blob: 305926202844ef754624bd94f6c665c0654a76d0 [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Contains implementation of a class EmulatedFakeCamera3 that encapsulates
* functionality of an advanced fake camera.
*/
#include <inttypes.h>
//#define LOG_NDEBUG 0
//#define LOG_NNDEBUG 0
#define LOG_TAG "EmulatedCamera_FakeCamera3"
#include <cutils/properties.h>
#include <log/log.h>
#include "EmulatedFakeCamera3.h"
#include "EmulatedCameraFactory.h"
#include <ui/Fence.h>
#include <ui/Rect.h>
#include "fake-pipeline2/Sensor.h"
#include "fake-pipeline2/JpegCompressor.h"
#include <cmath>
#include <vector>
#include <algorithm>
#if defined(LOG_NNDEBUG) && LOG_NNDEBUG == 0
#define ALOGVV ALOGV
#else
#define ALOGVV(...) ((void)0)
#endif
namespace android {
/**
* Constants for camera capabilities
*/
const int64_t USEC = 1000LL;
const int64_t MSEC = USEC * 1000LL;
const int32_t EmulatedFakeCamera3::kAvailableFormats[] = {
HAL_PIXEL_FORMAT_RAW16,
HAL_PIXEL_FORMAT_BLOB,
HAL_PIXEL_FORMAT_RGBA_8888,
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED,
// These are handled by YCbCr_420_888
// HAL_PIXEL_FORMAT_YV12,
// HAL_PIXEL_FORMAT_YCrCb_420_SP,
HAL_PIXEL_FORMAT_YCbCr_420_888,
HAL_PIXEL_FORMAT_Y16
};
const uint32_t EmulatedFakeCamera3::kAvailableRawSizes[6] = {
640, 480,
1280, 720,
1920, 1080
// mSensorWidth, mSensorHeight
};
/**
* 3A constants
*/
// Default exposure and gain targets for different scenarios
const nsecs_t EmulatedFakeCamera3::kNormalExposureTime = 10 * MSEC;
const nsecs_t EmulatedFakeCamera3::kFacePriorityExposureTime = 30 * MSEC;
const int EmulatedFakeCamera3::kNormalSensitivity = 100;
const int EmulatedFakeCamera3::kFacePrioritySensitivity = 400;
//CTS requires 8 frames timeout in waitForAeStable
const float EmulatedFakeCamera3::kExposureTrackRate = 0.2;
const int EmulatedFakeCamera3::kPrecaptureMinFrames = 10;
const int EmulatedFakeCamera3::kStableAeMaxFrames = 100;
const float EmulatedFakeCamera3::kExposureWanderMin = -2;
const float EmulatedFakeCamera3::kExposureWanderMax = 1;
/**
* Camera device lifecycle methods
*/
EmulatedFakeCamera3::EmulatedFakeCamera3(int cameraId, bool facingBack,
struct hw_module_t* module, GraphicBufferMapper* gbm) :
EmulatedCamera3(cameraId, module),
mFacingBack(facingBack), mGBM(gbm) {
ALOGI("Constructing emulated fake camera 3: ID %d, facing %s",
mCameraID, facingBack ? "back" : "front");
for (size_t i = 0; i < CAMERA3_TEMPLATE_COUNT; i++) {
mDefaultTemplates[i] = NULL;
}
}
EmulatedFakeCamera3::~EmulatedFakeCamera3() {
for (size_t i = 0; i < CAMERA3_TEMPLATE_COUNT; i++) {
if (mDefaultTemplates[i] != NULL) {
free_camera_metadata(mDefaultTemplates[i]);
}
}
}
status_t EmulatedFakeCamera3::Initialize() {
ALOGV("%s: E", __FUNCTION__);
status_t res;
if (mStatus != STATUS_ERROR) {
ALOGE("%s: Already initialized!", __FUNCTION__);
return INVALID_OPERATION;
}
res = getCameraCapabilities();
if (res != OK) {
ALOGE("%s: Unable to get camera capabilities: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
res = constructStaticInfo();
if (res != OK) {
ALOGE("%s: Unable to allocate static info: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
return EmulatedCamera3::Initialize();
}
status_t EmulatedFakeCamera3::connectCamera(hw_device_t** device) {
ALOGV("%s: E", __FUNCTION__);
Mutex::Autolock l(mLock);
status_t res;
if (mStatus != STATUS_CLOSED) {
ALOGE("%s: Can't connect in state %d", __FUNCTION__, mStatus);
return INVALID_OPERATION;
}
mSensor = new Sensor(mSensorWidth, mSensorHeight);
mSensor->setSensorListener(this);
res = mSensor->startUp();
if (res != NO_ERROR) return res;
mReadoutThread = new ReadoutThread(this);
mJpegCompressor = new JpegCompressor(mGBM);
res = mReadoutThread->run("EmuCam3::readoutThread");
if (res != NO_ERROR) return res;
// Initialize fake 3A
mControlMode = ANDROID_CONTROL_MODE_AUTO;
mFacePriority = false;
mAeMode = ANDROID_CONTROL_AE_MODE_ON;
mAfMode = ANDROID_CONTROL_AF_MODE_AUTO;
mAwbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
mAeState = ANDROID_CONTROL_AE_STATE_INACTIVE;
mAfState = ANDROID_CONTROL_AF_STATE_INACTIVE;
mAwbState = ANDROID_CONTROL_AWB_STATE_INACTIVE;
mAeCounter = 0;
mAeTargetExposureTime = kNormalExposureTime;
mAeCurrentExposureTime = kNormalExposureTime;
mAeCurrentSensitivity = kNormalSensitivity;
return EmulatedCamera3::connectCamera(device);
}
status_t EmulatedFakeCamera3::closeCamera() {
ALOGV("%s: E", __FUNCTION__);
status_t res;
{
Mutex::Autolock l(mLock);
if (mStatus == STATUS_CLOSED) return OK;
res = mSensor->shutDown();
if (res != NO_ERROR) {
ALOGE("%s: Unable to shut down sensor: %d", __FUNCTION__, res);
return res;
}
mSensor.clear();
mReadoutThread->requestExit();
}
mReadoutThread->join();
{
Mutex::Autolock l(mLock);
// Clear out private stream information
for (StreamIterator s = mStreams.begin(); s != mStreams.end(); s++) {
PrivateStreamInfo *privStream =
static_cast<PrivateStreamInfo*>((*s)->priv);
delete privStream;
(*s)->priv = NULL;
}
mStreams.clear();
mReadoutThread.clear();
}
return EmulatedCamera3::closeCamera();
}
status_t EmulatedFakeCamera3::getCameraInfo(struct camera_info *info) {
info->facing = mFacingBack ? CAMERA_FACING_BACK : CAMERA_FACING_FRONT;
info->orientation = gEmulatedCameraFactory.getFakeCameraOrientation();
return EmulatedCamera3::getCameraInfo(info);
}
/**
* Camera3 interface methods
*/
status_t EmulatedFakeCamera3::configureStreams(
camera3_stream_configuration *streamList) {
Mutex::Autolock l(mLock);
ALOGV("%s: %d streams", __FUNCTION__, streamList->num_streams);
if (mStatus != STATUS_OPEN && mStatus != STATUS_READY) {
ALOGE("%s: Cannot configure streams in state %d",
__FUNCTION__, mStatus);
return NO_INIT;
}
/**
* Sanity-check input list.
*/
if (streamList == NULL) {
ALOGE("%s: NULL stream configuration", __FUNCTION__);
return BAD_VALUE;
}
if (streamList->streams == NULL) {
ALOGE("%s: NULL stream list", __FUNCTION__);
return BAD_VALUE;
}
if (streamList->num_streams < 1) {
ALOGE("%s: Bad number of streams requested: %d", __FUNCTION__,
streamList->num_streams);
return BAD_VALUE;
}
camera3_stream_t *inputStream = NULL;
for (size_t i = 0; i < streamList->num_streams; i++) {
camera3_stream_t *newStream = streamList->streams[i];
if (newStream == NULL) {
ALOGE("%s: Stream index %zu was NULL",
__FUNCTION__, i);
return BAD_VALUE;
}
ALOGV("%s: Stream %p (id %zu), type %d, usage 0x%x, format 0x%x "
"width 0x%x, height 0x%x",
__FUNCTION__, newStream, i, newStream->stream_type,
newStream->usage,
newStream->format,
newStream->width,
newStream->height);
if (newStream->stream_type == CAMERA3_STREAM_INPUT ||
newStream->stream_type == CAMERA3_STREAM_BIDIRECTIONAL) {
if (inputStream != NULL) {
ALOGE("%s: Multiple input streams requested!", __FUNCTION__);
return BAD_VALUE;
}
inputStream = newStream;
}
if (newStream->stream_type != CAMERA3_STREAM_INPUT) {
if (newStream->rotation < CAMERA3_STREAM_ROTATION_0 ||
newStream->rotation > CAMERA3_STREAM_ROTATION_270) {
ALOGE("%s: Unsupported stream rotation 0x%x requested",
__FUNCTION__, newStream->rotation);
return BAD_VALUE;
}
}
if (newStream->width == 0 || newStream->height == 0 ||
newStream->width > (uint32_t)mSensorWidth ||
newStream->height > (uint32_t)mSensorHeight) {
ALOGE("%s: Unsupported stream width 0x%x height 0x%x",
__FUNCTION__, newStream->width, newStream->height);
return BAD_VALUE;
}
bool validFormat = false;
for (size_t f = 0;
f < sizeof(kAvailableFormats)/sizeof(kAvailableFormats[0]);
f++) {
if (newStream->format == kAvailableFormats[f]) {
validFormat = true;
break;
}
}
if (!validFormat) {
ALOGE("%s: Unsupported stream format 0x%x requested",
__FUNCTION__, newStream->format);
return BAD_VALUE;
}
}
mInputStream = inputStream;
/**
* Initially mark all existing streams as not alive
*/
for (StreamIterator s = mStreams.begin(); s != mStreams.end(); ++s) {
PrivateStreamInfo *privStream =
static_cast<PrivateStreamInfo*>((*s)->priv);
privStream->alive = false;
}
/**
* Find new streams and mark still-alive ones
*/
for (size_t i = 0; i < streamList->num_streams; i++) {
camera3_stream_t *newStream = streamList->streams[i];
if (newStream->priv == NULL) {
// New stream, construct info
PrivateStreamInfo *privStream = new PrivateStreamInfo();
privStream->alive = true;
newStream->max_buffers = kMaxBufferCount;
newStream->priv = privStream;
mStreams.push_back(newStream);
} else {
// Existing stream, mark as still alive.
PrivateStreamInfo *privStream =
static_cast<PrivateStreamInfo*>(newStream->priv);
privStream->alive = true;
}
// Always update usage and max buffers
newStream->max_buffers = kMaxBufferCount;
switch (newStream->stream_type) {
case CAMERA3_STREAM_OUTPUT:
newStream->usage |= GRALLOC_USAGE_HW_CAMERA_WRITE;
break;
case CAMERA3_STREAM_INPUT:
newStream->usage |= GRALLOC_USAGE_HW_CAMERA_READ;
break;
case CAMERA3_STREAM_BIDIRECTIONAL:
newStream->usage |= (GRALLOC_USAGE_HW_CAMERA_READ |
GRALLOC_USAGE_HW_CAMERA_WRITE);
break;
}
// Set the buffer format, inline with gralloc implementation
if (newStream->format == HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) {
if (newStream->usage & GRALLOC_USAGE_HW_CAMERA_WRITE) {
if (newStream->usage & GRALLOC_USAGE_HW_TEXTURE) {
newStream->format = HAL_PIXEL_FORMAT_YCbCr_420_888;
}
else if (newStream->usage & GRALLOC_USAGE_HW_VIDEO_ENCODER) {
newStream->format = HAL_PIXEL_FORMAT_YCbCr_420_888;
}
else {
newStream->format = HAL_PIXEL_FORMAT_RGB_888;
}
}
}
}
/**
* Reap the dead streams
*/
for (StreamIterator s = mStreams.begin(); s != mStreams.end();) {
PrivateStreamInfo *privStream =
static_cast<PrivateStreamInfo*>((*s)->priv);
if (!privStream->alive) {
(*s)->priv = NULL;
delete privStream;
s = mStreams.erase(s);
} else {
++s;
}
}
/**
* Can't reuse settings across configure call
*/
mPrevSettings.clear();
return OK;
}
status_t EmulatedFakeCamera3::registerStreamBuffers(
const camera3_stream_buffer_set *bufferSet) {
ALOGV("%s: E", __FUNCTION__);
Mutex::Autolock l(mLock);
// Should not be called in HAL versions >= 3.2
ALOGE("%s: Should not be invoked on new HALs!",
__FUNCTION__);
return NO_INIT;
}
const camera_metadata_t* EmulatedFakeCamera3::constructDefaultRequestSettings(
int type) {
ALOGV("%s: E", __FUNCTION__);
Mutex::Autolock l(mLock);
if (type < 0 || type >= CAMERA3_TEMPLATE_COUNT) {
ALOGE("%s: Unknown request settings template: %d",
__FUNCTION__, type);
return NULL;
}
if (!hasCapability(BACKWARD_COMPATIBLE) && type != CAMERA3_TEMPLATE_PREVIEW) {
ALOGE("%s: Template %d not supported w/o BACKWARD_COMPATIBLE capability",
__FUNCTION__, type);
return NULL;
}
/**
* Cache is not just an optimization - pointer returned has to live at
* least as long as the camera device instance does.
