blob: bac7078c26f20fa9e445f5cc0c9880907ff0c610 [file] [log] [blame]
/*
* Copyright (c) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "RILC"
#include <android/hardware/radio/1.6/IRadio.h>
#include <android/hardware/radio/1.6/IRadioResponse.h>
#include <android/hardware/radio/1.6/IRadioIndication.h>
#include <android/hardware/radio/1.6/types.h>
#include <android/hardware/radio/deprecated/1.0/IOemHook.h>
#include <hwbinder/IPCThreadState.h>
#include <hwbinder/ProcessState.h>
#include <guest/hals/ril/reference-libril/ril.h>
#include <telephony/ril_mnc.h>
#include <guest/hals/ril/reference-libril/ril_service.h>
#include <hidl/HidlTransportSupport.h>
#include <utils/SystemClock.h>
#include <inttypes.h>
#define INVALID_HEX_CHAR 16
using namespace android::hardware::radio;
using namespace android::hardware::radio::V1_0;
using namespace android::hardware::radio::deprecated::V1_0;
using ::android::hardware::configureRpcThreadpool;
using ::android::hardware::joinRpcThreadpool;
using ::android::hardware::Return;
using ::android::hardware::hidl_bitfield;
using ::android::hardware::hidl_string;
using ::android::hardware::hidl_vec;
using ::android::hardware::hidl_array;
using ::android::hardware::Void;
using android::CommandInfo;
using android::RequestInfo;
using android::requestToString;
using android::sp;
using RegStateResultV1_6 = android::hardware::radio::V1_6::RegStateResult;
using RegStateResultV1_5 = android::hardware::radio::V1_5::RegStateResult;
using PhysicalChannelConfigV1_4 =
android::hardware::radio::V1_4::PhysicalChannelConfig;
using RadioTechnologyV1_4 = android::hardware::radio::V1_4::RadioTechnology;
#define BOOL_TO_INT(x) (x ? 1 : 0)
#define ATOI_NULL_HANDLED(x) (x ? atoi(x) : -1)
#define ATOI_NULL_HANDLED_DEF(x, defaultVal) (x ? atoi(x) : defaultVal)
#if defined(ANDROID_MULTI_SIM)
#define CALL_ONREQUEST(a, b, c, d, e) \
s_vendorFunctions->onRequest((a), (b), (c), (d), ((RIL_SOCKET_ID)(e)))
#define CALL_ONSTATEREQUEST(a) s_vendorFunctions->onStateRequest((RIL_SOCKET_ID)(a))
#else
#define CALL_ONREQUEST(a, b, c, d, e) s_vendorFunctions->onRequest((a), (b), (c), (d))
#define CALL_ONSTATEREQUEST(a) s_vendorFunctions->onStateRequest()
#endif
#ifdef OEM_HOOK_DISABLED
constexpr bool kOemHookEnabled = false;
#else
constexpr bool kOemHookEnabled = true;
#endif
RIL_RadioFunctions *s_vendorFunctions = NULL;
static CommandInfo *s_commands;
struct RadioImpl_1_6;
struct OemHookImpl;
#if (SIM_COUNT >= 2)
sp<RadioImpl_1_6> radioService[SIM_COUNT];
sp<OemHookImpl> oemHookService[SIM_COUNT];
int64_t nitzTimeReceived[SIM_COUNT];
// counter used for synchronization. It is incremented every time response callbacks are updated.
volatile int32_t mCounterRadio[SIM_COUNT];
volatile int32_t mCounterOemHook[SIM_COUNT];
#else
sp<RadioImpl_1_6> radioService[1];
sp<OemHookImpl> oemHookService[1];
int64_t nitzTimeReceived[1];
// counter used for synchronization. It is incremented every time response callbacks are updated.
volatile int32_t mCounterRadio[1];
volatile int32_t mCounterOemHook[1];
#endif
static pthread_rwlock_t radioServiceRwlock = PTHREAD_RWLOCK_INITIALIZER;
#if (SIM_COUNT >= 2)
static pthread_rwlock_t radioServiceRwlock2 = PTHREAD_RWLOCK_INITIALIZER;
#if (SIM_COUNT >= 3)
static pthread_rwlock_t radioServiceRwlock3 = PTHREAD_RWLOCK_INITIALIZER;
#if (SIM_COUNT >= 4)
static pthread_rwlock_t radioServiceRwlock4 = PTHREAD_RWLOCK_INITIALIZER;
#endif
#endif
#endif
void convertRilHardwareConfigListToHal(void *response, size_t responseLen,
hidl_vec<HardwareConfig>& records);
void convertRilRadioCapabilityToHal(void *response, size_t responseLen, RadioCapability& rc);
void convertRilLceDataInfoToHal(void *response, size_t responseLen, LceDataInfo& lce);
void convertRilSignalStrengthToHal(void *response, size_t responseLen,
SignalStrength& signalStrength);
void convertRilDataCallToHal(RIL_Data_Call_Response_v11 *dcResponse,
SetupDataCallResult& dcResult);
void convertRilSignalStrengthToHal_1_4(void *response, size_t responseLen,
V1_4::SignalStrength& signalStrength);
void convertRilDataCallToHal(RIL_Data_Call_Response_v11 *dcResponse,
::android::hardware::radio::V1_4::SetupDataCallResult& dcResult);
void convertRilDataCallToHal(RIL_Data_Call_Response_v12 *dcResponse,
::android::hardware::radio::V1_5::SetupDataCallResult& dcResult);
void convertRilDataCallListToHal(void *response, size_t responseLen,
hidl_vec<SetupDataCallResult>& dcResultList);
void convertRilCellInfoListToHal(void *response, size_t responseLen, hidl_vec<CellInfo>& records);
void convertRilCellInfoListToHal_1_2(void *response, size_t responseLen, hidl_vec<V1_2::CellInfo>& records);
void populateResponseInfo(RadioResponseInfo& responseInfo, int serial, int responseType,
RIL_Errno e);
void populateResponseInfo_1_6(
::android::hardware::radio::V1_6::RadioResponseInfo &responseInfo,
int serial, int responseType, RIL_Errno e);
struct RadioImpl_1_6 : public V1_6::IRadio {
int32_t mSlotId;
sp<IRadioResponse> mRadioResponse;
sp<IRadioIndication> mRadioIndication;
sp<V1_1::IRadioResponse> mRadioResponseV1_1;
sp<V1_1::IRadioIndication> mRadioIndicationV1_1;
sp<V1_2::IRadioResponse> mRadioResponseV1_2;
sp<V1_2::IRadioIndication> mRadioIndicationV1_2;
sp<V1_3::IRadioResponse> mRadioResponseV1_3;
sp<V1_3::IRadioIndication> mRadioIndicationV1_3;
sp<V1_4::IRadioResponse> mRadioResponseV1_4;
sp<V1_4::IRadioIndication> mRadioIndicationV1_4;
sp<V1_5::IRadioResponse> mRadioResponseV1_5;
sp<V1_5::IRadioIndication> mRadioIndicationV1_5;
sp<V1_6::IRadioResponse> mRadioResponseV1_6;
sp<V1_6::IRadioIndication> mRadioIndicationV1_6;
Return<void> setResponseFunctions(
const ::android::sp<IRadioResponse>& radioResponse,
const ::android::sp<IRadioIndication>& radioIndication);
Return<void> getIccCardStatus(int32_t serial);
Return<void> supplyIccPinForApp(int32_t serial, const hidl_string& pin,
const hidl_string& aid);
Return<void> supplyIccPukForApp(int32_t serial, const hidl_string& puk,
const hidl_string& pin, const hidl_string& aid);
Return<void> supplyIccPin2ForApp(int32_t serial,
const hidl_string& pin2,
const hidl_string& aid);
Return<void> supplyIccPuk2ForApp(int32_t serial, const hidl_string& puk2,
const hidl_string& pin2, const hidl_string& aid);
Return<void> changeIccPinForApp(int32_t serial, const hidl_string& oldPin,
const hidl_string& newPin, const hidl_string& aid);
Return<void> changeIccPin2ForApp(int32_t serial, const hidl_string& oldPin2,
const hidl_string& newPin2, const hidl_string& aid);
Return<void> supplyNetworkDepersonalization(int32_t serial, const hidl_string& netPin);
Return<void> getCurrentCalls(int32_t serial);
Return<void> getCurrentCalls_1_6(int32_t serial);
Return<void> dial(int32_t serial, const Dial& dialInfo);
Return<void> getImsiForApp(int32_t serial,
const ::android::hardware::hidl_string& aid);
Return<void> hangup(int32_t serial, int32_t gsmIndex);
Return<void> hangupWaitingOrBackground(int32_t serial);
Return<void> hangupForegroundResumeBackground(int32_t serial);
Return<void> switchWaitingOrHoldingAndActive(int32_t serial);
Return<void> conference(int32_t serial);
Return<void> rejectCall(int32_t serial);
Return<void> getLastCallFailCause(int32_t serial);
Return<void> getSignalStrength(int32_t serial);
Return<void> getSignalStrength_1_6(int32_t serial);
Return<void> getVoiceRegistrationState(int32_t serial);
Return<void> getDataRegistrationState(int32_t serial);
Return<void> getOperator(int32_t serial);
Return<void> setRadioPower(int32_t serial, bool on);
Return<void> sendDtmf(int32_t serial,
const ::android::hardware::hidl_string& s);
Return<void> sendSms(int32_t serial, const GsmSmsMessage& message);
Return<void> sendSMSExpectMore(int32_t serial, const GsmSmsMessage& message);
Return<void> setupDataCall(int32_t serial,
RadioTechnology radioTechnology,
const DataProfileInfo& profileInfo,
bool modemCognitive,
bool roamingAllowed,
bool isRoaming);
Return<void> iccIOForApp(int32_t serial,
const IccIo& iccIo);
Return<void> sendUssd(int32_t serial,
const ::android::hardware::hidl_string& ussd);
Return<void> cancelPendingUssd(int32_t serial);
Return<void> getClir(int32_t serial);
Return<void> setClir(int32_t serial, int32_t status);
Return<void> getCallForwardStatus(int32_t serial,
const CallForwardInfo& callInfo);
Return<void> setCallForward(int32_t serial,
const CallForwardInfo& callInfo);
Return<void> getCallWaiting(int32_t serial, int32_t serviceClass);
Return<void> setCallWaiting(int32_t serial, bool enable, int32_t serviceClass);
Return<void> acknowledgeLastIncomingGsmSms(int32_t serial,
bool success, SmsAcknowledgeFailCause cause);
Return<void> acceptCall(int32_t serial);
Return<void> deactivateDataCall(int32_t serial,
int32_t cid, bool reasonRadioShutDown);
Return<void> getFacilityLockForApp(int32_t serial,
const ::android::hardware::hidl_string& facility,
const ::android::hardware::hidl_string& password,
int32_t serviceClass,
const ::android::hardware::hidl_string& appId);
Return<void> setFacilityLockForApp(int32_t serial,
const ::android::hardware::hidl_string& facility,
bool lockState,
const ::android::hardware::hidl_string& password,
int32_t serviceClass,
const ::android::hardware::hidl_string& appId);
Return<void> setBarringPassword(int32_t serial,
const ::android::hardware::hidl_string& facility,
const ::android::hardware::hidl_string& oldPassword,
const ::android::hardware::hidl_string& newPassword);
Return<void> getNetworkSelectionMode(int32_t serial);
Return<void> setNetworkSelectionModeAutomatic(int32_t serial);
Return<void> setNetworkSelectionModeManual(int32_t serial,
const ::android::hardware::hidl_string& operatorNumeric);
Return<void> getAvailableNetworks(int32_t serial);
Return<void> startNetworkScan(int32_t serial, const V1_1::NetworkScanRequest& request);
Return<void> stopNetworkScan(int32_t serial);
Return<void> startDtmf(int32_t serial,
const ::android::hardware::hidl_string& s);
Return<void> stopDtmf(int32_t serial);
Return<void> getBasebandVersion(int32_t serial);
Return<void> separateConnection(int32_t serial, int32_t gsmIndex);
Return<void> setMute(int32_t serial, bool enable);
Return<void> getMute(int32_t serial);
Return<void> getClip(int32_t serial);
Return<void> getDataCallList(int32_t serial);
Return<void> setSuppServiceNotifications(int32_t serial, bool enable);
Return<void> writeSmsToSim(int32_t serial,
const SmsWriteArgs& smsWriteArgs);
Return<void> deleteSmsOnSim(int32_t serial, int32_t index);
Return<void> setBandMode(int32_t serial, RadioBandMode mode);
Return<void> getAvailableBandModes(int32_t serial);
Return<void> sendEnvelope(int32_t serial,
const ::android::hardware::hidl_string& command);
Return<void> sendTerminalResponseToSim(int32_t serial,
const ::android::hardware::hidl_string& commandResponse);
Return<void> handleStkCallSetupRequestFromSim(int32_t serial, bool accept);
Return<void> explicitCallTransfer(int32_t serial);
Return<void> setPreferredNetworkType(int32_t serial, PreferredNetworkType nwType);
Return<void> getPreferredNetworkType(int32_t serial);
Return<void> getNeighboringCids(int32_t serial);
Return<void> setLocationUpdates(int32_t serial, bool enable);
Return<void> setCdmaSubscriptionSource(int32_t serial,
CdmaSubscriptionSource cdmaSub);
Return<void> setCdmaRoamingPreference(int32_t serial, CdmaRoamingType type);
Return<void> getCdmaRoamingPreference(int32_t serial);
Return<void> setTTYMode(int32_t serial, TtyMode mode);
Return<void> getTTYMode(int32_t serial);
Return<void> setPreferredVoicePrivacy(int32_t serial, bool enable);
Return<void> getPreferredVoicePrivacy(int32_t serial);
Return<void> sendCDMAFeatureCode(int32_t serial,
const ::android::hardware::hidl_string& featureCode);
Return<void> sendBurstDtmf(int32_t serial,
const ::android::hardware::hidl_string& dtmf,
int32_t on,
int32_t off);
Return<void> sendCdmaSms(int32_t serial, const CdmaSmsMessage& sms);
Return<void> acknowledgeLastIncomingCdmaSms(int32_t serial,
const CdmaSmsAck& smsAck);
Return<void> getGsmBroadcastConfig(int32_t serial);
Return<void> setGsmBroadcastConfig(int32_t serial,
const hidl_vec<GsmBroadcastSmsConfigInfo>& configInfo);
Return<void> setGsmBroadcastActivation(int32_t serial, bool activate);
Return<void> getCdmaBroadcastConfig(int32_t serial);
Return<void> setCdmaBroadcastConfig(int32_t serial,
const hidl_vec<CdmaBroadcastSmsConfigInfo>& configInfo);
Return<void> setCdmaBroadcastActivation(int32_t serial, bool activate);
Return<void> getCDMASubscription(int32_t serial);
Return<void> writeSmsToRuim(int32_t serial, const CdmaSmsWriteArgs& cdmaSms);
Return<void> deleteSmsOnRuim(int32_t serial, int32_t index);
Return<void> getDeviceIdentity(int32_t serial);
Return<void> exitEmergencyCallbackMode(int32_t serial);
Return<void> getSmscAddress(int32_t serial);
Return<void> setSmscAddress(int32_t serial,
const ::android::hardware::hidl_string& smsc);
Return<void> reportSmsMemoryStatus(int32_t serial, bool available);
Return<void> reportStkServiceIsRunning(int32_t serial);
Return<void> getCdmaSubscriptionSource(int32_t serial);
Return<void> requestIsimAuthentication(int32_t serial,
const ::android::hardware::hidl_string& challenge);
Return<void> acknowledgeIncomingGsmSmsWithPdu(int32_t serial,
bool success,
const ::android::hardware::hidl_string& ackPdu);
Return<void> sendEnvelopeWithStatus(int32_t serial,
const ::android::hardware::hidl_string& contents);
Return<void> getVoiceRadioTechnology(int32_t serial);
Return<void> getCellInfoList(int32_t serial);
Return<void> getCellInfoList_1_6(int32_t serial);
Return<void> setCellInfoListRate(int32_t serial, int32_t rate);
Return<void> setInitialAttachApn(int32_t serial, const DataProfileInfo& dataProfileInfo,
bool modemCognitive, bool isRoaming);
Return<void> getImsRegistrationState(int32_t serial);
Return<void> sendImsSms(int32_t serial, const ImsSmsMessage& message);
Return<void> iccTransmitApduBasicChannel(int32_t serial, const SimApdu& message);
Return<void> iccOpenLogicalChannel(int32_t serial,
const ::android::hardware::hidl_string& aid, int32_t p2);
Return<void> iccCloseLogicalChannel(int32_t serial, int32_t channelId);
Return<void> iccTransmitApduLogicalChannel(int32_t serial, const SimApdu& message);
Return<void> nvReadItem(int32_t serial, NvItem itemId);
Return<void> nvWriteItem(int32_t serial, const NvWriteItem& item);
Return<void> nvWriteCdmaPrl(int32_t serial,
const ::android::hardware::hidl_vec<uint8_t>& prl);
Return<void> nvResetConfig(int32_t serial, ResetNvType resetType);
Return<void> setUiccSubscription(int32_t serial, const SelectUiccSub& uiccSub);
Return<void> setDataAllowed(int32_t serial, bool allow);
Return<void> getHardwareConfig(int32_t serial);
Return<void> requestIccSimAuthentication(int32_t serial,
int32_t authContext,
const ::android::hardware::hidl_string& authData,
const ::android::hardware::hidl_string& aid);
Return<void> setDataProfile(int32_t serial,
const ::android::hardware::hidl_vec<DataProfileInfo>& profiles, bool isRoaming);
Return<void> requestShutdown(int32_t serial);
Return<void> getRadioCapability(int32_t serial);
Return<void> setRadioCapability(int32_t serial, const RadioCapability& rc);
Return<void> startLceService(int32_t serial, int32_t reportInterval, bool pullMode);
Return<void> stopLceService(int32_t serial);
Return<void> pullLceData(int32_t serial);
Return<void> getModemActivityInfo(int32_t serial);
Return<void> setAllowedCarriers(int32_t serial,
bool allAllowed,
const CarrierRestrictions& carriers);
Return<void> getAllowedCarriers(int32_t serial);
Return<void> sendDeviceState(int32_t serial, DeviceStateType deviceStateType, bool state);
Return<void> setIndicationFilter(int32_t serial, int32_t indicationFilter);
Return<void> startKeepalive(int32_t serial, const V1_1::KeepaliveRequest& keepalive);
Return<void> stopKeepalive(int32_t serial, int32_t sessionHandle);
Return<void> setSimCardPower(int32_t serial, bool powerUp);
Return<void> setSimCardPower_1_1(int32_t serial,
const V1_1::CardPowerState state);
Return<void> setSimCardPower_1_6(int32_t serial,
const V1_1::CardPowerState state);
Return<void> responseAcknowledgement();
Return<void> setCarrierInfoForImsiEncryption(int32_t serial,
const V1_1::ImsiEncryptionInfo& message);
void checkReturnStatus(Return<void>& ret);
// Methods from ::android::hardware::radio::V1_2::IRadio follow.
Return<void> startNetworkScan_1_2(int32_t serial,
const ::android::hardware::radio::V1_2::NetworkScanRequest& request);
Return<void> setIndicationFilter_1_2(int32_t serial,
hidl_bitfield<::android::hardware::radio::V1_2::IndicationFilter> indicationFilter);
Return<void> setSignalStrengthReportingCriteria(int32_t serial, int32_t hysteresisMs,
int32_t hysteresisDb, const hidl_vec<int32_t>& thresholdsDbm,
::android::hardware::radio::V1_2::AccessNetwork accessNetwork);
Return<void> setLinkCapacityReportingCriteria(int32_t serial, int32_t hysteresisMs,
int32_t hysteresisDlKbps, int32_t hysteresisUlKbps,
const hidl_vec<int32_t>& thresholdsDownlinkKbps,
const hidl_vec<int32_t>& thresholdsUplinkKbps,
::android::hardware::radio::V1_2::AccessNetwork accessNetwork);
Return<void> setupDataCall_1_2(int32_t serial,
::android::hardware::radio::V1_2::AccessNetwork accessNetwork,
const ::android::hardware::radio::V1_0::DataProfileInfo& dataProfileInfo,
bool modemCognitive, bool roamingAllowed, bool isRoaming,
::android::hardware::radio::V1_2::DataRequestReason reason,
const hidl_vec<hidl_string>& addresses, const hidl_vec<hidl_string>& dnses);
Return<void> deactivateDataCall_1_2(int32_t serial, int32_t cid,
::android::hardware::radio::V1_2::DataRequestReason reason);
// Methods from ::android::hardware::radio::V1_3::IRadio follow.
Return<void> setSystemSelectionChannels(int32_t serial, bool specifyChannels,
const hidl_vec<::android::hardware::radio::V1_1::RadioAccessSpecifier>& specifiers);
Return<void> enableModem(int32_t serial, bool on);
Return<void> getModemStackStatus(int32_t serial);
// Methods from ::android::hardware::radio::V1_4::IRadio follow.
Return<void> setupDataCall_1_4(int32_t serial,
::android::hardware::radio::V1_4::AccessNetwork accessNetwork,
const ::android::hardware::radio::V1_4::DataProfileInfo& dataProfileInfo,
bool roamingAllowed, ::android::hardware::radio::V1_2::DataRequestReason reason,
const hidl_vec<hidl_string>& addresses, const hidl_vec<hidl_string>& dnses);
Return<void> setInitialAttachApn_1_4(int32_t serial,
const ::android::hardware::radio::V1_4::DataProfileInfo& dataProfileInfo);
Return<void> setDataProfile_1_4(int32_t serial,
const hidl_vec<::android::hardware::radio::V1_4::DataProfileInfo>& profiles);
Return<void> emergencyDial(int32_t serial,
const ::android::hardware::radio::V1_0::Dial& dialInfo,
hidl_bitfield<android::hardware::radio::V1_4::EmergencyServiceCategory> categories,
const hidl_vec<hidl_string>& urns,
::android::hardware::radio::V1_4::EmergencyCallRouting routing,
bool fromEmergencyDialer, bool isTesting);
Return<void> startNetworkScan_1_4(int32_t serial,
const ::android::hardware::radio::V1_2::NetworkScanRequest& request);
Return<void> getPreferredNetworkTypeBitmap(int32_t serial);
Return<void> setPreferredNetworkTypeBitmap(
int32_t serial, hidl_bitfield<RadioAccessFamily> networkTypeBitmap);
Return<void> setAllowedCarriers_1_4(int32_t serial,
const ::android::hardware::radio::V1_4::CarrierRestrictionsWithPriority& carriers,
::android::hardware::radio::V1_4::SimLockMultiSimPolicy multiSimPolicy);
Return<void> getAllowedCarriers_1_4(int32_t serial);
Return<void> getSignalStrength_1_4(int32_t serial);
// Methods from ::android::hardware::radio::V1_5::IRadio follow.
Return<void> setSignalStrengthReportingCriteria_1_5(int32_t serial,
const ::android::hardware::radio::V1_5::SignalThresholdInfo& signalThresholdInfo,
const ::android::hardware::radio::V1_5::AccessNetwork accessNetwork);
Return<void> setLinkCapacityReportingCriteria_1_5(int32_t serial, int32_t hysteresisMs,
int32_t hysteresisDlKbps, int32_t hysteresisUlKbps,
const hidl_vec<int32_t>& thresholdsDownlinkKbps,
const hidl_vec<int32_t>& thresholdsUplinkKbps,
V1_5::AccessNetwork accessNetwork);
Return<void> enableUiccApplications(int32_t serial, bool detach);
Return<void> areUiccApplicationsEnabled(int32_t serial);
Return<void> setSystemSelectionChannels_1_5(int32_t serial, bool specifyChannels,
const hidl_vec<::android::hardware::radio::V1_5::RadioAccessSpecifier>& specifiers);
Return<void> startNetworkScan_1_5(int32_t serial,
const ::android::hardware::radio::V1_5::NetworkScanRequest& request);
Return<void> setupDataCall_1_5(int32_t serial,
::android::hardware::radio::V1_5::AccessNetwork accessNetwork,
const ::android::hardware::radio::V1_5::DataProfileInfo& dataProfileInfo,
bool roamingAllowed, ::android::hardware::radio::V1_2::DataRequestReason reason,
const hidl_vec<::android::hardware::radio::V1_5::LinkAddress>& addresses,
const hidl_vec<hidl_string>& dnses);
Return<void> setInitialAttachApn_1_5(int32_t serial,
const ::android::hardware::radio::V1_5::DataProfileInfo& dataProfileInfo);
Return<void> setDataProfile_1_5(int32_t serial,
const hidl_vec<::android::hardware::radio::V1_5::DataProfileInfo>& profiles);
Return<void> setRadioPower_1_5(int32_t serial, bool powerOn, bool forEmergencyCall,
bool preferredForEmergencyCall);
Return<void> setIndicationFilter_1_5(int32_t serial,
hidl_bitfield<::android::hardware::radio::V1_5::IndicationFilter> indicationFilter);
Return<void> getBarringInfo(int32_t serial);
Return<void> getVoiceRegistrationState_1_5(int32_t serial);
Return<void> getDataRegistrationState_1_5(int32_t serial);
Return<void> setNetworkSelectionModeManual_1_5(int32_t serial,
const hidl_string& operatorNumeric, V1_5::RadioAccessNetworks ran);
Return<void> sendCdmaSmsExpectMore(int32_t serial, const CdmaSmsMessage& sms);
Return<void> supplySimDepersonalization(int32_t serial, V1_5::PersoSubstate persoType,
const hidl_string& controlKey);
Return<void> setNrDualConnectivityState(int32_t serial,
V1_6::NrDualConnectivityState nrDualConnectivityState);
Return<void> isNrDualConnectivityEnabled(int32_t serial);
// Methods from ::android::hardware::radio::V1_6::IRadio follow.
Return<void> getDataCallList_1_6(int32_t serial);
Return<void> setupDataCall_1_6(int32_t serial,
::android::hardware::radio::V1_5::AccessNetwork accessNetwork,
const ::android::hardware::radio::V1_5::DataProfileInfo& dataProfileInfo,
bool roamingAllowed, ::android::hardware::radio::V1_2::DataRequestReason reason,
const hidl_vec<::android::hardware::radio::V1_5::LinkAddress>& addresses,
const hidl_vec<hidl_string>& dnses,
int32_t pduSessionId);
Return<void> sendSms_1_6(int32_t serial, const GsmSmsMessage& message);
Return<void> sendSMSExpectMore_1_6(int32_t serial, const GsmSmsMessage& message);
Return<void> sendCdmaSms_1_6(int32_t serial, const CdmaSmsMessage& sms);
Return<void> sendCdmaSmsExpectMore_1_6(int32_t serial, const CdmaSmsMessage& sms);
Return<void> setRadioPower_1_6(int32_t serial, bool powerOn, bool forEmergencyCall,
bool preferredForEmergencyCall);
Return<void> allocatePduSessionId(int32_t serial);
Return<void> releasePduSessionId(int32_t serial, int32_t id);
Return<void> startHandover(int32_t serial, int32_t callId);
Return<void> cancelHandover(int32_t serial, int32_t callId);
Return<void> setAllowedNetworkTypeBitmap(uint32_t serial,
hidl_bitfield<::android::hardware::radio::V1_4::RadioAccessFamily> networkTypeBitmap);
Return<void> setDataThrottling(int32_t serial,
V1_6::DataThrottlingAction dataThrottlingAction,
int64_t completionDurationMillis);
Return<void> getSystemSelectionChannels(int32_t serial);
Return<void> getVoiceRegistrationState_1_6(int32_t serial);
Return<void> getDataRegistrationState_1_6(int32_t serial);
};
struct OemHookImpl : public IOemHook {
int32_t mSlotId;
sp<IOemHookResponse> mOemHookResponse;
sp<IOemHookIndication> mOemHookIndication;
Return<void> setResponseFunctions(
const ::android::sp<IOemHookResponse>& oemHookResponse,
const ::android::sp<IOemHookIndication>& oemHookIndication);
Return<void> sendRequestRaw(int32_t serial,
const ::android::hardware::hidl_vec<uint8_t>& data);
Return<void> sendRequestStrings(int32_t serial,
const ::android::hardware::hidl_vec<::android::hardware::hidl_string>& data);
};
void memsetAndFreeStrings(int numPointers, ...) {
va_list ap;
va_start(ap, numPointers);
for (int i = 0; i < numPointers; i++) {
char *ptr = va_arg(ap, char *);
if (ptr) {
#ifdef MEMSET_FREED
#define MAX_STRING_LENGTH 4096
memset(ptr, 0, strnlen(ptr, MAX_STRING_LENGTH));
#endif
free(ptr);
}
}
va_end(ap);
}
void sendErrorResponse(RequestInfo *pRI, RIL_Errno err) {
pRI->pCI->responseFunction((int) pRI->socket_id,
(int) RadioResponseType::SOLICITED, pRI->token, err, NULL, 0);
}
/**
* Copies over src to dest. If memory allocation fails, responseFunction() is called for the
* request with error RIL_E_NO_MEMORY. The size() method is used to determine the size of the
* destination buffer into which the HIDL string is copied. If there is a discrepancy between
* the string length reported by the size() method, and the length of the string returned by
* the c_str() method, the function will return false indicating a failure.
*
* Returns true on success, and false on failure.
*/
bool copyHidlStringToRil(char **dest, const hidl_string &src, RequestInfo *pRI, bool allowEmpty) {
size_t len = src.size();
if (len == 0 && !allowEmpty) {
*dest = NULL;
return true;
}
*dest = (char *) calloc(len + 1, sizeof(char));
if (*dest == NULL) {
RLOGE("Memory allocation failed for request %s", requestToString(pRI->pCI->requestNumber));
sendErrorResponse(pRI, RIL_E_NO_MEMORY);
return false;
}
if (strlcpy(*dest, src.c_str(), len + 1) >= (len + 1)) {
RLOGE("Copy of the HIDL string has been truncated, as "
"the string length reported by size() does not "
"match the length of string returned by c_str().");
free(*dest);
*dest = NULL;
sendErrorResponse(pRI, RIL_E_INTERNAL_ERR);
return false;
}
return true;
}
bool copyHidlStringToRil(char **dest, const hidl_string &src, RequestInfo *pRI) {
return copyHidlStringToRil(dest, src, pRI, false);
}
hidl_string convertCharPtrToHidlString(const char *ptr) {
hidl_string ret;
if (ptr != NULL) {
// TODO: replace this with strnlen
ret.setToExternal(ptr, strlen(ptr));
}
return ret;
}
bool dispatchVoid(int serial, int slotId, int request) {
RequestInfo *pRI = android::addRequestToList(serial, slotId, request);
if (pRI == NULL) {
return false;
}
CALL_ONREQUEST(request, NULL, 0, pRI, slotId);
return true;
}
bool dispatchString(int serial, int slotId, int request, const char * str) {
RequestInfo *pRI = android::addRequestToList(serial, slotId, request);
if (pRI == NULL) {
return false;
}
char *pString;
if (!copyHidlStringToRil(&pString, str, pRI)) {
return false;
}
CALL_ONREQUEST(request, pString, sizeof(char *), pRI, slotId);
memsetAndFreeStrings(1, pString);
return true;
}
bool dispatchStrings(int serial, int slotId, int request, bool allowEmpty, int countStrings, ...) {
RequestInfo *pRI = android::addRequestToList(serial, slotId, request);
if (pRI == NULL) {
return false;
}
char **pStrings;
pStrings = (char **)calloc(countStrings, sizeof(char *));
if (pStrings == NULL) {
RLOGE("Memory allocation failed for request %s", requestToString(request));
sendErrorResponse(pRI, RIL_E_NO_MEMORY);
return false;
}
va_list ap;
va_start(ap, countStrings);
for (int i = 0; i < countStrings; i++) {
const char* str = va_arg(ap, const char *);
if (!copyHidlStringToRil(&pStrings[i], hidl_string(str), pRI, allowEmpty)) {
va_end(ap);
for (int j = 0; j < i; j++) {
memsetAndFreeStrings(1, pStrings[j]);
}
free(pStrings);
return false;
}
}
va_end(ap);
CALL_ONREQUEST(request, pStrings, countStrings * sizeof(char *), pRI, slotId);
if (pStrings != NULL) {
for (int i = 0 ; i < countStrings ; i++) {
memsetAndFreeStrings(1, pStrings[i]);
}
#ifdef MEMSET_FREED
memset(pStrings, 0, countStrings * sizeof(char *));
#endif
free(pStrings);
}
return true;
}
bool dispatchStrings(int serial, int slotId, int request, const hidl_vec<hidl_string>& data) {
RequestInfo *pRI = android::addRequestToList(serial, slotId, request);
if (pRI == NULL) {
return false;
}
int countStrings = data.size();
char **pStrings;
pStrings = (char **)calloc(countStrings, sizeof(char *));
if (pStrings == NULL) {
RLOGE("Memory allocation failed for request %s", requestToString(request));
sendErrorResponse(pRI, RIL_E_NO_MEMORY);
return false;
}
for (int i = 0; i < countStrings; i++) {
if (!copyHidlStringToRil(&pStrings[i], data[i], pRI)) {
for (int j = 0; j < i; j++) {
memsetAndFreeStrings(1, pStrings[j]);
}
free(pStrings);
return false;
}
}
CALL_ONREQUEST(request, pStrings, countStrings * sizeof(char *), pRI, slotId);
if (pStrings != NULL) {
for (int i = 0 ; i < countStrings ; i++) {
memsetAndFreeStrings(1, pStrings[i]);
}
#ifdef MEMSET_FREED
memset(pStrings, 0, countStrings * sizeof(char *));
#endif
free(pStrings);
}
return true;
}
bool dispatchInts(int serial, int slotId, int request, int countInts, ...) {
RequestInfo *pRI = android::addRequestToList(serial, slotId, request);
if (pRI == NULL) {
return false;
}
int *pInts = (int *)calloc(countInts, sizeof(int));
if (pInts == NULL) {
RLOGE("Memory allocation failed for request %s", requestToString(request));
sendErrorResponse(pRI, RIL_E_NO_MEMORY);
return false;
}
va_list ap;
va_start(ap, countInts);
for (int i = 0; i < countInts; i++) {
pInts[i] = va_arg(ap, int);
}
va_end(ap);
CALL_ONREQUEST(request, pInts, countInts * sizeof(int), pRI, slotId);
if (pInts != NULL) {
#ifdef MEMSET_FREED
memset(pInts, 0, countInts * sizeof(int));
#endif
free(pInts);
}
return true;
}
bool dispatchCallForwardStatus(int serial, int slotId, int request,
const CallForwardInfo& callInfo) {
RequestInfo *pRI = android::addRequestToList(serial, slotId, request);
if (pRI == NULL) {
return false;
}
RIL_CallForwardInfo cf;
cf.status = (int) callInfo.status;
cf.reason = callInfo.reason;
cf.serviceClass = callInfo.serviceClass;
cf.toa = callInfo.toa;
cf.timeSeconds = callInfo.timeSeconds;
if (!copyHidlStringToRil(&cf.number, callInfo.number, pRI)) {
return false;
}
CALL_ONREQUEST(request, &cf, sizeof(cf), pRI, slotId);
memsetAndFreeStrings(1, cf.number);
return true;
}
bool dispatchRaw(int serial, int slotId, int request, const hidl_vec<uint8_t>& rawBytes) {
RequestInfo *pRI = android::addRequestToList(serial, slotId, request);
if (pRI == NULL) {
return false;
}
const uint8_t *uData = rawBytes.data();
CALL_ONREQUEST(request, (void *) uData, rawBytes.size(), pRI, slotId);
return true;
}
bool dispatchIccApdu(int serial, int slotId, int request, const SimApdu& message) {
RequestInfo *pRI = android::addRequestToList(serial, slotId, request);
if (pRI == NULL) {
return false;
}
RIL_SIM_APDU apdu = {};
apdu.sessionid = message.sessionId;
apdu.cla = message.cla;
apdu.instruction = message.instruction;
apdu.p1 = message.p1;
apdu.p2 = message.p2;
apdu.p3 = message.p3;
if (!copyHidlStringToRil(&apdu.data, message.data, pRI)) {
return false;
}
CALL_ONREQUEST(request, &apdu, sizeof(apdu), pRI, slotId);
memsetAndFreeStrings(1, apdu.data);
return true;
}
void checkReturnStatus(int32_t slotId, Return<void>& ret, bool isRadioService) {
if (ret.isOk() == false) {
RLOGE("checkReturnStatus: unable to call response/indication callback");
// Remote process hosting the callbacks must be dead. Reset the callback objects;
// there's no other recovery to be done here. When the client process is back up, it will
// call setResponseFunctions()
// Caller should already hold rdlock, release that first
// note the current counter to avoid overwriting updates made by another thread before
// write lock is acquired.
