the maximum of the upper and |
| 400 | // lower limits, plus one so it can be signed. |
| 401 | unsigned MinBW = std::max(R.getLower().getMinSignedBits(), |
| 402 | R.getUpper().getMinSignedBits()) + 1; |
| 403 | DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n"); |
| 404 | |
| 405 | // If we've run off the realms of the exactly representable integers, |
| 406 | // the floating point result will differ from an integer approximation. |
| 407 | |
| 408 | // Do we need more bits than are in the mantissa of the type we converted |
| 409 | // to? semanticsPrecision returns the number of mantissa bits plus one |
| 410 | // for the sign bit. |
| 411 | unsigned MaxRepresentableBits |
| 412 | = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1; |
| 413 | if (MinBW > MaxRepresentableBits) { |
| 414 | DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n"); |
| 415 | continue; |
| 416 | } |
| 417 | if (MinBW > 64) { |
| 418 | DEBUG(dbgs() << "F2I: Value requires more than 64 bits to represent!\n"); |
| 419 | continue; |
| 420 | } |
| 421 | |
| 422 | // OK, R is known to be representable. Now pick a type for it. |
| 423 | // FIXME: Pick the smallest legal type that will fit. |
| 424 | Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx); |
| 425 | |
| 426 | for (auto MI = ECs.member_begin(It), ME = ECs.member_end(); |
| 427 | MI != ME; ++MI) |
| 428 | convert(*MI, Ty); |
| 429 | MadeChange = true; |
| 430 | } |
| 431 | |
| 432 | return MadeChange; |
| 433 | } |
| 434 | |
| 435 | Value *Float2Int::convert(Instruction *I, Type *ToTy) { |
| 436 | if (ConvertedInsts.find(I) != ConvertedInsts.end()) |
| 437 | // Already converted this instruction. |
| 438 | return ConvertedInsts[I]; |
| 439 | |
| 440 | SmallVector<Value*,4> NewOperands; |
| 441 | for (Value *V : I->operands()) { |
| 442 | // Don't recurse if we're an instruction that terminates the path. |
| 443 | if (I->getOpcode() == Instruction::UIToFP || |
| 444 | I->getOpcode() == Instruction::SIToFP) { |
| 445 | NewOperands.push_back(V); |
| 446 | } else if (Instruction *VI = dyn_cast<Instruction>(V)) { |
| 447 | NewOperands.push_back(convert(VI, ToTy)); |
| 448 | } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) { |
| 449 | APSInt Val(ToTy->getPrimitiveSizeInBits(), /*IsUnsigned=*/false); |
| 450 | bool Exact; |
| 451 | CF->getValueAPF().convertToInteger(Val, |
| 452 | APFloat::rmNearestTiesToEven, |
| 453 | &Exact); |
| 454 | NewOperands.push_back(ConstantInt::get(ToTy, Val)); |
| 455 | } else { |
| 456 | llvm_unreachable("Unhandled operand type?"); |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | // Now create a new instruction. |
| 461 | IRBuilder<> IRB(I); |
| 462 | Value *NewV = nullptr; |
| 463 | switch (I->getOpcode()) { |
| 464 | default: llvm_unreachable("Unhandled instruction!"); |
| 465 | |
| 466 | case Instruction::FPToUI: |
| 467 | NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType()); |
| 468 | break; |
| 469 | |
| 470 | case Instruction::FPToSI: |
| 471 | NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType()); |
| 472 | break; |
| 473 | |
| 474 | case Instruction::FCmp: { |
| 475 | CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate()); |
| 476 | assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!"); |
| 477 | NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName()); |
| 478 | break; |
| 479 | } |
| 480 | |
| 481 | case Instruction::UIToFP: |
| 482 | NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy); |
| 483 | break; |
| 484 | |
| 485 | case Instruction::SIToFP: |
| 486 | NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy); |
| 487 | break; |
| 488 | |
| 489 | case Instruction::FAdd: |
| 490 | case Instruction::FSub: |
| 491 | case Instruction::FMul: |
| 492 | NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()), |
| 493 | NewOperands[0], NewOperands[1], |
| 494 | I->getName()); |
| 495 | break; |
| 496 | } |
| 497 | |
| 498 | // If we're a root instruction, RAUW. |
| 499 | if (Roots.count(I)) |
| 500 | I->replaceAllUsesWith(NewV); |
| 501 | |
| 502 | ConvertedInsts[I] = NewV; |
| 503 | return NewV; |
| 504 | } |
| 505 | |
| 506 | // Perform dead code elimination on the instructions we just modified. |
| 507 | void Float2Int::cleanup() { |
| 508 | for (auto I = ConvertedInsts.rbegin(), E = ConvertedInsts.rend(); |
| 509 | I != E; ++I) |
| 510 | I->first->eraseFromParent(); |
| 511 | } |
| 512 | |
| 513 | bool Float2Int::runOnFunction(Function &F) { |
| 514 | if (skipOptnoneFunction(F)) |
| 515 | return false; |
| 516 | |
| 517 | DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n"); |
| 518 | // Clear out all state. |
| 519 | ECs = EquivalenceClasses<Instruction*>(); |
| 520 | SeenInsts.clear(); |
| 521 | ConvertedInsts.clear(); |
| 522 | Roots.clear(); |
| 523 | |
| 524 | Ctx = &F.getParent()->getContext(); |
| 525 | |
| 526 | findRoots(F, Roots); |
| 527 | |
| 528 | walkBackwards(Roots); |
| 529 | walkForwards(); |
| 530 | |
| 531 | bool Modified = validateAndTransform(); |
| 532 | if (Modified) |
| 533 | cleanup(); |
| 534 | return Modified; |
| 535 | } |
| 536 | |
| 537 | FunctionPass *llvm::createFloat2IntPass() { |
| 538 | return new Float2Int(); |
| 539 | } |
| 540 | |