*/
if (mDefaultTemplates[type] != NULL) {
return mDefaultTemplates[type];
}
CameraMetadata settings;
/** android.request */
static const uint8_t metadataMode = ANDROID_REQUEST_METADATA_MODE_FULL;
settings.update(ANDROID_REQUEST_METADATA_MODE, &metadataMode, 1);
static const int32_t requestId = 0;
settings.update(ANDROID_REQUEST_ID, &requestId, 1);
static const int32_t frameCount = 0;
settings.update(ANDROID_REQUEST_FRAME_COUNT, &frameCount, 1);
/** android.lens */
static const float focalLength = 5.0f;
settings.update(ANDROID_LENS_FOCAL_LENGTH, &focalLength, 1);
if (hasCapability(BACKWARD_COMPATIBLE)) {
static const float focusDistance = 0;
settings.update(ANDROID_LENS_FOCUS_DISTANCE, &focusDistance, 1);
static const float aperture = 2.8f;
settings.update(ANDROID_LENS_APERTURE, &aperture, 1);
static const float filterDensity = 0;
settings.update(ANDROID_LENS_FILTER_DENSITY, &filterDensity, 1);
static const uint8_t opticalStabilizationMode =
ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
settings.update(ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
&opticalStabilizationMode, 1);
// FOCUS_RANGE set only in frame
}
/** android.sensor */
if (hasCapability(MANUAL_SENSOR)) {
const int64_t exposureTime = 10 * MSEC;
settings.update(ANDROID_SENSOR_EXPOSURE_TIME, &exposureTime, 1);
const int64_t frameDuration = 33333333L; // 1/30 s
settings.update(ANDROID_SENSOR_FRAME_DURATION, &frameDuration, 1);
const int32_t sensitivity = 100;
settings.update(ANDROID_SENSOR_SENSITIVITY, &sensitivity, 1);
}
// TIMESTAMP set only in frame
/** android.flash */
if (hasCapability(BACKWARD_COMPATIBLE)) {
static const uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
settings.update(ANDROID_FLASH_MODE, &flashMode, 1);
static const uint8_t flashPower = 10;
settings.update(ANDROID_FLASH_FIRING_POWER, &flashPower, 1);
static const int64_t firingTime = 0;
settings.update(ANDROID_FLASH_FIRING_TIME, &firingTime, 1);
}
/** Processing block modes */
if (hasCapability(MANUAL_POST_PROCESSING)) {
uint8_t hotPixelMode = 0;
uint8_t demosaicMode = 0;
uint8_t noiseMode = 0;
uint8_t shadingMode = 0;
uint8_t colorMode = 0;
uint8_t tonemapMode = 0;
uint8_t edgeMode = 0;
switch (type) {
case CAMERA3_TEMPLATE_STILL_CAPTURE:
// fall-through
case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
// fall-through
case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
hotPixelMode = ANDROID_HOT_PIXEL_MODE_HIGH_QUALITY;
demosaicMode = ANDROID_DEMOSAIC_MODE_HIGH_QUALITY;
noiseMode = ANDROID_NOISE_REDUCTION_MODE_HIGH_QUALITY;
shadingMode = ANDROID_SHADING_MODE_HIGH_QUALITY;
colorMode = ANDROID_COLOR_CORRECTION_MODE_HIGH_QUALITY;
tonemapMode = ANDROID_TONEMAP_MODE_HIGH_QUALITY;
edgeMode = ANDROID_EDGE_MODE_HIGH_QUALITY;
break;
case CAMERA3_TEMPLATE_PREVIEW:
// fall-through
case CAMERA3_TEMPLATE_VIDEO_RECORD:
// fall-through
default:
hotPixelMode = ANDROID_HOT_PIXEL_MODE_FAST;
demosaicMode = ANDROID_DEMOSAIC_MODE_FAST;
noiseMode = ANDROID_NOISE_REDUCTION_MODE_FAST;
shadingMode = ANDROID_SHADING_MODE_FAST;
colorMode = ANDROID_COLOR_CORRECTION_MODE_FAST;
tonemapMode = ANDROID_TONEMAP_MODE_FAST;
edgeMode = ANDROID_EDGE_MODE_FAST;
break;
}
settings.update(ANDROID_HOT_PIXEL_MODE, &hotPixelMode, 1);
settings.update(ANDROID_DEMOSAIC_MODE, &demosaicMode, 1);
settings.update(ANDROID_NOISE_REDUCTION_MODE, &noiseMode, 1);
settings.update(ANDROID_SHADING_MODE, &shadingMode, 1);
settings.update(ANDROID_COLOR_CORRECTION_MODE, &colorMode, 1);
settings.update(ANDROID_TONEMAP_MODE, &tonemapMode, 1);
settings.update(ANDROID_EDGE_MODE, &edgeMode, 1);
}
/** android.colorCorrection */
if (hasCapability(MANUAL_POST_PROCESSING)) {
static const camera_metadata_rational colorTransform[9] = {
{1,1}, {0,1}, {0,1},
{0,1}, {1,1}, {0,1},
{0,1}, {0,1}, {1,1}
};
settings.update(ANDROID_COLOR_CORRECTION_TRANSFORM, colorTransform, 9);
static const float colorGains[4] = {
1.0f, 1.0f, 1.0f, 1.0f
};
settings.update(ANDROID_COLOR_CORRECTION_GAINS, colorGains, 4);
}
/** android.tonemap */
if (hasCapability(MANUAL_POST_PROCESSING)) {
static const float tonemapCurve[4] = {
0.f, 0.f,
1.f, 1.f
};
settings.update(ANDROID_TONEMAP_CURVE_RED, tonemapCurve, 4);
settings.update(ANDROID_TONEMAP_CURVE_GREEN, tonemapCurve, 4);
settings.update(ANDROID_TONEMAP_CURVE_BLUE, tonemapCurve, 4);
}
/** android.scaler */
if (hasCapability(BACKWARD_COMPATIBLE)) {
const int32_t cropRegion[4] = {
0, 0, mSensorWidth, mSensorHeight
};
settings.update(ANDROID_SCALER_CROP_REGION, cropRegion, 4);
}
/** android.jpeg */
if (hasCapability(BACKWARD_COMPATIBLE)) {
static const uint8_t jpegQuality = 80;
settings.update(ANDROID_JPEG_QUALITY, &jpegQuality, 1);
static const int32_t thumbnailSize[2] = {
320, 240
};
settings.update(ANDROID_JPEG_THUMBNAIL_SIZE, thumbnailSize, 2);
static const uint8_t thumbnailQuality = 80;
settings.update(ANDROID_JPEG_THUMBNAIL_QUALITY, &thumbnailQuality, 1);
static const double gpsCoordinates[3] = {
0, 0, 0
};
settings.update(ANDROID_JPEG_GPS_COORDINATES, gpsCoordinates, 3);
static const uint8_t gpsProcessingMethod[32] = "None";
settings.update(ANDROID_JPEG_GPS_PROCESSING_METHOD, gpsProcessingMethod, 32);
static const int64_t gpsTimestamp = 0;
settings.update(ANDROID_JPEG_GPS_TIMESTAMP, &gpsTimestamp, 1);
static const int32_t jpegOrientation = 0;
settings.update(ANDROID_JPEG_ORIENTATION, &jpegOrientation, 1);
}
/** android.stats */
if (hasCapability(BACKWARD_COMPATIBLE)) {
static const uint8_t faceDetectMode =
ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
settings.update(ANDROID_STATISTICS_FACE_DETECT_MODE, &faceDetectMode, 1);
static const uint8_t hotPixelMapMode =
ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE_OFF;
settings.update(ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE, &hotPixelMapMode, 1);
}
// faceRectangles, faceScores, faceLandmarks, faceIds, histogram,
// sharpnessMap only in frames
/** android.control */
uint8_t controlIntent = 0;
switch (type) {
case CAMERA3_TEMPLATE_PREVIEW:
controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
break;
case CAMERA3_TEMPLATE_STILL_CAPTURE:
controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
break;
case CAMERA3_TEMPLATE_VIDEO_RECORD:
controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
break;
case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
break;
case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_ZERO_SHUTTER_LAG;
break;
case CAMERA3_TEMPLATE_MANUAL:
controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_MANUAL;
break;
default:
controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_CUSTOM;
break;
}
settings.update(ANDROID_CONTROL_CAPTURE_INTENT, &controlIntent, 1);
const uint8_t controlMode = (type == CAMERA3_TEMPLATE_MANUAL) ?
ANDROID_CONTROL_MODE_OFF :
ANDROID_CONTROL_MODE_AUTO;
settings.update(ANDROID_CONTROL_MODE, &controlMode, 1);
int32_t aeTargetFpsRange[2] = {
15, 30
};
if (type == CAMERA3_TEMPLATE_VIDEO_RECORD || type == CAMERA3_TEMPLATE_VIDEO_SNAPSHOT) {
aeTargetFpsRange[0] = 30;
}
settings.update(ANDROID_CONTROL_AE_TARGET_FPS_RANGE, aeTargetFpsRange, 2);
if (hasCapability(BACKWARD_COMPATIBLE)) {
static const uint8_t effectMode = ANDROID_CONTROL_EFFECT_MODE_OFF;
settings.update(ANDROID_CONTROL_EFFECT_MODE, &effectMode, 1);
const uint8_t sceneMode = ANDROID_CONTROL_SCENE_MODE_FACE_PRIORITY;
settings.update(ANDROID_CONTROL_SCENE_MODE, &sceneMode, 1);
const uint8_t aeMode = (type == CAMERA3_TEMPLATE_MANUAL) ?
ANDROID_CONTROL_AE_MODE_OFF :
ANDROID_CONTROL_AE_MODE_ON;
settings.update(ANDROID_CONTROL_AE_MODE, &aeMode, 1);
static const uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF;
settings.update(ANDROID_CONTROL_AE_LOCK, &aeLock, 1);
static const int32_t controlRegions[5] = {
0, 0, 0, 0, 0
};
settings.update(ANDROID_CONTROL_AE_REGIONS, controlRegions, 5);
static const int32_t aeExpCompensation = 0;
settings.update(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION, &aeExpCompensation, 1);
static const uint8_t aeAntibandingMode =
ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
settings.update(ANDROID_CONTROL_AE_ANTIBANDING_MODE, &aeAntibandingMode, 1);
static const uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
settings.update(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER, &aePrecaptureTrigger, 1);
const uint8_t awbMode = (type == CAMERA3_TEMPLATE_MANUAL) ?