int counter = isRadioService ? mCounterRadio[slotId] : mCounterOemHook[slotId];
pthread_rwlock_t *radioServiceRwlockPtr = radio_1_6::getRadioServiceRwlock(slotId);
int ret = pthread_rwlock_unlock(radioServiceRwlockPtr);
assert(ret == 0);
// acquire wrlock
ret = pthread_rwlock_wrlock(radioServiceRwlockPtr);
assert(ret == 0);
// make sure the counter value has not changed
if (counter == (isRadioService ? mCounterRadio[slotId] : mCounterOemHook[slotId])) {
if (isRadioService) {
radioService[slotId]->mRadioResponse = NULL;
radioService[slotId]->mRadioIndication = NULL;
radioService[slotId]->mRadioResponseV1_2 = NULL;
radioService[slotId]->mRadioIndicationV1_2 = NULL;
radioService[slotId]->mRadioResponseV1_3 = NULL;
radioService[slotId]->mRadioIndicationV1_3 = NULL;
radioService[slotId]->mRadioResponseV1_4 = NULL;
radioService[slotId]->mRadioIndicationV1_4 = NULL;
radioService[slotId]->mRadioResponseV1_5 = NULL;
radioService[slotId]->mRadioIndicationV1_5 = NULL;
radioService[slotId]->mRadioResponseV1_6 = NULL;
radioService[slotId]->mRadioIndicationV1_6 = NULL;
} else {
oemHookService[slotId]->mOemHookResponse = NULL;
oemHookService[slotId]->mOemHookIndication = NULL;
}
isRadioService ? mCounterRadio[slotId]++ : mCounterOemHook[slotId]++;
} else {
RLOGE("checkReturnStatus: not resetting responseFunctions as they likely "
"got updated on another thread");
}
// release wrlock
ret = pthread_rwlock_unlock(radioServiceRwlockPtr);
assert(ret == 0);
// Reacquire rdlock
ret = pthread_rwlock_rdlock(radioServiceRwlockPtr);
assert(ret == 0);
}
}
void RadioImpl_1_6::checkReturnStatus(Return<void>& ret) {
::checkReturnStatus(mSlotId, ret, true);
}
Return<void> RadioImpl_1_6::setResponseFunctions(
const ::android::sp<IRadioResponse>& radioResponseParam,
const ::android::sp<IRadioIndication>& radioIndicationParam) {
RLOGD("setResponseFunctions");
pthread_rwlock_t *radioServiceRwlockPtr = radio_1_6::getRadioServiceRwlock(mSlotId);
int ret = pthread_rwlock_wrlock(radioServiceRwlockPtr);
assert(ret == 0);
mRadioResponse = radioResponseParam;
mRadioIndication = radioIndicationParam;
mRadioResponseV1_6 = V1_6::IRadioResponse::castFrom(mRadioResponse).withDefault(nullptr);
mRadioIndicationV1_6 = V1_6::IRadioIndication::castFrom(mRadioIndication).withDefault(nullptr);
if (mRadioResponseV1_6 == nullptr || mRadioIndicationV1_6 == nullptr) {
mRadioResponseV1_6 = nullptr;
mRadioIndicationV1_6 = nullptr;
}
mRadioResponseV1_5 = V1_5::IRadioResponse::castFrom(mRadioResponse).withDefault(nullptr);
mRadioIndicationV1_5 = V1_5::IRadioIndication::castFrom(mRadioIndication).withDefault(nullptr);
if (mRadioResponseV1_5 == nullptr || mRadioIndicationV1_5 == nullptr) {
mRadioResponseV1_5 = nullptr;
mRadioIndicationV1_5 = nullptr;
}
mRadioResponseV1_4 = V1_4::IRadioResponse::castFrom(mRadioResponse).withDefault(nullptr);
mRadioIndicationV1_4 = V1_4::IRadioIndication::castFrom(mRadioIndication).withDefault(nullptr);
if (mRadioResponseV1_4 == nullptr || mRadioIndicationV1_4 == nullptr) {
mRadioResponseV1_4 = nullptr;
mRadioIndicationV1_4 = nullptr;
}
mRadioResponseV1_3 = V1_3::IRadioResponse::castFrom(mRadioResponse).withDefault(nullptr);
mRadioIndicationV1_3 = V1_3::IRadioIndication::castFrom(mRadioIndication).withDefault(nullptr);
if (mRadioResponseV1_3 == nullptr || mRadioIndicationV1_3 == nullptr) {
mRadioResponseV1_3 = nullptr;
mRadioIndicationV1_3 = nullptr;
}
mRadioResponseV1_2 = V1_2::IRadioResponse::castFrom(mRadioResponse).withDefault(nullptr);
mRadioIndicationV1_2 = V1_2::IRadioIndication::castFrom(mRadioIndication).withDefault(nullptr);
if (mRadioResponseV1_2 == nullptr || mRadioIndicationV1_2 == nullptr) {
mRadioResponseV1_2 = nullptr;
mRadioIndicationV1_2 = nullptr;
}
mRadioResponseV1_1 = V1_1::IRadioResponse::castFrom(mRadioResponse).withDefault(nullptr);
mRadioIndicationV1_1 = V1_1::IRadioIndication::castFrom(mRadioIndication).withDefault(nullptr);
if (mRadioResponseV1_1 == nullptr || mRadioIndicationV1_1 == nullptr) {
mRadioResponseV1_1 = nullptr;
mRadioIndicationV1_1 = nullptr;
}
mCounterRadio[mSlotId]++;
ret = pthread_rwlock_unlock(radioServiceRwlockPtr);
assert(ret == 0);
// client is connected. Send initial indications.
android::onNewCommandConnect((RIL_SOCKET_ID) mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::getIccCardStatus(int32_t serial) {
#if VDBG
RLOGD("getIccCardStatus: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_GET_SIM_STATUS);
return Void();
}
Return<void> RadioImpl_1_6::supplyIccPinForApp(int32_t serial, const hidl_string& pin,
const hidl_string& aid) {
#if VDBG
RLOGD("supplyIccPinForApp: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_ENTER_SIM_PIN, true,
2, pin.c_str(), aid.c_str());
return Void();
}
Return<void> RadioImpl_1_6::supplyIccPukForApp(int32_t serial, const hidl_string& puk,
const hidl_string& pin, const hidl_string& aid) {
#if VDBG
RLOGD("supplyIccPukForApp: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_ENTER_SIM_PUK, true,
3, puk.c_str(), pin.c_str(), aid.c_str());
return Void();
}
Return<void> RadioImpl_1_6::supplyIccPin2ForApp(int32_t serial, const hidl_string& pin2,
const hidl_string& aid) {
#if VDBG
RLOGD("supplyIccPin2ForApp: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_ENTER_SIM_PIN2, true,
2, pin2.c_str(), aid.c_str());
return Void();
}
Return<void> RadioImpl_1_6::supplyIccPuk2ForApp(int32_t serial, const hidl_string& puk2,
const hidl_string& pin2, const hidl_string& aid) {
#if VDBG
RLOGD("supplyIccPuk2ForApp: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_ENTER_SIM_PUK2, true,
3, puk2.c_str(), pin2.c_str(), aid.c_str());
return Void();
}
Return<void> RadioImpl_1_6::changeIccPinForApp(int32_t serial, const hidl_string& oldPin,
const hidl_string& newPin, const hidl_string& aid) {
#if VDBG
RLOGD("changeIccPinForApp: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_CHANGE_SIM_PIN, true,
3, oldPin.c_str(), newPin.c_str(), aid.c_str());
return Void();
}
Return<void> RadioImpl_1_6::changeIccPin2ForApp(int32_t serial, const hidl_string& oldPin2,
const hidl_string& newPin2, const hidl_string& aid) {
#if VDBG
RLOGD("changeIccPin2ForApp: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_CHANGE_SIM_PIN2, true,
3, oldPin2.c_str(), newPin2.c_str(), aid.c_str());
return Void();
}
Return<void> RadioImpl_1_6::supplyNetworkDepersonalization(int32_t serial,
const hidl_string& netPin) {
#if VDBG
RLOGD("supplyNetworkDepersonalization: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_ENTER_NETWORK_DEPERSONALIZATION, true,
1, netPin.c_str());
return Void();
}
Return<void> RadioImpl_1_6::getCurrentCalls(int32_t serial) {
#if VDBG
RLOGD("getCurrentCalls: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_GET_CURRENT_CALLS);
return Void();
}
Return<void> RadioImpl_1_6::getCurrentCalls_1_6(int32_t serial) {
#if VDBG
RLOGD("getCurrentCalls_1_6: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_GET_CURRENT_CALLS);
return Void();
}
Return<void> RadioImpl_1_6::dial(int32_t serial, const Dial& dialInfo) {
#if VDBG
RLOGD("dial: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_DIAL);
if (pRI == NULL) {
return Void();
}
RIL_Dial dial = {};
RIL_UUS_Info uusInfo = {};
int32_t sizeOfDial = sizeof(dial);
if (!copyHidlStringToRil(&dial.address, dialInfo.address, pRI)) {
return Void();
}
dial.clir = (int) dialInfo.clir;
if (dialInfo.uusInfo.size() != 0) {
uusInfo.uusType = (RIL_UUS_Type) dialInfo.uusInfo[0].uusType;
uusInfo.uusDcs = (RIL_UUS_DCS) dialInfo.uusInfo[0].uusDcs;
if (dialInfo.uusInfo[0].uusData.size() == 0) {
uusInfo.uusData = NULL;
uusInfo.uusLength = 0;
} else {
if (!copyHidlStringToRil(&uusInfo.uusData, dialInfo.uusInfo[0].uusData, pRI)) {
memsetAndFreeStrings(1, dial.address);
return Void();
}
uusInfo.uusLength = dialInfo.uusInfo[0].uusData.size();
}
dial.uusInfo = &uusInfo;
}
CALL_ONREQUEST(RIL_REQUEST_DIAL, &dial, sizeOfDial, pRI, mSlotId);
memsetAndFreeStrings(2, dial.address, uusInfo.uusData);
return Void();
}
Return<void> RadioImpl_1_6::getImsiForApp(int32_t serial, const hidl_string& aid) {
#if VDBG
RLOGD("getImsiForApp: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_GET_IMSI, false,
1, aid.c_str());
return Void();
}
Return<void> RadioImpl_1_6::hangup(int32_t serial, int32_t gsmIndex) {
#if VDBG
RLOGD("hangup: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_HANGUP, 1, gsmIndex);
return Void();
}
Return<void> RadioImpl_1_6::hangupWaitingOrBackground(int32_t serial) {
#if VDBG
RLOGD("hangupWaitingOrBackground: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND);
return Void();
}
Return<void> RadioImpl_1_6::hangupForegroundResumeBackground(int32_t serial) {
#if VDBG
RLOGD("hangupForegroundResumeBackground: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND);
return Void();
}
Return<void> RadioImpl_1_6::switchWaitingOrHoldingAndActive(int32_t serial) {
#if VDBG
RLOGD("switchWaitingOrHoldingAndActive: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE);
return Void();
}
Return<void> RadioImpl_1_6::conference(int32_t serial) {
#if VDBG
RLOGD("conference: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_CONFERENCE);
return Void();
}
Return<void> RadioImpl_1_6::rejectCall(int32_t serial) {
#if VDBG
RLOGD("rejectCall: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_UDUB);
return Void();
}
Return<void> RadioImpl_1_6::getLastCallFailCause(int32_t serial) {
#if VDBG
RLOGD("getLastCallFailCause: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_LAST_CALL_FAIL_CAUSE);
return Void();
}
Return<void> RadioImpl_1_6::getSignalStrength(int32_t serial) {
#if VDBG
RLOGD("getSignalStrength: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_SIGNAL_STRENGTH);
return Void();
}
Return<void> RadioImpl_1_6::getVoiceRegistrationState(int32_t serial) {
#if VDBG
RLOGD("getVoiceRegistrationState: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_VOICE_REGISTRATION_STATE);
return Void();
}
Return<void> RadioImpl_1_6::getDataRegistrationState(int32_t serial) {
#if VDBG
RLOGD("getDataRegistrationState: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_DATA_REGISTRATION_STATE);
return Void();
}
Return<void> RadioImpl_1_6::getOperator(int32_t serial) {
#if VDBG
RLOGD("getOperator: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_OPERATOR);
return Void();
}
Return<void> RadioImpl_1_6::setRadioPower(int32_t serial, bool on) {
#if VDBG
RLOGD("setRadioPower: serial %d on %d", serial, on);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_RADIO_POWER, 1, BOOL_TO_INT(on));
return Void();
}
Return<void> RadioImpl_1_6::sendDtmf(int32_t serial, const hidl_string& s) {
#if VDBG
RLOGD("sendDtmf: serial %d", serial);
#endif
dispatchString(serial, mSlotId, RIL_REQUEST_DTMF, s.c_str());
return Void();
}
Return<void> RadioImpl_1_6::sendSms(int32_t serial, const GsmSmsMessage& message) {
#if VDBG
RLOGD("sendSms: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_SEND_SMS, false,
2, message.smscPdu.c_str(), message.pdu.c_str());
return Void();
}
Return<void> RadioImpl_1_6::sendSms_1_6(int32_t serial, const GsmSmsMessage& message) {
#if VDBG
RLOGD("sendSms: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_SEND_SMS, false,
2, message.smscPdu.c_str(), message.pdu.c_str());
return Void();
}
Return<void> RadioImpl_1_6::sendSMSExpectMore(int32_t serial, const GsmSmsMessage& message) {
#if VDBG
RLOGD("sendSMSExpectMore: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_SEND_SMS_EXPECT_MORE, false,
2, message.smscPdu.c_str(), message.pdu.c_str());
return Void();
}
Return<void> RadioImpl_1_6::sendSMSExpectMore_1_6(int32_t serial, const GsmSmsMessage& message) {
#if VDBG
RLOGD("sendSMSExpectMore: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_SEND_SMS_EXPECT_MORE, false,
2, message.smscPdu.c_str(), message.pdu.c_str());
return Void();
}
static bool convertMvnoTypeToString(MvnoType type, char *&str) {
switch (type) {
case MvnoType::IMSI:
str = (char *)"imsi";
return true;
case MvnoType::GID:
str = (char *)"gid";
return true;
case MvnoType::SPN:
str = (char *)"spn";
return true;
case MvnoType::NONE:
str = (char *)"";
return true;
}
return false;
}
Return<void> RadioImpl_1_6::setupDataCall(int32_t serial, RadioTechnology radioTechnology,
const DataProfileInfo& dataProfileInfo, bool modemCognitive,
bool roamingAllowed, bool isRoaming) {
#if VDBG
RLOGD("setupDataCall: serial %d", serial);
#endif
if (s_vendorFunctions->version >= 4 && s_vendorFunctions->version <= 14) {
const hidl_string &protocol =
(isRoaming ? dataProfileInfo.roamingProtocol : dataProfileInfo.protocol);
dispatchStrings(serial, mSlotId, RIL_REQUEST_SETUP_DATA_CALL, true, 7,
std::to_string((int) radioTechnology + 2).c_str(),
std::to_string((int) dataProfileInfo.profileId).c_str(),
dataProfileInfo.apn.c_str(),
dataProfileInfo.user.c_str(),
dataProfileInfo.password.c_str(),
std::to_string((int) dataProfileInfo.authType).c_str(),
protocol.c_str());
} else if (s_vendorFunctions->version == 15) {
char *mvnoTypeStr = NULL;
if (!convertMvnoTypeToString(dataProfileInfo.mvnoType, mvnoTypeStr)) {
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SETUP_DATA_CALL);
if (pRI != NULL) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
}
return Void();
}
dispatchStrings(serial, mSlotId, RIL_REQUEST_SETUP_DATA_CALL, true, 15,
std::to_string((int) radioTechnology + 2).c_str(),
std::to_string((int) dataProfileInfo.profileId).c_str(),
dataProfileInfo.apn.c_str(),
dataProfileInfo.user.c_str(),
dataProfileInfo.password.c_str(),
std::to_string((int) dataProfileInfo.authType).c_str(),
dataProfileInfo.protocol.c_str(),
dataProfileInfo.roamingProtocol.c_str(),
std::to_string(dataProfileInfo.supportedApnTypesBitmap).c_str(),
std::to_string(dataProfileInfo.bearerBitmap).c_str(),
modemCognitive ? "1" : "0",
std::to_string(dataProfileInfo.mtu).c_str(),
mvnoTypeStr,
dataProfileInfo.mvnoMatchData.c_str(),
roamingAllowed ? "1" : "0");
} else if (s_vendorFunctions->version >= 16) {
char *mvnoTypeStr = NULL;
if (!convertMvnoTypeToString(dataProfileInfo.mvnoType, mvnoTypeStr)) {
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SETUP_DATA_CALL);
if (pRI != NULL) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
}
return Void();
}
dispatchStrings(serial, mSlotId, RIL_REQUEST_SETUP_DATA_CALL, true, 16,
std::to_string((int) radioTechnology + 2).c_str(),
std::to_string((int) dataProfileInfo.profileId).c_str(),
dataProfileInfo.apn.c_str(),
dataProfileInfo.user.c_str(),
dataProfileInfo.password.c_str(),
std::to_string((int) dataProfileInfo.authType).c_str(),
dataProfileInfo.protocol.c_str(),
dataProfileInfo.roamingProtocol.c_str(),
std::to_string(dataProfileInfo.supportedApnTypesBitmap).c_str(),
std::to_string(dataProfileInfo.bearerBitmap).c_str(),
modemCognitive ? "1" : "0",
std::to_string(dataProfileInfo.mtu).c_str(),
mvnoTypeStr,
dataProfileInfo.mvnoMatchData.c_str(),
roamingAllowed ? "1" : "0",
"-1");
} else {
RLOGE("Unsupported RIL version %d, min version expected 4", s_vendorFunctions->version);
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SETUP_DATA_CALL);
if (pRI != NULL) {
sendErrorResponse(pRI, RIL_E_REQUEST_NOT_SUPPORTED);
}
}
return Void();
}
Return<void> RadioImpl_1_6::iccIOForApp(int32_t serial, const IccIo& iccIo) {
#if VDBG
RLOGD("iccIOForApp: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_SIM_IO);
if (pRI == NULL) {
return Void();
}
RIL_SIM_IO_v6 rilIccIo = {};
rilIccIo.command = iccIo.command;
rilIccIo.fileid = iccIo.fileId;
if (!copyHidlStringToRil(&rilIccIo.path, iccIo.path, pRI)) {
return Void();
}
rilIccIo.p1 = iccIo.p1;
rilIccIo.p2 = iccIo.p2;
rilIccIo.p3 = iccIo.p3;
if (!copyHidlStringToRil(&rilIccIo.data, iccIo.data, pRI)) {
memsetAndFreeStrings(1, rilIccIo.path);
return Void();
}
if (!copyHidlStringToRil(&rilIccIo.pin2, iccIo.pin2, pRI)) {
memsetAndFreeStrings(2, rilIccIo.path, rilIccIo.data);
return Void();
}
if (!copyHidlStringToRil(&rilIccIo.aidPtr, iccIo.aid, pRI)) {
memsetAndFreeStrings(3, rilIccIo.path, rilIccIo.data, rilIccIo.pin2);
return Void();
}
CALL_ONREQUEST(RIL_REQUEST_SIM_IO, &rilIccIo, sizeof(rilIccIo), pRI, mSlotId);
memsetAndFreeStrings(4, rilIccIo.path, rilIccIo.data, rilIccIo.pin2, rilIccIo.aidPtr);
return Void();
}
Return<void> RadioImpl_1_6::sendUssd(int32_t serial, const hidl_string& ussd) {
#if VDBG
RLOGD("sendUssd: serial %d", serial);
#endif
dispatchString(serial, mSlotId, RIL_REQUEST_SEND_USSD, ussd.c_str());
return Void();
}
Return<void> RadioImpl_1_6::cancelPendingUssd(int32_t serial) {
#if VDBG
RLOGD("cancelPendingUssd: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_CANCEL_USSD);
return Void();
}
Return<void> RadioImpl_1_6::getClir(int32_t serial) {
#if VDBG
RLOGD("getClir: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_GET_CLIR);
return Void();
}
Return<void> RadioImpl_1_6::setClir(int32_t serial, int32_t status) {
#if VDBG
RLOGD("setClir: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_SET_CLIR, 1, status);
return Void();
}
Return<void> RadioImpl_1_6::getCallForwardStatus(int32_t serial, const CallForwardInfo& callInfo) {
#if VDBG
RLOGD("getCallForwardStatus: serial %d", serial);
#endif
dispatchCallForwardStatus(serial, mSlotId, RIL_REQUEST_QUERY_CALL_FORWARD_STATUS,
callInfo);
return Void();
}
Return<void> RadioImpl_1_6::setCallForward(int32_t serial, const CallForwardInfo& callInfo) {
#if VDBG
RLOGD("setCallForward: serial %d", serial);
#endif
dispatchCallForwardStatus(serial, mSlotId, RIL_REQUEST_SET_CALL_FORWARD,
callInfo);
return Void();
}
Return<void> RadioImpl_1_6::getCallWaiting(int32_t serial, int32_t serviceClass) {
#if VDBG
RLOGD("getCallWaiting: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_QUERY_CALL_WAITING, 1, serviceClass);
return Void();
}
Return<void> RadioImpl_1_6::setCallWaiting(int32_t serial, bool enable, int32_t serviceClass) {
#if VDBG
RLOGD("setCallWaiting: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_SET_CALL_WAITING, 2, BOOL_TO_INT(enable),
serviceClass);
return Void();
}
Return<void> RadioImpl_1_6::acknowledgeLastIncomingGsmSms(int32_t serial,
bool success, SmsAcknowledgeFailCause cause) {
#if VDBG
RLOGD("acknowledgeLastIncomingGsmSms: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_SMS_ACKNOWLEDGE, 2, BOOL_TO_INT(success),
cause);
return Void();
}
Return<void> RadioImpl_1_6::acceptCall(int32_t serial) {
#if VDBG
RLOGD("acceptCall: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_ANSWER);
return Void();
}
Return<void> RadioImpl_1_6::deactivateDataCall(int32_t serial,
int32_t cid, bool reasonRadioShutDown) {
#if VDBG
RLOGD("deactivateDataCall: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_DEACTIVATE_DATA_CALL, false,
2, (std::to_string(cid)).c_str(), reasonRadioShutDown ? "1" : "0");
return Void();
}
Return<void> RadioImpl_1_6::getFacilityLockForApp(int32_t serial, const hidl_string& facility,
const hidl_string& password, int32_t serviceClass,
const hidl_string& appId) {
#if VDBG
RLOGD("getFacilityLockForApp: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_QUERY_FACILITY_LOCK, true,
4, facility.c_str(), password.c_str(),
(std::to_string(serviceClass)).c_str(), appId.c_str());
return Void();
}
Return<void> RadioImpl_1_6::setFacilityLockForApp(int32_t serial, const hidl_string& facility,
bool lockState, const hidl_string& password,
int32_t serviceClass, const hidl_string& appId) {
#if VDBG
RLOGD("setFacilityLockForApp: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_SET_FACILITY_LOCK, true,
5, facility.c_str(), lockState ? "1" : "0", password.c_str(),
(std::to_string(serviceClass)).c_str(), appId.c_str() );
return Void();
}
Return<void> RadioImpl_1_6::setBarringPassword(int32_t serial, const hidl_string& facility,
const hidl_string& oldPassword,
const hidl_string& newPassword) {
#if VDBG
RLOGD("setBarringPassword: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_CHANGE_BARRING_PASSWORD, true,
3, facility.c_str(), oldPassword.c_str(), newPassword.c_str());
return Void();
}
Return<void> RadioImpl_1_6::getNetworkSelectionMode(int32_t serial) {
#if VDBG
RLOGD("getNetworkSelectionMode: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_QUERY_NETWORK_SELECTION_MODE);
return Void();
}
Return<void> RadioImpl_1_6::setNetworkSelectionModeAutomatic(int32_t serial) {
#if VDBG
RLOGD("setNetworkSelectionModeAutomatic: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC);
return Void();
}
Return<void> RadioImpl_1_6::setNetworkSelectionModeManual(int32_t serial,
const hidl_string& operatorNumeric) {
#if VDBG
RLOGD("setNetworkSelectionModeManual: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SET_NETWORK_SELECTION_MANUAL);
if (pRI == NULL) {
return Void();
}
RIL_NetworkOperator networkOperator = {};
networkOperator.act = UNKNOWN;
if (!copyHidlStringToRil(&networkOperator.operatorNumeric, operatorNumeric, pRI)) {
return Void();
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &networkOperator,
sizeof(networkOperator), pRI, mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::getAvailableNetworks(int32_t serial) {
#if VDBG
RLOGD("getAvailableNetworks: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_QUERY_AVAILABLE_NETWORKS);
return Void();
}
Return<void> RadioImpl_1_6::startNetworkScan(int32_t serial, const V1_1::NetworkScanRequest& request) {
#if VDBG
RLOGD("startNetworkScan: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_START_NETWORK_SCAN);
if (pRI == NULL) {
return Void();
}
if (request.specifiers.size() > MAX_RADIO_ACCESS_NETWORKS) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return Void();
}
RIL_NetworkScanRequest scan_request = {};
scan_request.type = (RIL_ScanType) request.type;
scan_request.interval = request.interval;
scan_request.specifiers_length = request.specifiers.size();
for (size_t i = 0; i < request.specifiers.size(); ++i) {
if (request.specifiers[i].geranBands.size() > MAX_BANDS ||
request.specifiers[i].utranBands.size() > MAX_BANDS ||
request.specifiers[i].eutranBands.size() > MAX_BANDS ||
request.specifiers[i].channels.size() > MAX_CHANNELS) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return Void();
}
const V1_1::RadioAccessSpecifier& ras_from =
request.specifiers[i];
RIL_RadioAccessSpecifier& ras_to = scan_request.specifiers[i];
ras_to.radio_access_network = (RIL_RadioAccessNetworks) ras_from.radioAccessNetwork;
ras_to.channels_length = ras_from.channels.size();
std::copy(ras_from.channels.begin(), ras_from.channels.end(), ras_to.channels);
const std::vector<uint32_t> * bands = nullptr;
switch (request.specifiers[i].radioAccessNetwork) {
case V1_1::RadioAccessNetworks::GERAN:
ras_to.bands_length = ras_from.geranBands.size();
bands = (std::vector<uint32_t> *) &ras_from.geranBands;
break;
case V1_1::RadioAccessNetworks::UTRAN:
ras_to.bands_length = ras_from.utranBands.size();
bands = (std::vector<uint32_t> *) &ras_from.utranBands;
break;
case V1_1::RadioAccessNetworks::EUTRAN:
ras_to.bands_length = ras_from.eutranBands.size();
bands = (std::vector<uint32_t> *) &ras_from.eutranBands;
break;
default:
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return Void();
}
// safe to copy to geran_bands because it's a union member
for (size_t idx = 0; idx < ras_to.bands_length; ++idx) {
ras_to.bands.geran_bands[idx] = (RIL_GeranBands) (*bands)[idx];
}
}
CALL_ONREQUEST(RIL_REQUEST_START_NETWORK_SCAN, &scan_request, sizeof(scan_request), pRI,
mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::stopNetworkScan(int32_t serial) {
#if VDBG
RLOGD("stopNetworkScan: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_STOP_NETWORK_SCAN);
return Void();
}
Return<void> RadioImpl_1_6::startDtmf(int32_t serial, const hidl_string& s) {
#if VDBG
RLOGD("startDtmf: serial %d", serial);
#endif
dispatchString(serial, mSlotId, RIL_REQUEST_DTMF_START,
s.c_str());
return Void();
}
Return<void> RadioImpl_1_6::stopDtmf(int32_t serial) {
#if VDBG
RLOGD("stopDtmf: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_DTMF_STOP);
return Void();
}
Return<void> RadioImpl_1_6::getBasebandVersion(int32_t serial) {
#if VDBG
RLOGD("getBasebandVersion: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_BASEBAND_VERSION);
return Void();
}
Return<void> RadioImpl_1_6::separateConnection(int32_t serial, int32_t gsmIndex) {
#if VDBG
RLOGD("separateConnection: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_SEPARATE_CONNECTION, 1, gsmIndex);
return Void();
}
Return<void> RadioImpl_1_6::setMute(int32_t serial, bool enable) {
#if VDBG
RLOGD("setMute: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_SET_MUTE, 1, BOOL_TO_INT(enable));
return Void();
}
Return<void> RadioImpl_1_6::getMute(int32_t serial) {
#if VDBG
RLOGD("getMute: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_GET_MUTE);
return Void();
}
Return<void> RadioImpl_1_6::getClip(int32_t serial) {
#if VDBG
RLOGD("getClip: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_QUERY_CLIP);
return Void();
}
Return<void> RadioImpl_1_6::getDataCallList(int32_t serial) {
#if VDBG
RLOGD("getDataCallList: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_DATA_CALL_LIST);
return Void();
}
Return<void> RadioImpl_1_6::getDataCallList_1_6(int32_t serial) {
#if VDBG
RLOGD("getDataCallList_1_6: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_DATA_CALL_LIST);
return Void();
}
Return<void> RadioImpl_1_6::setSuppServiceNotifications(int32_t serial, bool enable) {
#if VDBG
RLOGD("setSuppServiceNotifications: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_SET_SUPP_SVC_NOTIFICATION, 1,
BOOL_TO_INT(enable));
return Void();
}
Return<void> RadioImpl_1_6::writeSmsToSim(int32_t serial, const SmsWriteArgs& smsWriteArgs) {
#if VDBG
RLOGD("writeSmsToSim: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_WRITE_SMS_TO_SIM);
if (pRI == NULL) {
return Void();
}
RIL_SMS_WriteArgs args;
args.status = (int) smsWriteArgs.status;
if (!copyHidlStringToRil(&args.pdu, smsWriteArgs.pdu, pRI)) {
return Void();
}
if (!copyHidlStringToRil(&args.smsc, smsWriteArgs.smsc, pRI)) {
memsetAndFreeStrings(1, args.pdu);
return Void();
}
CALL_ONREQUEST(RIL_REQUEST_WRITE_SMS_TO_SIM, &args, sizeof(args), pRI, mSlotId);
memsetAndFreeStrings(2, args.smsc, args.pdu);
return Void();
}
Return<void> RadioImpl_1_6::deleteSmsOnSim(int32_t serial, int32_t index) {
#if VDBG
RLOGD("deleteSmsOnSim: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_DELETE_SMS_ON_SIM, 1, index);
return Void();
}
Return<void> RadioImpl_1_6::setBandMode(int32_t serial, RadioBandMode mode) {
#if VDBG
RLOGD("setBandMode: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_SET_BAND_MODE, 1, mode);
return Void();
}
Return<void> RadioImpl_1_6::getAvailableBandModes(int32_t serial) {
#if VDBG
RLOGD("getAvailableBandModes: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_QUERY_AVAILABLE_BAND_MODE);
return Void();
}
Return<void> RadioImpl_1_6::sendEnvelope(int32_t serial, const hidl_string& command) {
#if VDBG
RLOGD("sendEnvelope: serial %d", serial);
#endif
dispatchString(serial, mSlotId, RIL_REQUEST_STK_SEND_ENVELOPE_COMMAND,
command.c_str());
return Void();
}
Return<void> RadioImpl_1_6::sendTerminalResponseToSim(int32_t serial,
const hidl_string& commandResponse) {
#if VDBG
RLOGD("sendTerminalResponseToSim: serial %d", serial);
#endif
dispatchString(serial, mSlotId, RIL_REQUEST_STK_SEND_TERMINAL_RESPONSE,
commandResponse.c_str());
return Void();
}
Return<void> RadioImpl_1_6::handleStkCallSetupRequestFromSim(int32_t serial, bool accept) {
#if VDBG
RLOGD("handleStkCallSetupRequestFromSim: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM,
1, BOOL_TO_INT(accept));
return Void();
}
Return<void> RadioImpl_1_6::explicitCallTransfer(int32_t serial) {
#if VDBG
RLOGD("explicitCallTransfer: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_EXPLICIT_CALL_TRANSFER);
return Void();
}
Return<void> RadioImpl_1_6::setPreferredNetworkType(int32_t serial, PreferredNetworkType nwType) {
#if VDBG
RLOGD("setPreferredNetworkType: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_SET_PREFERRED_NETWORK_TYPE, 1, nwType);
return Void();
}
Return<void> RadioImpl_1_6::getPreferredNetworkType(int32_t serial) {
#if VDBG
RLOGD("getPreferredNetworkType: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_GET_PREFERRED_NETWORK_TYPE);
return Void();
}
Return<void> RadioImpl_1_6::getNeighboringCids(int32_t serial) {
#if VDBG
RLOGD("getNeighboringCids: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_GET_NEIGHBORING_CELL_IDS);
return Void();
}
Return<void> RadioImpl_1_6::setLocationUpdates(int32_t serial, bool enable) {
#if VDBG
RLOGD("setLocationUpdates: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_SET_LOCATION_UPDATES, 1, BOOL_TO_INT(enable));
return Void();
}
Return<void> RadioImpl_1_6::setCdmaSubscriptionSource(int32_t serial, CdmaSubscriptionSource cdmaSub) {
#if VDBG
RLOGD("setCdmaSubscriptionSource: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_CDMA_SET_SUBSCRIPTION_SOURCE, 1, cdmaSub);
return Void();
}
Return<void> RadioImpl_1_6::setCdmaRoamingPreference(int32_t serial, CdmaRoamingType type) {
#if VDBG
RLOGD("setCdmaRoamingPreference: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_CDMA_SET_ROAMING_PREFERENCE, 1, type);
return Void();
}
Return<void> RadioImpl_1_6::getCdmaRoamingPreference(int32_t serial) {
#if VDBG
RLOGD("getCdmaRoamingPreference: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_CDMA_QUERY_ROAMING_PREFERENCE);
return Void();
}
Return<void> RadioImpl_1_6::setTTYMode(int32_t serial, TtyMode mode) {
#if VDBG
RLOGD("setTTYMode: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_SET_TTY_MODE, 1, mode);
return Void();
}
Return<void> RadioImpl_1_6::getTTYMode(int32_t serial) {
#if VDBG
RLOGD("getTTYMode: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_QUERY_TTY_MODE);
return Void();
}
Return<void> RadioImpl_1_6::setPreferredVoicePrivacy(int32_t serial, bool enable) {
#if VDBG
RLOGD("setPreferredVoicePrivacy: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE,
1, BOOL_TO_INT(enable));
return Void();
}
Return<void> RadioImpl_1_6::getPreferredVoicePrivacy(int32_t serial) {
#if VDBG
RLOGD("getPreferredVoicePrivacy: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_CDMA_QUERY_PREFERRED_VOICE_PRIVACY_MODE);
return Void();
}
Return<void> RadioImpl_1_6::sendCDMAFeatureCode(int32_t serial, const hidl_string& featureCode) {
#if VDBG
RLOGD("sendCDMAFeatureCode: serial %d", serial);
#endif
dispatchString(serial, mSlotId, RIL_REQUEST_CDMA_FLASH,
featureCode.c_str());
return Void();
}
Return<void> RadioImpl_1_6::sendBurstDtmf(int32_t serial, const hidl_string& dtmf, int32_t on,
int32_t off) {
#if VDBG
RLOGD("sendBurstDtmf: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_CDMA_BURST_DTMF, false,
3, dtmf.c_str(), (std::to_string(on)).c_str(),
(std::to_string(off)).c_str());
return Void();
}
void constructCdmaSms(RIL_CDMA_SMS_Message &rcsm, const CdmaSmsMessage& sms) {
rcsm.uTeleserviceID = sms.teleserviceId;
rcsm.bIsServicePresent = BOOL_TO_INT(sms.isServicePresent);
rcsm.uServicecategory = sms.serviceCategory;
rcsm.sAddress.digit_mode = (RIL_CDMA_SMS_DigitMode) sms.address.digitMode;
rcsm.sAddress.number_mode = (RIL_CDMA_SMS_NumberMode) sms.address.numberMode;
rcsm.sAddress.number_type = (RIL_CDMA_SMS_NumberType) sms.address.numberType;
rcsm.sAddress.number_plan = (RIL_CDMA_SMS_NumberPlan) sms.address.numberPlan;
rcsm.sAddress.number_of_digits = sms.address.digits.size();
int digitLimit= MIN((rcsm.sAddress.number_of_digits), RIL_CDMA_SMS_ADDRESS_MAX);
for (int i = 0; i < digitLimit; i++) {
rcsm.sAddress.digits[i] = sms.address.digits[i];
}
rcsm.sSubAddress.subaddressType = (RIL_CDMA_SMS_SubaddressType) sms.subAddress.subaddressType;
rcsm.sSubAddress.odd = BOOL_TO_INT(sms.subAddress.odd);
rcsm.sSubAddress.number_of_digits = sms.subAddress.digits.size();
digitLimit= MIN((rcsm.sSubAddress.number_of_digits), RIL_CDMA_SMS_SUBADDRESS_MAX);
for (int i = 0; i < digitLimit; i++) {
rcsm.sSubAddress.digits[i] = sms.subAddress.digits[i];
}
rcsm.uBearerDataLen = sms.bearerData.size();
digitLimit= MIN((rcsm.uBearerDataLen), RIL_CDMA_SMS_BEARER_DATA_MAX);
for (int i = 0; i < digitLimit; i++) {
rcsm.aBearerData[i] = sms.bearerData[i];
}
}
Return<void> RadioImpl_1_6::sendCdmaSms(int32_t serial, const CdmaSmsMessage& sms) {
#if VDBG
RLOGD("sendCdmaSms: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_CDMA_SEND_SMS);
if (pRI == NULL) {
return Void();
}
RIL_CDMA_SMS_Message rcsm = {};
constructCdmaSms(rcsm, sms);
CALL_ONREQUEST(pRI->pCI->requestNumber, &rcsm, sizeof(rcsm), pRI, mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::sendCdmaSms_1_6(int32_t serial, const CdmaSmsMessage& sms) {
#if VDBG
RLOGD("sendCdmaSms: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_CDMA_SEND_SMS);
if (pRI == NULL) {
return Void();
}
RIL_CDMA_SMS_Message rcsm = {};
constructCdmaSms(rcsm, sms);
CALL_ONREQUEST(pRI->pCI->requestNumber, &rcsm, sizeof(rcsm), pRI, mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::acknowledgeLastIncomingCdmaSms(int32_t serial, const CdmaSmsAck& smsAck) {
#if VDBG
RLOGD("acknowledgeLastIncomingCdmaSms: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_CDMA_SMS_ACKNOWLEDGE);
if (pRI == NULL) {
return Void();
}
RIL_CDMA_SMS_Ack rcsa = {};
rcsa.uErrorClass = (RIL_CDMA_SMS_ErrorClass) smsAck.errorClass;
rcsa.uSMSCauseCode = smsAck.smsCauseCode;
CALL_ONREQUEST(pRI->pCI->requestNumber, &rcsa, sizeof(rcsa), pRI, mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::getGsmBroadcastConfig(int32_t serial) {
#if VDBG
RLOGD("getGsmBroadcastConfig: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_GSM_GET_BROADCAST_SMS_CONFIG);
return Void();
}
Return<void> RadioImpl_1_6::setGsmBroadcastConfig(int32_t serial,
const hidl_vec<GsmBroadcastSmsConfigInfo>&
configInfo) {
#if VDBG
RLOGD("setGsmBroadcastConfig: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG);
if (pRI == NULL) {