ANDROID_CONTROL_AWB_MODE_OFF :
ANDROID_CONTROL_AWB_MODE_AUTO;
settings.update(ANDROID_CONTROL_AWB_MODE, &awbMode, 1);
static const uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
settings.update(ANDROID_CONTROL_AWB_LOCK, &awbLock, 1);
uint8_t afMode = 0;
{
switch (type) {
case CAMERA3_TEMPLATE_PREVIEW:
afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE;
break;
case CAMERA3_TEMPLATE_STILL_CAPTURE:
afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE;
break;
case CAMERA3_TEMPLATE_VIDEO_RECORD:
afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO;
break;
case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO;
break;
case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE;
break;
case CAMERA3_TEMPLATE_MANUAL:
afMode = ANDROID_CONTROL_AF_MODE_OFF;
break;
default:
afMode = ANDROID_CONTROL_AF_MODE_AUTO;
break;
}
}
settings.update(ANDROID_CONTROL_AF_MODE, &afMode, 1);
settings.update(ANDROID_CONTROL_AF_REGIONS, controlRegions, 5);
const uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
settings.update(ANDROID_CONTROL_AF_TRIGGER, &afTrigger, 1);
static const uint8_t vstabMode =
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF;
settings.update(ANDROID_CONTROL_VIDEO_STABILIZATION_MODE, &vstabMode, 1);
static const uint8_t blackLevelLock = ANDROID_BLACK_LEVEL_LOCK_OFF;
settings.update(ANDROID_BLACK_LEVEL_LOCK, &blackLevelLock, 1);
static const uint8_t lensShadingMapMode = ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF;
settings.update(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE, &lensShadingMapMode, 1);
uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_FAST;
if (type == CAMERA3_TEMPLATE_STILL_CAPTURE) {
aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_HIGH_QUALITY;
}
settings.update(ANDROID_COLOR_CORRECTION_ABERRATION_MODE, &aberrationMode, 1);
static const int32_t testPatternMode = ANDROID_SENSOR_TEST_PATTERN_MODE_OFF;
settings.update(ANDROID_SENSOR_TEST_PATTERN_MODE, &testPatternMode, 1);
}
mDefaultTemplates[type] = settings.release();
return mDefaultTemplates[type];
}
status_t EmulatedFakeCamera3::processCaptureRequest(
camera3_capture_request *request) {
Mutex::Autolock l(mLock);
status_t res;
/** Validation */
if (mStatus < STATUS_READY) {
ALOGE("%s: Can't submit capture requests in state %d", __FUNCTION__,
mStatus);
return INVALID_OPERATION;
}
if (request == NULL) {
ALOGE("%s: NULL request!", __FUNCTION__);
return BAD_VALUE;
}
uint32_t frameNumber = request->frame_number;
if (request->settings == NULL && mPrevSettings.isEmpty()) {
ALOGE("%s: Request %d: NULL settings for first request after"
"configureStreams()", __FUNCTION__, frameNumber);
return BAD_VALUE;
}
if (request->input_buffer != NULL &&
request->input_buffer->stream != mInputStream) {
ALOGE("%s: Request %d: Input buffer not from input stream!",
__FUNCTION__, frameNumber);
ALOGV("%s: Bad stream %p, expected: %p",
__FUNCTION__, request->input_buffer->stream,
mInputStream);
ALOGV("%s: Bad stream type %d, expected stream type %d",
__FUNCTION__, request->input_buffer->stream->stream_type,
mInputStream ? mInputStream->stream_type : -1);
return BAD_VALUE;
}
if (request->num_output_buffers < 1 || request->output_buffers == NULL) {
ALOGE("%s: Request %d: No output buffers provided!",
__FUNCTION__, frameNumber);
return BAD_VALUE;
}
// Validate all buffers, starting with input buffer if it's given
ssize_t idx;
const camera3_stream_buffer_t *b;
if (request->input_buffer != NULL) {
idx = -1;
b = request->input_buffer;
} else {
idx = 0;
b = request->output_buffers;
}
do {
PrivateStreamInfo *priv =
static_cast<PrivateStreamInfo*>(b->stream->priv);
if (priv == NULL) {
ALOGE("%s: Request %d: Buffer %zu: Unconfigured stream!",
__FUNCTION__, frameNumber, idx);
return BAD_VALUE;
}
if (!priv->alive) {
ALOGE("%s: Request %d: Buffer %zu: Dead stream!",
__FUNCTION__, frameNumber, idx);
return BAD_VALUE;
}
if (b->status != CAMERA3_BUFFER_STATUS_OK) {
ALOGE("%s: Request %d: Buffer %zu: Status not OK!",
__FUNCTION__, frameNumber, idx);
return BAD_VALUE;
}
if (b->release_fence != -1) {
ALOGE("%s: Request %d: Buffer %zu: Has a release fence!",
__FUNCTION__, frameNumber, idx);
return BAD_VALUE;
}
if (b->buffer == NULL) {
ALOGE("%s: Request %d: Buffer %zu: NULL buffer handle!",
__FUNCTION__, frameNumber, idx);
return BAD_VALUE;
}
idx++;
b = &(request->output_buffers[idx]);
} while (idx < (ssize_t)request->num_output_buffers);
// TODO: Validate settings parameters
/**
* Start processing this request
*/
mStatus = STATUS_ACTIVE;
CameraMetadata settings;
if (request->settings == NULL) {
settings.acquire(mPrevSettings);
} else {
settings = request->settings;
}
res = process3A(settings);
if (res != OK) {
return res;
}
// TODO: Handle reprocessing
/**
* Get ready for sensor config
*/
nsecs_t exposureTime;
nsecs_t frameDuration;
uint32_t sensitivity;
bool needJpeg = false;
camera_metadata_entry_t entry;
entry = settings.find(ANDROID_SENSOR_EXPOSURE_TIME);
exposureTime = (entry.count > 0) ? entry.data.i64[0] : Sensor::kExposureTimeRange[0];
entry = settings.find(ANDROID_SENSOR_FRAME_DURATION);
frameDuration = (entry.count > 0)? entry.data.i64[0] : Sensor::kFrameDurationRange[0];
entry = settings.find(ANDROID_SENSOR_SENSITIVITY);
sensitivity = (entry.count > 0) ? entry.data.i32[0] : Sensor::kSensitivityRange[0];
if (exposureTime > frameDuration) {
frameDuration = exposureTime + Sensor::kMinVerticalBlank;
settings.update(ANDROID_SENSOR_FRAME_DURATION, &frameDuration, 1);
}
Buffers *sensorBuffers = new Buffers();
HalBufferVector *buffers = new HalBufferVector();
sensorBuffers->setCapacity(request->num_output_buffers);
buffers->setCapacity(request->num_output_buffers);
// Process all the buffers we got for output, constructing internal buffer
// structures for them, and lock them for writing.
for (size_t i = 0; i < request->num_output_buffers; i++) {
const camera3_stream_buffer &srcBuf = request->output_buffers[i];
StreamBuffer destBuf;
destBuf.streamId = kGenericStreamId;
destBuf.width = srcBuf.stream->width;
destBuf.height = srcBuf.stream->height;
// inline with goldfish gralloc
if (srcBuf.stream->format == HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) {
if (srcBuf.stream->usage & GRALLOC_USAGE_HW_CAMERA_WRITE) {
if (srcBuf.stream->usage & GRALLOC_USAGE_HW_TEXTURE) {
destBuf.format = HAL_PIXEL_FORMAT_YCbCr_420_888;
}
else if (srcBuf.stream->usage & GRALLOC_USAGE_HW_VIDEO_ENCODER) {
destBuf.format = HAL_PIXEL_FORMAT_YCbCr_420_888;
}
else if ((srcBuf.stream->usage & GRALLOC_USAGE_HW_CAMERA_MASK)
== GRALLOC_USAGE_HW_CAMERA_ZSL) {
destBuf.format = HAL_PIXEL_FORMAT_RGB_888;
}
}
}
else {
destBuf.format = srcBuf.stream->format;
}
destBuf.stride = srcBuf.stream->width;
destBuf.dataSpace = srcBuf.stream->data_space;
destBuf.buffer = srcBuf.buffer;
if (destBuf.format == HAL_PIXEL_FORMAT_BLOB) {
needJpeg = true;
}
// Wait on fence
sp<Fence> bufferAcquireFence = new Fence(srcBuf.acquire_fence);
res = bufferAcquireFence->wait(kFenceTimeoutMs);
if (res == TIMED_OUT) {
ALOGE("%s: Request %d: Buffer %zu: Fence timed out after %d ms",
__FUNCTION__, frameNumber, i, kFenceTimeoutMs);
}
if (res == OK) {
// Lock buffer for writing
if (srcBuf.stream->format == HAL_PIXEL_FORMAT_YCbCr_420_888) {
if (destBuf.format == HAL_PIXEL_FORMAT_YCbCr_420_888) {
android_ycbcr ycbcr = {};
res = mGBM->lockYCbCr(
*(destBuf.buffer),
GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN,
Rect(0, 0, destBuf.width, destBuf.height),
&ycbcr);
// This is only valid because we know that emulator's
// YCbCr_420_888 is really contiguous NV21 under the hood
destBuf.img = static_cast<uint8_t*>(ycbcr.y);
} else {
ALOGE("Unexpected private format for flexible YUV: 0x%x",
destBuf.format);
res = INVALID_OPERATION;
}
} else {
res = mGBM->lock(
*(destBuf.buffer),
GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN,
Rect(0, 0, destBuf.width, destBuf.height),
(void**)&(destBuf.img));
}
if (res != OK) {
ALOGE("%s: Request %d: Buffer %zu: Unable to lock buffer",
__FUNCTION__, frameNumber, i);
} else {
ALOGV("%s, stream format 0x%x width %d height %d buffer 0x%p img 0x%p",
__FUNCTION__, destBuf.format, destBuf.width, destBuf.height,
destBuf.buffer, destBuf.img);
}
}
if (res != OK) {
// Either waiting or locking failed. Unlock locked buffers and bail
// out.
for (size_t j = 0; j < i; j++) {
mGBM->unlock(*(request->output_buffers[i].buffer));
}
delete sensorBuffers;
delete buffers;
return NO_INIT;
}
sensorBuffers->push_back(destBuf);
buffers->push_back(srcBuf);
}
/**
* Wait for JPEG compressor to not be busy, if needed
*/
if (needJpeg) {
bool ready = mJpegCompressor->waitForDone(kJpegTimeoutNs);
if (!ready) {
ALOGE("%s: Timeout waiting for JPEG compression to complete!",
__FUNCTION__);
return NO_INIT;
}
res = mJpegCompressor->reserve();
if (res != OK) {
ALOGE("%s: Error managing JPEG compressor resources, can't reserve it!", __FUNCTION__);
return NO_INIT;
}
}
/**
* Wait until the in-flight queue has room
*/
res = mReadoutThread->waitForReadout();
if (res != OK) {
ALOGE("%s: Timeout waiting for previous requests to complete!",
__FUNCTION__);
return NO_INIT;
}
/**
* Wait until sensor's ready. This waits for lengthy amounts of time with
* mLock held, but the interface spec is that no other calls may by done to
* the HAL by the framework while process_capture_request is happening.
*/
int syncTimeoutCount = 0;
while(!mSensor->waitForVSync(kSyncWaitTimeout)) {
if (mStatus == STATUS_ERROR) {
return NO_INIT;
}
if (syncTimeoutCount == kMaxSyncTimeoutCount) {
ALOGE("%s: Request %d: Sensor sync timed out after %" PRId64 " ms",
__FUNCTION__, frameNumber,
kSyncWaitTimeout * kMaxSyncTimeoutCount / 1000000);
return NO_INIT;
}
syncTimeoutCount++;
}
/**
* Configure sensor and queue up the request to the readout thread
*/
mSensor->setExposureTime(exposureTime);
mSensor->setFrameDuration(frameDuration);
mSensor->setSensitivity(sensitivity);
mSensor->setDestinationBuffers(sensorBuffers);
mSensor->setFrameNumber(request->frame_number);
ReadoutThread::Request r;
r.frameNumber = request->frame_number;
r.settings = settings;
r.sensorBuffers = sensorBuffers;
r.buffers = buffers;
mReadoutThread->queueCaptureRequest(r);
ALOGVV("%s: Queued frame %d", __FUNCTION__, request->frame_number);
// Cache the settings for next time
mPrevSettings.acquire(settings);
return OK;
}
status_t EmulatedFakeCamera3::flush() {
ALOGW("%s: Not implemented; ignored", __FUNCTION__);
return OK;
}
/** Debug methods */
void EmulatedFakeCamera3::dump(int fd) {
}
/**
* Private methods
*/
status_t EmulatedFakeCamera3::getCameraCapabilities() {
const char *key = mFacingBack ? "qemu.sf.back_camera_caps" : "qemu.sf.front_camera_caps";
/* Defined by 'qemu.sf.*_camera_caps' boot property: if the
* property doesn't exist, it is assumed to list FULL. */
char prop[PROPERTY_VALUE_MAX];
if (property_get(key, prop, NULL) > 0) {
char *saveptr = nullptr;
char *cap = strtok_r(prop, " ,", &saveptr);
while (cap != NULL) {
for (int i = 0; i < NUM_CAPABILITIES; i++) {
if (!strcasecmp(cap, sAvailableCapabilitiesStrings[i])) {
mCapabilities.add(static_cast<AvailableCapabilities>(i));
break;
}
}
cap = strtok_r(NULL, " ,", &saveptr);
}
if (mCapabilities.size() == 0) {
ALOGE("qemu.sf.back_camera_caps had no valid capabilities: %s", prop);
}
}
// Default to FULL_LEVEL plus RAW if nothing is defined
if (mCapabilities.size() == 0) {
mCapabilities.add(FULL_LEVEL);
// "RAW" causes several CTS failures: b/68723953, disable it so far.