return Void();
}
int num = configInfo.size();
if (num > MAX_BROADCAST_SMS_CONFIG_INFO) {
RLOGE("setGsmBroadcastConfig: Invalid configInfo length %s",
requestToString(pRI->pCI->requestNumber));
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return Void();
}
RIL_GSM_BroadcastSmsConfigInfo gsmBci[num];
RIL_GSM_BroadcastSmsConfigInfo *gsmBciPtrs[num];
for (int i = 0 ; i < num ; i++ ) {
gsmBciPtrs[i] = &gsmBci[i];
gsmBci[i].fromServiceId = configInfo[i].fromServiceId;
gsmBci[i].toServiceId = configInfo[i].toServiceId;
gsmBci[i].fromCodeScheme = configInfo[i].fromCodeScheme;
gsmBci[i].toCodeScheme = configInfo[i].toCodeScheme;
gsmBci[i].selected = BOOL_TO_INT(configInfo[i].selected);
}
CALL_ONREQUEST(pRI->pCI->requestNumber, gsmBciPtrs,
num * sizeof(RIL_GSM_BroadcastSmsConfigInfo *), pRI, mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::setGsmBroadcastActivation(int32_t serial, bool activate) {
#if VDBG
RLOGD("setGsmBroadcastActivation: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_GSM_SMS_BROADCAST_ACTIVATION,
1, BOOL_TO_INT(!activate));
return Void();
}
Return<void> RadioImpl_1_6::getCdmaBroadcastConfig(int32_t serial) {
#if VDBG
RLOGD("getCdmaBroadcastConfig: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_CDMA_GET_BROADCAST_SMS_CONFIG);
return Void();
}
Return<void> RadioImpl_1_6::setCdmaBroadcastConfig(int32_t serial,
const hidl_vec<CdmaBroadcastSmsConfigInfo>&
configInfo) {
#if VDBG
RLOGD("setCdmaBroadcastConfig: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_CDMA_SET_BROADCAST_SMS_CONFIG);
if (pRI == NULL) {
return Void();
}
int num = configInfo.size();
if (num > MAX_BROADCAST_SMS_CONFIG_INFO) {
RLOGE("setCdmaBroadcastConfig: Invalid configInfo length %s",
requestToString(pRI->pCI->requestNumber));
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return Void();
}
RIL_CDMA_BroadcastSmsConfigInfo cdmaBci[num];
RIL_CDMA_BroadcastSmsConfigInfo *cdmaBciPtrs[num];
for (int i = 0 ; i < num ; i++ ) {
cdmaBciPtrs[i] = &cdmaBci[i];
cdmaBci[i].service_category = configInfo[i].serviceCategory;
cdmaBci[i].language = configInfo[i].language;
cdmaBci[i].selected = BOOL_TO_INT(configInfo[i].selected);
}
CALL_ONREQUEST(pRI->pCI->requestNumber, cdmaBciPtrs,
num * sizeof(RIL_CDMA_BroadcastSmsConfigInfo *), pRI, mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::setCdmaBroadcastActivation(int32_t serial, bool activate) {
#if VDBG
RLOGD("setCdmaBroadcastActivation: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_CDMA_SMS_BROADCAST_ACTIVATION,
1, BOOL_TO_INT(!activate));
return Void();
}
Return<void> RadioImpl_1_6::getCDMASubscription(int32_t serial) {
#if VDBG
RLOGD("getCDMASubscription: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_CDMA_SUBSCRIPTION);
return Void();
}
Return<void> RadioImpl_1_6::writeSmsToRuim(int32_t serial, const CdmaSmsWriteArgs& cdmaSms) {
#if VDBG
RLOGD("writeSmsToRuim: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_CDMA_WRITE_SMS_TO_RUIM);
if (pRI == NULL) {
return Void();
}
RIL_CDMA_SMS_WriteArgs rcsw = {};
rcsw.status = (int) cdmaSms.status;
constructCdmaSms(rcsw.message, cdmaSms.message);
CALL_ONREQUEST(pRI->pCI->requestNumber, &rcsw, sizeof(rcsw), pRI, mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::deleteSmsOnRuim(int32_t serial, int32_t index) {
#if VDBG
RLOGD("deleteSmsOnRuim: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_CDMA_DELETE_SMS_ON_RUIM, 1, index);
return Void();
}
Return<void> RadioImpl_1_6::getDeviceIdentity(int32_t serial) {
#if VDBG
RLOGD("getDeviceIdentity: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_DEVICE_IDENTITY);
return Void();
}
Return<void> RadioImpl_1_6::exitEmergencyCallbackMode(int32_t serial) {
#if VDBG
RLOGD("exitEmergencyCallbackMode: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_EXIT_EMERGENCY_CALLBACK_MODE);
return Void();
}
Return<void> RadioImpl_1_6::getSmscAddress(int32_t serial) {
#if VDBG
RLOGD("getSmscAddress: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_GET_SMSC_ADDRESS);
return Void();
}
Return<void> RadioImpl_1_6::setSmscAddress(int32_t serial, const hidl_string& smsc) {
#if VDBG
RLOGD("setSmscAddress: serial %d", serial);
#endif
dispatchString(serial, mSlotId, RIL_REQUEST_SET_SMSC_ADDRESS,
smsc.c_str());
return Void();
}
Return<void> RadioImpl_1_6::reportSmsMemoryStatus(int32_t serial, bool available) {
#if VDBG
RLOGD("reportSmsMemoryStatus: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_REPORT_SMS_MEMORY_STATUS, 1,
BOOL_TO_INT(available));
return Void();
}
Return<void> RadioImpl_1_6::reportStkServiceIsRunning(int32_t serial) {
#if VDBG
RLOGD("reportStkServiceIsRunning: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_REPORT_STK_SERVICE_IS_RUNNING);
return Void();
}
Return<void> RadioImpl_1_6::getCdmaSubscriptionSource(int32_t serial) {
#if VDBG
RLOGD("getCdmaSubscriptionSource: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_CDMA_GET_SUBSCRIPTION_SOURCE);
return Void();
}
Return<void> RadioImpl_1_6::requestIsimAuthentication(int32_t serial, const hidl_string& challenge) {
#if VDBG
RLOGD("requestIsimAuthentication: serial %d", serial);
#endif
dispatchString(serial, mSlotId, RIL_REQUEST_ISIM_AUTHENTICATION,
challenge.c_str());
return Void();
}
Return<void> RadioImpl_1_6::acknowledgeIncomingGsmSmsWithPdu(int32_t serial, bool success,
const hidl_string& ackPdu) {
#if VDBG
RLOGD("acknowledgeIncomingGsmSmsWithPdu: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_ACKNOWLEDGE_INCOMING_GSM_SMS_WITH_PDU, false,
2, success ? "1" : "0", ackPdu.c_str());
return Void();
}
Return<void> RadioImpl_1_6::sendEnvelopeWithStatus(int32_t serial, const hidl_string& contents) {
#if VDBG
RLOGD("sendEnvelopeWithStatus: serial %d", serial);
#endif
dispatchString(serial, mSlotId, RIL_REQUEST_STK_SEND_ENVELOPE_WITH_STATUS,
contents.c_str());
return Void();
}
Return<void> RadioImpl_1_6::getVoiceRadioTechnology(int32_t serial) {
#if VDBG
RLOGD("getVoiceRadioTechnology: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_VOICE_RADIO_TECH);
return Void();
}
Return<void> RadioImpl_1_6::getCellInfoList(int32_t serial) {
#if VDBG
RLOGD("getCellInfoList: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_GET_CELL_INFO_LIST);
return Void();
}
Return<void> RadioImpl_1_6::getCellInfoList_1_6(int32_t serial) {
#if VDBG
RLOGD("getCellInfoList_1_6: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_GET_CELL_INFO_LIST);
return Void();
}
Return<void> RadioImpl_1_6::setCellInfoListRate(int32_t serial, int32_t rate) {
#if VDBG
RLOGD("setCellInfoListRate: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_SET_UNSOL_CELL_INFO_LIST_RATE, 1, rate);
return Void();
}
Return<void> RadioImpl_1_6::setInitialAttachApn(int32_t serial, const DataProfileInfo& dataProfileInfo,
bool modemCognitive, bool isRoaming) {
#if VDBG
RLOGD("setInitialAttachApn: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SET_INITIAL_ATTACH_APN);
if (pRI == NULL) {
return Void();
}
if (s_vendorFunctions->version <= 14) {
RIL_InitialAttachApn iaa = {};
if (!copyHidlStringToRil(&iaa.apn, dataProfileInfo.apn, pRI, true)) {
return Void();
}
const hidl_string &protocol =
(isRoaming ? dataProfileInfo.roamingProtocol : dataProfileInfo.protocol);
if (!copyHidlStringToRil(&iaa.protocol, protocol, pRI)) {
memsetAndFreeStrings(1, iaa.apn);
return Void();
}
iaa.authtype = (int) dataProfileInfo.authType;
if (!copyHidlStringToRil(&iaa.username, dataProfileInfo.user, pRI)) {
memsetAndFreeStrings(2, iaa.apn, iaa.protocol);
return Void();
}
if (!copyHidlStringToRil(&iaa.password, dataProfileInfo.password, pRI)) {
memsetAndFreeStrings(3, iaa.apn, iaa.protocol, iaa.username);
return Void();
}
CALL_ONREQUEST(RIL_REQUEST_SET_INITIAL_ATTACH_APN, &iaa, sizeof(iaa), pRI, mSlotId);
memsetAndFreeStrings(4, iaa.apn, iaa.protocol, iaa.username, iaa.password);
} else {
RIL_InitialAttachApn_v15 iaa = {};
if (!copyHidlStringToRil(&iaa.apn, dataProfileInfo.apn, pRI, true)) {
return Void();
}
if (!copyHidlStringToRil(&iaa.protocol, dataProfileInfo.protocol, pRI)) {
memsetAndFreeStrings(1, iaa.apn);
return Void();
}
if (!copyHidlStringToRil(&iaa.roamingProtocol, dataProfileInfo.roamingProtocol, pRI)) {
memsetAndFreeStrings(2, iaa.apn, iaa.protocol);
return Void();
}
iaa.authtype = (int) dataProfileInfo.authType;
if (!copyHidlStringToRil(&iaa.username, dataProfileInfo.user, pRI)) {
memsetAndFreeStrings(3, iaa.apn, iaa.protocol, iaa.roamingProtocol);
return Void();
}
if (!copyHidlStringToRil(&iaa.password, dataProfileInfo.password, pRI)) {
memsetAndFreeStrings(4, iaa.apn, iaa.protocol, iaa.roamingProtocol, iaa.username);
return Void();
}
iaa.supportedTypesBitmask = dataProfileInfo.supportedApnTypesBitmap;
iaa.bearerBitmask = dataProfileInfo.bearerBitmap;
iaa.modemCognitive = BOOL_TO_INT(modemCognitive);
iaa.mtu = dataProfileInfo.mtu;
if (!convertMvnoTypeToString(dataProfileInfo.mvnoType, iaa.mvnoType)) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
memsetAndFreeStrings(5, iaa.apn, iaa.protocol, iaa.roamingProtocol, iaa.username,
iaa.password);
return Void();
}
if (!copyHidlStringToRil(&iaa.mvnoMatchData, dataProfileInfo.mvnoMatchData, pRI)) {
memsetAndFreeStrings(5, iaa.apn, iaa.protocol, iaa.roamingProtocol, iaa.username,
iaa.password);
return Void();
}
CALL_ONREQUEST(RIL_REQUEST_SET_INITIAL_ATTACH_APN, &iaa, sizeof(iaa), pRI, mSlotId);
memsetAndFreeStrings(6, iaa.apn, iaa.protocol, iaa.roamingProtocol, iaa.username,
iaa.password, iaa.mvnoMatchData);
}
return Void();
}
Return<void> RadioImpl_1_6::getImsRegistrationState(int32_t serial) {
#if VDBG
RLOGD("getImsRegistrationState: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_IMS_REGISTRATION_STATE);
return Void();
}
bool dispatchImsGsmSms(const ImsSmsMessage& message, RequestInfo *pRI) {
RIL_IMS_SMS_Message rism = {};
char **pStrings;
int countStrings = 2;
int dataLen = sizeof(char *) * countStrings;
rism.tech = RADIO_TECH_3GPP;
rism.retry = BOOL_TO_INT(message.retry);
rism.messageRef = message.messageRef;
if (message.gsmMessage.size() != 1) {
RLOGE("dispatchImsGsmSms: Invalid len %s", requestToString(pRI->pCI->requestNumber));
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return false;
}
pStrings = (char **)calloc(countStrings, sizeof(char *));
if (pStrings == NULL) {
RLOGE("dispatchImsGsmSms: Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
sendErrorResponse(pRI, RIL_E_NO_MEMORY);
return false;
}
if (!copyHidlStringToRil(&pStrings[0], message.gsmMessage[0].smscPdu, pRI)) {
#ifdef MEMSET_FREED
memset(pStrings, 0, dataLen);
#endif
free(pStrings);
return false;
}
if (!copyHidlStringToRil(&pStrings[1], message.gsmMessage[0].pdu, pRI)) {
memsetAndFreeStrings(1, pStrings[0]);
#ifdef MEMSET_FREED
memset(pStrings, 0, dataLen);
#endif
free(pStrings);
return false;
}
rism.message.gsmMessage = pStrings;
CALL_ONREQUEST(pRI->pCI->requestNumber, &rism, sizeof(RIL_RadioTechnologyFamily) +
sizeof(uint8_t) + sizeof(int32_t) + dataLen, pRI, pRI->socket_id);
for (int i = 0 ; i < countStrings ; i++) {
memsetAndFreeStrings(1, pStrings[i]);
}
#ifdef MEMSET_FREED
memset(pStrings, 0, dataLen);
#endif
free(pStrings);
return true;
}
struct ImsCdmaSms {
RIL_IMS_SMS_Message imsSms;
RIL_CDMA_SMS_Message cdmaSms;
};
bool dispatchImsCdmaSms(const ImsSmsMessage& message, RequestInfo *pRI) {
ImsCdmaSms temp = {};
if (message.cdmaMessage.size() != 1) {
RLOGE("dispatchImsCdmaSms: Invalid len %s", requestToString(pRI->pCI->requestNumber));
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return false;
}
temp.imsSms.tech = RADIO_TECH_3GPP2;
temp.imsSms.retry = BOOL_TO_INT(message.retry);
temp.imsSms.messageRef = message.messageRef;
temp.imsSms.message.cdmaMessage = &temp.cdmaSms;
constructCdmaSms(temp.cdmaSms, message.cdmaMessage[0]);
// Vendor code expects payload length to include actual msg payload
// (sizeof(RIL_CDMA_SMS_Message)) instead of (RIL_CDMA_SMS_Message *) + size of other fields in
// RIL_IMS_SMS_Message
int payloadLen = sizeof(RIL_RadioTechnologyFamily) + sizeof(uint8_t) + sizeof(int32_t)
+ sizeof(RIL_CDMA_SMS_Message);
CALL_ONREQUEST(pRI->pCI->requestNumber, &temp.imsSms, payloadLen, pRI, pRI->socket_id);
return true;
}
Return<void> RadioImpl_1_6::sendImsSms(int32_t serial, const ImsSmsMessage& message) {
#if VDBG
RLOGD("sendImsSms: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_IMS_SEND_SMS);
if (pRI == NULL) {
return Void();
}
RIL_RadioTechnologyFamily format = (RIL_RadioTechnologyFamily) message.tech;
if (RADIO_TECH_3GPP == format) {
dispatchImsGsmSms(message, pRI);
} else if (RADIO_TECH_3GPP2 == format) {
dispatchImsCdmaSms(message, pRI);
} else {
RLOGE("sendImsSms: Invalid radio tech %s",
requestToString(pRI->pCI->requestNumber));
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
}
return Void();
}
Return<void> RadioImpl_1_6::iccTransmitApduBasicChannel(int32_t serial, const SimApdu& message) {
#if VDBG
RLOGD("iccTransmitApduBasicChannel: serial %d", serial);
#endif
dispatchIccApdu(serial, mSlotId, RIL_REQUEST_SIM_TRANSMIT_APDU_BASIC, message);
return Void();
}
Return<void> RadioImpl_1_6::iccOpenLogicalChannel(int32_t serial, const hidl_string& aid, int32_t p2) {
#if VDBG
RLOGD("iccOpenLogicalChannel: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_SIM_OPEN_CHANNEL);
if (pRI == NULL) {
return Void();
}
RIL_OpenChannelParams params = {};
params.p2 = p2;
if (!copyHidlStringToRil(&params.aidPtr, aid, pRI)) {
return Void();
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &params, sizeof(params), pRI, mSlotId);
memsetAndFreeStrings(1, params.aidPtr);
return Void();
}
Return<void> RadioImpl_1_6::iccCloseLogicalChannel(int32_t serial, int32_t channelId) {
#if VDBG
RLOGD("iccCloseLogicalChannel: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_SIM_CLOSE_CHANNEL, 1, channelId);
return Void();
}
Return<void> RadioImpl_1_6::iccTransmitApduLogicalChannel(int32_t serial, const SimApdu& message) {
#if VDBG
RLOGD("iccTransmitApduLogicalChannel: serial %d", serial);
#endif
dispatchIccApdu(serial, mSlotId, RIL_REQUEST_SIM_TRANSMIT_APDU_CHANNEL, message);
return Void();
}
Return<void> RadioImpl_1_6::nvReadItem(int32_t serial, NvItem itemId) {
#if VDBG
RLOGD("nvReadItem: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_NV_READ_ITEM);
if (pRI == NULL) {
return Void();
}
RIL_NV_ReadItem nvri = {};
nvri.itemID = (RIL_NV_Item) itemId;
CALL_ONREQUEST(pRI->pCI->requestNumber, &nvri, sizeof(nvri), pRI, mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::nvWriteItem(int32_t serial, const NvWriteItem& item) {
#if VDBG
RLOGD("nvWriteItem: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_NV_WRITE_ITEM);
if (pRI == NULL) {
return Void();
}
RIL_NV_WriteItem nvwi = {};
nvwi.itemID = (RIL_NV_Item) item.itemId;
if (!copyHidlStringToRil(&nvwi.value, item.value, pRI)) {
return Void();
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &nvwi, sizeof(nvwi), pRI, mSlotId);
memsetAndFreeStrings(1, nvwi.value);
return Void();
}
Return<void> RadioImpl_1_6::nvWriteCdmaPrl(int32_t serial, const hidl_vec<uint8_t>& prl) {
#if VDBG
RLOGD("nvWriteCdmaPrl: serial %d", serial);
#endif
dispatchRaw(serial, mSlotId, RIL_REQUEST_NV_WRITE_CDMA_PRL, prl);
return Void();
}
Return<void> RadioImpl_1_6::nvResetConfig(int32_t serial, ResetNvType resetType) {
int rilResetType = -1;
#if VDBG
RLOGD("nvResetConfig: serial %d", serial);
#endif
/* Convert ResetNvType to RIL.h values
* RIL_REQUEST_NV_RESET_CONFIG
* 1 - reload all NV items
* 2 - erase NV reset (SCRTN)
* 3 - factory reset (RTN)
*/
switch(resetType) {
case ResetNvType::RELOAD:
rilResetType = 1;
break;
case ResetNvType::ERASE:
rilResetType = 2;
break;
case ResetNvType::FACTORY_RESET:
rilResetType = 3;
break;
}
dispatchInts(serial, mSlotId, RIL_REQUEST_NV_RESET_CONFIG, 1, rilResetType);
return Void();
}
Return<void> RadioImpl_1_6::setUiccSubscription(int32_t serial, const SelectUiccSub& uiccSub) {
#if VDBG
RLOGD("setUiccSubscription: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SET_UICC_SUBSCRIPTION);
if (pRI == NULL) {
return Void();
}
RIL_SelectUiccSub rilUiccSub = {};
rilUiccSub.slot = uiccSub.slot;
rilUiccSub.app_index = uiccSub.appIndex;
rilUiccSub.sub_type = (RIL_SubscriptionType) uiccSub.subType;
rilUiccSub.act_status = (RIL_UiccSubActStatus) uiccSub.actStatus;
CALL_ONREQUEST(pRI->pCI->requestNumber, &rilUiccSub, sizeof(rilUiccSub), pRI, mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::setDataAllowed(int32_t serial, bool allow) {
#if VDBG
RLOGD("setDataAllowed: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_ALLOW_DATA, 1, BOOL_TO_INT(allow));
return Void();
}
Return<void> RadioImpl_1_6::getHardwareConfig(int32_t serial) {
#if VDBG
RLOGD("getHardwareConfig: serial %d", serial);
#endif
RLOGD("getHardwareConfig: serial %d, mSlotId = %d", serial, mSlotId);
dispatchVoid(serial, mSlotId, RIL_REQUEST_GET_HARDWARE_CONFIG);
return Void();
}
Return<void> RadioImpl_1_6::requestIccSimAuthentication(int32_t serial, int32_t authContext,
const hidl_string& authData, const hidl_string& aid) {
#if VDBG
RLOGD("requestIccSimAuthentication: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_SIM_AUTHENTICATION);
if (pRI == NULL) {
return Void();
}
RIL_SimAuthentication pf = {};
pf.authContext = authContext;
if (!copyHidlStringToRil(&pf.authData, authData, pRI)) {
return Void();
}
if (!copyHidlStringToRil(&pf.aid, aid, pRI)) {
memsetAndFreeStrings(1, pf.authData);
return Void();
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &pf, sizeof(pf), pRI, mSlotId);
memsetAndFreeStrings(2, pf.authData, pf.aid);
return Void();
}
/**
* @param numProfiles number of data profile
* @param dataProfiles the pointer to the actual data profiles. The acceptable type is
RIL_DataProfileInfo or RIL_DataProfileInfo_v15.
* @param dataProfilePtrs the pointer to the pointers that point to each data profile structure
* @param numfields number of string-type member in the data profile structure
* @param ... the variadic parameters are pointers to each string-type member
**/
template <typename T>
void freeSetDataProfileData(int numProfiles, T *dataProfiles, T **dataProfilePtrs,
int numfields, ...) {
va_list args;
va_start(args, numfields);
// Iterate through each string-type field that need to be free.
for (int i = 0; i < numfields; i++) {
// Iterate through each data profile and free that specific string-type field.
// The type 'char *T::*' is a type of pointer to a 'char *' member inside T structure.
char *T::*ptr = va_arg(args, char *T::*);
for (int j = 0; j < numProfiles; j++) {
memsetAndFreeStrings(1, dataProfiles[j].*ptr);
}
}
va_end(args);
#ifdef MEMSET_FREED
memset(dataProfiles, 0, numProfiles * sizeof(T));
memset(dataProfilePtrs, 0, numProfiles * sizeof(T *));
#endif
free(dataProfiles);
free(dataProfilePtrs);
}
Return<void> RadioImpl_1_6::setDataProfile(int32_t serial, const hidl_vec<DataProfileInfo>& profiles,
bool isRoaming) {
#if VDBG
RLOGD("setDataProfile: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_SET_DATA_PROFILE);
if (pRI == NULL) {
return Void();
}
size_t num = profiles.size();
bool success = false;
if (s_vendorFunctions->version <= 14) {
RIL_DataProfileInfo *dataProfiles =
(RIL_DataProfileInfo *) calloc(num, sizeof(RIL_DataProfileInfo));
if (dataProfiles == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
sendErrorResponse(pRI, RIL_E_NO_MEMORY);
return Void();
}
RIL_DataProfileInfo **dataProfilePtrs =
(RIL_DataProfileInfo **) calloc(num, sizeof(RIL_DataProfileInfo *));
if (dataProfilePtrs == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
free(dataProfiles);
sendErrorResponse(pRI, RIL_E_NO_MEMORY);
return Void();
}
for (size_t i = 0; i < num; i++) {
dataProfilePtrs[i] = &dataProfiles[i];
success = copyHidlStringToRil(&dataProfiles[i].apn, profiles[i].apn, pRI, true);
const hidl_string &protocol =
(isRoaming ? profiles[i].roamingProtocol : profiles[i].protocol);
if (success && !copyHidlStringToRil(&dataProfiles[i].protocol, protocol, pRI, true)) {
success = false;
}
if (success && !copyHidlStringToRil(&dataProfiles[i].user, profiles[i].user, pRI,
true)) {
success = false;
}
if (success && !copyHidlStringToRil(&dataProfiles[i].password, profiles[i].password,
pRI, true)) {
success = false;
}
if (!success) {
freeSetDataProfileData(num, dataProfiles, dataProfilePtrs, 4,
&RIL_DataProfileInfo::apn, &RIL_DataProfileInfo::protocol,
&RIL_DataProfileInfo::user, &RIL_DataProfileInfo::password);
return Void();
}
dataProfiles[i].profileId = (RIL_DataProfile) profiles[i].profileId;
dataProfiles[i].authType = (int) profiles[i].authType;
dataProfiles[i].type = (int) profiles[i].type;
dataProfiles[i].maxConnsTime = profiles[i].maxConnsTime;
dataProfiles[i].maxConns = profiles[i].maxConns;
dataProfiles[i].waitTime = profiles[i].waitTime;
dataProfiles[i].enabled = BOOL_TO_INT(profiles[i].enabled);
}
CALL_ONREQUEST(RIL_REQUEST_SET_DATA_PROFILE, dataProfilePtrs,
num * sizeof(RIL_DataProfileInfo *), pRI, mSlotId);
freeSetDataProfileData(num, dataProfiles, dataProfilePtrs, 4,
&RIL_DataProfileInfo::apn, &RIL_DataProfileInfo::protocol,
&RIL_DataProfileInfo::user, &RIL_DataProfileInfo::password);
} else {
RIL_DataProfileInfo_v15 *dataProfiles =
(RIL_DataProfileInfo_v15 *) calloc(num, sizeof(RIL_DataProfileInfo_v15));
if (dataProfiles == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
sendErrorResponse(pRI, RIL_E_NO_MEMORY);
return Void();
}
RIL_DataProfileInfo_v15 **dataProfilePtrs =
(RIL_DataProfileInfo_v15 **) calloc(num, sizeof(RIL_DataProfileInfo_v15 *));
if (dataProfilePtrs == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
free(dataProfiles);
sendErrorResponse(pRI, RIL_E_NO_MEMORY);
return Void();
}
for (size_t i = 0; i < num; i++) {
dataProfilePtrs[i] = &dataProfiles[i];
success = copyHidlStringToRil(&dataProfiles[i].apn, profiles[i].apn, pRI, true);
if (success && !copyHidlStringToRil(&dataProfiles[i].protocol, profiles[i].protocol,
pRI)) {
success = false;
}
if (success && !copyHidlStringToRil(&dataProfiles[i].roamingProtocol,
profiles[i].roamingProtocol, pRI, true)) {
success = false;
}
if (success && !copyHidlStringToRil(&dataProfiles[i].user, profiles[i].user, pRI,
true)) {
success = false;
}
if (success && !copyHidlStringToRil(&dataProfiles[i].password, profiles[i].password,
pRI, true)) {
success = false;
}
if (success && !copyHidlStringToRil(&dataProfiles[i].mvnoMatchData,
profiles[i].mvnoMatchData, pRI, true)) {
success = false;
}
if (success && !convertMvnoTypeToString(profiles[i].mvnoType,
dataProfiles[i].mvnoType)) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
success = false;
}
if (!success) {
freeSetDataProfileData(num, dataProfiles, dataProfilePtrs, 6,
&RIL_DataProfileInfo_v15::apn, &RIL_DataProfileInfo_v15::protocol,
&RIL_DataProfileInfo_v15::roamingProtocol, &RIL_DataProfileInfo_v15::user,
&RIL_DataProfileInfo_v15::password, &RIL_DataProfileInfo_v15::mvnoMatchData);
return Void();
}
dataProfiles[i].profileId = (RIL_DataProfile) profiles[i].profileId;
dataProfiles[i].authType = (int) profiles[i].authType;
dataProfiles[i].type = (int) profiles[i].type;
dataProfiles[i].maxConnsTime = profiles[i].maxConnsTime;
dataProfiles[i].maxConns = profiles[i].maxConns;
dataProfiles[i].waitTime = profiles[i].waitTime;
dataProfiles[i].enabled = BOOL_TO_INT(profiles[i].enabled);
dataProfiles[i].supportedTypesBitmask = profiles[i].supportedApnTypesBitmap;
dataProfiles[i].bearerBitmask = profiles[i].bearerBitmap;
dataProfiles[i].mtu = profiles[i].mtu;
}
CALL_ONREQUEST(RIL_REQUEST_SET_DATA_PROFILE, dataProfilePtrs,
num * sizeof(RIL_DataProfileInfo_v15 *), pRI, mSlotId);
freeSetDataProfileData(num, dataProfiles, dataProfilePtrs, 6,
&RIL_DataProfileInfo_v15::apn, &RIL_DataProfileInfo_v15::protocol,
&RIL_DataProfileInfo_v15::roamingProtocol, &RIL_DataProfileInfo_v15::user,
&RIL_DataProfileInfo_v15::password, &RIL_DataProfileInfo_v15::mvnoMatchData);
}
return Void();
}
Return<void> RadioImpl_1_6::requestShutdown(int32_t serial) {
#if VDBG
RLOGD("requestShutdown: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_SHUTDOWN);
return Void();
}
Return<void> RadioImpl_1_6::getRadioCapability(int32_t serial) {
#if VDBG
RLOGD("getRadioCapability: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_GET_RADIO_CAPABILITY);
return Void();
}
Return<void> RadioImpl_1_6::setRadioCapability(int32_t serial, const RadioCapability& rc) {
#if VDBG
RLOGD("setRadioCapability: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_SET_RADIO_CAPABILITY);
if (pRI == NULL) {
return Void();
}
RIL_RadioCapability rilRc = {};
// TODO : set rilRc.version using HIDL version ?
rilRc.session = rc.session;
rilRc.phase = (int) rc.phase;
rilRc.rat = (int) rc.raf;
rilRc.status = (int) rc.status;
strlcpy(rilRc.logicalModemUuid, rc.logicalModemUuid.c_str(), sizeof(rilRc.logicalModemUuid));
CALL_ONREQUEST(pRI->pCI->requestNumber, &rilRc, sizeof(rilRc), pRI, mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::startLceService(int32_t serial, int32_t reportInterval, bool pullMode) {
#if VDBG
RLOGD("startLceService: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_START_LCE, 2, reportInterval,
BOOL_TO_INT(pullMode));
return Void();
}
Return<void> RadioImpl_1_6::stopLceService(int32_t serial) {
#if VDBG
RLOGD("stopLceService: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_STOP_LCE);
return Void();
}
Return<void> RadioImpl_1_6::pullLceData(int32_t serial) {
#if VDBG
RLOGD("pullLceData: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_PULL_LCEDATA);
return Void();
}
Return<void> RadioImpl_1_6::getModemActivityInfo(int32_t serial) {
#if VDBG
RLOGD("getModemActivityInfo: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_GET_ACTIVITY_INFO);
return Void();
}
int prepareCarrierRestrictions(RIL_CarrierRestrictions &request, bool allAllowed,
const hidl_vec<Carrier>& allowedList,
const hidl_vec<Carrier>& excludedList,
RequestInfo *pRI) {
RIL_Carrier *allowedCarriers = NULL;
RIL_Carrier *excludedCarriers = NULL;
request.len_allowed_carriers = allowedList.size();
allowedCarriers = (RIL_Carrier *)calloc(request.len_allowed_carriers, sizeof(RIL_Carrier));
if (allowedCarriers == NULL) {
RLOGE("prepareCarrierRestrictions: Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
sendErrorResponse(pRI, RIL_E_NO_MEMORY);
return -1;
}
request.allowed_carriers = allowedCarriers;
request.len_excluded_carriers = excludedList.size();
excludedCarriers = (RIL_Carrier *)calloc(request.len_excluded_carriers, sizeof(RIL_Carrier));
if (excludedCarriers == NULL) {
RLOGE("prepareCarrierRestrictions: Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
sendErrorResponse(pRI, RIL_E_NO_MEMORY);
#ifdef MEMSET_FREED
memset(allowedCarriers, 0, request.len_allowed_carriers * sizeof(RIL_Carrier));
#endif
free(allowedCarriers);
return -1;
}
request.excluded_carriers = excludedCarriers;
for (int i = 0; i < request.len_allowed_carriers; i++) {
allowedCarriers[i].mcc = allowedList[i].mcc.c_str();
allowedCarriers[i].mnc = allowedList[i].mnc.c_str();
allowedCarriers[i].match_type = (RIL_CarrierMatchType) allowedList[i].matchType;
allowedCarriers[i].match_data = allowedList[i].matchData.c_str();
}
for (int i = 0; i < request.len_excluded_carriers; i++) {
excludedCarriers[i].mcc = excludedList[i].mcc.c_str();
excludedCarriers[i].mnc = excludedList[i].mnc.c_str();
excludedCarriers[i].match_type =
(RIL_CarrierMatchType) excludedList[i].matchType;
excludedCarriers[i].match_data = excludedList[i].matchData.c_str();
}
return 0;
}
void freeCarrierRestrictions(RIL_CarrierRestrictions &request) {
if (request.allowed_carriers != NULL) {
#ifdef MEMSET_FREED
memset(request.allowed_carriers, 0, request.len_allowed_carriers * sizeof(RIL_Carrier));
#endif
free(request.allowed_carriers);
}
if (request.excluded_carriers != NULL) {
#ifdef MEMSET_FREED
memset(request.excluded_carriers, 0, request.len_excluded_carriers * sizeof(RIL_Carrier));
#endif
free(request.excluded_carriers);
}
}
Return<void> RadioImpl_1_6::setAllowedCarriers(int32_t serial, bool allAllowed,
const CarrierRestrictions& carriers) {
#if VDBG
RLOGD("setAllowedCarriers: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SET_CARRIER_RESTRICTIONS);
if (pRI == NULL) {
return Void();
}
RIL_CarrierRestrictions cr = {};
if (prepareCarrierRestrictions(cr, allAllowed, carriers.allowedCarriers,
carriers.excludedCarriers, pRI) < 0) {
return Void();
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &cr, sizeof(RIL_CarrierRestrictions), pRI, mSlotId);
freeCarrierRestrictions(cr);
return Void();
}
Return<void> RadioImpl_1_6::getAllowedCarriers(int32_t serial) {
#if VDBG
RLOGD("getAllowedCarriers: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_GET_CARRIER_RESTRICTIONS);
return Void();
}
Return<void> RadioImpl_1_6::sendDeviceState(int32_t serial, DeviceStateType deviceStateType,
bool state) {
#if VDBG
RLOGD("sendDeviceState: serial %d", serial);
#endif
if (s_vendorFunctions->version < 15) {
if (deviceStateType == DeviceStateType::LOW_DATA_EXPECTED) {
RLOGD("sendDeviceState: calling screen state %d", BOOL_TO_INT(!state));
dispatchInts(serial, mSlotId, RIL_REQUEST_SCREEN_STATE, 1, BOOL_TO_INT(!state));
} else {
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SEND_DEVICE_STATE);
sendErrorResponse(pRI, RIL_E_REQUEST_NOT_SUPPORTED);
}
return Void();
}
dispatchInts(serial, mSlotId, RIL_REQUEST_SEND_DEVICE_STATE, 2, (int) deviceStateType,
BOOL_TO_INT(state));
return Void();
}
Return<void> RadioImpl_1_6::setIndicationFilter(int32_t serial, int32_t indicationFilter) {
#if VDBG
RLOGD("setIndicationFilter: serial %d", serial);
#endif
if (s_vendorFunctions->version < 15) {
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SET_UNSOLICITED_RESPONSE_FILTER);
sendErrorResponse(pRI, RIL_E_REQUEST_NOT_SUPPORTED);
return Void();
}
dispatchInts(serial, mSlotId, RIL_REQUEST_SET_UNSOLICITED_RESPONSE_FILTER, 1, indicationFilter);
return Void();
}
Return<void> RadioImpl_1_6::setSimCardPower(int32_t serial, bool powerUp) {
#if VDBG
RLOGD("setSimCardPower: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_SET_SIM_CARD_POWER, 1, BOOL_TO_INT(powerUp));
return Void();
}
Return<void> RadioImpl_1_6::setSimCardPower_1_1(int32_t serial, const V1_1::CardPowerState state) {
#if VDBG
RLOGD("setSimCardPower_1_1: serial %d state %d", serial, state);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_SET_SIM_CARD_POWER, 1, state);
return Void();
}
Return<void> RadioImpl_1_6::setSimCardPower_1_6(int32_t serial, const V1_1::CardPowerState state) {
#if VDBG
RLOGD("setSimCardPower_1_6: serial %d state %d", serial, state);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_SET_SIM_CARD_POWER, 1, state);
return Void();
}
Return<void> RadioImpl_1_6::setCarrierInfoForImsiEncryption(int32_t serial,
const V1_1::ImsiEncryptionInfo& data) {
#if VDBG
RLOGD("setCarrierInfoForImsiEncryption: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(
serial, mSlotId, RIL_REQUEST_SET_CARRIER_INFO_IMSI_ENCRYPTION);
if (pRI == NULL) {
return Void();
}
RIL_CarrierInfoForImsiEncryption imsiEncryption = {};
if (!copyHidlStringToRil(&imsiEncryption.mnc, data.mnc, pRI)) {
return Void();
}
if (!copyHidlStringToRil(&imsiEncryption.mcc, data.mcc, pRI)) {
memsetAndFreeStrings(1, imsiEncryption.mnc);
return Void();
}
if (!copyHidlStringToRil(&imsiEncryption.keyIdentifier, data.keyIdentifier, pRI)) {
memsetAndFreeStrings(2, imsiEncryption.mnc, imsiEncryption.mcc);
return Void();
}
imsiEncryption.carrierKeyLength = data.carrierKey.size();
imsiEncryption.carrierKey = new uint8_t[imsiEncryption.carrierKeyLength];
memcpy(imsiEncryption.carrierKey, data.carrierKey.data(), imsiEncryption.carrierKeyLength);
imsiEncryption.expirationTime = data.expirationTime;
CALL_ONREQUEST(pRI->pCI->requestNumber, &imsiEncryption,
sizeof(RIL_CarrierInfoForImsiEncryption), pRI, mSlotId);
delete(imsiEncryption.carrierKey);
return Void();
}
Return<void> RadioImpl_1_6::startKeepalive(int32_t serial, const V1_1::KeepaliveRequest& keepalive) {
#if VDBG
RLOGD("%s(): %d", __FUNCTION__, serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_START_KEEPALIVE);
if (pRI == NULL) {
return Void();
}
RIL_KeepaliveRequest kaReq = {};
kaReq.type = static_cast<RIL_KeepaliveType>(keepalive.type);
switch(kaReq.type) {
case NATT_IPV4:
if (keepalive.sourceAddress.size() != 4 ||
keepalive.destinationAddress.size() != 4) {
RLOGE("Invalid address for keepalive!");
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return Void();
}
break;
case NATT_IPV6:
if (keepalive.sourceAddress.size() != 16 ||
keepalive.destinationAddress.size() != 16) {
RLOGE("Invalid address for keepalive!");
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return Void();
}
break;
default:
RLOGE("Unknown packet keepalive type!");
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return Void();
}
::memcpy(kaReq.sourceAddress, keepalive.sourceAddress.data(), keepalive.sourceAddress.size());
kaReq.sourcePort = keepalive.sourcePort;
::memcpy(kaReq.destinationAddress,
keepalive.destinationAddress.data(), keepalive.destinationAddress.size());
kaReq.destinationPort = keepalive.destinationPort;
kaReq.maxKeepaliveIntervalMillis = keepalive.maxKeepaliveIntervalMillis;
kaReq.cid = keepalive.cid; // This is the context ID of the data call
CALL_ONREQUEST(pRI->pCI->requestNumber, &kaReq, sizeof(RIL_KeepaliveRequest), pRI, mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::stopKeepalive(int32_t serial, int32_t sessionHandle) {
#if VDBG
RLOGD("%s(): %d", __FUNCTION__, serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_STOP_KEEPALIVE);
if (pRI == NULL) {
return Void();
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &sessionHandle, sizeof(uint32_t), pRI, mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::responseAcknowledgement() {
android::releaseWakeLock();
return Void();
}
// Methods from ::android::hardware::radio::V1_2::IRadio follow.
int prepareNetworkScanRequest_1_2(RIL_NetworkScanRequest &scan_request,
const ::android::hardware::radio::V1_2::NetworkScanRequest& request,
RequestInfo *pRI) {
scan_request.type = (RIL_ScanType) request.type;
scan_request.interval = request.interval;
scan_request.specifiers_length = request.specifiers.size();
int intervalLow = static_cast<int>(::android::hardware::radio::V1_2::ScanIntervalRange::MIN);
int intervalHigh = static_cast<int>(::android::hardware::radio::V1_2::ScanIntervalRange::MAX);
int maxSearchTimeLow =
static_cast<int>(::android::hardware::radio::V1_2::MaxSearchTimeRange::MIN);
int maxSearchTimeHigh =
static_cast<int>(::android::hardware::radio::V1_2::MaxSearchTimeRange::MAX);
int incrementalResultsPeriodicityRangeLow =
static_cast<int>(::android::hardware::radio::V1_2::IncrementalResultsPeriodicityRange::MIN);
int incrementalResultsPeriodicityRangeHigh =
static_cast<int>(::android::hardware::radio::V1_2::IncrementalResultsPeriodicityRange::MAX);
uint maxSpecifierSize =
static_cast<uint>(::android::hardware::radio::V1_2::RadioConst
::RADIO_ACCESS_SPECIFIER_MAX_SIZE);
if (request.interval < intervalLow || request.interval > intervalHigh) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return -1;
}
// If defined, must fall in correct range.
if (request.maxSearchTime != 0
&& (request.maxSearchTime < maxSearchTimeLow
|| request.maxSearchTime > maxSearchTimeHigh)) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return -1;
}
if (request.maxSearchTime != 0
&& (request.incrementalResultsPeriodicity < incrementalResultsPeriodicityRangeLow
|| request.incrementalResultsPeriodicity > incrementalResultsPeriodicityRangeHigh
|| request.incrementalResultsPeriodicity > request.maxSearchTime)) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return -1;
}
if (request.specifiers.size() == 0 || request.specifiers.size() > maxSpecifierSize) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return -1;
}
for (size_t i = 0; i < request.specifiers.size(); ++i) {
if (request.specifiers[i].geranBands.size() > MAX_BANDS ||
request.specifiers[i].utranBands.size() > MAX_BANDS ||
request.specifiers[i].eutranBands.size() > MAX_BANDS ||
request.specifiers[i].channels.size() > MAX_CHANNELS) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return -1;
}
const V1_1::RadioAccessSpecifier& ras_from =
request.specifiers[i];
RIL_RadioAccessSpecifier& ras_to = scan_request.specifiers[i];
ras_to.radio_access_network = (RIL_RadioAccessNetworks) ras_from.radioAccessNetwork;
ras_to.channels_length = ras_from.channels.size();
std::copy(ras_from.channels.begin(), ras_from.channels.end(), ras_to.channels);
const std::vector<uint32_t> * bands = nullptr;
switch (request.specifiers[i].radioAccessNetwork) {
case V1_1::RadioAccessNetworks::GERAN:
ras_to.bands_length = ras_from.geranBands.size();
bands = (std::vector<uint32_t> *) &ras_from.geranBands;
break;
case V1_1::RadioAccessNetworks::UTRAN:
ras_to.bands_length = ras_from.utranBands.size();
bands = (std::vector<uint32_t> *) &ras_from.utranBands;
break;
case V1_1::RadioAccessNetworks::EUTRAN:
ras_to.bands_length = ras_from.eutranBands.size();
bands = (std::vector<uint32_t> *) &ras_from.eutranBands;
break;
default:
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return -1;
}
// safe to copy to geran_bands because it's a union member
for (size_t idx = 0; idx < ras_to.bands_length; ++idx) {
ras_to.bands.geran_bands[idx] = (RIL_GeranBands) (*bands)[idx];
}
}
return 0;
}
Return<void> RadioImpl_1_6::startNetworkScan_1_2(int32_t serial,
const ::android::hardware::radio::V1_2::NetworkScanRequest& request) {
#if VDBG
RLOGD("startNetworkScan_1_2: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_START_NETWORK_SCAN);
if (pRI == NULL) {
return Void();
}
RIL_NetworkScanRequest scan_request = {};
if (prepareNetworkScanRequest_1_2(scan_request, request, pRI) < 0) {
return Void();
}
CALL_ONREQUEST(RIL_REQUEST_START_NETWORK_SCAN, &scan_request, sizeof(scan_request), pRI,
mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::setIndicationFilter_1_2(int32_t serial,
::android::hardware::hidl_bitfield<V1_2::IndicationFilter> indicationFilter) {
#if VDBG
RLOGD("setIndicationFilter_1_2: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SET_UNSOLICITED_RESPONSE_FILTER);
sendErrorResponse(pRI, RIL_E_SUCCESS); // TODO: for vts
return Void();
}
Return<void> RadioImpl_1_6::setSignalStrengthReportingCriteria(int32_t serial,
int32_t hysteresisMs, int32_t hysteresisDb,
const hidl_vec<int32_t>& thresholdsDbm,
::android::hardware::radio::V1_2::AccessNetwork accessNetwork) {
#if VDBG
RLOGD("setSignalStrengthReportingCriteria: %d", serial);
#endif
RIL_Errno e;
if (radioService[mSlotId]->mRadioResponseV1_2 != NULL) {
RadioResponseInfo responseInfo = {};
if (hysteresisDb >= 10) {
e = RIL_E_INVALID_ARGUMENTS;
} else {
e = RIL_E_SUCCESS;
}
populateResponseInfo(responseInfo, serial, RESPONSE_SOLICITED, e);
Return<void> retStatus
= radioService[mSlotId]->mRadioResponseV1_2->setSignalStrengthReportingCriteriaResponse(responseInfo);
radioService[mSlotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setIndicationFilterResponse: radioService[%d]->mRadioResponse == NULL",
mSlotId);
}
return Void();
}
Return<void> RadioImpl_1_6::setLinkCapacityReportingCriteria(int32_t serial,
int32_t hysteresisMs, int32_t hysteresisDlKbps, int32_t hysteresisUlKbps,
const hidl_vec<int32_t>& thresholdsDownlinkKbps,
const hidl_vec<int32_t>& thresholdsUplinkKbps,
V1_2::AccessNetwork accessNetwork) {
#if VDBG
RLOGE("[%04d]< %s", serial, "Method is not implemented");
RLOGD("setLinkCapacityReportingCriteria: %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SET_LINK_CAPACITY_REPORTING_CRITERIA);
if (pRI == NULL) {
return Void();
}
// TODO: for vts. hysteresisDlKbps and hysteresisUlKbps range not confirmed
if (hysteresisDlKbps >= 5000 || hysteresisUlKbps >= 1000) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return Void();
} else {
sendErrorResponse(pRI, RIL_E_SUCCESS);
}
return Void();
}
Return<void> RadioImpl_1_6::setupDataCall_1_2(int32_t serial, V1_2::AccessNetwork accessNetwork,
const V1_0::DataProfileInfo& dataProfileInfo, bool modemCognitive,
bool roamingAllowed, bool isRoaming, V1_2::DataRequestReason reason,
const hidl_vec<hidl_string>& addresses, const hidl_vec<hidl_string>& dnses) {
#if VDBG
RLOGE("[%04d]< %s", serial, "Method is not implemented");
RLOGD("setupDataCall_1_2: serial %d", serial);
#endif
if (s_vendorFunctions->version >= 4 && s_vendorFunctions->version <= 14) {
const hidl_string &protocol =
(isRoaming ? dataProfileInfo.roamingProtocol : dataProfileInfo.protocol);
dispatchStrings(serial, mSlotId, RIL_REQUEST_SETUP_DATA_CALL, true, 7,
std::to_string((int)accessNetwork).c_str(),
std::to_string((int)dataProfileInfo.profileId).c_str(),
dataProfileInfo.apn.c_str(),
dataProfileInfo.user.c_str(),
dataProfileInfo.password.c_str(),
std::to_string((int)dataProfileInfo.authType).c_str(),
protocol.c_str());
} else if (s_vendorFunctions->version >= 15) {
char *mvnoTypeStr = NULL;
if (!convertMvnoTypeToString(dataProfileInfo.mvnoType, mvnoTypeStr)) {
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SETUP_DATA_CALL);
if (pRI != NULL) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
}
return Void();
}
dispatchStrings(serial, mSlotId, RIL_REQUEST_SETUP_DATA_CALL, true, 15,
std::to_string((int)accessNetwork).c_str(),
std::to_string((int)dataProfileInfo.profileId).c_str(),
dataProfileInfo.apn.c_str(),
dataProfileInfo.user.c_str(),
dataProfileInfo.password.c_str(),
std::to_string((int) dataProfileInfo.authType).c_str(),
dataProfileInfo.protocol.c_str(),
dataProfileInfo.roamingProtocol.c_str(),
std::to_string(dataProfileInfo.supportedApnTypesBitmap).c_str(),
std::to_string(dataProfileInfo.bearerBitmap).c_str(),
modemCognitive ? "1" : "0",
std::to_string(dataProfileInfo.mtu).c_str(),
mvnoTypeStr,
dataProfileInfo.mvnoMatchData.c_str(),
roamingAllowed ? "1" : "0");
} else {
RLOGE("Unsupported RIL version %d, min version expected 4", s_vendorFunctions->version);
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SETUP_DATA_CALL);
if (pRI != NULL) {
sendErrorResponse(pRI, RIL_E_REQUEST_NOT_SUPPORTED);
}
}
return Void();
}
Return<void> RadioImpl_1_6::deactivateDataCall_1_2(int32_t serial, int32_t cid,
::android::hardware::radio::V1_2::DataRequestReason reason) {
#if VDBG
RLOGD("deactivateDataCall_1_2: serial %d", serial);
#endif
RIL_DataRequestReason dataRequestReason = (RIL_DataRequestReason)reason;
const char *reasonStr = NULL;
switch (dataRequestReason) {
case DATA_REQ_REASOPN_NORMAL:
reasonStr = "normal";
break;
case DATA_REQ_REASOPN_SHUTDOWN:
reasonStr = "shutdown";
break;
case DATA_REQ_REASOPN_HANDOVER:
reasonStr = "handover";
break;
default:
reasonStr = "unknown";
break;
}
dispatchStrings(serial, mSlotId, RIL_REQUEST_DEACTIVATE_DATA_CALL, false,
2, (std::to_string(cid)).c_str(), reasonStr);
return Void();
}
// Methods from ::android::hardware::radio::V1_3::IRadio follow.
Return<void> RadioImpl_1_6::setSystemSelectionChannels(int32_t serial, bool /* specifyChannels */,
const hidl_vec<::android::hardware::radio::V1_1::RadioAccessSpecifier>& /* specifiers */) {
#if VDBG
RLOGD("setSystemSelectionChannels: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_SET_SYSTEM_SELECTION_CHANNELS);
return Void();
}
Return<void> RadioImpl_1_6::enableModem(int32_t serial, bool /* on */) {
#if VDBG
RLOGE("enableModem: serial = %d, enable = %s", serial, on);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_ENABLE_MODEM);
return Void();
}
Return<void> RadioImpl_1_6::getModemStackStatus(int32_t serial) {
#if VDBG
RLOGD("getModemStackStatus: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_GET_MODEM_STACK_STATUS);
return Void();
}
const char * getProtocolString(const ::android::hardware::radio::V1_4::PdpProtocolType protocolVal) {
switch(protocolVal) {
case ::android::hardware::radio::V1_4::PdpProtocolType::IP:
return "IP";
case ::android::hardware::radio::V1_4::PdpProtocolType::IPV6:
return "IPV6";
case ::android::hardware::radio::V1_4::PdpProtocolType::IPV4V6:
return "IPV4V6";
case ::android::hardware::radio::V1_4::PdpProtocolType::PPP:
return "PPP";
case ::android::hardware::radio::V1_4::PdpProtocolType::NON_IP:
return "NON_IP";
case ::android::hardware::radio::V1_4::PdpProtocolType::UNSTRUCTURED:
return "UNSTRUCTURED";
default:
return "UNKNOWN";
}
}
// Methods from ::android::hardware::radio::V1_4::IRadio follow.
Return<void> RadioImpl_1_6::setAllowedCarriers_1_4(int32_t serial,
const V1_4::CarrierRestrictionsWithPriority& carriers,
V1_4::SimLockMultiSimPolicy multiSimPolicy) {
#if VDBG
RLOGD("setAllowedCarriers_1_4: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SET_CARRIER_RESTRICTIONS);
if (pRI == NULL) {
return Void();
}
// Prepare legacy structure (defined in IRadio 1.0) to re-use existing code.
RIL_CarrierRestrictions cr = {};
if (prepareCarrierRestrictions(cr, false, carriers.allowedCarriers, carriers.excludedCarriers,
pRI) < 0) {
return Void();
}
// Copy the legacy structure into the new structure (defined in IRadio 1.4)
RIL_CarrierRestrictionsWithPriority crExt = {};
crExt.len_allowed_carriers = cr.len_allowed_carriers;
crExt.allowed_carriers = cr.allowed_carriers;
crExt.len_excluded_carriers = cr.len_excluded_carriers;
crExt.excluded_carriers = cr.excluded_carriers;
crExt.allowedCarriersPrioritized = BOOL_TO_INT(carriers.allowedCarriersPrioritized);
crExt.multiSimPolicy = (RIL_SimLockMultiSimPolicy)multiSimPolicy;
CALL_ONREQUEST(pRI->pCI->requestNumber, &crExt, sizeof(RIL_CarrierRestrictionsWithPriority),
pRI, mSlotId);
freeCarrierRestrictions(cr);
return Void();
}
Return<void> RadioImpl_1_6::getAllowedCarriers_1_4(int32_t serial) {
#if VDBG
RLOGD("getAllowedCarriers_1_4: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_GET_CARRIER_RESTRICTIONS);
return Void();
}
Return<void> RadioImpl_1_6::setupDataCall_1_4(int32_t serial ,
::android::hardware::radio::V1_4::AccessNetwork /* accessNetwork */,
const ::android::hardware::radio::V1_4::DataProfileInfo& dataProfileInfo,
bool roamingAllowed, ::android::hardware::radio::V1_2::DataRequestReason /* reason */,
const hidl_vec<hidl_string>& /* addresses */, const hidl_vec<hidl_string>& /* dnses */) {
#if VDBG
RLOGD("setupDataCall_1_4: serial %d", serial);
#endif
char *mvnoTypeStr = NULL;
if (!convertMvnoTypeToString(MvnoType::IMSI, mvnoTypeStr)) {
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SETUP_DATA_CALL);
if (pRI != NULL) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
}
return Void();
}
dispatchStrings(serial, mSlotId, RIL_REQUEST_SETUP_DATA_CALL, true, 16,
std::to_string((int) RadioTechnology::UNKNOWN + 2).c_str(),
std::to_string((int) dataProfileInfo.profileId).c_str(),
dataProfileInfo.apn.c_str(),
dataProfileInfo.user.c_str(),
dataProfileInfo.password.c_str(),
std::to_string((int) dataProfileInfo.authType).c_str(),
getProtocolString(dataProfileInfo.protocol),
getProtocolString(dataProfileInfo.roamingProtocol),
std::to_string(dataProfileInfo.supportedApnTypesBitmap).c_str(),
std::to_string(dataProfileInfo.bearerBitmap).c_str(),
dataProfileInfo.persistent ? "1" : "0",
std::to_string(dataProfileInfo.mtu).c_str(),
mvnoTypeStr,
"302720x94",
roamingAllowed ? "1" : "0",
"-1");
return Void();
}
Return<void> RadioImpl_1_6::setInitialAttachApn_1_4(int32_t serial ,
const ::android::hardware::radio::V1_4::DataProfileInfo& dataProfileInfo) {
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SET_INITIAL_ATTACH_APN);
if (pRI == NULL) {
return Void();
}
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, RESPONSE_SOLICITED, RIL_E_SUCCESS);
if (radioService[mSlotId]->mRadioResponseV1_4 != NULL) {
Return<void> retStatus
= radioService[mSlotId]->mRadioResponseV1_4->setInitialAttachApnResponse(responseInfo);
radioService[mSlotId]->checkReturnStatus(retStatus);
} else if (radioService[mSlotId]->mRadioResponse != NULL) {
Return<void> retStatus
= radioService[mSlotId]->mRadioResponse->setInitialAttachApnResponse(responseInfo);
radioService[mSlotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setInitialAttachApnResponse: radioService[%d]->mRadioResponse == NULL", mSlotId);
}
return Void();
}
Return<void> RadioImpl_1_6::setDataProfile_1_4(int32_t serial ,
const hidl_vec<::android::hardware::radio::V1_4::DataProfileInfo>& /* profiles */) {
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SET_DATA_PROFILE);
if (pRI == NULL) {
return Void();
}
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, RESPONSE_SOLICITED, RIL_E_SUCCESS);
if (radioService[mSlotId]->mRadioResponseV1_4 != NULL) {
Return<void> retStatus
= radioService[mSlotId]->mRadioResponseV1_4->setDataProfileResponse(responseInfo);
radioService[mSlotId]->checkReturnStatus(retStatus);
} else if (radioService[mSlotId]->mRadioResponse != NULL) {
Return<void> retStatus
= radioService[mSlotId]->mRadioResponse->setDataProfileResponse(responseInfo);
radioService[mSlotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setDataProfileResponse: radioService[%d]->mRadioResponse == NULL", mSlotId);
}
return Void();
}
Return<void> RadioImpl_1_6::emergencyDial(int32_t serial,
const ::android::hardware::radio::V1_0::Dial& dialInfo,
hidl_bitfield<android::hardware::radio::V1_4::EmergencyServiceCategory> categories,
const hidl_vec<hidl_string>& urns ,
::android::hardware::radio::V1_4::EmergencyCallRouting routing,
bool fromEmergencyDialer, bool /* isTesting */) {
#if VDBG
RLOGD("emergencyDial: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_EMERGENCY_DIAL);
if (pRI == NULL) {
return Void();
}
RIL_EmergencyDial eccDial = {};
RIL_Dial& dial = eccDial.dialInfo;
RIL_UUS_Info uusInfo = {};
if (!copyHidlStringToRil(&dial.address, dialInfo.address, pRI)) {
return Void();
}
dial.clir = (int) dialInfo.clir;
if (dialInfo.uusInfo.size() != 0) {
uusInfo.uusType = (RIL_UUS_Type) dialInfo.uusInfo[0].uusType;
uusInfo.uusDcs = (RIL_UUS_DCS) dialInfo.uusInfo[0].uusDcs;
if (dialInfo.uusInfo[0].uusData.size() == 0) {
uusInfo.uusData = NULL;
uusInfo.uusLength = 0;
} else {
if (!copyHidlStringToRil(&uusInfo.uusData, dialInfo.uusInfo[0].uusData, pRI)) {
memsetAndFreeStrings(1, dial.address);
return Void();
}
uusInfo.uusLength = dialInfo.uusInfo[0].uusData.size();
}
dial.uusInfo = &uusInfo;
}
eccDial.urnsNumber = urns.size();
if (eccDial.urnsNumber != 0) {
char **ppUrns = (char **)calloc(eccDial.urnsNumber, sizeof(char *));
if (ppUrns == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
sendErrorResponse(pRI, RIL_E_NO_MEMORY);
memsetAndFreeStrings(2, dial.address, uusInfo.uusData);
return Void();
}
for (uint32_t i = 0; i < eccDial.urnsNumber; i++) {
if (!copyHidlStringToRil(&ppUrns[i], hidl_string(urns[i]), pRI)) {
for (uint32_t j = 0; j < i; j++) {
memsetAndFreeStrings(1, ppUrns[j]);
}
memsetAndFreeStrings(2, dial.address, uusInfo.uusData);
free(ppUrns);
return Void();
}
}
eccDial.urns = ppUrns;
}
eccDial.categories = (RIL_EmergencyServiceCategory)categories;
eccDial.routing = (RIL_EmergencyCallRouting)routing;
eccDial.fromEmergencyDialer = fromEmergencyDialer;
CALL_ONREQUEST(RIL_REQUEST_EMERGENCY_DIAL, &eccDial, sizeof(RIL_EmergencyDial), pRI, mSlotId);
memsetAndFreeStrings(2, dial.address, uusInfo.uusData);
if (eccDial.urns != NULL) {
for (size_t i = 0; i < eccDial.urnsNumber; i++) {
memsetAndFreeStrings(1, eccDial.urns[i]);
}
free(eccDial.urns);
}
return Void();
}
Return<void> RadioImpl_1_6::startNetworkScan_1_4(int32_t serial,
const ::android::hardware::radio::V1_2::NetworkScanRequest& request) {
#if VDBG
RLOGD("startNetworkScan_1_4: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_START_NETWORK_SCAN);
if (pRI == NULL) {
return Void();
}
RIL_NetworkScanRequest scan_request = {};
if (prepareNetworkScanRequest_1_2(scan_request, request, pRI) < 0) {
return Void();
}
CALL_ONREQUEST(RIL_REQUEST_START_NETWORK_SCAN, &scan_request, sizeof(scan_request), pRI,
mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::getPreferredNetworkTypeBitmap(int32_t serial ) {
#if VDBG
RLOGD("getPreferredNetworkTypeBitmap: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_GET_PREFERRED_NETWORK_TYPE_BITMAP);
return Void();
}
Return<void> RadioImpl_1_6::setPreferredNetworkTypeBitmap(
int32_t serial, hidl_bitfield<RadioAccessFamily> networkTypeBitmap) {
#if VDBG
RLOGD("setPreferredNetworkTypeBitmap: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_SET_PREFERRED_NETWORK_TYPE_BITMAP, 1, networkTypeBitmap);
return Void();
}
Return<void> RadioImpl_1_6::setAllowedNetworkTypeBitmap(
uint32_t serial, hidl_bitfield<RadioAccessFamily> networkTypeBitmap) {
#if VDBG
RLOGD("setAllowedNetworkTypeBitmap: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_SET_ALLOWED_NETWORK_TYPE_BITMAP, 1, networkTypeBitmap);
return Void();
}
Return<void> RadioImpl_1_6::getSignalStrength_1_4(int32_t serial) {
#if VDBG
RLOGD("getSignalStrength_1_4: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_SIGNAL_STRENGTH);
return Void();
}
Return<void> RadioImpl_1_6::getSignalStrength_1_6(int32_t serial) {
#if VDBG
RLOGD("getSignalStrength_1_6: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_SIGNAL_STRENGTH);
return Void();
}
// Methods from ::android::hardware::radio::V1_5::IRadio follow.
Return<void> RadioImpl_1_6::setSignalStrengthReportingCriteria_1_5(int32_t serial,
const V1_5::SignalThresholdInfo& signalThresholdInfo,
V1_5::AccessNetwork accessNetwork) {
#if VDBG
RLOGD("setSignalStrengthReportingCriteria_1_5: %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SET_SIGNAL_STRENGTH_REPORTING_CRITERIA);
if (pRI == NULL) {
return Void();
}
if (signalThresholdInfo.hysteresisDb >= 10) { // TODO: for vts. hysteresisDb range not checked
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return Void();
}
RIL_SignalStrengthReportingCriteria_v1_5 *criteria = (RIL_SignalStrengthReportingCriteria_v1_5 *)
calloc(1, sizeof(RIL_SignalStrengthReportingCriteria_v1_5));
if (criteria == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
sendErrorResponse(pRI, RIL_E_NO_MEMORY);
return Void();
}
criteria->signalMeasurement = (SignalMeasurementType)signalThresholdInfo.signalMeasurement;
criteria->isEnabled = signalThresholdInfo.isEnabled;
criteria->hysteresisMs = signalThresholdInfo.hysteresisMs;
criteria->hysteresisDb = signalThresholdInfo.hysteresisDb;
criteria->thresholdsDbmNumber = signalThresholdInfo.thresholds.size();
criteria->thresholdsDbm = new int32_t[criteria->thresholdsDbmNumber];
memcpy(criteria->thresholdsDbm, signalThresholdInfo.thresholds.data(),
criteria->thresholdsDbmNumber * sizeof(int32_t));
criteria->accessNetwork = (RIL_RadioAccessNetworks_v1_5)accessNetwork;
CALL_ONREQUEST(pRI->pCI->requestNumber, criteria,
sizeof(RIL_SignalStrengthReportingCriteria_v1_5), pRI, mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::setLinkCapacityReportingCriteria_1_5(int32_t serial,
int32_t hysteresisMs, int32_t hysteresisDlKbps, int32_t hysteresisUlKbps,
const hidl_vec<int32_t>& thresholdsDownlinkKbps,
const hidl_vec<int32_t>& thresholdsUplinkKbps,
V1_5::AccessNetwork accessNetwork) {
#if VDBG
RLOGD("setLinkCapacityReportingCriteria_1_5: %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SET_LINK_CAPACITY_REPORTING_CRITERIA);
if (pRI == NULL) {
return Void();
}
// TODO: for vts. hysteresisDlKbps and hysteresisUlKbps range not confirmed
if (hysteresisDlKbps >= 5000 || hysteresisUlKbps >= 1000) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return Void();
}
RIL_LinkCapacityReportingCriteria *criteria = (RIL_LinkCapacityReportingCriteria *)
calloc(1, sizeof(RIL_LinkCapacityReportingCriteria));
if (criteria == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
sendErrorResponse(pRI, RIL_E_NO_MEMORY);
return Void();
}
criteria->hysteresisMs = hysteresisMs;
criteria->hysteresisDlKbps = hysteresisDlKbps;
criteria->hysteresisUlKbps = hysteresisUlKbps;
criteria->thresholdsDownlinkKbpsLength = thresholdsDownlinkKbps.size();
criteria->thresholdsUplinkKbpsLength = thresholdsUplinkKbps.size();
criteria->thresholdsDownlinkKbps = new int32_t[criteria->thresholdsDownlinkKbpsLength];
criteria->thresholdsUplinkKbps = new int32_t[criteria->thresholdsUplinkKbpsLength];
memcpy(criteria->thresholdsDownlinkKbps, thresholdsDownlinkKbps.data(),
criteria->thresholdsDownlinkKbpsLength * sizeof(int32_t));
memcpy(criteria->thresholdsUplinkKbps, thresholdsUplinkKbps.data(),
criteria->thresholdsUplinkKbpsLength * sizeof(int32_t));
criteria->accessNetwork = (RIL_RadioAccessNetworks_v1_5)accessNetwork;
CALL_ONREQUEST(pRI->pCI->requestNumber, criteria,
sizeof(RIL_LinkCapacityReportingCriteria), pRI, pRI->socket_id);
return Void();
}
Return<void> RadioImpl_1_6::enableUiccApplications(int32_t serial, bool enable) {
#if VDBG
RLOGD("enableUiccApplications: serial %d enable %d", serial, enable);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_ENABLE_UICC_APPLICATIONS, 1, BOOL_TO_INT(enable));
return Void();
}
Return<void> RadioImpl_1_6::setRadioPower_1_5(int32_t serial, bool powerOn, bool forEmergencyCall,
bool preferredForEmergencyCall) {
#if VDBG
RLOGD("setRadioPower_1_6: serial %d powerOn %d forEmergency %d preferredForEmergencyCall %d",
serial, powerOn, forEmergencyCall, preferredForEmergencyCall);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_RADIO_POWER, 1, BOOL_TO_INT(powerOn));
return Void();
}
Return<void> RadioImpl_1_6::setRadioPower_1_6(int32_t serial, bool powerOn, bool forEmergencyCall,
bool preferredForEmergencyCall) {
#if VDBG
RLOGD("setRadioPower_1_6: serial %d powerOn %d forEmergency %d preferredForEmergencyCall %d",
serial, powerOn, forEmergencyCall, preferredForEmergencyCall);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_RADIO_POWER, 1, BOOL_TO_INT(powerOn));
return Void();
}
Return<void> RadioImpl_1_6::areUiccApplicationsEnabled(int32_t serial) {
#if VDBG
RLOGD("areUiccApplicationsEnabled: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_ARE_UICC_APPLICATIONS_ENABLED);
return Void();
}
Return<void> RadioImpl_1_6::getVoiceRegistrationState_1_5(int32_t serial) {
#if VDBG
RLOGD("getVoiceRegistrationState_1_5: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_VOICE_REGISTRATION_STATE);
return Void();
}
Return<void> RadioImpl_1_6::getDataRegistrationState_1_5(int32_t serial) {
#if VDBG
RLOGD("getDataRegistrationState_1_5: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_DATA_REGISTRATION_STATE);
return Void();
}
Return<void> RadioImpl_1_6::getVoiceRegistrationState_1_6(int32_t serial) {
#if VDBG
RLOGD("getVoiceRegistrationState_1_6: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_VOICE_REGISTRATION_STATE);
return Void();
}
Return<void> RadioImpl_1_6::getDataRegistrationState_1_6(int32_t serial) {
#if VDBG
RLOGD("getDataRegistrationState_1_6: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_DATA_REGISTRATION_STATE);
return Void();
}
Return<void> RadioImpl_1_6::setSystemSelectionChannels_1_5(int32_t serial,
bool specifyChannels, const hidl_vec<V1_5::RadioAccessSpecifier>& specifiers) {
#if VDBG
RLOGD("setSystemSelectionChannels_1_5: %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SET_SYSTEM_SELECTION_CHANNELS);
if (pRI == NULL) {
return Void();
}
if (specifiers.size() > RIL_RADIO_ACCESS_SPECIFIER_MAX_SIZE) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return Void();
}
RIL_SystemSelectionChannels_v1_5 *sysSelectionChannels =
(RIL_SystemSelectionChannels_v1_5 *)calloc(1, sizeof(RIL_SystemSelectionChannels_v1_5));
if (sysSelectionChannels == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
sendErrorResponse(pRI, RIL_E_NO_MEMORY);
return Void();
}
sysSelectionChannels->specifyChannels = specifyChannels;
sysSelectionChannels->specifiers_length = specifiers.size();
for (size_t i = 0; i < specifiers.size(); ++i) {
const V1_5::RadioAccessSpecifier& ras_from = specifiers[i];
RIL_RadioAccessSpecifier_v1_5 &ras_to = sysSelectionChannels->specifiers[i];
ras_to.radio_access_network = (RIL_RadioAccessNetworks_v1_5)ras_from.radioAccessNetwork;
ras_to.channels_length = ras_from.channels.size();
std::copy(ras_from.channels.begin(), ras_from.channels.end(), ras_to.channels);
const std::vector<uint32_t> * bands = nullptr;
switch (specifiers[i].radioAccessNetwork) {
case V1_5::RadioAccessNetworks::GERAN:
ras_to.bands_length = ras_from.bands.geranBands().size();
bands = (std::vector<uint32_t> *) &ras_from.bands.geranBands();
break;
case V1_5::RadioAccessNetworks::UTRAN:
ras_to.bands_length = ras_from.bands.utranBands().size();
bands = (std::vector<uint32_t> *) &ras_from.bands.utranBands();
break;
case V1_5::RadioAccessNetworks::EUTRAN:
ras_to.bands_length = ras_from.bands.eutranBands().size();
bands = (std::vector<uint32_t> *) &ras_from.bands.eutranBands();
break;
case V1_5::RadioAccessNetworks::NGRAN:
ras_to.bands_length = ras_from.bands.ngranBands().size();
bands = (std::vector<uint32_t> *) &ras_from.bands.ngranBands();
break;
default: {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
free(sysSelectionChannels);
return Void();
}
}
// safe to copy to geran_bands because it's a union member
for (size_t idx = 0; idx < ras_to.bands_length; ++idx) {
ras_to.bands.geran_bands[idx] = (RIL_GeranBands)(*bands)[idx];
}
}
CALL_ONREQUEST(RIL_REQUEST_SET_SYSTEM_SELECTION_CHANNELS, sysSelectionChannels,
sizeof(RIL_SystemSelectionChannels_v1_5), pRI, mSlotId);
return Void();
}
int prepareNetworkScanRequest_1_5(RIL_NetworkScanRequest_v1_5 &scan_request,
const V1_5::NetworkScanRequest& request, RequestInfo *pRI) {
scan_request.type = (RIL_ScanType) request.type;
scan_request.interval = request.interval;
scan_request.specifiers_length = request.specifiers.size();
scan_request.maxSearchTime = request.maxSearchTime;
scan_request.incrementalResults = request.incrementalResults;
scan_request.incrementalResultsPeriodicity = request.incrementalResultsPeriodicity;
scan_request.mccMncsNumbers = request.mccMncs.size();
int intervalLow = static_cast<int>(V1_2::ScanIntervalRange::MIN);
int intervalHigh = static_cast<int>(V1_2::ScanIntervalRange::MAX);
int maxSearchTimeLow = static_cast<int>(V1_2::MaxSearchTimeRange::MIN);
int maxSearchTimeHigh = static_cast<int>(V1_2::MaxSearchTimeRange::MAX);
int incrementalResultsPeriodicityRangeLow =
static_cast<int>(V1_2::IncrementalResultsPeriodicityRange::MIN);
int incrementalResultsPeriodicityRangeHigh =
static_cast<int>(V1_2::IncrementalResultsPeriodicityRange::MAX);
uint maxSpecifierSize = static_cast<uint>(V1_2::RadioConst::RADIO_ACCESS_SPECIFIER_MAX_SIZE);
if (request.interval < intervalLow || request.interval > intervalHigh) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return -1;
}
// If defined, must fall in correct range.