// TODO: add "RAW" back when all failures are resolved.
mCapabilities.add(RAW);
mCapabilities.add(MOTION_TRACKING);
}
// Add level-based caps
if (hasCapability(FULL_LEVEL)) {
mCapabilities.add(BURST_CAPTURE);
mCapabilities.add(READ_SENSOR_SETTINGS);
mCapabilities.add(MANUAL_SENSOR);
mCapabilities.add(MANUAL_POST_PROCESSING);
};
// Backwards-compatible is required for most other caps
// Not required for DEPTH_OUTPUT, though.
if (hasCapability(BURST_CAPTURE) ||
hasCapability(READ_SENSOR_SETTINGS) ||
hasCapability(RAW) ||
hasCapability(MANUAL_SENSOR) ||
hasCapability(MANUAL_POST_PROCESSING) ||
hasCapability(PRIVATE_REPROCESSING) ||
hasCapability(YUV_REPROCESSING) ||
hasCapability(CONSTRAINED_HIGH_SPEED_VIDEO)) {
mCapabilities.add(BACKWARD_COMPATIBLE);
}
ALOGI("Camera %d capabilities:", mCameraID);
for (size_t i = 0; i < mCapabilities.size(); i++) {
ALOGI(" %s", sAvailableCapabilitiesStrings[mCapabilities[i]]);
}
return OK;
}
bool EmulatedFakeCamera3::hasCapability(AvailableCapabilities cap) {
ssize_t idx = mCapabilities.indexOf(cap);
return idx >= 0;
}
status_t EmulatedFakeCamera3::constructStaticInfo() {
CameraMetadata info;
Vector<int32_t> availableCharacteristicsKeys;
status_t res;
// Find max width/height
int32_t width = 0, height = 0;
size_t rawSizeCount = sizeof(kAvailableRawSizes)/sizeof(kAvailableRawSizes[0]);
for (size_t index = 0; index + 1 < rawSizeCount; index += 2) {
if (width <= (int32_t)kAvailableRawSizes[index] &&
height <= (int32_t)kAvailableRawSizes[index+1]) {
width = kAvailableRawSizes[index];
height = kAvailableRawSizes[index+1];
}
}
if (width < 640 || height < 480) {
width = 640;
height = 480;
}
mSensorWidth = width;
mSensorHeight = height;
#define ADD_STATIC_ENTRY(name, varptr, count) \
availableCharacteristicsKeys.add(name); \
res = info.update(name, varptr, count); \
if (res != OK) return res
// android.sensor
if (hasCapability(MANUAL_SENSOR)) {
ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
Sensor::kExposureTimeRange, 2);
ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
&Sensor::kFrameDurationRange[1], 1);
ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
Sensor::kSensitivityRange,
sizeof(Sensor::kSensitivityRange)
/sizeof(int32_t));
ADD_STATIC_ENTRY(ANDROID_SENSOR_MAX_ANALOG_SENSITIVITY,
&Sensor::kSensitivityRange[1], 1);
}
static const uint8_t sensorColorFilterArrangement =
ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_RGGB;
ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
&sensorColorFilterArrangement, 1);
static const float sensorPhysicalSize[2] = {3.20f, 2.40f}; // mm
ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
sensorPhysicalSize, 2);
const int32_t pixelArray[] = {mSensorWidth, mSensorHeight};
ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
pixelArray, 2);
const int32_t activeArray[] = {0, 0, mSensorWidth, mSensorHeight};
ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
activeArray, 4);
static const int32_t orientation = 90; // Aligned with 'long edge'
ADD_STATIC_ENTRY(ANDROID_SENSOR_ORIENTATION, &orientation, 1);
static const uint8_t timestampSource = ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_REALTIME;
ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE, &timestampSource, 1);
if (hasCapability(RAW) || hasCapability(MANUAL_SENSOR)) {
ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_WHITE_LEVEL,
(int32_t*)&Sensor::kMaxRawValue, 1);
static const int32_t blackLevelPattern[4] = {
(int32_t)Sensor::kBlackLevel, (int32_t)Sensor::kBlackLevel,
(int32_t)Sensor::kBlackLevel, (int32_t)Sensor::kBlackLevel
};
ADD_STATIC_ENTRY(ANDROID_SENSOR_BLACK_LEVEL_PATTERN,
blackLevelPattern, sizeof(blackLevelPattern)/sizeof(int32_t));
}
if (hasCapability(RAW)) {
ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
&Sensor::kColorFilterArrangement, 1);
}
if (hasCapability(BACKWARD_COMPATIBLE)) {
static const int32_t availableTestPatternModes[] = {
ANDROID_SENSOR_TEST_PATTERN_MODE_OFF
};
ADD_STATIC_ENTRY(ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
availableTestPatternModes, sizeof(availableTestPatternModes)/sizeof(int32_t));
}
// android.lens
static const float focalLengths = 5.0f;
ADD_STATIC_ENTRY(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
&focalLengths, 1);
if (hasCapability(BACKWARD_COMPATIBLE)) {
// 5 cm min focus distance for back camera, infinity (fixed focus) for front
const float minFocusDistance = 1.0/0.05;
ADD_STATIC_ENTRY(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
&minFocusDistance, 1);
// 5 m hyperfocal distance for back camera, infinity (fixed focus) for front
const float hyperFocalDistance = 1.0/5.0;
ADD_STATIC_ENTRY(ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
&hyperFocalDistance, 1);
static const float apertures = 2.8f;
ADD_STATIC_ENTRY(ANDROID_LENS_INFO_AVAILABLE_APERTURES,
&apertures, 1);
static const float filterDensities = 0;
ADD_STATIC_ENTRY(ANDROID_LENS_INFO_AVAILABLE_FILTER_DENSITIES,
&filterDensities, 1);
static const uint8_t availableOpticalStabilization =
ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
ADD_STATIC_ENTRY(ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
&availableOpticalStabilization, 1);
static const int32_t lensShadingMapSize[] = {1, 1};
ADD_STATIC_ENTRY(ANDROID_LENS_INFO_SHADING_MAP_SIZE, lensShadingMapSize,
sizeof(lensShadingMapSize)/sizeof(int32_t));
static const uint8_t lensFocusCalibration =
ANDROID_LENS_INFO_FOCUS_DISTANCE_CALIBRATION_APPROXIMATE;
ADD_STATIC_ENTRY(ANDROID_LENS_INFO_FOCUS_DISTANCE_CALIBRATION, &lensFocusCalibration, 1);
}
if (hasCapability(DEPTH_OUTPUT)) {
// These could be included for non-DEPTH capability as well, but making this variable for
// testing coverage
// 90 degree rotation to align with long edge of a phone device that's by default portrait
static const float qO[] = { 0.707107f, 0.f, 0.f, 0.707107f};
const float qF[] = {0, 1.f, 0, 0.f};
// Quarternion product, orientation change then facing
const float lensPoseRotation[] = {qO[0]*qF[0] - qO[1]*qF[1] - qO[2]*qF[2] - qO[3]*qF[3],
qO[0]*qF[1] + qO[1]*qF[0] + qO[2]*qF[3] - qO[3]*qF[2],
qO[0]*qF[2] + qO[2]*qF[0] + qO[1]*qF[3] - qO[3]*qF[1],
qO[0]*qF[3] + qO[3]*qF[0] + qO[1]*qF[2] - qO[2]*qF[1]};
ADD_STATIC_ENTRY(ANDROID_LENS_POSE_ROTATION, lensPoseRotation,
sizeof(lensPoseRotation)/sizeof(float));
// Only one camera facing each way, so 0 translation needed to the center of the 'main'
// camera
static const float lensPoseTranslation[] = {0.f, 0.f, 0.f};
ADD_STATIC_ENTRY(ANDROID_LENS_POSE_TRANSLATION, lensPoseTranslation,
sizeof(lensPoseTranslation)/sizeof(float));
// Intrinsics are 'ideal' (f_x, f_y, c_x, c_y, s) match focal length and active array size
float f_x = focalLengths * mSensorWidth / sensorPhysicalSize[0];
float f_y = focalLengths * mSensorHeight / sensorPhysicalSize[1];
float c_x = mSensorWidth / 2.f;
float c_y = mSensorHeight / 2.f;
float s = 0.f;
const float lensIntrinsics[] = { f_x, f_y, c_x, c_y, s };
ADD_STATIC_ENTRY(ANDROID_LENS_INTRINSIC_CALIBRATION, lensIntrinsics,
sizeof(lensIntrinsics)/sizeof(float));
// No radial or tangential distortion
float lensRadialDistortion[] = {1.0f, 0.f, 0.f, 0.f, 0.f, 0.f};
ADD_STATIC_ENTRY(ANDROID_LENS_RADIAL_DISTORTION, lensRadialDistortion,
sizeof(lensRadialDistortion)/sizeof(float));
}
const uint8_t lensFacing = mFacingBack ?