if (request.maxSearchTime != 0 && (request.maxSearchTime < maxSearchTimeLow
|| request.maxSearchTime > maxSearchTimeHigh)) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return -1;
}
if (request.maxSearchTime != 0
&& (request.incrementalResultsPeriodicity < incrementalResultsPeriodicityRangeLow
|| request.incrementalResultsPeriodicity > incrementalResultsPeriodicityRangeHigh
|| request.incrementalResultsPeriodicity > request.maxSearchTime)) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return -1;
}
if (request.specifiers.size() == 0 || request.specifiers.size() > maxSpecifierSize) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return -1;
}
for (size_t i = 0; i < request.specifiers.size(); ++i) {
if (request.specifiers[i].channels.size() > MAX_CHANNELS) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return -1;
}
switch (request.specifiers[i].bands.getDiscriminator()) {
case V1_5::RadioAccessSpecifier::Bands::hidl_discriminator::geranBands:
if (request.specifiers[i].bands.geranBands().size() > MAX_BANDS) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return -1;
}
break;
case V1_5::RadioAccessSpecifier::Bands::hidl_discriminator::utranBands:
if (request.specifiers[i].bands.utranBands().size() > MAX_BANDS) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return -1;
}
break;
case V1_5::RadioAccessSpecifier::Bands::hidl_discriminator::eutranBands:
if (request.specifiers[i].bands.eutranBands().size() > MAX_BANDS) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return -1;
}
break;
case V1_5::RadioAccessSpecifier::Bands::hidl_discriminator::ngranBands:
if (request.specifiers[i].bands.ngranBands().size() > MAX_BANDS) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return -1;
}
break;
default:
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return -1;
}
if (request.specifiers[i].channels.size() > MAX_CHANNELS) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return -1;
}
const V1_5::RadioAccessSpecifier& ras_from = request.specifiers[i];
RIL_RadioAccessSpecifier_v1_5& ras_to = scan_request.specifiers[i];
ras_to.radio_access_network = (RIL_RadioAccessNetworks_v1_5) ras_from.radioAccessNetwork;
ras_to.channels_length = ras_from.channels.size();
std::copy(ras_from.channels.begin(), ras_from.channels.end(), ras_to.channels);
const std::vector<uint32_t> * bands = nullptr;
switch (request.specifiers[i].radioAccessNetwork) {
case V1_5::RadioAccessNetworks::GERAN:
ras_to.bands_length = ras_from.bands.geranBands().size();
bands = (std::vector<uint32_t> *) &ras_from.bands.geranBands();
// safe to copy to geran_bands because it's a union member
for (size_t idx = 0; idx < ras_to.bands_length; ++idx) {
ras_to.bands.geran_bands[idx] = (RIL_GeranBands) (*bands)[idx];
}
break;
case V1_5::RadioAccessNetworks::UTRAN:
ras_to.bands_length = ras_from.bands.utranBands().size();
bands = (std::vector<uint32_t> *) &ras_from.bands;
// safe to copy to geran_bands because it's a union member
for (size_t idx = 0; idx < ras_to.bands_length; ++idx) {
ras_to.bands.utran_bands[idx] = (RIL_UtranBands) (*bands)[idx];
}
break;
case V1_5::RadioAccessNetworks::EUTRAN:
ras_to.bands_length = ras_from.bands.eutranBands().size();
bands = (std::vector<uint32_t> *) &ras_from.bands;
// safe to copy to geran_bands because it's a union member
for (size_t idx = 0; idx < ras_to.bands_length; ++idx) {
ras_to.bands.eutran_bands[idx] = (RIL_EutranBands) (*bands)[idx];
}
break;
case V1_5::RadioAccessNetworks::NGRAN:
ras_to.bands_length = ras_from.bands.ngranBands().size();
bands = (std::vector<uint32_t> *) &ras_from.bands;
// safe to copy to geran_bands because it's a union member
for (size_t idx = 0; idx < ras_to.bands_length; ++idx) {
ras_to.bands.ngran_bands[idx] = (RIL_NgranBands) (*bands)[idx];
}
break;
default:
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
return -1;
}
}
if (scan_request.mccMncsNumbers != 0) {
char **pStrings = (char **)calloc(scan_request.mccMncsNumbers, sizeof(char *));
if (pStrings == NULL) {
RLOGE("Memory allocation failed for request %s",
requestToString(pRI->pCI->requestNumber));
sendErrorResponse(pRI, RIL_E_NO_MEMORY);
return -1;
}
for (size_t i = 0; i < request.mccMncs.size(); ++i) {
if (!copyHidlStringToRil(&pStrings[i], hidl_string(request.mccMncs[i]), pRI)) {
for (size_t j = 0; j < i; j++) {
memsetAndFreeStrings(1, pStrings[j]);
}
free(pStrings);
return -1;
}
}
scan_request.mccMncs = pStrings;
}
return 0;
}
Return<void> RadioImpl_1_6::startNetworkScan_1_5(int32_t serial,
const ::android::hardware::radio::V1_5::NetworkScanRequest& request) {
#if VDBG
RLOGD("startNetworkScan_1_6: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId, RIL_REQUEST_START_NETWORK_SCAN);
if (pRI == NULL) {
return Void();
}
RIL_NetworkScanRequest_v1_5 scan_request = {};
if (prepareNetworkScanRequest_1_5(scan_request, request, pRI) < 0) {
return Void();
}
CALL_ONREQUEST(RIL_REQUEST_START_NETWORK_SCAN, &scan_request, sizeof(scan_request), pRI,
mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::setupDataCall_1_5(int32_t serial ,
::android::hardware::radio::V1_5::AccessNetwork /* accessNetwork */,
const ::android::hardware::radio::V1_5::DataProfileInfo& dataProfileInfo,
bool roamingAllowed, ::android::hardware::radio::V1_2::DataRequestReason /* reason */,
const hidl_vec<::android::hardware::radio::V1_5::LinkAddress>& /* addresses */,
const hidl_vec<hidl_string>& /* dnses */) {
#if VDBG
RLOGD("setupDataCall_1_5: serial %d", serial);
#endif
char *mvnoTypeStr = NULL;
if (!convertMvnoTypeToString(MvnoType::IMSI, mvnoTypeStr)) {
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SETUP_DATA_CALL);
if (pRI != NULL) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
}
return Void();
}
dispatchStrings(serial, mSlotId, RIL_REQUEST_SETUP_DATA_CALL, true, 15,
std::to_string((int) RadioTechnology::UNKNOWN + 2).c_str(),
std::to_string((int) dataProfileInfo.profileId).c_str(),
dataProfileInfo.apn.c_str(),
dataProfileInfo.user.c_str(),
dataProfileInfo.password.c_str(),
std::to_string((int) dataProfileInfo.authType).c_str(),
getProtocolString(dataProfileInfo.protocol),
getProtocolString(dataProfileInfo.roamingProtocol),
std::to_string(dataProfileInfo.supportedApnTypesBitmap).c_str(),
std::to_string(dataProfileInfo.bearerBitmap).c_str(),
dataProfileInfo.persistent ? "1" : "0",
std::to_string(dataProfileInfo.mtuV4).c_str(),
std::to_string(dataProfileInfo.mtuV6).c_str(),
mvnoTypeStr,
"302720x94",
roamingAllowed ? "1" : "0");
return Void();
}
Return<void> RadioImpl_1_6::setupDataCall_1_6(int32_t serial ,
::android::hardware::radio::V1_5::AccessNetwork /* accessNetwork */,
const ::android::hardware::radio::V1_5::DataProfileInfo& dataProfileInfo,
bool roamingAllowed, ::android::hardware::radio::V1_2::DataRequestReason /* reason */,
const hidl_vec<::android::hardware::radio::V1_5::LinkAddress>& /* addresses */,
const hidl_vec<hidl_string>& /* dnses */,
int32_t /* pduSessionId */) {
#if VDBG
RLOGD("setupDataCall_1_6: serial %d", serial);
#endif
char *mvnoTypeStr = NULL;
if (!convertMvnoTypeToString(MvnoType::IMSI, mvnoTypeStr)) {
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SETUP_DATA_CALL);
if (pRI != NULL) {
sendErrorResponse(pRI, RIL_E_INVALID_ARGUMENTS);
}
return Void();
}
dispatchStrings(serial, mSlotId, RIL_REQUEST_SETUP_DATA_CALL, true, 16,
std::to_string((int) RadioTechnology::UNKNOWN + 2).c_str(),
std::to_string((int) dataProfileInfo.profileId).c_str(),
dataProfileInfo.apn.c_str(),
dataProfileInfo.user.c_str(),
dataProfileInfo.password.c_str(),
std::to_string((int) dataProfileInfo.authType).c_str(),
getProtocolString(dataProfileInfo.protocol),
getProtocolString(dataProfileInfo.roamingProtocol),
std::to_string(dataProfileInfo.supportedApnTypesBitmap).c_str(),
std::to_string(dataProfileInfo.bearerBitmap).c_str(),
dataProfileInfo.persistent ? "1" : "0",
std::to_string(dataProfileInfo.mtuV4).c_str(),
std::to_string(dataProfileInfo.mtuV6).c_str(),
mvnoTypeStr,
"302720x94",
roamingAllowed ? "1" : "0");
return Void();
}
Return<void> RadioImpl_1_6::setInitialAttachApn_1_5(int32_t serial ,
const ::android::hardware::radio::V1_5::DataProfileInfo& dataProfileInfo) {
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SET_INITIAL_ATTACH_APN);
if (pRI == NULL) {
return Void();
}
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, RESPONSE_SOLICITED, RIL_E_SUCCESS);
if (radioService[mSlotId]->mRadioResponseV1_5 != NULL) {
Return<void> retStatus
= radioService[mSlotId]->mRadioResponseV1_5->setInitialAttachApnResponse(responseInfo);
} else if (radioService[mSlotId]->mRadioResponseV1_4 != NULL) {
Return<void> retStatus
= radioService[mSlotId]->mRadioResponseV1_4->setInitialAttachApnResponse(responseInfo);
radioService[mSlotId]->checkReturnStatus(retStatus);
} else if (radioService[mSlotId]->mRadioResponse != NULL) {
Return<void> retStatus
= radioService[mSlotId]->mRadioResponse->setInitialAttachApnResponse(responseInfo);
radioService[mSlotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setInitialAttachApnResponse: radioService[%d]->mRadioResponse == NULL", mSlotId);
}
return Void();
}
Return<void> RadioImpl_1_6::setDataProfile_1_5(int32_t serial ,
const hidl_vec<::android::hardware::radio::V1_5::DataProfileInfo>& /* profiles */) {
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SET_DATA_PROFILE);
if (pRI == NULL) {
return Void();
}
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, RESPONSE_SOLICITED, RIL_E_SUCCESS);
if (radioService[mSlotId]->mRadioResponseV1_5 != NULL) {
Return<void> retStatus
= radioService[mSlotId]->mRadioResponseV1_5->setDataProfileResponse(responseInfo);
} else if (radioService[mSlotId]->mRadioResponseV1_4 != NULL) {
Return<void> retStatus
= radioService[mSlotId]->mRadioResponseV1_4->setDataProfileResponse(responseInfo);
radioService[mSlotId]->checkReturnStatus(retStatus);
} else if (radioService[mSlotId]->mRadioResponse != NULL) {
Return<void> retStatus
= radioService[mSlotId]->mRadioResponse->setDataProfileResponse(responseInfo);
radioService[mSlotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setDataProfileResponse: radioService[%d]->mRadioResponse == NULL", mSlotId);
}
return Void();
}
Return<void> RadioImpl_1_6::setIndicationFilter_1_5(int32_t /* serial */,
hidl_bitfield<::android::hardware::radio::V1_5::IndicationFilter> /* indicationFilter */) {
// TODO implement
#if VDBG
RLOGE("[%04d]< %s", serial, "Method is not implemented");
#endif
return Void();
}
Return<void> RadioImpl_1_6::getBarringInfo(int32_t serial) {
#if VDBG
RLOGD("getBarringInfo: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_GET_BARRING_INFO);
return Void();
}
Return<void> RadioImpl_1_6::setNetworkSelectionModeManual_1_5(int32_t serial,
const hidl_string& operatorNumeric, V1_5::RadioAccessNetworks ran) {
#if VDBG
RLOGD("setNetworkSelectionModeManual_1_6: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_SET_NETWORK_SELECTION_MANUAL);
if (pRI == NULL) {
return Void();
}
RIL_NetworkOperator networkOperator = {};
networkOperator.act = (RIL_RadioAccessNetworks)ran;
if (!copyHidlStringToRil(&networkOperator.operatorNumeric, operatorNumeric, pRI)) {
return Void();
}
CALL_ONREQUEST(pRI->pCI->requestNumber, &networkOperator,
sizeof(networkOperator), pRI, mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::sendCdmaSmsExpectMore(int32_t serial, const CdmaSmsMessage& sms) {
#if VDBG
RLOGD("sendCdmaSmsExpectMore: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_CDMA_SEND_SMS_EXPECT_MORE);
if (pRI == NULL) {
return Void();
}
RIL_CDMA_SMS_Message rcsm = {};
constructCdmaSms(rcsm, sms);
CALL_ONREQUEST(pRI->pCI->requestNumber, &rcsm, sizeof(rcsm), pRI, mSlotId);
return Void();
}
// Methods from ::android::hardware::radio::V1_6::IRadio follow.
Return<void> RadioImpl_1_6::sendCdmaSmsExpectMore_1_6(int32_t serial, const CdmaSmsMessage& sms) {
#if VDBG
RLOGD("sendCdmaSmsExpectMore: serial %d", serial);
#endif
RequestInfo *pRI = android::addRequestToList(serial, mSlotId,
RIL_REQUEST_CDMA_SEND_SMS_EXPECT_MORE);
if (pRI == NULL) {
return Void();
}
RIL_CDMA_SMS_Message rcsm = {};
constructCdmaSms(rcsm, sms);
CALL_ONREQUEST(pRI->pCI->requestNumber, &rcsm, sizeof(rcsm), pRI, mSlotId);
return Void();
}
Return<void> RadioImpl_1_6::supplySimDepersonalization(int32_t serial,
V1_5::PersoSubstate persoType, const hidl_string& controlKey) {
#if VDBG
RLOGD("supplySimDepersonalization: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_ENTER_SIM_DEPERSONALIZATION, true, 1,
controlKey.c_str());
return Void();
}
Return<void> RadioImpl_1_6::setNrDualConnectivityState(int32_t serial,
V1_6::NrDualConnectivityState nrDualConnectivityState) {
#if VDBG
RLOGD("setNrDualConnectivityState: serial %d enable %d", serial, enable);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_ENABLE_NR_DUAL_CONNECTIVITY, 1,
nrDualConnectivityState);
return Void();
}
Return<void> RadioImpl_1_6::isNrDualConnectivityEnabled(int32_t serial) {
#if VDBG
RLOGD("isNrDualConnectivityEnabled: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_IS_NR_DUAL_CONNECTIVITY_ENABLED);
return Void();
}
Return<void> RadioImpl_1_6::allocatePduSessionId(int32_t serial) {
#if VDBG
RLOGD("allocatePduSessionId: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_ALLOCATE_PDU_SESSION_ID);
return Void();
}
Return<void> RadioImpl_1_6::releasePduSessionId(int32_t serial, int32_t id) {
#if VDBG
RLOGD("releasePduSessionId: serial %d, pduSessionId: %d", serial, id);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_RELEASE_PDU_SESSION_ID);
return Void();
}
Return<void> RadioImpl_1_6::startHandover(int32_t serial, int32_t callId) {
#if VDBG
RLOGD("startHandover: serial %d, callId: %d", serial, callId);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_START_HANDOVER);
return Void();
}
Return<void> RadioImpl_1_6::cancelHandover(int32_t serial, int32_t callId) {
#if VDBG
RLOGD("cancelHandover: serial %d, callId: %d", serial, callId);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_CANCEL_HANDOVER);
return Void();
}
Return<void> RadioImpl_1_6::setDataThrottling(int32_t serial, V1_6::DataThrottlingAction dataThrottlingAction, int64_t completionDurationMillis) {
#if VDBG
RLOGD("OemHookImpl::sendRequestRaw: serial %d", serial);
#endif
dispatchInts(serial, mSlotId, RIL_REQUEST_SET_DATA_THROTTLING, 2,
dataThrottlingAction, completionDurationMillis);
return Void();
}
Return<void> RadioImpl_1_6::getSystemSelectionChannels(int32_t serial) {
#if VDBG
RLOGD("getSystemSelectionChannels: serial %d", serial);
#endif
dispatchVoid(serial, mSlotId, RIL_REQUEST_GET_SYSTEM_SELECTION_CHANNELS);
return Void();
}
// OEM hook methods:
Return<void> OemHookImpl::setResponseFunctions(
const ::android::sp<IOemHookResponse>& oemHookResponseParam,
const ::android::sp<IOemHookIndication>& oemHookIndicationParam) {
#if VDBG
RLOGD("OemHookImpl::setResponseFunctions");
#endif
pthread_rwlock_t *radioServiceRwlockPtr = radio_1_6::getRadioServiceRwlock(mSlotId);
int ret = pthread_rwlock_wrlock(radioServiceRwlockPtr);
assert(ret == 0);
mOemHookResponse = oemHookResponseParam;
mOemHookIndication = oemHookIndicationParam;
mCounterOemHook[mSlotId]++;
ret = pthread_rwlock_unlock(radioServiceRwlockPtr);
assert(ret == 0);
return Void();
}
Return<void> OemHookImpl::sendRequestRaw(int32_t serial, const hidl_vec<uint8_t>& data) {
#if VDBG
RLOGD("OemHookImpl::sendRequestRaw: serial %d", serial);
#endif
dispatchRaw(serial, mSlotId, RIL_REQUEST_OEM_HOOK_RAW, data);
return Void();
}
Return<void> OemHookImpl::sendRequestStrings(int32_t serial,
const hidl_vec<hidl_string>& data) {
#if VDBG
RLOGD("OemHookImpl::sendRequestStrings: serial %d", serial);
#endif
dispatchStrings(serial, mSlotId, RIL_REQUEST_OEM_HOOK_STRINGS, data);
return Void();
}
/***************************************************************************************************
* RESPONSE FUNCTIONS
* Functions above are used for requests going from framework to vendor code. The ones below are
* responses for those requests coming back from the vendor code.
**************************************************************************************************/
void radio_1_6::acknowledgeRequest(int slotId, int serial) {
if (radioService[slotId]->mRadioResponse != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponse->acknowledgeRequest(serial);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("acknowledgeRequest: radioService[%d]->mRadioResponse == NULL", slotId);
}
}
void populateResponseInfo(RadioResponseInfo& responseInfo, int serial, int responseType,
RIL_Errno e) {
responseInfo.serial = serial;
switch (responseType) {
case RESPONSE_SOLICITED:
responseInfo.type = RadioResponseType::SOLICITED;
break;
case RESPONSE_SOLICITED_ACK_EXP:
responseInfo.type = RadioResponseType::SOLICITED_ACK_EXP;
break;
}
responseInfo.error = (RadioError) e;
}
void populateResponseInfo_1_6(
::android::hardware::radio::V1_6::RadioResponseInfo &responseInfo,
int serial, int responseType, RIL_Errno e) {
responseInfo.serial = serial;
switch (responseType) {
case RESPONSE_SOLICITED:
responseInfo.type = RadioResponseType::SOLICITED;
break;
case RESPONSE_SOLICITED_ACK_EXP:
responseInfo.type = RadioResponseType::SOLICITED_ACK_EXP;
break;
}
responseInfo.error = (::android::hardware::radio::V1_6::RadioError)e;
}
int responseIntOrEmpty(RadioResponseInfo& responseInfo, int serial, int responseType, RIL_Errno e,
void *response, size_t responseLen) {
populateResponseInfo(responseInfo, serial, responseType, e);
int ret = -1;
if (response == NULL && responseLen == 0) {
// Earlier RILs did not send a response for some cases although the interface
// expected an integer as response. Do not return error if response is empty. Instead
// Return -1 in those cases to maintain backward compatibility.
} else if (response == NULL || responseLen != sizeof(int)) {
RLOGE("responseIntOrEmpty: Invalid response");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
int *p_int = (int *) response;
ret = p_int[0];
}
return ret;
}
int responseInt(RadioResponseInfo& responseInfo, int serial, int responseType, RIL_Errno e,
void *response, size_t responseLen) {
populateResponseInfo(responseInfo, serial, responseType, e);
int ret = -1;
if (response == NULL || responseLen != sizeof(int)) {
RLOGE("responseInt: Invalid response");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
int *p_int = (int *) response;
ret = p_int[0];
}
return ret;
}
int radio_1_6::getIccCardStatusResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getIccCardStatusResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponseV1_5 != NULL
|| radioService[slotId]->mRadioResponseV1_4 != NULL
|| radioService[slotId]->mRadioResponseV1_2 != NULL
|| radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
CardStatus cardStatus = {CardState::ABSENT, PinState::UNKNOWN, -1, -1, -1, {}};
RIL_AppStatus *rilAppStatus = NULL;
RIL_CardStatus_v1_5 *p_cur = ((RIL_CardStatus_v1_5 *) response);
if (response == NULL || responseLen != sizeof(RIL_CardStatus_v1_5)
|| p_cur->base.base.base.gsm_umts_subscription_app_index >= p_cur->base.base.base.num_applications
|| p_cur->base.base.base.cdma_subscription_app_index >= p_cur->base.base.base.num_applications
|| p_cur->base.base.base.ims_subscription_app_index >= p_cur->base.base.base.num_applications) {
RLOGE("getIccCardStatusResponse: Invalid response");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
cardStatus.cardState = (CardState) p_cur->base.base.base.card_state;
cardStatus.universalPinState = (PinState) p_cur->base.base.base.universal_pin_state;
cardStatus.gsmUmtsSubscriptionAppIndex = p_cur->base.base.base.gsm_umts_subscription_app_index;
cardStatus.cdmaSubscriptionAppIndex = p_cur->base.base.base.cdma_subscription_app_index;
cardStatus.imsSubscriptionAppIndex = p_cur->base.base.base.ims_subscription_app_index;
rilAppStatus = p_cur->base.base.base.applications;
cardStatus.applications.resize(p_cur->base.base.base.num_applications);
AppStatus *appStatus = cardStatus.applications.data();
#if VDBG
RLOGD("getIccCardStatusResponse: num_applications %d", p_cur->base.base.base.num_applications);
#endif
for (int i = 0; i < p_cur->base.base.base.num_applications; i++) {
appStatus[i].appType = (AppType) rilAppStatus[i].app_type;
appStatus[i].appState = (AppState) rilAppStatus[i].app_state;
appStatus[i].persoSubstate = (PersoSubstate) rilAppStatus[i].perso_substate;
appStatus[i].aidPtr = convertCharPtrToHidlString(rilAppStatus[i].aid_ptr);
appStatus[i].appLabelPtr = convertCharPtrToHidlString(
rilAppStatus[i].app_label_ptr);
appStatus[i].pin1Replaced = rilAppStatus[i].pin1_replaced;
appStatus[i].pin1 = (PinState) rilAppStatus[i].pin1;
appStatus[i].pin2 = (PinState) rilAppStatus[i].pin2;
}
}
if (radioService[slotId]->mRadioResponseV1_5 != NULL) {
::android::hardware::radio::V1_2::CardStatus cardStatusV1_2;
::android::hardware::radio::V1_4::CardStatus cardStatusV1_4;
::android::hardware::radio::V1_5::CardStatus cardStatusV1_5;
cardStatusV1_2.base = cardStatus;
cardStatusV1_2.physicalSlotId = -1;
cardStatusV1_2.iccid = convertCharPtrToHidlString(p_cur->base.base.iccid);
cardStatusV1_4.base = cardStatusV1_2;
cardStatusV1_5.base = cardStatusV1_4;
cardStatusV1_5.applications.resize(p_cur->base.base.base.num_applications);
for (int i = 0; i < p_cur->base.base.base.num_applications; i++) {
cardStatusV1_5.applications[i].base.appType = (AppType) rilAppStatus[i].app_type;
cardStatusV1_5.applications[i].base.appState = (AppState) rilAppStatus[i].app_state;
cardStatusV1_5.applications[i].base.persoSubstate = (PersoSubstate) rilAppStatus[i].perso_substate;
cardStatusV1_5.applications[i].base.aidPtr = convertCharPtrToHidlString(rilAppStatus[i].aid_ptr);
cardStatusV1_5.applications[i].base.appLabelPtr = convertCharPtrToHidlString(
rilAppStatus[i].app_label_ptr);
cardStatusV1_5.applications[i].base.pin1Replaced = rilAppStatus[i].pin1_replaced;
cardStatusV1_5.applications[i].base.pin1 = (PinState) rilAppStatus[i].pin1;
cardStatusV1_5.applications[i].base.pin2 = (PinState) rilAppStatus[i].pin2;
cardStatusV1_5.applications[i].persoSubstate = (V1_5::PersoSubstate)rilAppStatus[i].perso_substate;
}
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_5->
getIccCardStatusResponse_1_5(responseInfo, cardStatusV1_5);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponseV1_4 != NULL) {
::android::hardware::radio::V1_2::CardStatus cardStatusV1_2;
::android::hardware::radio::V1_4::CardStatus cardStatusV1_4;
cardStatusV1_2.base = cardStatus;
cardStatusV1_2.physicalSlotId = -1;
cardStatusV1_2.iccid = convertCharPtrToHidlString(p_cur->base.base.iccid);
cardStatusV1_4.base = cardStatusV1_2;
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_4->
getIccCardStatusResponse_1_4(responseInfo, cardStatusV1_4);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponseV1_3 != NULL) {
::android::hardware::radio::V1_2::CardStatus cardStatusV1_2;
cardStatusV1_2.base = cardStatus;
cardStatusV1_2.physicalSlotId = -1;
cardStatusV1_2.iccid = convertCharPtrToHidlString(p_cur->base.base.iccid);
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_3->
getIccCardStatusResponse_1_2(responseInfo, cardStatusV1_2);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponseV1_2 != NULL) {
::android::hardware::radio::V1_2::CardStatus cardStatusV1_2;
cardStatusV1_2.base = cardStatus;
cardStatusV1_2.physicalSlotId = -1;
cardStatusV1_2.iccid = convertCharPtrToHidlString(p_cur->base.base.iccid);
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_2->
getIccCardStatusResponse_1_2(responseInfo, cardStatusV1_2);
radioService[slotId]->checkReturnStatus(retStatus);
// TODO: add 1.1 if needed.
} else {
Return<void> retStatus = radioService[slotId]->mRadioResponse->
getIccCardStatusResponse(responseInfo, cardStatus);
radioService[slotId]->checkReturnStatus(retStatus);
}
} else {
RLOGE("getIccCardStatusResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::supplyIccPinForAppResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("supplyIccPinForAppResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
int ret = responseIntOrEmpty(responseInfo, serial, responseType, e, response, responseLen);
Return<void> retStatus = radioService[slotId]->mRadioResponse->
supplyIccPinForAppResponse(responseInfo, ret);
RLOGE("supplyIccPinForAppResponse: amit ret %d", ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("supplyIccPinForAppResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::supplyIccPukForAppResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("supplyIccPukForAppResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
int ret = responseIntOrEmpty(responseInfo, serial, responseType, e, response, responseLen);
Return<void> retStatus = radioService[slotId]->mRadioResponse->supplyIccPukForAppResponse(
responseInfo, ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("supplyIccPukForAppResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::supplyIccPin2ForAppResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("supplyIccPin2ForAppResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
int ret = responseIntOrEmpty(responseInfo, serial, responseType, e, response, responseLen);
Return<void> retStatus = radioService[slotId]->mRadioResponse->
supplyIccPin2ForAppResponse(responseInfo, ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("supplyIccPin2ForAppResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::supplyIccPuk2ForAppResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("supplyIccPuk2ForAppResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
int ret = responseIntOrEmpty(responseInfo, serial, responseType, e, response, responseLen);
Return<void> retStatus = radioService[slotId]->mRadioResponse->
supplyIccPuk2ForAppResponse(responseInfo, ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("supplyIccPuk2ForAppResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::changeIccPinForAppResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("changeIccPinForAppResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
int ret = responseIntOrEmpty(responseInfo, serial, responseType, e, response, responseLen);
Return<void> retStatus = radioService[slotId]->mRadioResponse->
changeIccPinForAppResponse(responseInfo, ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("changeIccPinForAppResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::changeIccPin2ForAppResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("changeIccPin2ForAppResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
int ret = responseIntOrEmpty(responseInfo, serial, responseType, e, response, responseLen);
Return<void> retStatus = radioService[slotId]->mRadioResponse->
changeIccPin2ForAppResponse(responseInfo, ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("changeIccPin2ForAppResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::supplyNetworkDepersonalizationResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("supplyNetworkDepersonalizationResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
int ret = responseIntOrEmpty(responseInfo, serial, responseType, e, response, responseLen);
Return<void> retStatus = radioService[slotId]->mRadioResponse->
supplyNetworkDepersonalizationResponse(responseInfo, ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("supplyNetworkDepersonalizationResponse: radioService[%d]->mRadioResponse == "
"NULL", slotId);
}
return 0;
}
int radio_1_6::getCurrentCallsResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getCurrentCallsResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
hidl_vec<Call> calls;
if ((response == NULL && responseLen != 0)
|| (responseLen % sizeof(RIL_Call *)) != 0) {
RLOGE("getCurrentCallsResponse: Invalid response");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
int num = responseLen / sizeof(RIL_Call *);
calls.resize(num);
for (int i = 0 ; i < num ; i++) {
RIL_Call *p_cur = ((RIL_Call **) response)[i];
/* each call info */
calls[i].state = (CallState) p_cur->state;
calls[i].index = p_cur->index;
calls[i].toa = p_cur->toa;
calls[i].isMpty = p_cur->isMpty;
calls[i].isMT = p_cur->isMT;
calls[i].als = p_cur->als;
calls[i].isVoice = p_cur->isVoice;
calls[i].isVoicePrivacy = p_cur->isVoicePrivacy;
calls[i].number = convertCharPtrToHidlString(p_cur->number);
calls[i].numberPresentation = (CallPresentation) p_cur->numberPresentation;
calls[i].name = convertCharPtrToHidlString(p_cur->name);
calls[i].namePresentation = (CallPresentation) p_cur->namePresentation;
if (p_cur->uusInfo != NULL && p_cur->uusInfo->uusData != NULL) {
RIL_UUS_Info *uusInfo = p_cur->uusInfo;
calls[i].uusInfo.resize(1);
calls[i].uusInfo[0].uusType = (UusType) uusInfo->uusType;
calls[i].uusInfo[0].uusDcs = (UusDcs) uusInfo->uusDcs;
// convert uusInfo->uusData to a null-terminated string
char *nullTermStr = strndup(uusInfo->uusData, uusInfo->uusLength);
calls[i].uusInfo[0].uusData = nullTermStr;
free(nullTermStr);
}
}
}
Return<void> retStatus = radioService[slotId]->mRadioResponse->
getCurrentCallsResponse(responseInfo, calls);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getCurrentCallsResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::dialResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("dialResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus = radioService[slotId]->mRadioResponse->dialResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("dialResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::getIMSIForAppResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("getIMSIForAppResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus = radioService[slotId]->mRadioResponse->getIMSIForAppResponse(
responseInfo, convertCharPtrToHidlString((char *) response));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getIMSIForAppResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::hangupConnectionResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("hangupConnectionResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus = radioService[slotId]->mRadioResponse->hangupConnectionResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("hangupConnectionResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::hangupWaitingOrBackgroundResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("hangupWaitingOrBackgroundResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus =
radioService[slotId]->mRadioResponse->hangupWaitingOrBackgroundResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("hangupWaitingOrBackgroundResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::hangupForegroundResumeBackgroundResponse(int slotId, int responseType, int serial,
RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("hangupWaitingOrBackgroundResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus =
radioService[slotId]->mRadioResponse->hangupWaitingOrBackgroundResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("hangupWaitingOrBackgroundResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::switchWaitingOrHoldingAndActiveResponse(int slotId, int responseType, int serial,
RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("switchWaitingOrHoldingAndActiveResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus =
radioService[slotId]->mRadioResponse->switchWaitingOrHoldingAndActiveResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("switchWaitingOrHoldingAndActiveResponse: radioService[%d]->mRadioResponse "
"== NULL", slotId);
}
return 0;
}
int radio_1_6::conferenceResponse(int slotId, int responseType,
int serial, RIL_Errno e, void *response, size_t responseLen) {
#if VDBG
RLOGD("conferenceResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus = radioService[slotId]->mRadioResponse->conferenceResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("conferenceResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::rejectCallResponse(int slotId, int responseType,
int serial, RIL_Errno e, void *response, size_t responseLen) {
#if VDBG
RLOGD("rejectCallResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus = radioService[slotId]->mRadioResponse->rejectCallResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("rejectCallResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::getLastCallFailCauseResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("getLastCallFailCauseResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
LastCallFailCauseInfo info = {};
info.vendorCause = hidl_string();
if (response == NULL) {
RLOGE("getCurrentCallsResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else if (responseLen == sizeof(int)) {
int *pInt = (int *) response;
info.causeCode = (LastCallFailCause) pInt[0];
} else if (responseLen == sizeof(RIL_LastCallFailCauseInfo)) {
RIL_LastCallFailCauseInfo *pFailCauseInfo = (RIL_LastCallFailCauseInfo *) response;
info.causeCode = (LastCallFailCause) pFailCauseInfo->cause_code;
info.vendorCause = convertCharPtrToHidlString(pFailCauseInfo->vendor_cause);
} else {
RLOGE("getCurrentCallsResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
}
Return<void> retStatus = radioService[slotId]->mRadioResponse->getLastCallFailCauseResponse(
responseInfo, info);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getLastCallFailCauseResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::getSignalStrengthResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getSignalStrengthResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponseV1_4 != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
::android::hardware::radio::V1_4::SignalStrength signalStrength_1_4 = {};
if (response == NULL || responseLen != sizeof(RIL_SignalStrength_v12)) {
RLOGE("getSignalStrengthResponse: Invalid response");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
convertRilSignalStrengthToHal_1_4(response, responseLen, signalStrength_1_4);
}
//TODO: future implementation needs to fill tdScdma, wcdma and nr signal strength.