ANDROID_LENS_FACING_BACK : ANDROID_LENS_FACING_FRONT;
ADD_STATIC_ENTRY(ANDROID_LENS_FACING, &lensFacing, 1);
// android.flash
static const uint8_t flashAvailable = 1;
ADD_STATIC_ENTRY(ANDROID_FLASH_INFO_AVAILABLE, &flashAvailable, 1);
// android.hotPixel
if (hasCapability(MANUAL_POST_PROCESSING)) {
static const uint8_t availableHotPixelModes[] = {
ANDROID_HOT_PIXEL_MODE_FAST, ANDROID_HOT_PIXEL_MODE_HIGH_QUALITY
};
ADD_STATIC_ENTRY(ANDROID_HOT_PIXEL_AVAILABLE_HOT_PIXEL_MODES,
availableHotPixelModes, sizeof(availableHotPixelModes));
}
// android.tonemap
if (hasCapability(MANUAL_POST_PROCESSING)) {
static const int32_t tonemapCurvePoints = 128;
ADD_STATIC_ENTRY(ANDROID_TONEMAP_MAX_CURVE_POINTS, &tonemapCurvePoints, 1);
static const uint8_t availableToneMapModes[] = {
ANDROID_TONEMAP_MODE_CONTRAST_CURVE, ANDROID_TONEMAP_MODE_FAST,
ANDROID_TONEMAP_MODE_HIGH_QUALITY
};
ADD_STATIC_ENTRY(ANDROID_TONEMAP_AVAILABLE_TONE_MAP_MODES, availableToneMapModes,
sizeof(availableToneMapModes));
}
// android.scaler
const std::vector<int32_t> availableStreamConfigurationsBasic = {
HAL_PIXEL_FORMAT_BLOB, width, height, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 1280, 720, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
HAL_PIXEL_FORMAT_YCbCr_420_888, 1280, 720, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
HAL_PIXEL_FORMAT_BLOB, 1280, 720, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 640, 480, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
HAL_PIXEL_FORMAT_YCbCr_420_888, 640, 480, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
HAL_PIXEL_FORMAT_BLOB, 640, 480, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 320, 240, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
HAL_PIXEL_FORMAT_YCbCr_420_888, 320, 240, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
HAL_PIXEL_FORMAT_BLOB, 320, 240, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 176, 144, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
HAL_PIXEL_FORMAT_YCbCr_420_888, 176, 144, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
HAL_PIXEL_FORMAT_BLOB, 176, 144, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
};
const std::vector<int32_t> availableStreamConfigurationsRaw = {
HAL_PIXEL_FORMAT_RAW16, width, height, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
};
const std::vector<int32_t> availableStreamConfigurationsBurst = {
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, width, height, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
HAL_PIXEL_FORMAT_YCbCr_420_888, width, height, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
HAL_PIXEL_FORMAT_RGBA_8888, width, height, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
};
std::vector<int32_t> availableStreamConfigurations;
if (hasCapability(BACKWARD_COMPATIBLE)) {
availableStreamConfigurations.insert(availableStreamConfigurations.end(),
availableStreamConfigurationsBasic.begin(),
availableStreamConfigurationsBasic.end());
}
if (hasCapability(RAW)) {
availableStreamConfigurations.insert(availableStreamConfigurations.end(),
availableStreamConfigurationsRaw.begin(),
availableStreamConfigurationsRaw.end());
}
if (hasCapability(BURST_CAPTURE)) {
availableStreamConfigurations.insert(availableStreamConfigurations.end(),
availableStreamConfigurationsBurst.begin(),
availableStreamConfigurationsBurst.end());
}
if (availableStreamConfigurations.size() > 0) {
ADD_STATIC_ENTRY(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
&availableStreamConfigurations[0],
availableStreamConfigurations.size());
}
const std::vector<int64_t> availableMinFrameDurationsBasic = {
HAL_PIXEL_FORMAT_BLOB, width, height, Sensor::kFrameDurationRange[0],
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 1280, 720, Sensor::kFrameDurationRange[0],
HAL_PIXEL_FORMAT_YCbCr_420_888, 1280, 720, Sensor::kFrameDurationRange[0],
HAL_PIXEL_FORMAT_BLOB, 1280, 720, Sensor::kFrameDurationRange[0],
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 640, 480, Sensor::kFrameDurationRange[0],
HAL_PIXEL_FORMAT_YCbCr_420_888, 640, 480, Sensor::kFrameDurationRange[0],
HAL_PIXEL_FORMAT_BLOB, 640, 480, Sensor::kFrameDurationRange[0],
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 320, 240, Sensor::kFrameDurationRange[0],
HAL_PIXEL_FORMAT_YCbCr_420_888, 320, 240, Sensor::kFrameDurationRange[0],
HAL_PIXEL_FORMAT_BLOB, 320, 240, Sensor::kFrameDurationRange[0],
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 176, 144, Sensor::kFrameDurationRange[0],
HAL_PIXEL_FORMAT_YCbCr_420_888, 176, 144, Sensor::kFrameDurationRange[0],
HAL_PIXEL_FORMAT_BLOB, 176, 144, Sensor::kFrameDurationRange[0],
};
const std::vector<int64_t> availableMinFrameDurationsRaw = {
HAL_PIXEL_FORMAT_RAW16, width, height, Sensor::kFrameDurationRange[0],
};
const std::vector<int64_t> availableMinFrameDurationsBurst = {
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, width, height, Sensor::kFrameDurationRange[0],
HAL_PIXEL_FORMAT_YCbCr_420_888, width, height, Sensor::kFrameDurationRange[0],
HAL_PIXEL_FORMAT_RGBA_8888, width, height, Sensor::kFrameDurationRange[0],
};
std::vector<int64_t> availableMinFrameDurations;
if (hasCapability(BACKWARD_COMPATIBLE)) {
availableMinFrameDurations.insert(availableMinFrameDurations.end(),
availableMinFrameDurationsBasic.begin(),
availableMinFrameDurationsBasic.end());
}
if (hasCapability(RAW)) {
availableMinFrameDurations.insert(availableMinFrameDurations.end(),
availableMinFrameDurationsRaw.begin(),
availableMinFrameDurationsRaw.end());
}
if (hasCapability(BURST_CAPTURE)) {
availableMinFrameDurations.insert(availableMinFrameDurations.end(),
availableMinFrameDurationsBurst.begin(),
availableMinFrameDurationsBurst.end());
}
if (availableMinFrameDurations.size() > 0) {
ADD_STATIC_ENTRY(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
&availableMinFrameDurations[0],
availableMinFrameDurations.size());
}
const std::vector<int64_t> availableStallDurationsBasic = {
HAL_PIXEL_FORMAT_BLOB, width, height, Sensor::kFrameDurationRange[0],
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 1280, 720, 0,
HAL_PIXEL_FORMAT_YCbCr_420_888, 1280, 720, 0,
HAL_PIXEL_FORMAT_BLOB, 1280, 720, Sensor::kFrameDurationRange[0],
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 640, 480, 0,
HAL_PIXEL_FORMAT_YCbCr_420_888, 640, 480, 0,
HAL_PIXEL_FORMAT_BLOB, 640, 480, Sensor::kFrameDurationRange[0],
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 320, 240, 0,
HAL_PIXEL_FORMAT_YCbCr_420_888, 320, 240, 0,
HAL_PIXEL_FORMAT_RGBA_8888, 320, 240, 0,
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 176, 144, 0,
HAL_PIXEL_FORMAT_YCbCr_420_888, 176, 144, 0,
HAL_PIXEL_FORMAT_RGBA_8888, 176, 144, 0,
};
const std::vector<int64_t> availableStallDurationsRaw = {
HAL_PIXEL_FORMAT_RAW16, width, height, Sensor::kFrameDurationRange[0]
};
const std::vector<int64_t> availableStallDurationsBurst = {
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, width, height, 0,
HAL_PIXEL_FORMAT_YCbCr_420_888, width, height, 0,
HAL_PIXEL_FORMAT_RGBA_8888, width, height, 0
};
std::vector<int64_t> availableStallDurations;
if (hasCapability(BACKWARD_COMPATIBLE)) {
availableStallDurations.insert(availableStallDurations.end(),
availableStallDurationsBasic.begin(),
availableStallDurationsBasic.end());
}
if (hasCapability(RAW)) {
availableStallDurations.insert(availableStallDurations.end(),
availableStallDurationsRaw.begin(),
availableStallDurationsRaw.end());
}
if (hasCapability(BURST_CAPTURE)) {
availableStallDurations.insert(availableStallDurations.end(),
availableStallDurationsBurst.begin(),
availableStallDurationsBurst.end());
}
if (availableStallDurations.size() > 0) {
ADD_STATIC_ENTRY(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
&availableStallDurations[0],
availableStallDurations.size());
}
if (hasCapability(BACKWARD_COMPATIBLE)) {
static const uint8_t croppingType = ANDROID_SCALER_CROPPING_TYPE_FREEFORM;
ADD_STATIC_ENTRY(ANDROID_SCALER_CROPPING_TYPE,
&croppingType, 1);
static const float maxZoom = 10;
ADD_STATIC_ENTRY(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
&maxZoom, 1);
}
// android.jpeg
if (hasCapability(BACKWARD_COMPATIBLE)) {
static const int32_t jpegThumbnailSizes[] = {
0, 0,
160, 120,
320, 180,
320, 240
};
ADD_STATIC_ENTRY(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
jpegThumbnailSizes, sizeof(jpegThumbnailSizes)/sizeof(int32_t));
static const int32_t jpegMaxSize = JpegCompressor::kMaxJpegSize;
ADD_STATIC_ENTRY(ANDROID_JPEG_MAX_SIZE, &jpegMaxSize, 1);
}
// android.stats
if (hasCapability(BACKWARD_COMPATIBLE)) {
static const uint8_t availableFaceDetectModes[] = {
ANDROID_STATISTICS_FACE_DETECT_MODE_OFF,
ANDROID_STATISTICS_FACE_DETECT_MODE_SIMPLE,
ANDROID_STATISTICS_FACE_DETECT_MODE_FULL
};
ADD_STATIC_ENTRY(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
availableFaceDetectModes,
sizeof(availableFaceDetectModes));
static const int32_t maxFaceCount = 8;
ADD_STATIC_ENTRY(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
&maxFaceCount, 1);
static const uint8_t availableShadingMapModes[] = {
ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF
};
ADD_STATIC_ENTRY(ANDROID_STATISTICS_INFO_AVAILABLE_LENS_SHADING_MAP_MODES,
availableShadingMapModes, sizeof(availableShadingMapModes));
}
// android.sync
static const int32_t maxLatency =
hasCapability(FULL_LEVEL) ? ANDROID_SYNC_MAX_LATENCY_PER_FRAME_CONTROL : 3;
ADD_STATIC_ENTRY(ANDROID_SYNC_MAX_LATENCY, &maxLatency, 1);
// android.control
if (hasCapability(BACKWARD_COMPATIBLE)) {
const uint8_t availableControlModes[] = {
ANDROID_CONTROL_MODE_OFF, ANDROID_CONTROL_MODE_AUTO, ANDROID_CONTROL_MODE_USE_SCENE_MODE
};
ADD_STATIC_ENTRY(ANDROID_CONTROL_AVAILABLE_MODES,
availableControlModes, sizeof(availableControlModes));
} else {
const uint8_t availableControlModes[] = {
ANDROID_CONTROL_MODE_AUTO
};
ADD_STATIC_ENTRY(ANDROID_CONTROL_AVAILABLE_MODES,
availableControlModes, sizeof(availableControlModes));
}
const uint8_t availableSceneModes[] = {
hasCapability(BACKWARD_COMPATIBLE) ?
ANDROID_CONTROL_SCENE_MODE_FACE_PRIORITY :
ANDROID_CONTROL_SCENE_MODE_DISABLED
};
ADD_STATIC_ENTRY(ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
availableSceneModes, sizeof(availableSceneModes));
if (hasCapability(BACKWARD_COMPATIBLE)) {
static const uint8_t availableEffects[] = {
ANDROID_CONTROL_EFFECT_MODE_OFF
};
ADD_STATIC_ENTRY(ANDROID_CONTROL_AVAILABLE_EFFECTS,
availableEffects, sizeof(availableEffects));
}
if (hasCapability(BACKWARD_COMPATIBLE)) {
static const int32_t max3aRegions[] = {/*AE*/ 1,/*AWB*/ 0,/*AF*/ 1};
ADD_STATIC_ENTRY(ANDROID_CONTROL_MAX_REGIONS,
max3aRegions, sizeof(max3aRegions)/sizeof(max3aRegions[0]));
static const uint8_t availableAeModes[] = {
ANDROID_CONTROL_AE_MODE_OFF,
ANDROID_CONTROL_AE_MODE_ON
};
ADD_STATIC_ENTRY(ANDROID_CONTROL_AE_AVAILABLE_MODES,
availableAeModes, sizeof(availableAeModes));
static const camera_metadata_rational exposureCompensationStep = {
0, 3
};
ADD_STATIC_ENTRY(ANDROID_CONTROL_AE_COMPENSATION_STEP,
&exposureCompensationStep, 1);
static const int32_t exposureCompensationRange[] = {0, 0};
ADD_STATIC_ENTRY(ANDROID_CONTROL_AE_COMPENSATION_RANGE,
exposureCompensationRange,
sizeof(exposureCompensationRange)/sizeof(int32_t));
}
static const int32_t availableTargetFpsRanges[] = {
15, 30, 30, 30
};
ADD_STATIC_ENTRY(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
availableTargetFpsRanges,
sizeof(availableTargetFpsRanges)/sizeof(int32_t));
if (hasCapability(BACKWARD_COMPATIBLE)) {
static const uint8_t availableAntibandingModes[] = {
ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO
};
ADD_STATIC_ENTRY(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
availableAntibandingModes, sizeof(availableAntibandingModes));
}
const uint8_t aeLockAvailable = hasCapability(BACKWARD_COMPATIBLE) ?
ANDROID_CONTROL_AE_LOCK_AVAILABLE_TRUE : ANDROID_CONTROL_AE_LOCK_AVAILABLE_FALSE;
ADD_STATIC_ENTRY(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
&aeLockAvailable, 1);
if (hasCapability(BACKWARD_COMPATIBLE)) {
static const uint8_t availableAwbModes[] = {
ANDROID_CONTROL_AWB_MODE_OFF,
ANDROID_CONTROL_AWB_MODE_AUTO,
ANDROID_CONTROL_AWB_MODE_INCANDESCENT,
ANDROID_CONTROL_AWB_MODE_FLUORESCENT,
ANDROID_CONTROL_AWB_MODE_DAYLIGHT,
ANDROID_CONTROL_AWB_MODE_SHADE
};
ADD_STATIC_ENTRY(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
availableAwbModes, sizeof(availableAwbModes));
}
const uint8_t awbLockAvailable = hasCapability(BACKWARD_COMPATIBLE) ?
ANDROID_CONTROL_AWB_LOCK_AVAILABLE_TRUE : ANDROID_CONTROL_AWB_LOCK_AVAILABLE_FALSE;
ADD_STATIC_ENTRY(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
&awbLockAvailable, 1);
static const uint8_t availableAfModesBack[] = {
ANDROID_CONTROL_AF_MODE_OFF,
ANDROID_CONTROL_AF_MODE_AUTO,
ANDROID_CONTROL_AF_MODE_MACRO,
ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO,
ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE
};
static const uint8_t availableAfModesFront[] = {
ANDROID_CONTROL_AF_MODE_OFF
};
if (hasCapability(BACKWARD_COMPATIBLE)) {
ADD_STATIC_ENTRY(ANDROID_CONTROL_AF_AVAILABLE_MODES,
availableAfModesBack, sizeof(availableAfModesBack));
} else {
ADD_STATIC_ENTRY(ANDROID_CONTROL_AF_AVAILABLE_MODES,
availableAfModesFront, sizeof(availableAfModesFront));
}
static const uint8_t availableVstabModes[] = {
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF
};
ADD_STATIC_ENTRY(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
availableVstabModes, sizeof(availableVstabModes));
// android.colorCorrection
if (hasCapability(BACKWARD_COMPATIBLE)) {
const uint8_t availableAberrationModes[] = {
ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF,
ANDROID_COLOR_CORRECTION_ABERRATION_MODE_FAST,
ANDROID_COLOR_CORRECTION_ABERRATION_MODE_HIGH_QUALITY
};
ADD_STATIC_ENTRY(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
availableAberrationModes, sizeof(availableAberrationModes));
} else {
const uint8_t availableAberrationModes[] = {
ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF,
};
ADD_STATIC_ENTRY(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
availableAberrationModes, sizeof(availableAberrationModes));
}
// android.edge
if (hasCapability(BACKWARD_COMPATIBLE)) {
const uint8_t availableEdgeModes[] = {
ANDROID_EDGE_MODE_OFF, ANDROID_EDGE_MODE_FAST, ANDROID_EDGE_MODE_HIGH_QUALITY
};
ADD_STATIC_ENTRY(ANDROID_EDGE_AVAILABLE_EDGE_MODES,
availableEdgeModes, sizeof(availableEdgeModes));
} else {
const uint8_t availableEdgeModes[] = {
ANDROID_EDGE_MODE_OFF
};
ADD_STATIC_ENTRY(ANDROID_EDGE_AVAILABLE_EDGE_MODES,
availableEdgeModes, sizeof(availableEdgeModes));
}
// android.info
const uint8_t supportedHardwareLevel =
hasCapability(FULL_LEVEL) ? ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_FULL :
ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
ADD_STATIC_ENTRY(ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
&supportedHardwareLevel,
/*count*/1);
// android.noiseReduction
if (hasCapability(BACKWARD_COMPATIBLE)) {
const uint8_t availableNoiseReductionModes[] = {
ANDROID_NOISE_REDUCTION_MODE_OFF,
ANDROID_NOISE_REDUCTION_MODE_FAST,
ANDROID_NOISE_REDUCTION_MODE_HIGH_QUALITY
};
ADD_STATIC_ENTRY(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
availableNoiseReductionModes, sizeof(availableNoiseReductionModes));
} else {
const uint8_t availableNoiseReductionModes[] = {
ANDROID_NOISE_REDUCTION_MODE_OFF,
};
ADD_STATIC_ENTRY(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
availableNoiseReductionModes, sizeof(availableNoiseReductionModes));
}
// android.depth
if (hasCapability(DEPTH_OUTPUT)) {
static const int32_t maxDepthSamples = 100;
ADD_STATIC_ENTRY(ANDROID_DEPTH_MAX_DEPTH_SAMPLES,
&maxDepthSamples, 1);
static const int32_t availableDepthStreamConfigurations[] = {
HAL_PIXEL_FORMAT_Y16, 160, 120, ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS_OUTPUT,
HAL_PIXEL_FORMAT_BLOB, maxDepthSamples,1, ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS_OUTPUT
};
ADD_STATIC_ENTRY(ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS,
availableDepthStreamConfigurations,
sizeof(availableDepthStreamConfigurations)/sizeof(int32_t));
static const int64_t availableDepthMinFrameDurations[] = {
HAL_PIXEL_FORMAT_Y16, 160, 120, Sensor::kFrameDurationRange[0],
HAL_PIXEL_FORMAT_BLOB, maxDepthSamples,1, Sensor::kFrameDurationRange[0]
};
ADD_STATIC_ENTRY(ANDROID_DEPTH_AVAILABLE_DEPTH_MIN_FRAME_DURATIONS,
availableDepthMinFrameDurations,
sizeof(availableDepthMinFrameDurations)/sizeof(int64_t));
static const int64_t availableDepthStallDurations[] = {
HAL_PIXEL_FORMAT_Y16, 160, 120, Sensor::kFrameDurationRange[0],
HAL_PIXEL_FORMAT_BLOB, maxDepthSamples,1, Sensor::kFrameDurationRange[0]
};
ADD_STATIC_ENTRY(ANDROID_DEPTH_AVAILABLE_DEPTH_STALL_DURATIONS,
availableDepthStallDurations,
sizeof(availableDepthStallDurations)/sizeof(int64_t));
static const uint8_t depthIsExclusive = ANDROID_DEPTH_DEPTH_IS_EXCLUSIVE_FALSE;
ADD_STATIC_ENTRY(ANDROID_DEPTH_DEPTH_IS_EXCLUSIVE,
&depthIsExclusive, 1);
}
// android.shading
if (hasCapability(BACKWARD_COMPATIBLE)) {
const uint8_t availableShadingModes[] = {
ANDROID_SHADING_MODE_OFF, ANDROID_SHADING_MODE_FAST, ANDROID_SHADING_MODE_HIGH_QUALITY
};
ADD_STATIC_ENTRY(ANDROID_SHADING_AVAILABLE_MODES, availableShadingModes,
sizeof(availableShadingModes));
} else {
const uint8_t availableShadingModes[] = {
ANDROID_SHADING_MODE_OFF
};
ADD_STATIC_ENTRY(ANDROID_SHADING_AVAILABLE_MODES, availableShadingModes,
sizeof(availableShadingModes));
}
// android.request
static const int32_t maxNumOutputStreams[] = {
kMaxRawStreamCount, kMaxProcessedStreamCount, kMaxJpegStreamCount
};
ADD_STATIC_ENTRY(ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS, maxNumOutputStreams, 3);
static const uint8_t maxPipelineDepth = kMaxBufferCount;
ADD_STATIC_ENTRY(ANDROID_REQUEST_PIPELINE_MAX_DEPTH, &maxPipelineDepth, 1);
static const int32_t partialResultCount = 1;
ADD_STATIC_ENTRY(ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
&partialResultCount, /*count*/1);
SortedVector<uint8_t> caps;
for (size_t i = 0; i < mCapabilities.size(); i++) {
switch(mCapabilities[i]) {
case BACKWARD_COMPATIBLE:
caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE);
break;
case MANUAL_SENSOR:
caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_SENSOR);
break;
case MANUAL_POST_PROCESSING:
caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_POST_PROCESSING);
break;
case RAW:
caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_RAW);
break;
case PRIVATE_REPROCESSING:
caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_PRIVATE_REPROCESSING);
break;
case READ_SENSOR_SETTINGS:
caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_READ_SENSOR_SETTINGS);
break;
case BURST_CAPTURE:
caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BURST_CAPTURE);
break;
case YUV_REPROCESSING:
caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_YUV_REPROCESSING);
break;
case DEPTH_OUTPUT:
caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_DEPTH_OUTPUT);
break;
case CONSTRAINED_HIGH_SPEED_VIDEO:
caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_CONSTRAINED_HIGH_SPEED_VIDEO);
break;
case MOTION_TRACKING:
caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MOTION_TRACKING);
break;
default:
// Ignore LEVELs
break;
}
}
ADD_STATIC_ENTRY(ANDROID_REQUEST_AVAILABLE_CAPABILITIES, caps.array(), caps.size());
// Scan a default request template for included request keys
Vector<int32_t> availableRequestKeys;
const camera_metadata_t *previewRequest =
constructDefaultRequestSettings(CAMERA3_TEMPLATE_PREVIEW);
for (size_t i = 0; i < get_camera_metadata_entry_count(previewRequest); i++) {
camera_metadata_ro_entry_t entry;
get_camera_metadata_ro_entry(previewRequest, i, &entry);
availableRequestKeys.add(entry.tag);
}
ADD_STATIC_ENTRY(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS, availableRequestKeys.array(),
availableRequestKeys.size());
// Add a few more result keys. Must be kept up to date with the various places that add these
Vector<int32_t> availableResultKeys(availableRequestKeys);
if (hasCapability(BACKWARD_COMPATIBLE)) {
availableResultKeys.add(ANDROID_CONTROL_AE_STATE);
availableResultKeys.add(ANDROID_CONTROL_AF_STATE);
availableResultKeys.add(ANDROID_CONTROL_AWB_STATE);
availableResultKeys.add(ANDROID_FLASH_STATE);
availableResultKeys.add(ANDROID_LENS_STATE);
availableResultKeys.add(ANDROID_LENS_FOCUS_RANGE);
availableResultKeys.add(ANDROID_SENSOR_ROLLING_SHUTTER_SKEW);
availableResultKeys.add(ANDROID_STATISTICS_SCENE_FLICKER);
}
if (hasCapability(DEPTH_OUTPUT)) {
availableResultKeys.add(ANDROID_LENS_POSE_ROTATION);
availableResultKeys.add(ANDROID_LENS_POSE_TRANSLATION);
availableResultKeys.add(ANDROID_LENS_INTRINSIC_CALIBRATION);
availableResultKeys.add(ANDROID_LENS_RADIAL_DISTORTION);
}
availableResultKeys.add(ANDROID_REQUEST_PIPELINE_DEPTH);
availableResultKeys.add(ANDROID_SENSOR_TIMESTAMP);
ADD_STATIC_ENTRY(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS, availableResultKeys.array(),
availableResultKeys.size());
// Needs to be last, to collect all the keys set
availableCharacteristicsKeys.add(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS);
info.update(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS,
availableCharacteristicsKeys);
mCameraInfo = info.release();
#undef ADD_STATIC_ENTRY
return OK;
}
status_t EmulatedFakeCamera3::process3A(CameraMetadata &settings) {
/**
* Extract top-level 3A controls
*/
status_t res;
camera_metadata_entry e;
e = settings.find(ANDROID_CONTROL_MODE);
if (e.count == 0) {
ALOGE("%s: No control mode entry!", __FUNCTION__);
return BAD_VALUE;
}
uint8_t controlMode = e.data.u8[0];
if (controlMode == ANDROID_CONTROL_MODE_OFF) {
mAeMode = ANDROID_CONTROL_AE_MODE_OFF;
mAfMode = ANDROID_CONTROL_AF_MODE_OFF;
mAwbMode = ANDROID_CONTROL_AWB_MODE_OFF;
mAeState = ANDROID_CONTROL_AE_STATE_INACTIVE;
mAfState = ANDROID_CONTROL_AF_STATE_INACTIVE;
mAwbState = ANDROID_CONTROL_AWB_STATE_INACTIVE;
update3A(settings);
return OK;
} else if (controlMode == ANDROID_CONTROL_MODE_USE_SCENE_MODE) {
if (!hasCapability(BACKWARD_COMPATIBLE)) {
ALOGE("%s: Can't use scene mode when BACKWARD_COMPATIBLE not supported!",
__FUNCTION__);
return BAD_VALUE;
}
e = settings.find(ANDROID_CONTROL_SCENE_MODE);
if (e.count == 0) {
ALOGE("%s: No scene mode entry!", __FUNCTION__);
return BAD_VALUE;
}
uint8_t sceneMode = e.data.u8[0];
switch(sceneMode) {
case ANDROID_CONTROL_SCENE_MODE_FACE_PRIORITY:
mFacePriority = true;
break;
default:
ALOGE("%s: Emulator doesn't support scene mode %d",
__FUNCTION__, sceneMode);
return BAD_VALUE;
}
} else {
mFacePriority = false;
}
// controlMode == AUTO or sceneMode = FACE_PRIORITY
// Process individual 3A controls
res = doFakeAE(settings);
if (res != OK) return res;
res = doFakeAF(settings);
if (res != OK) return res;
res = doFakeAWB(settings);
if (res != OK) return res;
update3A(settings);
return OK;
}
status_t EmulatedFakeCamera3::doFakeAE(CameraMetadata &settings) {
camera_metadata_entry e;
e = settings.find(ANDROID_CONTROL_AE_MODE);
if (e.count == 0 && hasCapability(BACKWARD_COMPATIBLE)) {
ALOGE("%s: No AE mode entry!", __FUNCTION__);
return BAD_VALUE;
}
uint8_t aeMode = (e.count > 0) ? e.data.u8[0] : (uint8_t)ANDROID_CONTROL_AE_MODE_ON;
mAeMode = aeMode;
switch (aeMode) {
case ANDROID_CONTROL_AE_MODE_OFF:
// AE is OFF
mAeState = ANDROID_CONTROL_AE_STATE_INACTIVE;
return OK;
case ANDROID_CONTROL_AE_MODE_ON:
// OK for AUTO modes
break;
default:
// Mostly silently ignore unsupported modes
ALOGV("%s: Emulator doesn't support AE mode %d, assuming ON",
__FUNCTION__, aeMode);
break;
}
e = settings.find(ANDROID_CONTROL_AE_LOCK);
bool aeLocked = (e.count > 0) ? (e.data.u8[0] == ANDROID_CONTROL_AE_LOCK_ON) : false;
e = settings.find(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER);
bool precaptureTrigger = false;
if (e.count != 0) {
precaptureTrigger =