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_4->
getSignalStrengthResponse_1_4(responseInfo, signalStrength_1_4);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
SignalStrength signalStrength = {};
if (response == NULL || responseLen != sizeof(RIL_SignalStrength_v12)) {
RLOGE("getSignalStrengthResponse: Invalid response");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
convertRilSignalStrengthToHal(response, responseLen, signalStrength);
}
Return<void> retStatus = radioService[slotId]->mRadioResponse->getSignalStrengthResponse(
responseInfo, signalStrength);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getSignalStrengthResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
RIL_CellInfoType getCellInfoTypeRadioTechnology(char *rat) {
if (rat == NULL) {
return RIL_CELL_INFO_TYPE_NONE;
}
int radioTech = atoi(rat);
switch(radioTech) {
case RADIO_TECH_GPRS:
case RADIO_TECH_EDGE:
case RADIO_TECH_GSM: {
return RIL_CELL_INFO_TYPE_GSM;
}
case RADIO_TECH_UMTS:
case RADIO_TECH_HSDPA:
case RADIO_TECH_HSUPA:
case RADIO_TECH_HSPA:
case RADIO_TECH_HSPAP: {
return RIL_CELL_INFO_TYPE_WCDMA;
}
case RADIO_TECH_IS95A:
case RADIO_TECH_IS95B:
case RADIO_TECH_1xRTT:
case RADIO_TECH_EVDO_0:
case RADIO_TECH_EVDO_A:
case RADIO_TECH_EVDO_B:
case RADIO_TECH_EHRPD: {
return RIL_CELL_INFO_TYPE_CDMA;
}
case RADIO_TECH_LTE:
case RADIO_TECH_LTE_CA: {
return RIL_CELL_INFO_TYPE_LTE;
}
case RADIO_TECH_TD_SCDMA: {
return RIL_CELL_INFO_TYPE_TD_SCDMA;
}
default: {
break;
}
}
return RIL_CELL_INFO_TYPE_NONE;
}
void fillCellIdentityResponse(CellIdentity &cellIdentity, RIL_CellIdentity_v16 &rilCellIdentity) {
cellIdentity.cellIdentityGsm.resize(0);
cellIdentity.cellIdentityWcdma.resize(0);
cellIdentity.cellIdentityCdma.resize(0);
cellIdentity.cellIdentityTdscdma.resize(0);
cellIdentity.cellIdentityLte.resize(0);
cellIdentity.cellInfoType = (CellInfoType)rilCellIdentity.cellInfoType;
switch(rilCellIdentity.cellInfoType) {
case RIL_CELL_INFO_TYPE_GSM: {
cellIdentity.cellIdentityGsm.resize(1);
cellIdentity.cellIdentityGsm[0].mcc =
std::to_string(rilCellIdentity.cellIdentityGsm.mcc);
cellIdentity.cellIdentityGsm[0].mnc =
ril::util::mnc::decode(rilCellIdentity.cellIdentityGsm.mnc);
cellIdentity.cellIdentityGsm[0].lac = rilCellIdentity.cellIdentityGsm.lac;
cellIdentity.cellIdentityGsm[0].cid = rilCellIdentity.cellIdentityGsm.cid;
cellIdentity.cellIdentityGsm[0].arfcn = rilCellIdentity.cellIdentityGsm.arfcn;
cellIdentity.cellIdentityGsm[0].bsic = rilCellIdentity.cellIdentityGsm.bsic;
break;
}
case RIL_CELL_INFO_TYPE_WCDMA: {
cellIdentity.cellIdentityWcdma.resize(1);
cellIdentity.cellIdentityWcdma[0].mcc =
std::to_string(rilCellIdentity.cellIdentityWcdma.mcc);
cellIdentity.cellIdentityWcdma[0].mnc =
ril::util::mnc::decode(rilCellIdentity.cellIdentityWcdma.mnc);
cellIdentity.cellIdentityWcdma[0].lac = rilCellIdentity.cellIdentityWcdma.lac;
cellIdentity.cellIdentityWcdma[0].cid = rilCellIdentity.cellIdentityWcdma.cid;
cellIdentity.cellIdentityWcdma[0].psc = rilCellIdentity.cellIdentityWcdma.psc;
cellIdentity.cellIdentityWcdma[0].uarfcn = rilCellIdentity.cellIdentityWcdma.uarfcn;
break;
}
case RIL_CELL_INFO_TYPE_CDMA: {
cellIdentity.cellIdentityCdma.resize(1);
cellIdentity.cellIdentityCdma[0].networkId = rilCellIdentity.cellIdentityCdma.networkId;
cellIdentity.cellIdentityCdma[0].systemId = rilCellIdentity.cellIdentityCdma.systemId;
cellIdentity.cellIdentityCdma[0].baseStationId =
rilCellIdentity.cellIdentityCdma.basestationId;
cellIdentity.cellIdentityCdma[0].longitude = rilCellIdentity.cellIdentityCdma.longitude;
cellIdentity.cellIdentityCdma[0].latitude = rilCellIdentity.cellIdentityCdma.latitude;
break;
}
case RIL_CELL_INFO_TYPE_LTE: {
cellIdentity.cellIdentityLte.resize(1);
cellIdentity.cellIdentityLte[0].mcc =
std::to_string(rilCellIdentity.cellIdentityLte.mcc);
cellIdentity.cellIdentityLte[0].mnc =
ril::util::mnc::decode(rilCellIdentity.cellIdentityLte.mnc);
cellIdentity.cellIdentityLte[0].ci = rilCellIdentity.cellIdentityLte.ci;
cellIdentity.cellIdentityLte[0].pci = rilCellIdentity.cellIdentityLte.pci;
cellIdentity.cellIdentityLte[0].tac = rilCellIdentity.cellIdentityLte.tac;
cellIdentity.cellIdentityLte[0].earfcn = rilCellIdentity.cellIdentityLte.earfcn;
break;
}
case RIL_CELL_INFO_TYPE_TD_SCDMA: {
cellIdentity.cellIdentityTdscdma.resize(1);
cellIdentity.cellIdentityTdscdma[0].mcc =
std::to_string(rilCellIdentity.cellIdentityTdscdma.mcc);
cellIdentity.cellIdentityTdscdma[0].mnc =
ril::util::mnc::decode(rilCellIdentity.cellIdentityTdscdma.mnc);
cellIdentity.cellIdentityTdscdma[0].lac = rilCellIdentity.cellIdentityTdscdma.lac;
cellIdentity.cellIdentityTdscdma[0].cid = rilCellIdentity.cellIdentityTdscdma.cid;
cellIdentity.cellIdentityTdscdma[0].cpid = rilCellIdentity.cellIdentityTdscdma.cpid;
break;
}
default: {
break;
}
}
}
void fillCellIdentityResponse_1_5(V1_5::CellIdentity &cellIdentity,
RIL_CellIdentity_v16 &rilCellIdentity) {
switch (rilCellIdentity.cellInfoType) {
case RIL_CELL_INFO_TYPE_GSM: {
V1_5::CellIdentityGsm gsm;
gsm.base.base.mcc = std::to_string(rilCellIdentity.cellIdentityGsm.mcc);
gsm.base.base.mnc = ril::util::mnc::decode(rilCellIdentity.cellIdentityGsm.mnc);
if (gsm.base.base.mcc == "-1") {
gsm.base.base.mcc = "";
}
gsm.base.base.lac = rilCellIdentity.cellIdentityGsm.lac;
gsm.base.base.cid = rilCellIdentity.cellIdentityGsm.cid;
gsm.base.base.arfcn = rilCellIdentity.cellIdentityGsm.arfcn;
gsm.base.base.bsic = rilCellIdentity.cellIdentityGsm.bsic;
cellIdentity.gsm(gsm);
break;
}
case RIL_CELL_INFO_TYPE_WCDMA: {
V1_5::CellIdentityWcdma wcdma;
wcdma.base.base.mcc = std::to_string(rilCellIdentity.cellIdentityGsm.mcc);
wcdma.base.base.mnc = ril::util::mnc::decode(rilCellIdentity.cellIdentityWcdma.mnc);
if (wcdma.base.base.mcc == "-1") {
wcdma.base.base.mcc = "";
}
wcdma.base.base.lac = rilCellIdentity.cellIdentityWcdma.lac;
wcdma.base.base.cid = rilCellIdentity.cellIdentityWcdma.cid;
wcdma.base.base.psc = rilCellIdentity.cellIdentityWcdma.psc;
wcdma.base.base.uarfcn = rilCellIdentity.cellIdentityWcdma.uarfcn;
cellIdentity.wcdma(wcdma);
break;
}
case RIL_CELL_INFO_TYPE_CDMA: {
V1_2::CellIdentityCdma cdma;
cdma.base.networkId = rilCellIdentity.cellIdentityCdma.networkId;
cdma.base.systemId = rilCellIdentity.cellIdentityCdma.systemId;
cdma.base.baseStationId =
rilCellIdentity.cellIdentityCdma.basestationId;
cdma.base.longitude = rilCellIdentity.cellIdentityCdma.longitude;
cdma.base.latitude = rilCellIdentity.cellIdentityCdma.latitude;
cellIdentity.cdma(cdma);
break;
}
case RIL_CELL_INFO_TYPE_LTE: {
V1_5::CellIdentityLte lte;
lte.base.base.mcc = std::to_string(rilCellIdentity.cellIdentityGsm.mcc);
lte.base.base.mnc = ril::util::mnc::decode(rilCellIdentity.cellIdentityLte.mnc);
if (lte.base.base.mcc == "-1") {
lte.base.base.mcc = "";
}
lte.base.base.ci = rilCellIdentity.cellIdentityLte.ci;
lte.base.base.pci = rilCellIdentity.cellIdentityLte.pci;
lte.base.base.tac = rilCellIdentity.cellIdentityLte.tac;
lte.base.base.earfcn = rilCellIdentity.cellIdentityLte.earfcn;
cellIdentity.lte(lte);
break;
}
case RIL_CELL_INFO_TYPE_TD_SCDMA: {
V1_5::CellIdentityTdscdma tdscdma;
tdscdma.base.base.mcc = std::to_string(rilCellIdentity.cellIdentityGsm.mcc);
tdscdma.base.base.mnc = ril::util::mnc::decode(rilCellIdentity.cellIdentityTdscdma.mnc);
if (tdscdma.base.base.mcc == "-1") {
tdscdma.base.base.mcc = "";
}
tdscdma.base.base.lac = rilCellIdentity.cellIdentityTdscdma.lac;
tdscdma.base.base.cid = rilCellIdentity.cellIdentityTdscdma.cid;
tdscdma.base.base.cpid = rilCellIdentity.cellIdentityTdscdma.cpid;
cellIdentity.tdscdma(tdscdma);
break;
}
default: {
break;
}
}
}
void fillCellIdentityResponse_1_2(V1_2::CellIdentity &cellIdentity,
RIL_CellIdentity_v1_2 &rilCellIdentity) {
cellIdentity.cellIdentityGsm.resize(0);
cellIdentity.cellIdentityWcdma.resize(0);
cellIdentity.cellIdentityCdma.resize(0);
cellIdentity.cellIdentityTdscdma.resize(0);
cellIdentity.cellIdentityLte.resize(0);
cellIdentity.cellInfoType = (CellInfoType)rilCellIdentity.cellInfoType;
switch(rilCellIdentity.cellInfoType) {
case RIL_CELL_INFO_TYPE_GSM: {
cellIdentity.cellIdentityGsm.resize(1);
cellIdentity.cellIdentityGsm[0].base.mcc =
std::to_string(rilCellIdentity.cellIdentityGsm.mcc);
cellIdentity.cellIdentityGsm[0].base.mnc =
ril::util::mnc::decode(rilCellIdentity.cellIdentityGsm.mnc);
if (cellIdentity.cellIdentityGsm[0].base.mcc == "-1") {
cellIdentity.cellIdentityGsm[0].base.mcc = "";
}
cellIdentity.cellIdentityGsm[0].base.lac = rilCellIdentity.cellIdentityGsm.lac;
cellIdentity.cellIdentityGsm[0].base.cid = rilCellIdentity.cellIdentityGsm.cid;
cellIdentity.cellIdentityGsm[0].base.arfcn = rilCellIdentity.cellIdentityGsm.arfcn;
cellIdentity.cellIdentityGsm[0].base.bsic = rilCellIdentity.cellIdentityGsm.bsic;
break;
}
case RIL_CELL_INFO_TYPE_WCDMA: {
cellIdentity.cellIdentityWcdma.resize(1);
cellIdentity.cellIdentityWcdma[0].base.mcc =
std::to_string(rilCellIdentity.cellIdentityWcdma.mcc);
cellIdentity.cellIdentityWcdma[0].base.mnc =
ril::util::mnc::decode(rilCellIdentity.cellIdentityWcdma.mnc);
if (cellIdentity.cellIdentityWcdma[0].base.mcc == "-1") {
cellIdentity.cellIdentityWcdma[0].base.mcc = "";
}
cellIdentity.cellIdentityWcdma[0].base.lac = rilCellIdentity.cellIdentityWcdma.lac;
cellIdentity.cellIdentityWcdma[0].base.cid = rilCellIdentity.cellIdentityWcdma.cid;
cellIdentity.cellIdentityWcdma[0].base.psc = rilCellIdentity.cellIdentityWcdma.psc;
cellIdentity.cellIdentityWcdma[0].base.uarfcn = rilCellIdentity.cellIdentityWcdma.uarfcn;
break;
}
case RIL_CELL_INFO_TYPE_CDMA: {
cellIdentity.cellIdentityCdma.resize(1);
cellIdentity.cellIdentityCdma[0].base.networkId = rilCellIdentity.cellIdentityCdma.networkId;
cellIdentity.cellIdentityCdma[0].base.systemId = rilCellIdentity.cellIdentityCdma.systemId;
cellIdentity.cellIdentityCdma[0].base.baseStationId =
rilCellIdentity.cellIdentityCdma.basestationId;
cellIdentity.cellIdentityCdma[0].base.longitude = rilCellIdentity.cellIdentityCdma.longitude;
cellIdentity.cellIdentityCdma[0].base.latitude = rilCellIdentity.cellIdentityCdma.latitude;
break;
}
case RIL_CELL_INFO_TYPE_LTE: {
cellIdentity.cellIdentityLte.resize(1);
cellIdentity.cellIdentityLte[0].base.mcc =
std::to_string(rilCellIdentity.cellIdentityLte.mcc);
cellIdentity.cellIdentityLte[0].base.mnc =
ril::util::mnc::decode(rilCellIdentity.cellIdentityLte.mnc);
if (cellIdentity.cellIdentityLte[0].base.mcc == "-1") {
cellIdentity.cellIdentityLte[0].base.mcc = "";
}
cellIdentity.cellIdentityLte[0].base.ci = rilCellIdentity.cellIdentityLte.ci;
cellIdentity.cellIdentityLte[0].base.pci = rilCellIdentity.cellIdentityLte.pci;
cellIdentity.cellIdentityLte[0].base.tac = rilCellIdentity.cellIdentityLte.tac;
cellIdentity.cellIdentityLte[0].base.earfcn = rilCellIdentity.cellIdentityLte.earfcn;
cellIdentity.cellIdentityLte[0].bandwidth = rilCellIdentity.cellIdentityLte.bandwidth;
break;
}
case RIL_CELL_INFO_TYPE_TD_SCDMA: {
cellIdentity.cellIdentityTdscdma.resize(1);
cellIdentity.cellIdentityTdscdma[0].base.mcc =
std::to_string(rilCellIdentity.cellIdentityTdscdma.mcc);
cellIdentity.cellIdentityTdscdma[0].base.mnc =
ril::util::mnc::decode(rilCellIdentity.cellIdentityTdscdma.mnc);
if (cellIdentity.cellIdentityTdscdma[0].base.mcc == "-1") {
cellIdentity.cellIdentityTdscdma[0].base.mcc = "";
}
cellIdentity.cellIdentityTdscdma[0].base.lac = rilCellIdentity.cellIdentityTdscdma.lac;
cellIdentity.cellIdentityTdscdma[0].base.cid = rilCellIdentity.cellIdentityTdscdma.cid;
cellIdentity.cellIdentityTdscdma[0].base.cpid = rilCellIdentity.cellIdentityTdscdma.cpid;
cellIdentity.cellIdentityTdscdma[0].uarfcn = rilCellIdentity.cellIdentityTdscdma.uarfcn;
break;
}
default: {
break;
}
}
}
int convertResponseStringEntryToInt(char **response, int index, int numStrings) {
if ((response != NULL) && (numStrings > index) && (response[index] != NULL)) {
return atoi(response[index]);
}
return -1;
}
int convertResponseHexStringEntryToInt(char **response, int index, int numStrings) {
const int hexBase = 16;
if ((response != NULL) && (numStrings > index) && (response[index] != NULL)) {
return strtol(response[index], NULL, hexBase);
}
return -1;
}
/* Fill Cell Identity info from Voice Registration State Response.
* This fucntion is applicable only for RIL Version < 15.
* Response is a "char **".
* First and Second entries are in hex string format
* and rest are integers represented in ascii format. */
void fillCellIdentityFromVoiceRegStateResponseString(V1_5::CellIdentity &cellIdentity,
int numStrings, char** response) {
RIL_CellIdentity_v16 rilCellIdentity;
memset(&rilCellIdentity, -1, sizeof(RIL_CellIdentity_v16));
rilCellIdentity.cellInfoType = getCellInfoTypeRadioTechnology(response[3]);
switch(rilCellIdentity.cellInfoType) {
case RIL_CELL_INFO_TYPE_GSM: {
/* valid LAC are hexstrings in the range 0x0000 - 0xffff */
rilCellIdentity.cellIdentityGsm.lac =
convertResponseHexStringEntryToInt(response, 1, numStrings);
/* valid CID are hexstrings in the range 0x00000000 - 0xffffffff */
rilCellIdentity.cellIdentityGsm.cid =
convertResponseHexStringEntryToInt(response, 2, numStrings);
if (numStrings > 15) {
rilCellIdentity.cellIdentityGsm.mcc =
convertResponseStringEntryToInt(response, 15, numStrings);
rilCellIdentity.cellIdentityGsm.mnc =
convertResponseStringEntryToInt(response, 16, numStrings);
}
break;
}
case RIL_CELL_INFO_TYPE_WCDMA: {
/* valid LAC are hexstrings in the range 0x0000 - 0xffff */
rilCellIdentity.cellIdentityWcdma.lac =
convertResponseHexStringEntryToInt(response, 1, numStrings);
/* valid CID are hexstrings in the range 0x00000000 - 0xffffffff */
rilCellIdentity.cellIdentityWcdma.cid =
convertResponseHexStringEntryToInt(response, 2, numStrings);
rilCellIdentity.cellIdentityWcdma.psc =
convertResponseStringEntryToInt(response, 14, numStrings);
if (numStrings > 15) {
rilCellIdentity.cellIdentityGsm.mcc =
convertResponseStringEntryToInt(response, 15, numStrings);
rilCellIdentity.cellIdentityGsm.mnc =
convertResponseStringEntryToInt(response, 16, numStrings);
}
break;
}
case RIL_CELL_INFO_TYPE_TD_SCDMA:{
/* valid LAC are hexstrings in the range 0x0000 - 0xffff */
rilCellIdentity.cellIdentityTdscdma.lac =
convertResponseHexStringEntryToInt(response, 1, numStrings);
/* valid CID are hexstrings in the range 0x00000000 - 0xffffffff */
rilCellIdentity.cellIdentityTdscdma.cid =
convertResponseHexStringEntryToInt(response, 2, numStrings);
if (numStrings > 15) {
rilCellIdentity.cellIdentityGsm.mcc =
convertResponseStringEntryToInt(response, 15, numStrings);
rilCellIdentity.cellIdentityGsm.mnc =
convertResponseStringEntryToInt(response, 16, numStrings);
}
break;
}
case RIL_CELL_INFO_TYPE_CDMA:{
rilCellIdentity.cellIdentityCdma.basestationId =
convertResponseStringEntryToInt(response, 4, numStrings);
/* Order of Lat. and Long. swapped between RIL and HIDL interface versions. */
rilCellIdentity.cellIdentityCdma.latitude =
convertResponseStringEntryToInt(response, 5, numStrings);
rilCellIdentity.cellIdentityCdma.longitude =
convertResponseStringEntryToInt(response, 6, numStrings);
rilCellIdentity.cellIdentityCdma.systemId =
convertResponseStringEntryToInt(response, 8, numStrings);
rilCellIdentity.cellIdentityCdma.networkId =
convertResponseStringEntryToInt(response, 9, numStrings);
break;
}
case RIL_CELL_INFO_TYPE_LTE:{
/* valid TAC are hexstrings in the range 0x0000 - 0xffff */
rilCellIdentity.cellIdentityLte.tac =
convertResponseHexStringEntryToInt(response, 1, numStrings);
/* valid CID are hexstrings in the range 0x00000000 - 0xffffffff */
rilCellIdentity.cellIdentityLte.ci =
convertResponseHexStringEntryToInt(response, 2, numStrings);
if (numStrings > 15) {
rilCellIdentity.cellIdentityGsm.mcc =
convertResponseStringEntryToInt(response, 15, numStrings);
rilCellIdentity.cellIdentityGsm.mnc =
convertResponseStringEntryToInt(response, 16, numStrings);
}
break;
}
default: {
break;
}
}
fillCellIdentityResponse_1_5(cellIdentity, rilCellIdentity);
}
void fillCellIdentityFromVoiceRegStateResponseString_1_2(V1_2::CellIdentity &cellIdentity,
int numStrings, char** response) {
RIL_CellIdentity_v1_2 rilCellIdentity;
memset(&rilCellIdentity, -1, sizeof(RIL_CellIdentity_v1_2));
rilCellIdentity.cellInfoType = getCellInfoTypeRadioTechnology(response[3]);
switch(rilCellIdentity.cellInfoType) {
case RIL_CELL_INFO_TYPE_GSM: {
/* valid LAC are hexstrings in the range 0x0000 - 0xffff */
rilCellIdentity.cellIdentityGsm.lac =
convertResponseHexStringEntryToInt(response, 1, numStrings);
/* valid CID are hexstrings in the range 0x00000000 - 0xffffffff */
rilCellIdentity.cellIdentityGsm.cid =
convertResponseHexStringEntryToInt(response, 2, numStrings);
if (numStrings > 15) {
rilCellIdentity.cellIdentityGsm.mcc =
convertResponseStringEntryToInt(response, 15, numStrings);
rilCellIdentity.cellIdentityGsm.mnc =
convertResponseStringEntryToInt(response, 16, numStrings);
}
break;
}
case RIL_CELL_INFO_TYPE_WCDMA: {
/* valid LAC are hexstrings in the range 0x0000 - 0xffff */
rilCellIdentity.cellIdentityWcdma.lac =
convertResponseHexStringEntryToInt(response, 1, numStrings);
/* valid CID are hexstrings in the range 0x00000000 - 0xffffffff */
rilCellIdentity.cellIdentityWcdma.cid =
convertResponseHexStringEntryToInt(response, 2, numStrings);
rilCellIdentity.cellIdentityWcdma.psc =
convertResponseStringEntryToInt(response, 14, numStrings);
if (numStrings > 15) {
rilCellIdentity.cellIdentityWcdma.mcc =
convertResponseStringEntryToInt(response, 15, numStrings);
rilCellIdentity.cellIdentityWcdma.mnc =
convertResponseStringEntryToInt(response, 16, numStrings);
}
break;
}
case RIL_CELL_INFO_TYPE_TD_SCDMA:{
/* valid LAC are hexstrings in the range 0x0000 - 0xffff */
rilCellIdentity.cellIdentityTdscdma.lac =
convertResponseHexStringEntryToInt(response, 1, numStrings);
/* valid CID are hexstrings in the range 0x00000000 - 0xffffffff */
rilCellIdentity.cellIdentityTdscdma.cid =
convertResponseHexStringEntryToInt(response, 2, numStrings);
if (numStrings > 15) {
rilCellIdentity.cellIdentityTdscdma.mcc =
convertResponseStringEntryToInt(response, 15, numStrings);
rilCellIdentity.cellIdentityTdscdma.mnc =
convertResponseStringEntryToInt(response, 16, numStrings);
}
break;
}
case RIL_CELL_INFO_TYPE_CDMA:{
rilCellIdentity.cellIdentityCdma.basestationId =
convertResponseStringEntryToInt(response, 4, numStrings);
/* Order of Lat. and Long. swapped between RIL and HIDL interface versions. */
rilCellIdentity.cellIdentityCdma.latitude =
convertResponseStringEntryToInt(response, 5, numStrings);
rilCellIdentity.cellIdentityCdma.longitude =
convertResponseStringEntryToInt(response, 6, numStrings);
rilCellIdentity.cellIdentityCdma.systemId =
convertResponseStringEntryToInt(response, 8, numStrings);
rilCellIdentity.cellIdentityCdma.networkId =
convertResponseStringEntryToInt(response, 9, numStrings);
break;
}
case RIL_CELL_INFO_TYPE_LTE:{
/* valid TAC are hexstrings in the range 0x0000 - 0xffff */
rilCellIdentity.cellIdentityLte.tac =
convertResponseHexStringEntryToInt(response, 1, numStrings);
/* valid CID are hexstrings in the range 0x00000000 - 0xffffffff */
rilCellIdentity.cellIdentityLte.ci =
convertResponseHexStringEntryToInt(response, 2, numStrings);
if (numStrings > 15) {
rilCellIdentity.cellIdentityLte.mcc =
convertResponseStringEntryToInt(response, 15, numStrings);
rilCellIdentity.cellIdentityLte.mnc =
convertResponseStringEntryToInt(response, 16, numStrings);
}
rilCellIdentity.cellIdentityLte.bandwidth = INT_MAX;
break;
}
default: {
break;
}
}
fillCellIdentityResponse_1_2(cellIdentity, rilCellIdentity);
}
/* Fill Cell Identity info from Data Registration State Response.
* This fucntion is applicable only for RIL Version < 15.
* Response is a "char **".
* First and Second entries are in hex string format
* and rest are integers represented in ascii format. */
void fillCellIdentityFromDataRegStateResponseString_1_5(V1_5::CellIdentity &cellIdentity,
int numStrings, char** response) {
RIL_CellIdentity_v16 rilCellIdentity;
memset(&rilCellIdentity, -1, sizeof(RIL_CellIdentity_v16));
rilCellIdentity.cellInfoType = getCellInfoTypeRadioTechnology(response[3]);
switch(rilCellIdentity.cellInfoType) {
case RIL_CELL_INFO_TYPE_GSM: {
/* valid LAC are hexstrings in the range 0x0000 - 0xffff */
rilCellIdentity.cellIdentityGsm.lac =
convertResponseHexStringEntryToInt(response, 1, numStrings);
/* valid CID are hexstrings in the range 0x00000000 - 0xffffffff */
rilCellIdentity.cellIdentityGsm.cid =
convertResponseHexStringEntryToInt(response, 2, numStrings);
if (numStrings >= 13) {
rilCellIdentity.cellIdentityGsm.mcc =
convertResponseStringEntryToInt(response, 11, numStrings);
rilCellIdentity.cellIdentityGsm.mnc =
convertResponseStringEntryToInt(response, 12, numStrings);
} else {
/* vts check the mcc [0, 999] and mnc [0, 999]. */
rilCellIdentity.cellIdentityGsm.mnc = 0;
rilCellIdentity.cellIdentityGsm.mcc = 0;
}
break;
}
case RIL_CELL_INFO_TYPE_WCDMA: {
/* valid LAC are hexstrings in the range 0x0000 - 0xffff */
rilCellIdentity.cellIdentityWcdma.lac =
convertResponseHexStringEntryToInt(response, 1, numStrings);
/* valid CID are hexstrings in the range 0x00000000 - 0xffffffff */
rilCellIdentity.cellIdentityWcdma.cid =
convertResponseHexStringEntryToInt(response, 2, numStrings);
if (numStrings >= 13) {
rilCellIdentity.cellIdentityWcdma.mcc =
convertResponseStringEntryToInt(response, 11, numStrings);
rilCellIdentity.cellIdentityWcdma.mnc =
convertResponseStringEntryToInt(response, 12, numStrings);
} else {
/* vts check the mcc [0, 999] and mnc [0, 999]. */
rilCellIdentity.cellIdentityWcdma.mnc = 0;
rilCellIdentity.cellIdentityWcdma.mcc = 0;
}
break;
}
case RIL_CELL_INFO_TYPE_TD_SCDMA:{
/* valid LAC are hexstrings in the range 0x0000 - 0xffff */
rilCellIdentity.cellIdentityTdscdma.lac =
convertResponseHexStringEntryToInt(response, 1, numStrings);
/* valid CID are hexstrings in the range 0x00000000 - 0xffffffff */
rilCellIdentity.cellIdentityTdscdma.cid =
convertResponseHexStringEntryToInt(response, 2, numStrings);
if (numStrings >= 13) {
rilCellIdentity.cellIdentityTdscdma.mcc =
convertResponseStringEntryToInt(response, 11, numStrings);
rilCellIdentity.cellIdentityTdscdma.mnc =
convertResponseStringEntryToInt(response, 12, numStrings);
} else {
/* vts check the mcc [0, 999] and mnc [0, 999]. */
rilCellIdentity.cellIdentityTdscdma.mnc = 0;
rilCellIdentity.cellIdentityTdscdma.mcc = 0;
}
break;
}
case RIL_CELL_INFO_TYPE_LTE: {
rilCellIdentity.cellIdentityLte.tac =
convertResponseStringEntryToInt(response, 6, numStrings);
rilCellIdentity.cellIdentityLte.pci =
convertResponseStringEntryToInt(response, 7, numStrings);
rilCellIdentity.cellIdentityLte.ci =
convertResponseStringEntryToInt(response, 8, numStrings);
if (numStrings >= 13) {
rilCellIdentity.cellIdentityLte.mcc =
convertResponseStringEntryToInt(response, 11, numStrings);
rilCellIdentity.cellIdentityLte.mnc =
convertResponseStringEntryToInt(response, 12, numStrings);
} else {
/* vts check the mcc [0, 999] and mnc [0, 999]. */
rilCellIdentity.cellIdentityLte.mnc = 0;
rilCellIdentity.cellIdentityLte.mcc = 0;
}
break;
}
default: {
break;
}
}
fillCellIdentityResponse_1_5(cellIdentity, rilCellIdentity);
}
void fillCellIdentityFromDataRegStateResponseString_1_2(V1_2::CellIdentity &cellIdentity,
int numStrings, char** response) {
RIL_CellIdentity_v1_2 rilCellIdentity;
memset(&rilCellIdentity, -1, sizeof(RIL_CellIdentity_v1_2));
rilCellIdentity.cellInfoType = getCellInfoTypeRadioTechnology(response[3]);
switch(rilCellIdentity.cellInfoType) {
case RIL_CELL_INFO_TYPE_GSM: {
/* valid LAC are hexstrings in the range 0x0000 - 0xffff */
rilCellIdentity.cellIdentityGsm.lac =
convertResponseHexStringEntryToInt(response, 1, numStrings);
/* valid CID are hexstrings in the range 0x00000000 - 0xffffffff */
rilCellIdentity.cellIdentityGsm.cid =
convertResponseHexStringEntryToInt(response, 2, numStrings);
if (numStrings >= 13) {
rilCellIdentity.cellIdentityGsm.mcc =
convertResponseStringEntryToInt(response, 11, numStrings);
rilCellIdentity.cellIdentityGsm.mnc =
convertResponseStringEntryToInt(response, 12, numStrings);
} else {
/* vts check the mcc [0, 999] and mnc [0, 999]. */
rilCellIdentity.cellIdentityGsm.mnc = 0;
rilCellIdentity.cellIdentityGsm.mcc = 0;
}
break;
}
case RIL_CELL_INFO_TYPE_WCDMA: {
/* valid LAC are hexstrings in the range 0x0000 - 0xffff */
rilCellIdentity.cellIdentityWcdma.lac =
convertResponseHexStringEntryToInt(response, 1, numStrings);
/* valid CID are hexstrings in the range 0x00000000 - 0xffffffff */
rilCellIdentity.cellIdentityWcdma.cid =
convertResponseHexStringEntryToInt(response, 2, numStrings);
if (numStrings >= 13) {
rilCellIdentity.cellIdentityWcdma.mcc =
convertResponseStringEntryToInt(response, 11, numStrings);
rilCellIdentity.cellIdentityWcdma.mnc =
convertResponseStringEntryToInt(response, 12, numStrings);
} else {
/* vts check the mcc [0, 999] and mnc [0, 999]. */
rilCellIdentity.cellIdentityWcdma.mnc = 0;
rilCellIdentity.cellIdentityWcdma.mcc = 0;
}
break;
}
case RIL_CELL_INFO_TYPE_TD_SCDMA: {
/* valid LAC are hexstrings in the range 0x0000 - 0xffff */
rilCellIdentity.cellIdentityTdscdma.lac =
convertResponseHexStringEntryToInt(response, 1, numStrings);
/* valid CID are hexstrings in the range 0x00000000 - 0xffffffff */
rilCellIdentity.cellIdentityTdscdma.cid =
convertResponseHexStringEntryToInt(response, 2, numStrings);
if (numStrings >= 13) {
rilCellIdentity.cellIdentityTdscdma.mcc =
convertResponseStringEntryToInt(response, 11, numStrings);
rilCellIdentity.cellIdentityTdscdma.mnc =
convertResponseStringEntryToInt(response, 12, numStrings);
} else {
/* vts check the mcc [0, 999] and mnc [0, 999]. */
rilCellIdentity.cellIdentityTdscdma.mnc = 0;
rilCellIdentity.cellIdentityTdscdma.mcc = 0;
}
break;
}
case RIL_CELL_INFO_TYPE_LTE: {
rilCellIdentity.cellIdentityLte.tac =
convertResponseStringEntryToInt(response, 6, numStrings);
rilCellIdentity.cellIdentityLte.pci =
convertResponseStringEntryToInt(response, 7, numStrings);
rilCellIdentity.cellIdentityLte.ci =
convertResponseStringEntryToInt(response, 8, numStrings);
if (numStrings >= 13) {
rilCellIdentity.cellIdentityLte.mcc =
convertResponseStringEntryToInt(response, 11, numStrings);
rilCellIdentity.cellIdentityLte.mnc =
convertResponseStringEntryToInt(response, 12, numStrings);
} else {
/* vts check the mcc [0, 999] and mnc [0, 999]. */
rilCellIdentity.cellIdentityLte.mnc = 0;
rilCellIdentity.cellIdentityLte.mcc = 0;
}
break;
}
case RIL_CELL_INFO_TYPE_CDMA: {
break;
}
default: {
break;
}
}
fillCellIdentityResponse_1_2(cellIdentity, rilCellIdentity);
}
void fillCellIdentityFromDataRegStateResponseString(CellIdentity &cellIdentity,
int numStrings, char** response) {
RIL_CellIdentity_v16 rilCellIdentity;
memset(&rilCellIdentity, -1, sizeof(RIL_CellIdentity_v16));
rilCellIdentity.cellInfoType = getCellInfoTypeRadioTechnology(response[3]);
switch(rilCellIdentity.cellInfoType) {
case RIL_CELL_INFO_TYPE_GSM: {
/* valid LAC are hexstrings in the range 0x0000 - 0xffff */
rilCellIdentity.cellIdentityGsm.lac =
convertResponseHexStringEntryToInt(response, 1, numStrings);
/* valid CID are hexstrings in the range 0x00000000 - 0xffffffff */
rilCellIdentity.cellIdentityGsm.cid =
convertResponseHexStringEntryToInt(response, 2, numStrings);
if (numStrings >= 13) {
rilCellIdentity.cellIdentityGsm.mcc =
convertResponseStringEntryToInt(response, 11, numStrings);
rilCellIdentity.cellIdentityGsm.mnc =
convertResponseStringEntryToInt(response, 12, numStrings);
} else {
/* vts check the mcc [0, 999] and mnc [0, 999]. */
rilCellIdentity.cellIdentityGsm.mnc = 0;
rilCellIdentity.cellIdentityGsm.mcc = 0;
}
break;
}
case RIL_CELL_INFO_TYPE_WCDMA: {
/* valid LAC are hexstrings in the range 0x0000 - 0xffff */
rilCellIdentity.cellIdentityWcdma.lac =
convertResponseHexStringEntryToInt(response, 1, numStrings);
/* valid CID are hexstrings in the range 0x00000000 - 0xffffffff */
rilCellIdentity.cellIdentityWcdma.cid =
convertResponseHexStringEntryToInt(response, 2, numStrings);
if (numStrings >= 13) {
rilCellIdentity.cellIdentityWcdma.mcc =
convertResponseStringEntryToInt(response, 11, numStrings);
rilCellIdentity.cellIdentityWcdma.mnc =
convertResponseStringEntryToInt(response, 12, numStrings);
} else {
/* vts check the mcc [0, 999] and mnc [0, 999]. */
rilCellIdentity.cellIdentityWcdma.mnc = 0;
rilCellIdentity.cellIdentityWcdma.mcc = 0;
}
break;
}
case RIL_CELL_INFO_TYPE_TD_SCDMA:{
/* valid LAC are hexstrings in the range 0x0000 - 0xffff */
rilCellIdentity.cellIdentityTdscdma.lac =
convertResponseHexStringEntryToInt(response, 1, numStrings);
/* valid CID are hexstrings in the range 0x00000000 - 0xffffffff */
rilCellIdentity.cellIdentityTdscdma.cid =
convertResponseHexStringEntryToInt(response, 2, numStrings);
if (numStrings >= 13) {
rilCellIdentity.cellIdentityTdscdma.mcc =
convertResponseStringEntryToInt(response, 11, numStrings);
rilCellIdentity.cellIdentityTdscdma.mnc =
convertResponseStringEntryToInt(response, 12, numStrings);
} else {
/* vts check the mcc [0, 999] and mnc [0, 999]. */
rilCellIdentity.cellIdentityTdscdma.mnc = 0;
rilCellIdentity.cellIdentityTdscdma.mcc = 0;
}
break;
}
case RIL_CELL_INFO_TYPE_LTE: {
rilCellIdentity.cellIdentityLte.tac =
convertResponseHexStringEntryToInt(response, 1, numStrings);
rilCellIdentity.cellIdentityLte.ci =
convertResponseHexStringEntryToInt(response, 2, numStrings);
if (numStrings >= 13) {
rilCellIdentity.cellIdentityLte.mcc =
convertResponseStringEntryToInt(response, 11, numStrings);
rilCellIdentity.cellIdentityLte.mnc =
convertResponseStringEntryToInt(response, 12, numStrings);
} else {
/* vts check the mcc [0, 999] and mnc [0, 999]. */
rilCellIdentity.cellIdentityLte.mnc = 0;
rilCellIdentity.cellIdentityLte.mcc = 0;
}
break;
}
// TODO add CDMA
default: {
break;
}
}
fillCellIdentityResponse(cellIdentity, rilCellIdentity);
}
int radio_1_6::getVoiceRegistrationStateResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getVoiceRegistrationStateResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL ||
radioService[slotId]->mRadioResponseV1_2 != NULL ||
radioService[slotId]->mRadioResponseV1_5 != NULL ||
radioService[slotId]->mRadioResponseV1_6 != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
VoiceRegStateResult voiceRegResponse = {};
int numStrings = responseLen / sizeof(char *);
if (response == NULL) {
RLOGE("getVoiceRegistrationStateResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else if (s_vendorFunctions->version >= 15 &&
radioService[slotId]->mRadioResponseV1_6 != NULL) {
::android::hardware::radio::V1_6::RadioResponseInfo responseInfo_1_6 = {};
populateResponseInfo_1_6(responseInfo_1_6, serial, responseType, e);
RegStateResultV1_6 regResponse = {};
if (numStrings != 18) {
RLOGE("getVoiceRegistrationStateResponse_1_6 Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo_1_6.error =
::android::hardware::radio::V1_6::RadioError::INVALID_RESPONSE;
} else {
char **resp = (char **) response;
regResponse.regState = (RegState)ATOI_NULL_HANDLED_DEF(resp[0], 4);
int rat = ATOI_NULL_HANDLED_DEF(resp[3], 0);
regResponse.rat = (V1_4::RadioTechnology)rat;
if (rat == RADIO_TECH_EVDO_0 || rat == RADIO_TECH_EVDO_A ||
rat == RADIO_TECH_EVDO_B || rat == RADIO_TECH_1xRTT ||
rat == RADIO_TECH_IS95A || rat == RADIO_TECH_IS95B ||
rat == RADIO_TECH_EHRPD) {
V1_5::RegStateResult::AccessTechnologySpecificInfo::
Cdma2000RegistrationInfo cdmaInfo;
cdmaInfo.cssSupported = ATOI_NULL_HANDLED_DEF(resp[7], 0);
cdmaInfo.roamingIndicator = ATOI_NULL_HANDLED(resp[10]);
cdmaInfo.systemIsInPrl = (V1_5::PrlIndicator)ATOI_NULL_HANDLED_DEF(resp[11], 0);
cdmaInfo.defaultRoamingIndicator= ATOI_NULL_HANDLED_DEF(resp[12], 0);
regResponse.accessTechnologySpecificInfo.cdmaInfo(cdmaInfo);
} else if (rat == RADIO_TECH_NR) {
// rat is NR only for NR SA
V1_6::RegStateResult::AccessTechnologySpecificInfo::
NgranRegistrationInfo ngranInfo;
ngranInfo.nrVopsInfo.vopsSupported =
::android::hardware::radio::V1_6::VopsIndicator::VOPS_NOT_SUPPORTED;
ngranInfo.nrVopsInfo.emcSupported =
::android::hardware::radio::V1_6::EmcIndicator::EMC_NOT_SUPPORTED;
ngranInfo.nrVopsInfo.emfSupported =
::android::hardware::radio::V1_6::EmfIndicator::EMF_NOT_SUPPORTED;
regResponse.accessTechnologySpecificInfo.ngranInfo(ngranInfo);
} else {
V1_5::RegStateResult::AccessTechnologySpecificInfo::
EutranRegistrationInfo eutranInfo;
if (rat == RADIO_TECH_LTE || rat == RADIO_TECH_LTE_CA) {
eutranInfo.lteVopsInfo.isVopsSupported = false;
eutranInfo.lteVopsInfo.isEmcBearerSupported = false;
}
eutranInfo.nrIndicators.isEndcAvailable = false;
eutranInfo.nrIndicators.isDcNrRestricted = false;
eutranInfo.nrIndicators.isEndcAvailable = false;
regResponse.accessTechnologySpecificInfo.eutranInfo(eutranInfo);
}
regResponse.reasonForDenial = (V1_5::RegistrationFailCause)
ATOI_NULL_HANDLED_DEF(resp[13], 0);
regResponse.registeredPlmn = convertCharPtrToHidlString(resp[17]);
fillCellIdentityFromVoiceRegStateResponseString(regResponse.cellIdentity,
numStrings, resp);
Return<void> retStatus =
radioService[slotId]
->mRadioResponseV1_6
->getVoiceRegistrationStateResponse_1_6(
responseInfo_1_6, regResponse);
radioService[slotId]->checkReturnStatus(retStatus);
}
} else if (s_vendorFunctions->version <= 14 &&
radioService[slotId]->mRadioResponseV1_5 != NULL) {
RegStateResultV1_5 regResponse = {};
if (numStrings != 18) {
RLOGE("getVoiceRegistrationStateResponse_1_5 Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
char **resp = (char **) response;
regResponse.regState = (RegState)ATOI_NULL_HANDLED_DEF(resp[0], 4);
int rat = ATOI_NULL_HANDLED_DEF(resp[3], 0);
regResponse.rat = (V1_4::RadioTechnology)rat;
if (rat == RADIO_TECH_EVDO_0 || rat == RADIO_TECH_EVDO_A ||
rat == RADIO_TECH_EVDO_B || rat == RADIO_TECH_1xRTT ||
rat == RADIO_TECH_IS95A || rat == RADIO_TECH_IS95B ||
rat == RADIO_TECH_EHRPD) {
V1_5::RegStateResult::AccessTechnologySpecificInfo::
Cdma2000RegistrationInfo cdmaInfo;
cdmaInfo.cssSupported = ATOI_NULL_HANDLED_DEF(resp[7], 0);
cdmaInfo.roamingIndicator = ATOI_NULL_HANDLED(resp[10]);
cdmaInfo.systemIsInPrl = (V1_5::PrlIndicator)ATOI_NULL_HANDLED_DEF(resp[11], 0);
cdmaInfo.defaultRoamingIndicator= ATOI_NULL_HANDLED_DEF(resp[12], 0);
regResponse.accessTechnologySpecificInfo.cdmaInfo(cdmaInfo);
} else {
V1_5::RegStateResult::AccessTechnologySpecificInfo::
EutranRegistrationInfo eutranInfo;
if (rat == RADIO_TECH_LTE || rat == RADIO_TECH_LTE_CA ||
rat == RADIO_TECH_NR) {
eutranInfo.lteVopsInfo.isVopsSupported = false;
eutranInfo.lteVopsInfo.isEmcBearerSupported = false;
}
eutranInfo.nrIndicators.isEndcAvailable = false;
eutranInfo.nrIndicators.isDcNrRestricted = false;
eutranInfo.nrIndicators.isEndcAvailable = false;
regResponse.accessTechnologySpecificInfo.eutranInfo(eutranInfo);
}
regResponse.reasonForDenial = (V1_5::RegistrationFailCause)
ATOI_NULL_HANDLED_DEF(resp[13], 0);
regResponse.registeredPlmn = convertCharPtrToHidlString(resp[17]);
fillCellIdentityFromVoiceRegStateResponseString(regResponse.cellIdentity,
numStrings, resp);
Return<void> retStatus =
radioService[slotId]
->mRadioResponseV1_5
->getVoiceRegistrationStateResponse_1_5(
responseInfo, regResponse);
radioService[slotId]->checkReturnStatus(retStatus);
}
} else if (s_vendorFunctions->version <= 14 &&
radioService[slotId]->mRadioResponseV1_2 != NULL) {
V1_2::VoiceRegStateResult voiceRegResponse = {};
int numStrings = responseLen / sizeof(char *);
if (numStrings != 18) {
RLOGE("getVoiceRegistrationStateResponse_1_21 Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
char **resp = (char **) response;
voiceRegResponse.regState = (RegState) ATOI_NULL_HANDLED_DEF(resp[0], 4);
voiceRegResponse.rat = ATOI_NULL_HANDLED_DEF(resp[3], 0);
voiceRegResponse.cssSupported = ATOI_NULL_HANDLED_DEF(resp[7], 0);
voiceRegResponse.roamingIndicator = ATOI_NULL_HANDLED(resp[10]);
voiceRegResponse.systemIsInPrl = ATOI_NULL_HANDLED_DEF(resp[11], 0);
voiceRegResponse.defaultRoamingIndicator = ATOI_NULL_HANDLED_DEF(resp[12], 0);
voiceRegResponse.reasonForDenial = ATOI_NULL_HANDLED_DEF(resp[13], 0);
fillCellIdentityFromVoiceRegStateResponseString_1_2(
voiceRegResponse.cellIdentity, numStrings, resp);
}
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_2->
getVoiceRegistrationStateResponse_1_2(responseInfo, voiceRegResponse);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RIL_VoiceRegistrationStateResponse *voiceRegState =
(RIL_VoiceRegistrationStateResponse *)response;
if (responseLen != sizeof(RIL_VoiceRegistrationStateResponse)) {
RLOGE("getVoiceRegistrationStateResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
voiceRegResponse.regState = (RegState) voiceRegState->regState;
voiceRegResponse.rat = voiceRegState->rat;;
voiceRegResponse.cssSupported = voiceRegState->cssSupported;
voiceRegResponse.roamingIndicator = voiceRegState->roamingIndicator;
voiceRegResponse.systemIsInPrl = voiceRegState->systemIsInPrl;
voiceRegResponse.defaultRoamingIndicator = voiceRegState->defaultRoamingIndicator;
voiceRegResponse.reasonForDenial = voiceRegState->reasonForDenial;
fillCellIdentityResponse(voiceRegResponse.cellIdentity,
voiceRegState->cellIdentity);
}
Return<void> retStatus =
radioService[slotId]->mRadioResponse->getVoiceRegistrationStateResponse(
responseInfo, voiceRegResponse);
radioService[slotId]->checkReturnStatus(retStatus);
}
} else {
RLOGE("getVoiceRegistrationStateResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::getDataRegistrationStateResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getDataRegistrationStateResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL ||
radioService[slotId]->mRadioResponseV1_2 != NULL ||
radioService[slotId]->mRadioResponseV1_5 != NULL ||
radioService[slotId]->mRadioResponseV1_6 != NULL) {
RadioResponseInfo responseInfo = {};
DataRegStateResult dataRegResponse = {};
populateResponseInfo(responseInfo, serial, responseType, e);
if (response == NULL) {
RLOGE("getDataRegistrationStateResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else if (s_vendorFunctions->version >= 15 &&
radioService[slotId]->mRadioResponseV1_6 != NULL) {
::android::hardware::radio::V1_6::RadioResponseInfo responseInfo_1_6 = {};
populateResponseInfo_1_6(responseInfo_1_6, serial, responseType, e);
RegStateResultV1_6 regResponse = {};
int numStrings = responseLen / sizeof(char *);
if ((numStrings != 6) && (numStrings != 11) && (numStrings != 14)) {
RLOGE("getDataRegistrationStateResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo_1_6.error =
::android::hardware::radio::V1_6::RadioError::INVALID_RESPONSE;
} else {
char **resp = (char **) response;
int rat = ATOI_NULL_HANDLED_DEF(resp[3], 0);
regResponse.regState = (RegState)ATOI_NULL_HANDLED_DEF(resp[0], 4);
regResponse.rat = (V1_4::RadioTechnology)rat;
regResponse.reasonForDenial =
(V1_5::RegistrationFailCause)ATOI_NULL_HANDLED(resp[4]);
if (numStrings > 13) {
regResponse.registeredPlmn = convertCharPtrToHidlString(resp[13]);
}
fillCellIdentityFromDataRegStateResponseString_1_5(regResponse.cellIdentity,
numStrings, resp);
if (rat == RADIO_TECH_NR) {
// rat is NR only for NR SA
V1_6::RegStateResult::AccessTechnologySpecificInfo::
NgranRegistrationInfo ngranInfo;
ngranInfo.nrVopsInfo.vopsSupported =
::android::hardware::radio::V1_6::VopsIndicator::VOPS_NOT_SUPPORTED;
ngranInfo.nrVopsInfo.emcSupported =
::android::hardware::radio::V1_6::EmcIndicator::EMC_NOT_SUPPORTED;
ngranInfo.nrVopsInfo.emfSupported =
::android::hardware::radio::V1_6::EmfIndicator::EMF_NOT_SUPPORTED;
regResponse.accessTechnologySpecificInfo.ngranInfo(ngranInfo);
} else {
V1_5::RegStateResult::AccessTechnologySpecificInfo::
EutranRegistrationInfo eutranInfo;
if (rat == RADIO_TECH_LTE || rat == RADIO_TECH_LTE_CA) {
eutranInfo.lteVopsInfo.isVopsSupported = false;
eutranInfo.lteVopsInfo.isEmcBearerSupported = false;
}
eutranInfo.nrIndicators.isEndcAvailable = false;
eutranInfo.nrIndicators.isDcNrRestricted = false;
eutranInfo.nrIndicators.isEndcAvailable = false;
regResponse.accessTechnologySpecificInfo.eutranInfo(eutranInfo);
}
Return<void> retStatus =
radioService[slotId]
->mRadioResponseV1_6
->getVoiceRegistrationStateResponse_1_6(
responseInfo_1_6, regResponse);
radioService[slotId]->checkReturnStatus(retStatus);
}
} else if (s_vendorFunctions->version <= 14 &&
radioService[slotId]->mRadioResponseV1_5 != NULL) {
RegStateResultV1_5 regResponse = {};
int numStrings = responseLen / sizeof(char *);
if ((numStrings != 6) && (numStrings != 11) && (numStrings != 14)) {
RLOGE("getDataRegistrationStateResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
char **resp = (char **) response;
int rat = ATOI_NULL_HANDLED_DEF(resp[3], 0);
regResponse.regState = (RegState)ATOI_NULL_HANDLED_DEF(resp[0], 4);
regResponse.rat = (V1_4::RadioTechnology)rat;
regResponse.reasonForDenial =
(V1_5::RegistrationFailCause)ATOI_NULL_HANDLED(resp[4]);
if (numStrings > 13) {
regResponse.registeredPlmn = convertCharPtrToHidlString(resp[13]);
}
V1_5::RegStateResult::AccessTechnologySpecificInfo::
EutranRegistrationInfo eutranInfo;
if (rat == RADIO_TECH_LTE || rat == RADIO_TECH_LTE_CA ||
rat == RADIO_TECH_NR) {
eutranInfo.lteVopsInfo.isVopsSupported = false;
eutranInfo.lteVopsInfo.isEmcBearerSupported = false;
}
eutranInfo.nrIndicators.isEndcAvailable = false;
eutranInfo.nrIndicators.isDcNrRestricted = false;
eutranInfo.nrIndicators.isEndcAvailable = false;
regResponse.accessTechnologySpecificInfo.eutranInfo(eutranInfo);
fillCellIdentityFromDataRegStateResponseString_1_5(regResponse.cellIdentity,
numStrings, resp);
Return<void> retStatus =
radioService[slotId]
->mRadioResponseV1_5
->getDataRegistrationStateResponse_1_5(
responseInfo, regResponse);
radioService[slotId]->checkReturnStatus(retStatus);
}
} else if (s_vendorFunctions->version <= 14 &&