(e.data.u8[0] == ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_START);
}
if (precaptureTrigger) {
ALOGV("%s: Pre capture trigger = %d", __FUNCTION__, precaptureTrigger);
} else if (e.count > 0) {
ALOGV("%s: Pre capture trigger was present? %zu",
__FUNCTION__,
e.count);
}
if (precaptureTrigger || mAeState == ANDROID_CONTROL_AE_STATE_PRECAPTURE) {
// Run precapture sequence
if (mAeState != ANDROID_CONTROL_AE_STATE_PRECAPTURE) {
mAeCounter = 0;
}
if (mFacePriority) {
mAeTargetExposureTime = kFacePriorityExposureTime;
} else {
mAeTargetExposureTime = kNormalExposureTime;
}
if (mAeCounter > kPrecaptureMinFrames &&
(mAeTargetExposureTime - mAeCurrentExposureTime) <
mAeTargetExposureTime / 10) {
// Done with precapture
mAeCounter = 0;
mAeState = aeLocked ? ANDROID_CONTROL_AE_STATE_LOCKED :
ANDROID_CONTROL_AE_STATE_CONVERGED;
} else {
// Converge some more
mAeCurrentExposureTime +=
(mAeTargetExposureTime - mAeCurrentExposureTime) *
kExposureTrackRate;
mAeCounter++;
mAeState = ANDROID_CONTROL_AE_STATE_PRECAPTURE;
}
} else if (!aeLocked) {
// Run standard occasional AE scan
switch (mAeState) {
case ANDROID_CONTROL_AE_STATE_INACTIVE:
mAeState = ANDROID_CONTROL_AE_STATE_SEARCHING;
break;
case ANDROID_CONTROL_AE_STATE_CONVERGED:
mAeCounter++;
if (mAeCounter > kStableAeMaxFrames) {
mAeTargetExposureTime =
mFacePriority ? kFacePriorityExposureTime :
kNormalExposureTime;
float exposureStep = ((double)rand() / RAND_MAX) *
(kExposureWanderMax - kExposureWanderMin) +
kExposureWanderMin;
mAeTargetExposureTime *= std::pow(2, exposureStep);
mAeState = ANDROID_CONTROL_AE_STATE_SEARCHING;
}
break;
case ANDROID_CONTROL_AE_STATE_SEARCHING:
mAeCurrentExposureTime +=
(mAeTargetExposureTime - mAeCurrentExposureTime) *
kExposureTrackRate;
if (abs(mAeTargetExposureTime - mAeCurrentExposureTime) <
mAeTargetExposureTime / 10) {
// Close enough
mAeState = ANDROID_CONTROL_AE_STATE_CONVERGED;
mAeCounter = 0;
}
break;
case ANDROID_CONTROL_AE_STATE_LOCKED:
mAeState = ANDROID_CONTROL_AE_STATE_CONVERGED;
mAeCounter = 0;
break;
default:
ALOGE("%s: Emulator in unexpected AE state %d",
__FUNCTION__, mAeState);
return INVALID_OPERATION;
}
} else {
// AE is locked
mAeState = ANDROID_CONTROL_AE_STATE_LOCKED;
}
return OK;
}
status_t EmulatedFakeCamera3::doFakeAF(CameraMetadata &settings) {
camera_metadata_entry e;
e = settings.find(ANDROID_CONTROL_AF_MODE);
if (e.count == 0 && hasCapability(BACKWARD_COMPATIBLE)) {
ALOGE("%s: No AF mode entry!", __FUNCTION__);
return BAD_VALUE;
}
uint8_t afMode = (e.count > 0) ? e.data.u8[0] : (uint8_t)ANDROID_CONTROL_AF_MODE_OFF;
e = settings.find(ANDROID_CONTROL_AF_TRIGGER);
typedef camera_metadata_enum_android_control_af_trigger af_trigger_t;
af_trigger_t afTrigger;
if (e.count != 0) {
afTrigger = static_cast<af_trigger_t>(e.data.u8[0]);
ALOGV("%s: AF trigger set to 0x%x", __FUNCTION__, afTrigger);
ALOGV("%s: AF mode is 0x%x", __FUNCTION__, afMode);
} else {
afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
}
switch (afMode) {
case ANDROID_CONTROL_AF_MODE_OFF:
mAfState = ANDROID_CONTROL_AF_STATE_INACTIVE;
return OK;
case ANDROID_CONTROL_AF_MODE_AUTO:
case ANDROID_CONTROL_AF_MODE_MACRO:
case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO:
case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE:
break;
default:
ALOGE("%s: Emulator doesn't support AF mode %d",
__FUNCTION__, afMode);
return BAD_VALUE;
}
bool afModeChanged = mAfMode != afMode;
mAfMode = afMode;
/**
* Simulate AF triggers. Transition at most 1 state per frame.
* - Focusing always succeeds (goes into locked, or PASSIVE_SCAN).
*/
bool afTriggerStart = false;
bool afTriggerCancel = false;
switch (afTrigger) {
case ANDROID_CONTROL_AF_TRIGGER_IDLE:
break;
case ANDROID_CONTROL_AF_TRIGGER_START:
afTriggerStart = true;
break;
case ANDROID_CONTROL_AF_TRIGGER_CANCEL:
afTriggerCancel = true;
// Cancel trigger always transitions into INACTIVE
mAfState = ANDROID_CONTROL_AF_STATE_INACTIVE;
ALOGV("%s: AF State transition to STATE_INACTIVE", __FUNCTION__);
// Stay in 'inactive' until at least next frame
return OK;
default:
ALOGE("%s: Unknown af trigger value %d", __FUNCTION__, afTrigger);
return BAD_VALUE;
}
// If we get down here, we're either in an autofocus mode
// or in a continuous focus mode (and no other modes)
int oldAfState = mAfState;
switch (mAfState) {
case ANDROID_CONTROL_AF_STATE_INACTIVE:
if (afTriggerStart) {
switch (afMode) {
case ANDROID_CONTROL_AF_MODE_AUTO:
// fall-through
case ANDROID_CONTROL_AF_MODE_MACRO:
mAfState = ANDROID_CONTROL_AF_STATE_ACTIVE_SCAN;
break;
case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO:
// fall-through
case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE:
mAfState = ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED;
break;
}
} else {
// At least one frame stays in INACTIVE
if (!afModeChanged) {
switch (afMode) {
case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO:
// fall-through
case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE:
mAfState = ANDROID_CONTROL_AF_STATE_PASSIVE_SCAN;
break;
}
}
}
break;
case ANDROID_CONTROL_AF_STATE_PASSIVE_SCAN:
/**
* When the AF trigger is activated, the algorithm should finish
* its PASSIVE_SCAN if active, and then transition into AF_FOCUSED
* or AF_NOT_FOCUSED as appropriate
*/
if (afTriggerStart) {
// Randomly transition to focused or not focused
if (rand() % 3) {
mAfState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED;
} else {
mAfState = ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED;
}
}
/**
* When the AF trigger is not involved, the AF algorithm should
* start in INACTIVE state, and then transition into PASSIVE_SCAN
* and PASSIVE_FOCUSED states
*/
else if (!afTriggerCancel) {
// Randomly transition to passive focus
if (rand() % 3 == 0) {
mAfState = ANDROID_CONTROL_AF_STATE_PASSIVE_FOCUSED;
}
}
break;
case ANDROID_CONTROL_AF_STATE_PASSIVE_FOCUSED:
if (afTriggerStart) {
// Randomly transition to focused or not focused
if (rand() % 3) {
mAfState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED;
} else {
mAfState = ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED;
}
}
// TODO: initiate passive scan (PASSIVE_SCAN)
break;
case ANDROID_CONTROL_AF_STATE_ACTIVE_SCAN:
// Simulate AF sweep completing instantaneously
// Randomly transition to focused or not focused
if (rand() % 3) {
mAfState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED;
} else {
mAfState = ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED;
}
break;
case ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED:
if (afTriggerStart) {
switch (afMode) {
case ANDROID_CONTROL_AF_MODE_AUTO:
// fall-through
case ANDROID_CONTROL_AF_MODE_MACRO:
mAfState = ANDROID_CONTROL_AF_STATE_ACTIVE_SCAN;
break;
case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO:
// fall-through
case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE:
// continuous autofocus => trigger start has no effect
break;
}
}
break;
case ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED:
if (afTriggerStart) {
switch (afMode) {
case ANDROID_CONTROL_AF_MODE_AUTO:
// fall-through
case ANDROID_CONTROL_AF_MODE_MACRO:
mAfState = ANDROID_CONTROL_AF_STATE_ACTIVE_SCAN;
break;
case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO:
// fall-through
case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE:
// continuous autofocus => trigger start has no effect
break;
}
}
break;
default:
ALOGE("%s: Bad af state %d", __FUNCTION__, mAfState);
}
{
char afStateString[100] = {0,};
camera_metadata_enum_snprint(ANDROID_CONTROL_AF_STATE,
oldAfState,
afStateString,
sizeof(afStateString));
char afNewStateString[100] = {0,};
camera_metadata_enum_snprint(ANDROID_CONTROL_AF_STATE,
mAfState,
afNewStateString,
sizeof(afNewStateString));
ALOGVV("%s: AF state transitioned from %s to %s",
__FUNCTION__, afStateString, afNewStateString);
}
return OK;
}
status_t EmulatedFakeCamera3::doFakeAWB(CameraMetadata &settings) {
camera_metadata_entry e;
e = settings.find(ANDROID_CONTROL_AWB_MODE);
if (e.count == 0 && hasCapability(BACKWARD_COMPATIBLE)) {
ALOGE("%s: No AWB mode entry!", __FUNCTION__);
return BAD_VALUE;
}
uint8_t awbMode = (e.count > 0) ? e.data.u8[0] : (uint8_t)ANDROID_CONTROL_AWB_MODE_AUTO;
// TODO: Add white balance simulation
e = settings.find(ANDROID_CONTROL_AWB_LOCK);
bool awbLocked = (e.count > 0) ? (e.data.u8[0] == ANDROID_CONTROL_AWB_LOCK_ON) : false;
switch (awbMode) {
case ANDROID_CONTROL_AWB_MODE_OFF:
mAwbState = ANDROID_CONTROL_AWB_STATE_INACTIVE;
break;
case ANDROID_CONTROL_AWB_MODE_AUTO:
case ANDROID_CONTROL_AWB_MODE_INCANDESCENT:
case ANDROID_CONTROL_AWB_MODE_FLUORESCENT:
case ANDROID_CONTROL_AWB_MODE_DAYLIGHT:
case ANDROID_CONTROL_AWB_MODE_SHADE:
// Always magically right, or locked
mAwbState = awbLocked ? ANDROID_CONTROL_AWB_STATE_LOCKED :
ANDROID_CONTROL_AWB_STATE_CONVERGED;
break;
default:
ALOGE("%s: Emulator doesn't support AWB mode %d",
__FUNCTION__, awbMode);
return BAD_VALUE;
}
return OK;
}
// Update the 3A Region by calculating the intersection of AE/AF/AWB and CROP
// regions
static void update3ARegion(uint32_t tag, CameraMetadata &settings) {
if (tag != ANDROID_CONTROL_AE_REGIONS &&
tag != ANDROID_CONTROL_AF_REGIONS &&
tag != ANDROID_CONTROL_AWB_REGIONS) {
return;
}
camera_metadata_entry_t entry;
entry = settings.find(ANDROID_SCALER_CROP_REGION);
if (entry.count > 0) {
int32_t cropRegion[4];
cropRegion[0] = entry.data.i32[0];
cropRegion[1] = entry.data.i32[1];
cropRegion[2] = entry.data.i32[2] + cropRegion[0];
cropRegion[3] = entry.data.i32[3] + cropRegion[1];
entry = settings.find(tag);
if (entry.count > 0) {
int32_t* ARegion = entry.data.i32;
// calculate the intersection of AE/AF/AWB and CROP regions
if (ARegion[0] < cropRegion[2] && cropRegion[0] < ARegion[2] &&
ARegion[1] < cropRegion[3] && cropRegion[1] < ARegion[3]) {
int32_t interSect[5];
interSect[0] = std::max(ARegion[0], cropRegion[0]);
interSect[1] = std::max(ARegion[1], cropRegion[1]);
interSect[2] = std::min(ARegion[2], cropRegion[2]);
interSect[3] = std::min(ARegion[3], cropRegion[3]);
interSect[4] = ARegion[4];
settings.update(tag, &interSect[0], 5);
}
}
}
}
void EmulatedFakeCamera3::update3A(CameraMetadata &settings) {
if (mAeMode != ANDROID_CONTROL_AE_MODE_OFF) {
settings.update(ANDROID_SENSOR_EXPOSURE_TIME,
&mAeCurrentExposureTime, 1);
settings.update(ANDROID_SENSOR_SENSITIVITY,
&mAeCurrentSensitivity, 1);
}
settings.update(ANDROID_CONTROL_AE_STATE,
&mAeState, 1);
settings.update(ANDROID_CONTROL_AF_STATE,
&mAfState, 1);
settings.update(ANDROID_CONTROL_AWB_STATE,
&mAwbState, 1);
uint8_t lensState;
switch (mAfState) {
case ANDROID_CONTROL_AF_STATE_PASSIVE_SCAN:
case ANDROID_CONTROL_AF_STATE_ACTIVE_SCAN:
lensState = ANDROID_LENS_STATE_MOVING;
break;
case ANDROID_CONTROL_AF_STATE_INACTIVE:
case ANDROID_CONTROL_AF_STATE_PASSIVE_FOCUSED:
case ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED:
case ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED:
case ANDROID_CONTROL_AF_STATE_PASSIVE_UNFOCUSED:
default:
lensState = ANDROID_LENS_STATE_STATIONARY;
break;
}
settings.update(ANDROID_LENS_STATE, &lensState, 1);
update3ARegion(ANDROID_CONTROL_AE_REGIONS, settings);
update3ARegion(ANDROID_CONTROL_AF_REGIONS, settings);
update3ARegion(ANDROID_CONTROL_AWB_REGIONS, settings);
}
void EmulatedFakeCamera3::signalReadoutIdle() {
Mutex::Autolock l(mLock);
// Need to chek isIdle again because waiting on mLock may have allowed
// something to be placed in the in-flight queue.