radioService[slotId]->mRadioResponseV1_2 != NULL) {
V1_2::DataRegStateResult dataRegResponse = {};
int numStrings = responseLen / sizeof(char *);
if ((numStrings != 11) && (numStrings != 13) && (numStrings != 14)) {
RLOGE("getDataRegistrationStateResponse_1_2 Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
char **resp = (char **)response;
dataRegResponse.regState = (RegState)ATOI_NULL_HANDLED_DEF(resp[0], 4);
dataRegResponse.rat = ATOI_NULL_HANDLED_DEF(resp[3], 0);
dataRegResponse.reasonDataDenied = ATOI_NULL_HANDLED(resp[4]);
dataRegResponse.maxDataCalls = ATOI_NULL_HANDLED_DEF(resp[5], 1);
fillCellIdentityFromDataRegStateResponseString_1_2(dataRegResponse.cellIdentity,
numStrings, resp);
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_2->
getDataRegistrationStateResponse_1_2(responseInfo, dataRegResponse);
radioService[slotId]->checkReturnStatus(retStatus);
}
} else if (s_vendorFunctions->version <= 14) {
int numStrings = responseLen / sizeof(char *);
if ((numStrings != 11) && (numStrings != 13) && (numStrings != 14)) {
RLOGE("getDataRegistrationStateResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
char **resp = (char **) response;
dataRegResponse.regState = (RegState) ATOI_NULL_HANDLED_DEF(resp[0], 4);
dataRegResponse.rat = ATOI_NULL_HANDLED_DEF(resp[3], 0);
dataRegResponse.reasonDataDenied = ATOI_NULL_HANDLED(resp[4]);
dataRegResponse.maxDataCalls = ATOI_NULL_HANDLED_DEF(resp[5], 1);
fillCellIdentityFromDataRegStateResponseString(dataRegResponse.cellIdentity,
numStrings, resp);
}
} else {
RIL_DataRegistrationStateResponse *dataRegState =
(RIL_DataRegistrationStateResponse *)response;
if (responseLen != sizeof(RIL_DataRegistrationStateResponse)) {
RLOGE("getDataRegistrationStateResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
dataRegResponse.regState = (RegState) dataRegState->regState;
dataRegResponse.rat = dataRegState->rat;
dataRegResponse.reasonDataDenied = dataRegState->reasonDataDenied;
dataRegResponse.maxDataCalls = dataRegState->maxDataCalls;
fillCellIdentityResponse(dataRegResponse.cellIdentity, dataRegState->cellIdentity);
}
}
Return<void> retStatus =
radioService[slotId]->mRadioResponse->getDataRegistrationStateResponse(
responseInfo, dataRegResponse);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getDataRegistrationStateResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::getOperatorResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("getOperatorResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
hidl_string longName;
hidl_string shortName;
hidl_string numeric;
int numStrings = responseLen / sizeof(char *);
if (response == NULL || numStrings != 3) {
RLOGE("getOperatorResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
char **resp = (char **) response;
longName = convertCharPtrToHidlString(resp[0]);
shortName = convertCharPtrToHidlString(resp[1]);
numeric = convertCharPtrToHidlString(resp[2]);
}
Return<void> retStatus = radioService[slotId]->mRadioResponse->getOperatorResponse(
responseInfo, longName, shortName, numeric);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getOperatorResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setRadioPowerResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("setRadioPowerResponse: serial %d", serial);
#endif
RadioResponseInfo responseInfo = {};
::android::hardware::radio::V1_6::RadioResponseInfo responseInfo_1_6 = {};
populateResponseInfo(responseInfo, serial, responseType, e);
populateResponseInfo_1_6(responseInfo_1_6, serial, responseType, e);
if (radioService[slotId]->mRadioResponseV1_6 != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_6
->setRadioPowerResponse_1_6(responseInfo_1_6);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponseV1_5 != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_5
->setRadioPowerResponse_1_5(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponse != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponse
->setRadioPowerResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setRadioPowerResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::sendDtmfResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("sendDtmfResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus = radioService[slotId]->mRadioResponse->sendDtmfResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("sendDtmfResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
SendSmsResult makeSendSmsResult(RadioResponseInfo& responseInfo, int serial, int responseType,
RIL_Errno e, void *response, size_t responseLen) {
populateResponseInfo(responseInfo, serial, responseType, e);
SendSmsResult result = {};
if (response == NULL || responseLen != sizeof(RIL_SMS_Response)) {
RLOGE("Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
result.ackPDU = hidl_string();
} else {
RIL_SMS_Response *resp = (RIL_SMS_Response *) response;
result.messageRef = resp->messageRef;
result.ackPDU = convertCharPtrToHidlString(resp->ackPDU);
result.errorCode = resp->errorCode;
}
return result;
}
SendSmsResult makeSendSmsResult_1_6(
::android::hardware::radio::V1_6::RadioResponseInfo &responseInfo, int serial,
int responseType, RIL_Errno e, void *response, size_t responseLen) {
populateResponseInfo_1_6(responseInfo, serial, responseType, e);
SendSmsResult result = {};
if (response == NULL || responseLen != sizeof(RIL_SMS_Response)) {
RLOGE("Invalid response: NULL");
if (e == RIL_E_SUCCESS) {
responseInfo.error = ::android::hardware::radio::V1_6::RadioError::INVALID_RESPONSE;
}
result.ackPDU = hidl_string();
} else {
RIL_SMS_Response *resp = (RIL_SMS_Response *) response;
result.messageRef = resp->messageRef;
result.ackPDU = convertCharPtrToHidlString(resp->ackPDU);
result.errorCode = resp->errorCode;
}
return result;
}
int radio_1_6::sendSmsResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("sendSmsResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponseV1_6 != NULL) {
::android::hardware::radio::V1_6::RadioResponseInfo responseInfo_1_6 = {};
SendSmsResult result = makeSendSmsResult_1_6(responseInfo_1_6, serial, responseType, e, response,
responseLen);
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_6
->sendSmsResponse_1_6(responseInfo_1_6, result);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
SendSmsResult result = makeSendSmsResult(responseInfo, serial, responseType, e, response,
responseLen);
Return<void> retStatus = radioService[slotId]->mRadioResponse->sendSmsResponse(responseInfo,
result);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("sendSmsResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::sendSMSExpectMoreResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("sendSMSExpectMoreResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponseV1_6 != NULL) {
::android::hardware::radio::V1_6::RadioResponseInfo responseInfo_1_6 = {};
SendSmsResult result = makeSendSmsResult_1_6(responseInfo_1_6, serial, responseType, e, response,
responseLen);
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_6
->sendSMSExpectMoreResponse_1_6(responseInfo_1_6, result);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
SendSmsResult result = makeSendSmsResult(responseInfo, serial, responseType, e, response,
responseLen);
Return<void> retStatus = radioService[slotId]->mRadioResponse->sendSMSExpectMoreResponse(
responseInfo, result);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("sendSMSExpectMoreResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::setupDataCallResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("setupDataCallResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponseV1_5 != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
::android::hardware::radio::V1_5::SetupDataCallResult result;
if (response == NULL || (responseLen % sizeof(RIL_Data_Call_Response_v11)) != 0) {
if (response != NULL) {
RLOGE("setupDataCallResponse_1_5: Invalid response");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
}
result.cause = ::android::hardware::radio::V1_4::DataCallFailCause::ERROR_UNSPECIFIED;
result.type = ::android::hardware::radio::V1_4::PdpProtocolType::UNKNOWN;
result.ifname = hidl_string();
result.addresses = hidl_vec<::android::hardware::radio::V1_5::LinkAddress>();
result.dnses = hidl_vec<hidl_string>();
result.gateways = hidl_vec<hidl_string>();
result.pcscf = hidl_vec<hidl_string>();
} else {
convertRilDataCallToHal((RIL_Data_Call_Response_v12 *) response, result);
}
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_5->setupDataCallResponse_1_5(
responseInfo, result);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponseV1_4 != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
::android::hardware::radio::V1_4::SetupDataCallResult result;
if (response == NULL || (responseLen % sizeof(RIL_Data_Call_Response_v11)) != 0) {
if (response != NULL) {
RLOGE("setupDataCallResponse_1_4: Invalid response");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
}
result.cause = ::android::hardware::radio::V1_4::DataCallFailCause::ERROR_UNSPECIFIED;
result.type = ::android::hardware::radio::V1_4::PdpProtocolType::UNKNOWN;
result.ifname = hidl_string();
result.addresses = hidl_vec<hidl_string>();
result.dnses = hidl_vec<hidl_string>();
result.gateways = hidl_vec<hidl_string>();
result.pcscf = hidl_vec<hidl_string>();
} else {
convertRilDataCallToHal((RIL_Data_Call_Response_v11 *) response, result);
}
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_4->setupDataCallResponse_1_4(
responseInfo, result);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
SetupDataCallResult result = {};
if (response == NULL || (responseLen % sizeof(RIL_Data_Call_Response_v11)) != 0) {
if (response != NULL) {
RLOGE("setupDataCallResponse: Invalid response");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
}
result.status = DataCallFailCause::ERROR_UNSPECIFIED;
result.type = hidl_string();
result.ifname = hidl_string();
result.addresses = hidl_string();
result.dnses = hidl_string();
result.gateways = hidl_string();
result.pcscf = hidl_string();
} else {
convertRilDataCallToHal((RIL_Data_Call_Response_v11 *) response, result);
}
Return<void> retStatus = radioService[slotId]->mRadioResponse->setupDataCallResponse(
responseInfo, result);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setupDataCallResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
IccIoResult responseIccIo(RadioResponseInfo& responseInfo, int serial, int responseType,
RIL_Errno e, void *response, size_t responseLen) {
populateResponseInfo(responseInfo, serial, responseType, e);
IccIoResult result = {};
if (response == NULL || responseLen != sizeof(RIL_SIM_IO_Response)) {
RLOGE("Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
result.simResponse = hidl_string();
} else {
RIL_SIM_IO_Response *resp = (RIL_SIM_IO_Response *) response;
result.sw1 = resp->sw1;
result.sw2 = resp->sw2;
result.simResponse = convertCharPtrToHidlString(resp->simResponse);
}
return result;
}
int radio_1_6::iccIOForAppResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("iccIOForAppResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
IccIoResult result = responseIccIo(responseInfo, serial, responseType, e, response,
responseLen);
Return<void> retStatus = radioService[slotId]->mRadioResponse->iccIOForAppResponse(
responseInfo, result);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("iccIOForAppResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::sendUssdResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("sendUssdResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus = radioService[slotId]->mRadioResponse->sendUssdResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("sendUssdResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::cancelPendingUssdResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("cancelPendingUssdResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus = radioService[slotId]->mRadioResponse->cancelPendingUssdResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("cancelPendingUssdResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::getClirResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("getClirResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
int n = -1, m = -1;
int numInts = responseLen / sizeof(int);
if (response == NULL || numInts != 2) {
RLOGE("getClirResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
int *pInt = (int *) response;
n = pInt[0];
m = pInt[1];
}
Return<void> retStatus = radioService[slotId]->mRadioResponse->getClirResponse(responseInfo,
n, m);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getClirResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::setClirResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("setClirResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus = radioService[slotId]->mRadioResponse->setClirResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setClirResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::getCallForwardStatusResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getCallForwardStatusResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
hidl_vec<CallForwardInfo> callForwardInfos;
if ((response == NULL && responseLen != 0)
|| responseLen % sizeof(RIL_CallForwardInfo *) != 0) {
RLOGE("getCallForwardStatusResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
int num = responseLen / sizeof(RIL_CallForwardInfo *);
callForwardInfos.resize(num);
for (int i = 0 ; i < num; i++) {
RIL_CallForwardInfo *resp = ((RIL_CallForwardInfo **) response)[i];
callForwardInfos[i].status = (CallForwardInfoStatus) resp->status;
callForwardInfos[i].reason = resp->reason;
callForwardInfos[i].serviceClass = resp->serviceClass;
callForwardInfos[i].toa = resp->toa;
callForwardInfos[i].number = convertCharPtrToHidlString(resp->number);
callForwardInfos[i].timeSeconds = resp->timeSeconds;
}
}
Return<void> retStatus = radioService[slotId]->mRadioResponse->getCallForwardStatusResponse(
responseInfo, callForwardInfos);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getCallForwardStatusResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setCallForwardResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("setCallForwardResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus = radioService[slotId]->mRadioResponse->setCallForwardResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setCallForwardResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::getCallWaitingResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("getCallWaitingResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
bool enable = false;
int serviceClass = -1;
int numInts = responseLen / sizeof(int);
if (response == NULL || numInts != 2) {
RLOGE("getCallWaitingResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
int *pInt = (int *) response;
enable = pInt[0] == 1 ? true : false;
serviceClass = pInt[1];
}
Return<void> retStatus = radioService[slotId]->mRadioResponse->getCallWaitingResponse(
responseInfo, enable, serviceClass);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getCallWaitingResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::setCallWaitingResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("setCallWaitingResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus = radioService[slotId]->mRadioResponse->setCallWaitingResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setCallWaitingResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::acknowledgeLastIncomingGsmSmsResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("acknowledgeLastIncomingGsmSmsResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus =
radioService[slotId]->mRadioResponse->acknowledgeLastIncomingGsmSmsResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("acknowledgeLastIncomingGsmSmsResponse: radioService[%d]->mRadioResponse "
"== NULL", slotId);
}
return 0;
}
int radio_1_6::acceptCallResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("acceptCallResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus = radioService[slotId]->mRadioResponse->acceptCallResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("acceptCallResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::deactivateDataCallResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("deactivateDataCallResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus = radioService[slotId]->mRadioResponse->deactivateDataCallResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("deactivateDataCallResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::getFacilityLockForAppResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getFacilityLockForAppResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
int ret = responseInt(responseInfo, serial, responseType, e, response, responseLen);
Return<void> retStatus = radioService[slotId]->mRadioResponse->
getFacilityLockForAppResponse(responseInfo, ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getFacilityLockForAppResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setFacilityLockForAppResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setFacilityLockForAppResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
int ret = responseIntOrEmpty(responseInfo, serial, responseType, e, response, responseLen);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setFacilityLockForAppResponse(responseInfo,
ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setFacilityLockForAppResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setBarringPasswordResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("acceptCallResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setBarringPasswordResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setBarringPasswordResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::getNetworkSelectionModeResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("getNetworkSelectionModeResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
bool manual = false;
if (response == NULL || responseLen != sizeof(int)) {
RLOGE("getNetworkSelectionModeResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
int *pInt = (int *) response;
manual = pInt[0] == 1 ? true : false;
}
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getNetworkSelectionModeResponse(
responseInfo,
manual);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getNetworkSelectionModeResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setNetworkSelectionModeAutomaticResponse(int slotId, int responseType, int serial,
RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("setNetworkSelectionModeAutomaticResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setNetworkSelectionModeAutomaticResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setNetworkSelectionModeAutomaticResponse: radioService[%d]->mRadioResponse "
"== NULL", slotId);
}
return 0;
}
int radio_1_6::setNetworkSelectionModeManualResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setNetworkSelectionModeManualResponse: serial %d", serial);
#endif
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
if (radioService[slotId]->mRadioResponseV1_5 != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_5
->setNetworkSelectionModeManualResponse_1_5(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponse != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponse
->setNetworkSelectionModeManualResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("acceptCallResponse: radioService[%d]->setNetworkSelectionModeManualResponse "
"== NULL", slotId);
}
return 0;
}
int convertOperatorStatusToInt(const char *str) {
if (strncmp("unknown", str, 9) == 0) {
return (int) OperatorStatus::UNKNOWN;
} else if (strncmp("available", str, 9) == 0) {
return (int) OperatorStatus::AVAILABLE;
} else if (strncmp("current", str, 9) == 0) {
return (int) OperatorStatus::CURRENT;
} else if (strncmp("forbidden", str, 9) == 0) {
return (int) OperatorStatus::FORBIDDEN;
} else {
return -1;
}
}
int radio_1_6::getAvailableNetworksResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("getAvailableNetworksResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
hidl_vec<OperatorInfo> networks;
if ((response == NULL && responseLen != 0)
|| responseLen % (4 * sizeof(char *))!= 0) {
RLOGE("getAvailableNetworksResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
char **resp = (char **) response;
int numStrings = responseLen / sizeof(char *);
networks.resize(numStrings/4);
for (int i = 0, j = 0; i < numStrings; i = i + 4, j++) {
networks[j].alphaLong = convertCharPtrToHidlString(resp[i]);
networks[j].alphaShort = convertCharPtrToHidlString(resp[i + 1]);
networks[j].operatorNumeric = convertCharPtrToHidlString(resp[i + 2]);
int status = convertOperatorStatusToInt(resp[i + 3]);
if (status == -1) {
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
networks[j].status = (OperatorStatus) status;
}
}
}
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getAvailableNetworksResponse(responseInfo,
networks);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getAvailableNetworksResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::startDtmfResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("startDtmfResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->startDtmfResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("startDtmfResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::stopDtmfResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("stopDtmfResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->stopDtmfResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("stopDtmfResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::getBasebandVersionResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getBasebandVersionResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getBasebandVersionResponse(responseInfo,
convertCharPtrToHidlString((char *) response));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getBasebandVersionResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::separateConnectionResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("separateConnectionResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->separateConnectionResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("separateConnectionResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setMuteResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setMuteResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setMuteResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setMuteResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::getMuteResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("getMuteResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
bool enable = false;
if (response == NULL || responseLen != sizeof(int)) {
RLOGE("getMuteResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
int *pInt = (int *) response;
enable = pInt[0] == 1 ? true : false;
}
Return<void> retStatus = radioService[slotId]->mRadioResponse->getMuteResponse(responseInfo,
enable);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getMuteResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::getClipResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getClipResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
int ret = responseInt(responseInfo, serial, responseType, e, response, responseLen);
Return<void> retStatus = radioService[slotId]->mRadioResponse->getClipResponse(responseInfo,
(ClipStatus) ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getClipResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::getDataCallListResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getDataCallListResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
hidl_vec<SetupDataCallResult> ret;
if ((response == NULL && responseLen != 0)
|| responseLen % sizeof(RIL_Data_Call_Response_v11) != 0) {
RLOGE("getDataCallListResponse: invalid response");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
convertRilDataCallListToHal(response, responseLen, ret);
}
Return<void> retStatus = radioService[slotId]->mRadioResponse->getDataCallListResponse(
responseInfo, ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getDataCallListResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::setSuppServiceNotificationsResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setSuppServiceNotificationsResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setSuppServiceNotificationsResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setSuppServiceNotificationsResponse: radioService[%d]->mRadioResponse "
"== NULL", slotId);
}
return 0;
}
int radio_1_6::deleteSmsOnSimResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("deleteSmsOnSimResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->deleteSmsOnSimResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("deleteSmsOnSimResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::setBandModeResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setBandModeResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setBandModeResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setBandModeResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::writeSmsToSimResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("writeSmsToSimResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
int ret = responseInt(responseInfo, serial, responseType, e, response, responseLen);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->writeSmsToSimResponse(responseInfo, ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("writeSmsToSimResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::getAvailableBandModesResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("getAvailableBandModesResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
hidl_vec<RadioBandMode> modes;
if ((response == NULL && responseLen != 0)|| responseLen % sizeof(int) != 0) {
RLOGE("getAvailableBandModesResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
int *pInt = (int *) response;
int numInts = responseLen / sizeof(int);
modes.resize(numInts);
for (int i = 0; i < numInts; i++) {
modes[i] = (RadioBandMode) pInt[i];
}
}
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getAvailableBandModesResponse(responseInfo,
modes);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getAvailableBandModesResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::sendEnvelopeResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("sendEnvelopeResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->sendEnvelopeResponse(responseInfo,
convertCharPtrToHidlString((char *) response));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("sendEnvelopeResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::sendTerminalResponseToSimResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("sendTerminalResponseToSimResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->sendTerminalResponseToSimResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("sendTerminalResponseToSimResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::handleStkCallSetupRequestFromSimResponse(int slotId,
int responseType, int serial,
RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("handleStkCallSetupRequestFromSimResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->handleStkCallSetupRequestFromSimResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("handleStkCallSetupRequestFromSimResponse: radioService[%d]->mRadioResponse "
"== NULL", slotId);
}
return 0;
}
int radio_1_6::explicitCallTransferResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("explicitCallTransferResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->explicitCallTransferResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("explicitCallTransferResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setPreferredNetworkTypeResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setPreferredNetworkTypeResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setPreferredNetworkTypeResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setPreferredNetworkTypeResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setAllowedNetworkTypeBitmapResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setAllowedNetworkTypeBitmapResponse: serial %d", serial);
#endif
V1_6::RadioResponseInfo responseInfo = {};
populateResponseInfo_1_6(responseInfo, serial, responseType, e);
// If we don't have a radio service, there's nothing we can do
if (radioService[slotId]->mRadioResponseV1_6 == NULL) {
RLOGE("%s: radioService[%d]->mRadioResponseV1_6 == NULL", __FUNCTION__, slotId);
return 0;
}
Return<void> retStatus =
radioService[slotId]->mRadioResponseV1_6->setAllowedNetworkTypeBitmapResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
return 0;
}
int radio_1_6::getPreferredNetworkTypeResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getPreferredNetworkTypeResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
int ret = responseInt(responseInfo, serial, responseType, e, response, responseLen);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getPreferredNetworkTypeResponse(
responseInfo, (PreferredNetworkType) ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getPreferredNetworkTypeResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setPreferredNetworkTypeBitmapResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setPreferredNetworkTypeBitmapResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponseV1_4 != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponseV1_4->setPreferredNetworkTypeBitmapResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setPreferredNetworkTypeBitmapResponse: radioService[%d]->mRadioResponseV1_4 == NULL",
slotId);
}
return 0;
}
int radio_1_6::getPreferredNetworkTypeBitmapResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getPreferredNetworkTypeBitmapResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponseV1_4 != NULL) {
RadioResponseInfo responseInfo = {};
int ret = responseInt(responseInfo, serial, responseType, e, response, responseLen);
Return<void> retStatus
= radioService[slotId]->mRadioResponseV1_4->getPreferredNetworkTypeBitmapResponse(
responseInfo,
(const ::android::hardware::hidl_bitfield<
::android::hardware::radio::V1_4::RadioAccessFamily>) ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getPreferredNetworkTypeBitmapResponse: radioService[%d]->mRadioResponseV1_4 == NULL",
slotId);
}
return 0;
}
int radio_1_6::getNeighboringCidsResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getNeighboringCidsResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
hidl_vec<NeighboringCell> cells;
if ((response == NULL && responseLen != 0)
|| responseLen % sizeof(RIL_NeighboringCell *) != 0) {
RLOGE("getNeighboringCidsResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
int num = responseLen / sizeof(RIL_NeighboringCell *);
cells.resize(num);
for (int i = 0 ; i < num; i++) {
RIL_NeighboringCell *resp = ((RIL_NeighboringCell **) response)[i];
cells[i].cid = convertCharPtrToHidlString(resp->cid);
cells[i].rssi = resp->rssi;
}
}
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getNeighboringCidsResponse(responseInfo,
cells);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getNeighboringCidsResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setLocationUpdatesResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setLocationUpdatesResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setLocationUpdatesResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setLocationUpdatesResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setCdmaSubscriptionSourceResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setCdmaSubscriptionSourceResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setCdmaSubscriptionSourceResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setCdmaSubscriptionSourceResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setCdmaRoamingPreferenceResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setCdmaRoamingPreferenceResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setCdmaRoamingPreferenceResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setCdmaRoamingPreferenceResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::getCdmaRoamingPreferenceResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getCdmaRoamingPreferenceResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
int ret = responseInt(responseInfo, serial, responseType, e, response, responseLen);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getCdmaRoamingPreferenceResponse(
responseInfo, (CdmaRoamingType) ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getCdmaRoamingPreferenceResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setTTYModeResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setTTYModeResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setTTYModeResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setTTYModeResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::getTTYModeResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getTTYModeResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
int ret = responseInt(responseInfo, serial, responseType, e, response, responseLen);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getTTYModeResponse(responseInfo,
(TtyMode) ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getTTYModeResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::setPreferredVoicePrivacyResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setPreferredVoicePrivacyResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setPreferredVoicePrivacyResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setPreferredVoicePrivacyResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::getPreferredVoicePrivacyResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getPreferredVoicePrivacyResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
bool enable = false;
int numInts = responseLen / sizeof(int);
if (response == NULL || numInts != 1) {
RLOGE("getPreferredVoicePrivacyResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
int *pInt = (int *) response;
enable = pInt[0] == 1 ? true : false;
}
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getPreferredVoicePrivacyResponse(
responseInfo, enable);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getPreferredVoicePrivacyResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::sendCDMAFeatureCodeResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("sendCDMAFeatureCodeResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->sendCDMAFeatureCodeResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("sendCDMAFeatureCodeResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::sendBurstDtmfResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("sendBurstDtmfResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->sendBurstDtmfResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("sendBurstDtmfResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::sendCdmaSmsResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("sendCdmaSmsResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponseV1_6 != NULL) {
::android::hardware::radio::V1_6::RadioResponseInfo responseInfo_1_6 = {};
SendSmsResult result = makeSendSmsResult_1_6(responseInfo_1_6, serial, responseType, e,
response, responseLen);
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_6
->sendCdmaSmsResponse_1_6(responseInfo_1_6, result);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
SendSmsResult result = makeSendSmsResult(responseInfo, serial, responseType, e, response,
responseLen);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->sendCdmaSmsResponse(responseInfo, result);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("sendCdmaSmsResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::acknowledgeLastIncomingCdmaSmsResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("acknowledgeLastIncomingCdmaSmsResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->acknowledgeLastIncomingCdmaSmsResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("acknowledgeLastIncomingCdmaSmsResponse: radioService[%d]->mRadioResponse "
"== NULL", slotId);
}
return 0;
}
int radio_1_6::getGsmBroadcastConfigResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getGsmBroadcastConfigResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
hidl_vec<GsmBroadcastSmsConfigInfo> configs;
if ((response == NULL && responseLen != 0)
|| responseLen % sizeof(RIL_GSM_BroadcastSmsConfigInfo *) != 0) {
RLOGE("getGsmBroadcastConfigResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
int num = responseLen / sizeof(RIL_GSM_BroadcastSmsConfigInfo *);
configs.resize(num);
for (int i = 0 ; i < num; i++) {
RIL_GSM_BroadcastSmsConfigInfo *resp =
((RIL_GSM_BroadcastSmsConfigInfo **) response)[i];
configs[i].fromServiceId = resp->fromServiceId;
configs[i].toServiceId = resp->toServiceId;
configs[i].fromCodeScheme = resp->fromCodeScheme;
configs[i].toCodeScheme = resp->toCodeScheme;
configs[i].selected = resp->selected == 1 ? true : false;
}
}
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getGsmBroadcastConfigResponse(responseInfo,
configs);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getGsmBroadcastConfigResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setGsmBroadcastConfigResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setGsmBroadcastConfigResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setGsmBroadcastConfigResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setGsmBroadcastConfigResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setGsmBroadcastActivationResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setGsmBroadcastActivationResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setGsmBroadcastActivationResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setGsmBroadcastActivationResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::getCdmaBroadcastConfigResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getCdmaBroadcastConfigResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
hidl_vec<CdmaBroadcastSmsConfigInfo> configs;
if ((response == NULL && responseLen != 0)
|| responseLen % sizeof(RIL_CDMA_BroadcastSmsConfigInfo *) != 0) {
RLOGE("getCdmaBroadcastConfigResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
int num = responseLen / sizeof(RIL_CDMA_BroadcastSmsConfigInfo *);
configs.resize(num);
for (int i = 0 ; i < num; i++) {
RIL_CDMA_BroadcastSmsConfigInfo *resp =
((RIL_CDMA_BroadcastSmsConfigInfo **) response)[i];
configs[i].serviceCategory = resp->service_category;
configs[i].language = resp->language;
configs[i].selected = resp->selected == 1 ? true : false;
}
}
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getCdmaBroadcastConfigResponse(responseInfo,
configs);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getCdmaBroadcastConfigResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setCdmaBroadcastConfigResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setCdmaBroadcastConfigResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setCdmaBroadcastConfigResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setCdmaBroadcastConfigResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setCdmaBroadcastActivationResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setCdmaBroadcastActivationResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setCdmaBroadcastActivationResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setCdmaBroadcastActivationResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::getCDMASubscriptionResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("getCDMASubscriptionResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
int numStrings = responseLen / sizeof(char *);
hidl_string emptyString;
if (response == NULL || numStrings != 5) {
RLOGE("getOperatorResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getCDMASubscriptionResponse(
responseInfo, emptyString, emptyString, emptyString, emptyString, emptyString);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
char **resp = (char **) response;
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getCDMASubscriptionResponse(
responseInfo,
convertCharPtrToHidlString(resp[0]),
convertCharPtrToHidlString(resp[1]),
convertCharPtrToHidlString(resp[2]),
convertCharPtrToHidlString(resp[3]),
convertCharPtrToHidlString(resp[4]));
radioService[slotId]->checkReturnStatus(retStatus);
}
} else {
RLOGE("getCDMASubscriptionResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::writeSmsToRuimResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("writeSmsToRuimResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
int ret = responseInt(responseInfo, serial, responseType, e, response, responseLen);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->writeSmsToRuimResponse(responseInfo, ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("writeSmsToRuimResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::deleteSmsOnRuimResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("deleteSmsOnRuimResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->deleteSmsOnRuimResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("deleteSmsOnRuimResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::getDeviceIdentityResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("getDeviceIdentityResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
int numStrings = responseLen / sizeof(char *);
hidl_string emptyString;
if (response == NULL || numStrings != 4) {