if (mStatus == STATUS_ACTIVE && mReadoutThread->isIdle()) {
ALOGV("Now idle");
mStatus = STATUS_READY;
}
}
void EmulatedFakeCamera3::onSensorEvent(uint32_t frameNumber, Event e,
nsecs_t timestamp) {
switch(e) {
case Sensor::SensorListener::EXPOSURE_START: {
ALOGVV("%s: Frame %d: Sensor started exposure at %lld",
__FUNCTION__, frameNumber, timestamp);
// Trigger shutter notify to framework
camera3_notify_msg_t msg;
msg.type = CAMERA3_MSG_SHUTTER;
msg.message.shutter.frame_number = frameNumber;
msg.message.shutter.timestamp = timestamp;
sendNotify(&msg);
break;
}
default:
ALOGW("%s: Unexpected sensor event %d at %" PRId64, __FUNCTION__,
e, timestamp);
break;
}
}
EmulatedFakeCamera3::ReadoutThread::ReadoutThread(EmulatedFakeCamera3 *parent) :
mParent(parent), mJpegWaiting(false) {
}
EmulatedFakeCamera3::ReadoutThread::~ReadoutThread() {
for (List<Request>::iterator i = mInFlightQueue.begin();
i != mInFlightQueue.end(); i++) {
delete i->buffers;
delete i->sensorBuffers;
}
}
void EmulatedFakeCamera3::ReadoutThread::queueCaptureRequest(const Request &r) {
Mutex::Autolock l(mLock);
mInFlightQueue.push_back(r);
mInFlightSignal.signal();
}
bool EmulatedFakeCamera3::ReadoutThread::isIdle() {
Mutex::Autolock l(mLock);
return mInFlightQueue.empty() && !mThreadActive;
}
status_t EmulatedFakeCamera3::ReadoutThread::waitForReadout() {
status_t res;
Mutex::Autolock l(mLock);
int loopCount = 0;
while (mInFlightQueue.size() >= kMaxQueueSize) {
res = mInFlightSignal.waitRelative(mLock, kWaitPerLoop);
if (res != OK && res != TIMED_OUT) {
ALOGE("%s: Error waiting for in-flight queue to shrink",
__FUNCTION__);
return INVALID_OPERATION;
}
if (loopCount == kMaxWaitLoops) {
ALOGE("%s: Timed out waiting for in-flight queue to shrink",
__FUNCTION__);
return TIMED_OUT;
}
loopCount++;
}
return OK;
}
bool EmulatedFakeCamera3::ReadoutThread::threadLoop() {
status_t res;
ALOGVV("%s: ReadoutThread waiting for request", __FUNCTION__);
// First wait for a request from the in-flight queue
if (mCurrentRequest.settings.isEmpty()) {
Mutex::Autolock l(mLock);
if (mInFlightQueue.empty()) {
res = mInFlightSignal.waitRelative(mLock, kWaitPerLoop);
if (res == TIMED_OUT) {
ALOGVV("%s: ReadoutThread: Timed out waiting for request",
__FUNCTION__);
return true;
} else if (res != NO_ERROR) {
ALOGE("%s: Error waiting for capture requests: %d",
__FUNCTION__, res);
return false;
}
}
mCurrentRequest.frameNumber = mInFlightQueue.begin()->frameNumber;
mCurrentRequest.settings.acquire(mInFlightQueue.begin()->settings);
mCurrentRequest.buffers = mInFlightQueue.begin()->buffers;
mCurrentRequest.sensorBuffers = mInFlightQueue.begin()->sensorBuffers;
mInFlightQueue.erase(mInFlightQueue.begin());
mInFlightSignal.signal();
mThreadActive = true;
ALOGVV("%s: Beginning readout of frame %d", __FUNCTION__,
mCurrentRequest.frameNumber);
}
// Then wait for it to be delivered from the sensor
ALOGVV("%s: ReadoutThread: Wait for frame to be delivered from sensor",
__FUNCTION__);
nsecs_t captureTime;
bool gotFrame =
mParent->mSensor->waitForNewFrame(kWaitPerLoop, &captureTime);
if (!gotFrame) {
ALOGVV("%s: ReadoutThread: Timed out waiting for sensor frame",
__FUNCTION__);
return true;
}
ALOGVV("Sensor done with readout for frame %d, captured at %lld ",
mCurrentRequest.frameNumber, captureTime);
// Check if we need to JPEG encode a buffer, and send it for async
// compression if so. Otherwise prepare the buffer for return.
bool needJpeg = false;
HalBufferVector::iterator buf = mCurrentRequest.buffers->begin();
while(buf != mCurrentRequest.buffers->end()) {
bool goodBuffer = true;
if ( buf->stream->format ==
HAL_PIXEL_FORMAT_BLOB && buf->stream->data_space != HAL_DATASPACE_DEPTH) {
Mutex::Autolock jl(mJpegLock);
if (mJpegWaiting) {
// This shouldn't happen, because processCaptureRequest should
// be stalling until JPEG compressor is free.
ALOGE("%s: Already processing a JPEG!", __FUNCTION__);
goodBuffer = false;
}
if (goodBuffer) {
// Compressor takes ownership of sensorBuffers here
res = mParent->mJpegCompressor->start(mCurrentRequest.sensorBuffers,
this, &(mCurrentRequest.settings));
goodBuffer = (res == OK);
}
if (goodBuffer) {
needJpeg = true;
mJpegHalBuffer = *buf;
mJpegFrameNumber = mCurrentRequest.frameNumber;
mJpegWaiting = true;
mCurrentRequest.sensorBuffers = NULL;
buf = mCurrentRequest.buffers->erase(buf);
continue;
}
ALOGE("%s: Error compressing output buffer: %s (%d)",
__FUNCTION__, strerror(-res), res);
// fallthrough for cleanup
}
mParent->mGBM->unlock(*(buf->buffer));
buf->status = goodBuffer ? CAMERA3_BUFFER_STATUS_OK :
CAMERA3_BUFFER_STATUS_ERROR;
buf->acquire_fence = -1;
buf->release_fence = -1;
++buf;
} // end while
// Construct result for all completed buffers and results
camera3_capture_result result;
if (mParent->hasCapability(BACKWARD_COMPATIBLE)) {
static const uint8_t sceneFlicker = ANDROID_STATISTICS_SCENE_FLICKER_NONE;
mCurrentRequest.settings.update(ANDROID_STATISTICS_SCENE_FLICKER,
&sceneFlicker, 1);
static const uint8_t flashState = ANDROID_FLASH_STATE_UNAVAILABLE;
mCurrentRequest.settings.update(ANDROID_FLASH_STATE,
&flashState, 1);
nsecs_t rollingShutterSkew = Sensor::kFrameDurationRange[0];
mCurrentRequest.settings.update(ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
&rollingShutterSkew, 1);
float focusRange[] = { 1.0f/5.0f, 0 }; // 5 m to infinity in focus
mCurrentRequest.settings.update(ANDROID_LENS_FOCUS_RANGE,
focusRange, sizeof(focusRange)/sizeof(float));
}
if (mParent->hasCapability(DEPTH_OUTPUT)) {
camera_metadata_entry_t entry;
find_camera_metadata_entry(mParent->mCameraInfo, ANDROID_LENS_POSE_TRANSLATION, &entry);
mCurrentRequest.settings.update(ANDROID_LENS_POSE_TRANSLATION,
entry.data.f, entry.count);
find_camera_metadata_entry(mParent->mCameraInfo, ANDROID_LENS_POSE_ROTATION, &entry);
mCurrentRequest.settings.update(ANDROID_LENS_POSE_ROTATION,
entry.data.f, entry.count);
find_camera_metadata_entry(mParent->mCameraInfo, ANDROID_LENS_INTRINSIC_CALIBRATION, &entry);
mCurrentRequest.settings.update(ANDROID_LENS_INTRINSIC_CALIBRATION,
entry.data.f, entry.count);
find_camera_metadata_entry(mParent->mCameraInfo, ANDROID_LENS_RADIAL_DISTORTION, &entry);
mCurrentRequest.settings.update(ANDROID_LENS_RADIAL_DISTORTION,
entry.data.f, entry.count);
}
mCurrentRequest.settings.update(ANDROID_SENSOR_TIMESTAMP,
&captureTime, 1);
// JPEGs take a stage longer
const uint8_t pipelineDepth = needJpeg ? kMaxBufferCount : kMaxBufferCount - 1;
mCurrentRequest.settings.update(ANDROID_REQUEST_PIPELINE_DEPTH,
&pipelineDepth, 1);
result.frame_number = mCurrentRequest.frameNumber;
result.result = mCurrentRequest.settings.getAndLock();
result.num_output_buffers = mCurrentRequest.buffers->size();
result.output_buffers = mCurrentRequest.buffers->array();
result.input_buffer = nullptr;
result.partial_result = 1;
// Go idle if queue is empty, before sending result
bool signalIdle = false;
{
Mutex::Autolock l(mLock);
if (mInFlightQueue.empty()) {
mThreadActive = false;
signalIdle = true;
}
}
if (signalIdle) mParent->signalReadoutIdle();
// Send it off to the framework
ALOGVV("%s: ReadoutThread: Send result to framework",
__FUNCTION__);
mParent->sendCaptureResult(&result);
// Clean up
mCurrentRequest.settings.unlock(result.result);
delete mCurrentRequest.buffers;
mCurrentRequest.buffers = NULL;
if (!needJpeg) {
delete mCurrentRequest.sensorBuffers;
mCurrentRequest.sensorBuffers = NULL;
}
mCurrentRequest.settings.clear();
return true;
}
void EmulatedFakeCamera3::ReadoutThread::onJpegDone(
const StreamBuffer &jpegBuffer, bool success) {
Mutex::Autolock jl(mJpegLock);
mParent->mGBM->unlock(*(jpegBuffer.buffer));
mJpegHalBuffer.status = success ?
CAMERA3_BUFFER_STATUS_OK : CAMERA3_BUFFER_STATUS_ERROR;
mJpegHalBuffer.acquire_fence = -1;
mJpegHalBuffer.release_fence = -1;
mJpegWaiting = false;
camera3_capture_result result;
result.frame_number = mJpegFrameNumber;
result.result = NULL;
result.num_output_buffers = 1;
result.output_buffers = &mJpegHalBuffer;
result.input_buffer = nullptr;
result.partial_result = 0;
if (!success) {
ALOGE("%s: Compression failure, returning error state buffer to"
" framework", __FUNCTION__);
} else {
ALOGV("%s: Compression complete, returning buffer to framework",
__FUNCTION__);
}
mParent->sendCaptureResult(&result);
}
void EmulatedFakeCamera3::ReadoutThread::onJpegInputDone(
const StreamBuffer &inputBuffer) {
// Should never get here, since the input buffer has to be returned
// by end of processCaptureRequest
ALOGE("%s: Unexpected input buffer from JPEG compressor!", __FUNCTION__);
}
}; // namespace android