RLOGE("getDeviceIdentityResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getDeviceIdentityResponse(responseInfo,
emptyString, emptyString, emptyString, emptyString);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
char **resp = (char **) response;
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getDeviceIdentityResponse(responseInfo,
convertCharPtrToHidlString(resp[0]),
convertCharPtrToHidlString(resp[1]),
convertCharPtrToHidlString(resp[2]),
convertCharPtrToHidlString(resp[3]));
radioService[slotId]->checkReturnStatus(retStatus);
}
} else {
RLOGE("getDeviceIdentityResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::exitEmergencyCallbackModeResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("exitEmergencyCallbackModeResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->exitEmergencyCallbackModeResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("exitEmergencyCallbackModeResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::getSmscAddressResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getSmscAddressResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getSmscAddressResponse(responseInfo,
convertCharPtrToHidlString((char *) response));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getSmscAddressResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::setSmscAddressResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setSmscAddressResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setSmscAddressResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setSmscAddressResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::reportSmsMemoryStatusResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("reportSmsMemoryStatusResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->reportSmsMemoryStatusResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("reportSmsMemoryStatusResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::reportStkServiceIsRunningResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("reportStkServiceIsRunningResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus = radioService[slotId]->mRadioResponse->
reportStkServiceIsRunningResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("reportStkServiceIsRunningResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::getCdmaSubscriptionSourceResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getCdmaSubscriptionSourceResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
int ret = responseInt(responseInfo, serial, responseType, e, response, responseLen);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getCdmaSubscriptionSourceResponse(
responseInfo, (CdmaSubscriptionSource) ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getCdmaSubscriptionSourceResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::requestIsimAuthenticationResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("requestIsimAuthenticationResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->requestIsimAuthenticationResponse(
responseInfo,
convertCharPtrToHidlString((char *) response));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("requestIsimAuthenticationResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::acknowledgeIncomingGsmSmsWithPduResponse(int slotId,
int responseType,
int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("acknowledgeIncomingGsmSmsWithPduResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->acknowledgeIncomingGsmSmsWithPduResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("acknowledgeIncomingGsmSmsWithPduResponse: radioService[%d]->mRadioResponse "
"== NULL", slotId);
}
return 0;
}
int radio_1_6::sendEnvelopeWithStatusResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("sendEnvelopeWithStatusResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
IccIoResult result = responseIccIo(responseInfo, serial, responseType, e,
response, responseLen);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->sendEnvelopeWithStatusResponse(responseInfo,
result);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("sendEnvelopeWithStatusResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::getVoiceRadioTechnologyResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getVoiceRadioTechnologyResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
int ret = responseInt(responseInfo, serial, responseType, e, response, responseLen);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getVoiceRadioTechnologyResponse(
responseInfo, (RadioTechnology) ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getVoiceRadioTechnologyResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::getCellInfoListResponse(int slotId,
int responseType,
int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("getCellInfoListResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL ||
radioService[slotId]->mRadioResponseV1_2 != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus;
hidl_vec<CellInfo> ret;
if ((response == NULL && responseLen != 0)
|| responseLen % sizeof(RIL_CellInfo_v12) != 0) {
RLOGE("getCellInfoListResponse: Invalid response");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
if (radioService[slotId]->mRadioResponseV1_2 != NULL) {
hidl_vec<V1_2::CellInfo> ret;
retStatus = radioService[slotId]->mRadioResponseV1_2->
getCellInfoListResponse_1_2(responseInfo, ret);
} else {
hidl_vec<CellInfo> ret;
retStatus = radioService[slotId]->mRadioResponse->
getCellInfoListResponse(responseInfo, ret);
}
} else {
if (radioService[slotId]->mRadioResponseV1_2 != NULL) {
hidl_vec<V1_2::CellInfo> ret;
convertRilCellInfoListToHal_1_2(response, responseLen, ret);
retStatus = radioService[slotId]->mRadioResponseV1_2->
getCellInfoListResponse_1_2(responseInfo, ret);
} else {
hidl_vec<CellInfo> ret;
convertRilCellInfoListToHal(response, responseLen, ret);
retStatus = radioService[slotId]->mRadioResponse->
getCellInfoListResponse(responseInfo, ret);
}
}
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getCellInfoListResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::setCellInfoListRateResponse(int slotId,
int responseType,
int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("setCellInfoListRateResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setCellInfoListRateResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setCellInfoListRateResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setInitialAttachApnResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setInitialAttachApnResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponseV1_5 != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponseV1_5->setInitialAttachApnResponse_1_5(
responseInfo);
} else if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setInitialAttachApnResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setInitialAttachApnResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::getImsRegistrationStateResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getImsRegistrationStateResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
bool isRegistered = false;
int ratFamily = 0;
int numInts = responseLen / sizeof(int);
if (response == NULL || numInts != 2) {
RLOGE("getImsRegistrationStateResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
int *pInt = (int *) response;
isRegistered = pInt[0] == 1 ? true : false;
ratFamily = pInt[1];
}
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getImsRegistrationStateResponse(
responseInfo, isRegistered, (RadioTechnologyFamily) ratFamily);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getImsRegistrationStateResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::sendImsSmsResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("sendImsSmsResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
SendSmsResult result = makeSendSmsResult(responseInfo, serial, responseType, e, response,
responseLen);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->sendImsSmsResponse(responseInfo, result);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("sendSmsResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::iccTransmitApduBasicChannelResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("iccTransmitApduBasicChannelResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
IccIoResult result = responseIccIo(responseInfo, serial, responseType, e, response,
responseLen);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->iccTransmitApduBasicChannelResponse(
responseInfo, result);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("iccTransmitApduBasicChannelResponse: radioService[%d]->mRadioResponse "
"== NULL", slotId);
}
return 0;
}
int radio_1_6::iccOpenLogicalChannelResponse(int slotId,
int responseType, int serial, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("iccOpenLogicalChannelResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
int channelId = -1;
hidl_vec<int8_t> selectResponse;
int numInts = responseLen / sizeof(int);
if (response == NULL || responseLen % sizeof(int) != 0) {
RLOGE("iccOpenLogicalChannelResponse Invalid response: NULL");
if (response != NULL) {
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
}
} else {
int *pInt = (int *) response;
channelId = pInt[0];
selectResponse.resize(numInts - 1);
for (int i = 1; i < numInts; i++) {
selectResponse[i - 1] = (int8_t) pInt[i];
}
}
Return<void> retStatus
= radioService[slotId]->mRadioResponse->iccOpenLogicalChannelResponse(responseInfo,
channelId, selectResponse);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("iccOpenLogicalChannelResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::iccCloseLogicalChannelResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("iccCloseLogicalChannelResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->iccCloseLogicalChannelResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("iccCloseLogicalChannelResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::iccTransmitApduLogicalChannelResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("iccTransmitApduLogicalChannelResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
IccIoResult result = responseIccIo(responseInfo, serial, responseType, e, response,
responseLen);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->iccTransmitApduLogicalChannelResponse(
responseInfo, result);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("iccTransmitApduLogicalChannelResponse: radioService[%d]->mRadioResponse "
"== NULL", slotId);
}
return 0;
}
int radio_1_6::nvReadItemResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("nvReadItemResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus = radioService[slotId]->mRadioResponse->nvReadItemResponse(
responseInfo,
convertCharPtrToHidlString((char *) response));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("nvReadItemResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::nvWriteItemResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("nvWriteItemResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->nvWriteItemResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("nvWriteItemResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::nvWriteCdmaPrlResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("nvWriteCdmaPrlResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->nvWriteCdmaPrlResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("nvWriteCdmaPrlResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::nvResetConfigResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("nvResetConfigResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->nvResetConfigResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("nvResetConfigResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::setUiccSubscriptionResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setUiccSubscriptionResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setUiccSubscriptionResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setUiccSubscriptionResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setDataAllowedResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setDataAllowedResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setDataAllowedResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setDataAllowedResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::getHardwareConfigResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getHardwareConfigResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
hidl_vec<HardwareConfig> result;
if ((response == NULL && responseLen != 0)
|| responseLen % sizeof(RIL_HardwareConfig) != 0) {
RLOGE("hardwareConfigChangedInd: invalid response");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
convertRilHardwareConfigListToHal(response, responseLen, result);
}
Return<void> retStatus = radioService[slotId]->mRadioResponse->getHardwareConfigResponse(
responseInfo, result);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getHardwareConfigResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::requestIccSimAuthenticationResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("requestIccSimAuthenticationResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
IccIoResult result = responseIccIo(responseInfo, serial, responseType, e, response,
responseLen);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->requestIccSimAuthenticationResponse(
responseInfo, result);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("requestIccSimAuthenticationResponse: radioService[%d]->mRadioResponse "
"== NULL", slotId);
}
return 0;
}
int radio_1_6::setDataProfileResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setDataProfileResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponseV1_5 != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponseV1_5->setDataProfileResponse_1_5(
responseInfo);
} else if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->setDataProfileResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setDataProfileResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::requestShutdownResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("requestShutdownResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->requestShutdownResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("requestShutdownResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
void responseRadioCapability(RadioResponseInfo& responseInfo, int serial,
int responseType, RIL_Errno e, void *response, size_t responseLen, RadioCapability& rc) {
populateResponseInfo(responseInfo, serial, responseType, e);
if (response == NULL || responseLen != sizeof(RIL_RadioCapability)) {
RLOGE("responseRadioCapability: Invalid response");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
rc.logicalModemUuid = hidl_string();
} else {
convertRilRadioCapabilityToHal(response, responseLen, rc);
}
}
int radio_1_6::getRadioCapabilityResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getRadioCapabilityResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
RadioCapability result = {};
responseRadioCapability(responseInfo, serial, responseType, e, response, responseLen,
result);
Return<void> retStatus = radioService[slotId]->mRadioResponse->getRadioCapabilityResponse(
responseInfo, result);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getRadioCapabilityResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::setRadioCapabilityResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setRadioCapabilityResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
RadioCapability result = {};
responseRadioCapability(responseInfo, serial, responseType, e, response, responseLen,
result);
Return<void> retStatus = radioService[slotId]->mRadioResponse->setRadioCapabilityResponse(
responseInfo, result);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setRadioCapabilityResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
LceStatusInfo responseLceStatusInfo(RadioResponseInfo& responseInfo, int serial, int responseType,
RIL_Errno e, void *response, size_t responseLen) {
populateResponseInfo(responseInfo, serial, responseType, e);
LceStatusInfo result = {};
if (response == NULL || responseLen != sizeof(RIL_LceStatusInfo)) {
RLOGE("Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
RIL_LceStatusInfo *resp = (RIL_LceStatusInfo *) response;
result.lceStatus = (LceStatus) resp->lce_status;
result.actualIntervalMs = (uint8_t) resp->actual_interval_ms;
}
return result;
}
int radio_1_6::startLceServiceResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("startLceServiceResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
LceStatusInfo result = responseLceStatusInfo(responseInfo, serial, responseType, e,
response, responseLen);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->startLceServiceResponse(responseInfo,
result);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("startLceServiceResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::stopLceServiceResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("stopLceServiceResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
LceStatusInfo result = responseLceStatusInfo(responseInfo, serial, responseType, e,
response, responseLen);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->stopLceServiceResponse(responseInfo,
result);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("stopLceServiceResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::pullLceDataResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("pullLceDataResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
LceDataInfo result = {};
if (response == NULL || responseLen != sizeof(RIL_LceDataInfo)) {
RLOGE("pullLceDataResponse: Invalid response");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
convertRilLceDataInfoToHal(response, responseLen, result);
}
Return<void> retStatus = radioService[slotId]->mRadioResponse->pullLceDataResponse(
responseInfo, result);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("pullLceDataResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::getModemActivityInfoResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getModemActivityInfoResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
ActivityStatsInfo info;
if (response == NULL || responseLen != sizeof(RIL_ActivityStatsInfo)) {
RLOGE("getModemActivityInfoResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
RIL_ActivityStatsInfo *resp = (RIL_ActivityStatsInfo *)response;
info.sleepModeTimeMs = resp->sleep_mode_time_ms;
info.idleModeTimeMs = resp->idle_mode_time_ms;
for(int i = 0; i < RIL_NUM_TX_POWER_LEVELS; i++) {
info.txmModetimeMs[i] = resp->tx_mode_time_ms[i];
}
info.rxModeTimeMs = resp->rx_mode_time_ms;
}
Return<void> retStatus
= radioService[slotId]->mRadioResponse->getModemActivityInfoResponse(responseInfo,
info);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getModemActivityInfoResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setAllowedCarriersResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setAllowedCarriersResponse: serial %d", serial);
#endif
RadioResponseInfo responseInfo = {};
if (radioService[slotId]->mRadioResponseV1_4 != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_4
->setAllowedCarriersResponse_1_4(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponse != NULL) {
int ret = responseInt(responseInfo, serial, responseType, e, response, responseLen);
Return<void> retStatus = radioService[slotId]->mRadioResponse
->setAllowedCarriersResponse(responseInfo, ret);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setAllowedCarriersResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
void prepareCarrierRestrictionsResponse(hidl_vec<Carrier>& allowedCarriers,
hidl_vec<Carrier>& excludedCarriers,
bool& allAllowed,
const RIL_CarrierRestrictions* pCr) {
if (pCr->len_allowed_carriers > 0 || pCr->len_excluded_carriers > 0) {
allAllowed = false;
}
allowedCarriers.resize(pCr->len_allowed_carriers);
for(int i = 0; i < pCr->len_allowed_carriers; i++) {
RIL_Carrier *carrier = pCr->allowed_carriers + i;
allowedCarriers[i].mcc = convertCharPtrToHidlString(carrier->mcc);
allowedCarriers[i].mnc = convertCharPtrToHidlString(carrier->mnc);
allowedCarriers[i].matchType = (CarrierMatchType) carrier->match_type;
allowedCarriers[i].matchData =
convertCharPtrToHidlString(carrier->match_data);
}
excludedCarriers.resize(pCr->len_excluded_carriers);
for(int i = 0; i < pCr->len_excluded_carriers; i++) {
RIL_Carrier *carrier = pCr->excluded_carriers + i;
excludedCarriers[i].mcc = convertCharPtrToHidlString(carrier->mcc);
excludedCarriers[i].mnc = convertCharPtrToHidlString(carrier->mnc);
excludedCarriers[i].matchType = (CarrierMatchType) carrier->match_type;
excludedCarriers[i].matchData =
convertCharPtrToHidlString(carrier->match_data);
}
}
int radio_1_6::getAllowedCarriersResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("getAllowedCarriersResponse: serial %d", serial);
#endif
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
if (radioService[slotId]->mRadioResponseV1_4 != NULL) {
V1_4::CarrierRestrictionsWithPriority carrierInfo = {};
V1_4::SimLockMultiSimPolicy multiSimPolicy =
V1_4::SimLockMultiSimPolicy::NO_MULTISIM_POLICY;
bool allAllowed = true;
if (response == NULL) {
#if VDBG
RLOGD("getAllowedCarriersResponse response is NULL: all allowed");
#endif
carrierInfo.allowedCarriers.resize(0);
carrierInfo.excludedCarriers.resize(0);
carrierInfo.allowedCarriersPrioritized = false;
} else if (responseLen != sizeof(RIL_CarrierRestrictionsWithPriority)) {
RLOGE("getAllowedCarriersResponse Invalid response");
if (e == RIL_E_SUCCESS) {
responseInfo.error = RadioError::INVALID_RESPONSE;
}
} else {
RIL_CarrierRestrictionsWithPriority *pCrExt =
(RIL_CarrierRestrictionsWithPriority *)response;
// Convert into the structure used in IRadio 1.0 to re-use existing code
RIL_CarrierRestrictions cr = {};
cr.len_allowed_carriers = pCrExt->len_allowed_carriers;
cr.len_excluded_carriers = pCrExt->len_excluded_carriers;
cr.allowed_carriers = pCrExt->allowed_carriers;
cr.excluded_carriers = pCrExt->excluded_carriers;
prepareCarrierRestrictionsResponse(carrierInfo.allowedCarriers,
carrierInfo.excludedCarriers, allAllowed, &cr);
carrierInfo.allowedCarriersPrioritized = (bool)pCrExt->allowedCarriersPrioritized;
multiSimPolicy = (V1_4::SimLockMultiSimPolicy)pCrExt->multiSimPolicy;
}
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_4
->getAllowedCarriersResponse_1_4(responseInfo, carrierInfo, multiSimPolicy);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponse != NULL) {
CarrierRestrictions carrierInfo = {};
bool allAllowed = true;
if (response == NULL) {
#if VDBG
RLOGD("getAllowedCarriersResponse response is NULL: all allowed");
#endif
carrierInfo.allowedCarriers.resize(0);
carrierInfo.excludedCarriers.resize(0);
} else if (responseLen != sizeof(RIL_CarrierRestrictions)) {
RLOGE("getAllowedCarriersResponse Invalid response");
if (e == RIL_E_SUCCESS) {
responseInfo.error = RadioError::INVALID_RESPONSE;
}
} else {
RIL_CarrierRestrictions *pCr = (RIL_CarrierRestrictions *)response;
prepareCarrierRestrictionsResponse(carrierInfo.allowedCarriers,
carrierInfo.excludedCarriers, allAllowed, pCr);
}
Return<void> retStatus = radioService[slotId]->mRadioResponse
->getAllowedCarriersResponse(responseInfo, allAllowed, carrierInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getAllowedCarriersResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::sendDeviceStateResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responselen) {
#if VDBG
RLOGD("sendDeviceStateResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponse->sendDeviceStateResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("sendDeviceStateResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::setCarrierInfoForImsiEncryptionResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
RLOGD("setCarrierInfoForImsiEncryptionResponse: serial %d", serial);
if (radioService[slotId]->mRadioResponseV1_1 != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_1->
setCarrierInfoForImsiEncryptionResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setCarrierInfoForImsiEncryptionResponse: radioService[%d]->mRadioResponseV1_1 == "
"NULL", slotId);
}
return 0;
}
int radio_1_6::setIndicationFilterResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responselen) {
#if VDBG
RLOGD("setIndicationFilterResponse: serial %d", serial);
#endif
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
if (radioService[slotId]->mRadioResponseV1_5 != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_5
->setIndicationFilterResponse_1_5(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponse != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponse
->setIndicationFilterResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setIndicationFilterResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::setSimCardPowerResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("setSimCardPowerResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponse != NULL
|| radioService[slotId]->mRadioResponseV1_1 != NULL
|| radioService[slotId]->mRadioResponseV1_6 != NULL) {
if (radioService[slotId]->mRadioResponseV1_6 != NULL) {
::android::hardware::radio::V1_6::RadioResponseInfo responseInfo = {};
populateResponseInfo_1_6(responseInfo, serial, responseType, e);
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_6->
setSimCardPowerResponse_1_6(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponseV1_1 != NULL) {
RLOGD("setSimCardPowerResponse: radioService[%d]->mRadioResponseV1_6 == NULL", slotId);
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_1->
setSimCardPowerResponse_1_1(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGD("setSimCardPowerResponse: radioService[%d]->mRadioResponseV1_6 and V1_1 == NULL",
slotId);
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus = radioService[slotId]->mRadioResponse
->setSimCardPowerResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
}
} else {
RLOGE("setSimCardPowerResponse: radioService[%d]->mRadioResponse == NULL && "
"radioService[%d]->mRadioResponseV1_1 and V1_6 == NULL", slotId, slotId);
}
return 0;
}
int radio_1_6::startNetworkScanResponse(int slotId, int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("startNetworkScanResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponseV1_1 != NULL ||
radioService[slotId]->mRadioResponseV1_2 != NULL ||
radioService[slotId]->mRadioResponseV1_4 != NULL ||
radioService[slotId]->mRadioResponseV1_6 != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
if (radioService[slotId]->mRadioResponseV1_6 != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_6
->startNetworkScanResponse_1_5(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponseV1_4 != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_4
->startNetworkScanResponse_1_4(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponseV1_2 != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_2
->startNetworkScanResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponseV1_1 != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_1
->startNetworkScanResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("startNetworkScanResponse: radioService[%d]->mRadioResponseV1_1 == NULL or "
"radioService[%d]->mRadioResponseV1_4 == NULL", slotId, slotId);
}
}
return 0;
}
int radio_1_6::stopNetworkScanResponse(int slotId, int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("stopNetworkScanResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponseV1_1 != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponseV1_1->stopNetworkScanResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("stopNetworkScanResponse: radioService[%d]->mRadioResponseV1_1 == NULL", slotId);
}
return 0;
}
int radio_1_6::emergencyDialResponse(int slotId, int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("emergencyDialResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponseV1_4 != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
Return<void> retStatus
= radioService[slotId]->mRadioResponseV1_4->emergencyDialResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("emergencyDialResponse: radioService[%d]->mRadioResponseV1_4 == NULL", slotId);
}
return 0;
}
void convertRilKeepaliveStatusToHal(const RIL_KeepaliveStatus *rilStatus,
V1_1::KeepaliveStatus& halStatus) {
halStatus.sessionHandle = rilStatus->sessionHandle;
halStatus.code = static_cast<V1_1::KeepaliveStatusCode>(rilStatus->code);
}
int radio_1_6::startKeepaliveResponse(int slotId, int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("%s(): %d", __FUNCTION__, serial);
#endif
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
// If we don't have a radio service, there's nothing we can do
if (radioService[slotId]->mRadioResponseV1_1 == NULL) {
RLOGE("%s: radioService[%d]->mRadioResponseV1_1 == NULL", __FUNCTION__, slotId);
return 0;
}
V1_1::KeepaliveStatus ks = {};
if (response == NULL || responseLen != sizeof(V1_1::KeepaliveStatus)) {
RLOGE("%s: invalid response - %d", __FUNCTION__, static_cast<int>(e));
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
convertRilKeepaliveStatusToHal(static_cast<RIL_KeepaliveStatus*>(response), ks);
}
Return<void> retStatus =
radioService[slotId]->mRadioResponseV1_1->startKeepaliveResponse(responseInfo, ks);
radioService[slotId]->checkReturnStatus(retStatus);
return 0;
}
int radio_1_6::stopKeepaliveResponse(int slotId, int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("%s(): %d", __FUNCTION__, serial);
#endif
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
// If we don't have a radio service, there's nothing we can do
if (radioService[slotId]->mRadioResponseV1_1 == NULL) {
RLOGE("%s: radioService[%d]->mRadioResponseV1_1 == NULL", __FUNCTION__, slotId);
return 0;
}
Return<void> retStatus =
radioService[slotId]->mRadioResponseV1_1->stopKeepaliveResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
return 0;
}
int radio_1_6::getModemStackStatusResponse(int slotId, int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("%s(): %d", __FUNCTION__, serial);
#endif
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
// If we don't have a radio service, there's nothing we can do
if (radioService[slotId]->mRadioResponseV1_3 == NULL) {
RLOGE("%s: radioService[%d]->mRadioResponseV1_3 == NULL", __FUNCTION__, slotId);
return 0;
}
Return<void> retStatus =
radioService[slotId]->mRadioResponseV1_3->getModemStackStatusResponse(
responseInfo, true);
radioService[slotId]->checkReturnStatus(retStatus);
return 0;
}
int radio_1_6::enableModemResponse(int slotId, int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("%s(): %d", __FUNCTION__, serial);
#endif
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
// If we don't have a radio service, there's nothing we can do
if (radioService[slotId]->mRadioResponseV1_3 == NULL) {
RLOGE("%s: radioService[%d]->mRadioResponseV1_3 == NULL", __FUNCTION__, slotId);
return 0;
}
Return<void> retStatus =
radioService[slotId]->mRadioResponseV1_3->enableModemResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
return 0;
}
int radio_1_6::sendRequestRawResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("sendRequestRawResponse: serial %d", serial);
#endif
if (!kOemHookEnabled) return 0;
if (oemHookService[slotId]->mOemHookResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
hidl_vec<uint8_t> data;
if (response == NULL) {
RLOGE("sendRequestRawResponse: Invalid response");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
data.setToExternal((uint8_t *) response, responseLen);
}
Return<void> retStatus = oemHookService[slotId]->mOemHookResponse->
sendRequestRawResponse(responseInfo, data);
checkReturnStatus(slotId, retStatus, false);
} else {
RLOGE("sendRequestRawResponse: oemHookService[%d]->mOemHookResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::sendRequestStringsResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("sendRequestStringsResponse: serial %d", serial);
#endif
if (!kOemHookEnabled) return 0;
if (oemHookService[slotId]->mOemHookResponse != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
hidl_vec<hidl_string> data;
if ((response == NULL && responseLen != 0) || responseLen % sizeof(char *) != 0) {
RLOGE("sendRequestStringsResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
char **resp = (char **) response;
int numStrings = responseLen / sizeof(char *);
data.resize(numStrings);
for (int i = 0; i < numStrings; i++) {
data[i] = convertCharPtrToHidlString(resp[i]);
}
}
Return<void> retStatus
= oemHookService[slotId]->mOemHookResponse->sendRequestStringsResponse(
responseInfo, data);
checkReturnStatus(slotId, retStatus, false);
} else {
RLOGE("sendRequestStringsResponse: oemHookService[%d]->mOemHookResponse == "
"NULL", slotId);
}
return 0;
}
int radio_1_6::setSystemSelectionChannelsResponse(int slotId, int responseType, int serial,
RIL_Errno e, void* response, size_t responseLen) {
#if VDBG
RLOGD("setSystemSelectionChannelsResponse: serial %d", serial);
#endif
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
if (radioService[slotId]->mRadioResponseV1_5 != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_5
->setSystemSelectionChannelsResponse_1_5(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponseV1_3 != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_3
->setSystemSelectionChannelsResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setSystemSelectionChannelsResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::getSystemSelectionChannelsResponse(int slotId, int responseType, int serial,
RIL_Errno e, void* response, size_t responseLen) {
#if VDBG
RLOGD("getSystemSelectionChannelsResponse: serial %d", serial);
#endif
V1_6::RadioResponseInfo responseInfo = {};
populateResponseInfo_1_6(responseInfo, serial, responseType, e);
if (radioService[slotId]->mRadioResponseV1_6 != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_6
->getSystemSelectionChannelsResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getSystemSelectionChannelsResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
return 0;
}
int radio_1_6::setSignalStrengthReportingCriteriaResponse(int slotId, int responseType, int serial,
RIL_Errno e, void* response, size_t responseLen) {
#if VDBG
RLOGD("setSignalStrengthReportingCriteriaResponse: serial %d", serial);
#endif
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
if (radioService[slotId]->mRadioResponseV1_5 != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_5
->setSignalStrengthReportingCriteriaResponse_1_5(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponseV1_2 != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_2
->setSignalStrengthReportingCriteriaResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setSignalStrengthReportingCriteriaResponse: radioService[%d]->mRadioResponse "
"== NULL", slotId);
}
return 0;
}
int radio_1_6::setLinkCapacityReportingCriteriaResponse(int slotId, int responseType, int serial,
RIL_Errno e, void* response, size_t responseLen) {
#if VDBG
RLOGD("setLinkCapacityReportingCriteriaResponse: serial %d", serial);
#endif
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
if (radioService[slotId]->mRadioResponseV1_5 != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_5
->setLinkCapacityReportingCriteriaResponse_1_5(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponseV1_2 != NULL) {
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_2
->setLinkCapacityReportingCriteriaResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("setLinkCapacityReportingCriteriaResponse: radioService[%d]->mRadioResponse "
"== NULL", slotId);
}
return 0;
}
int radio_1_6::enableUiccApplicationsResponse(int slotId, int responseType, int serial,
RIL_Errno e, void* /* response */, size_t responseLen) {
#if VDBG
RLOGD("%s(): %d", __FUNCTION__, serial);
#endif
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
// If we don't have a radio service, there's nothing we can do
if (radioService[slotId]->mRadioResponseV1_5 == NULL) {
RLOGE("%s: radioService[%d]->mRadioResponseV1_5 == NULL", __FUNCTION__, slotId);
return 0;
}
Return<void> retStatus =
radioService[slotId]->mRadioResponseV1_5->enableUiccApplicationsResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
return 0;
}
int radio_1_6::areUiccApplicationsEnabledResponse(int slotId, int responseType, int serial,
RIL_Errno e, void* response, size_t responseLen) {
#if VDBG
RLOGD("%s(): %d", __FUNCTION__, serial);
#endif
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
// If we don't have a radio service, there's nothing we can do
if (radioService[slotId]->mRadioResponseV1_5 == NULL) {
RLOGE("%s: radioService[%d]->mRadioResponseV1_5 == NULL", __FUNCTION__, slotId);
return 0;
}
bool enable = false;
if (response == NULL || responseLen != sizeof(bool)) {
RLOGE("isSimDetachedFromNetwork Invalid response.");
} else {
enable = (*((bool *) response));
}
Return<void> retStatus =
radioService[slotId]->mRadioResponseV1_5->areUiccApplicationsEnabledResponse(
responseInfo, enable);
radioService[slotId]->checkReturnStatus(retStatus);
return 0;
}
int radio_1_6::getBarringInfoResponse(int slotId,
int responseType, int serial, RIL_Errno e,
void *response, size_t responselen) {
#if VDBG
RLOGD("getBarringInfoResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponseV1_5 != NULL) {
RadioResponseInfo responseInfo = {};
populateResponseInfo(responseInfo, serial, responseType, e);
::android::hardware::radio::V1_5::CellIdentity cellIdentity;
hidl_vec<::android::hardware::radio::V1_5::BarringInfo> barringInfos = {};
if (response == NULL) { /* data for vts */
V1_5::BarringInfo barringInfo = {};
barringInfo.serviceType = V1_5::BarringInfo::ServiceType::CS_SERVICE;
barringInfo.barringType = V1_5::BarringInfo::BarringType::NONE;
V1_5::CellIdentityLte cellIdentityLte = {};
cellIdentity.lte(cellIdentityLte);
barringInfos.resize(1);
barringInfos[0] = barringInfo;
Return<void> retStatus
= radioService[slotId]->mRadioResponseV1_5->
getBarringInfoResponse(responseInfo, cellIdentity, barringInfos);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("getBarringInfoResponse: radioService[%d]->mRadioResponse == NULL",
slotId);
}
}
return 0;
}
int radio_1_6::sendCdmaSmsExpectMoreResponse(int slotId, int responseType, int serial, RIL_Errno e,
void *response, size_t responseLen) {
#if VDBG
RLOGD("sendCdmaSmsExpectMoreResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponseV1_6 != NULL) {
::android::hardware::radio::V1_6::RadioResponseInfo responseInfo_1_6 = {};
SendSmsResult result = makeSendSmsResult_1_6(responseInfo_1_6, serial, responseType, e,
response, responseLen);
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_6
->sendCdmaSmsExpectMoreResponse_1_6(responseInfo_1_6, result);
radioService[slotId]->checkReturnStatus(retStatus);
} else if (radioService[slotId]->mRadioResponseV1_5 != NULL) {
RadioResponseInfo responseInfo = {};
SendSmsResult result = makeSendSmsResult(responseInfo, serial, responseType, e, response,
responseLen);
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_5
->sendCdmaSmsExpectMoreResponse(responseInfo, result);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("sendCdmaSmsExpectMoreResponse: radioService[%d]->mRadioResponse == NULL", slotId);
}
return 0;
}
int radio_1_6::supplySimDepersonalizationResponse(int slotId, int responseType, int serial,
RIL_Errno e, void *response, size_t responseLen) {
#if VDBG
RLOGD("supplySimDepersonalizationResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponseV1_5 != NULL) {
RadioResponseInfo responseInfo = {};
int persoType = -1, remainingRetries = -1;
int numInts = responseLen / sizeof(int);
if (response == NULL || numInts != 2) {
RLOGE("getClirResponse Invalid response: NULL");
if (e == RIL_E_SUCCESS) responseInfo.error = RadioError::INVALID_RESPONSE;
} else {
int *pInt = (int *) response;
persoType = pInt[0];
remainingRetries = pInt[1];
}
Return<void> retStatus = radioService[slotId]->mRadioResponseV1_5
->supplySimDepersonalizationResponse(responseInfo, (V1_5::PersoSubstate) persoType,
remainingRetries);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("supplySimDepersonalizationResponse: radioService[%d]->mRadioResponseV1_5 == "
"NULL", slotId);
}
return 0;
}
int radio_1_6::setNrDualConnectivityStateResponse(int slotId, int responseType, int serial,
RIL_Errno e, void* /* response */, size_t responseLen) {
#if VDBG
RLOGD("%s(): %d", __FUNCTION__, serial);
#endif
V1_6::RadioResponseInfo responseInfo = {};
populateResponseInfo_1_6(responseInfo, serial, responseType, e);
// If we don't have a radio service, there's nothing we can do
if (radioService[slotId]->mRadioResponseV1_6 == NULL) {
RLOGE("%s: radioService[%d]->mRadioResponseV1_6 == NULL", __FUNCTION__, slotId);
return 0;
}
Return<void> retStatus =
radioService[slotId]->mRadioResponseV1_6->setNrDualConnectivityStateResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
return 0;
}
int radio_1_6::isNrDualConnectivityEnabledResponse(int slotId, int responseType, int serial,
RIL_Errno e, void* response, size_t responseLen) {
#if VDBG
RLOGD("%s(): %d", __FUNCTION__, serial);
#endif
V1_6::RadioResponseInfo responseInfo = {};
populateResponseInfo_1_6(responseInfo, serial, responseType, e);
// If we don't have a radio service, there's nothing we can do
if (radioService[slotId]->mRadioResponseV1_6 == NULL) {
RLOGE("%s: radioService[%d]->mRadioResponseV1_6 == NULL", __FUNCTION__, slotId);
return 0;
}
bool enable = false;
if (response == NULL || responseLen != sizeof(bool)) {
RLOGE("isNrDualConnectivityEnabledResponseInvalid response.");
} else {
enable = (*((bool *) response));
}
Return<void> retStatus =
radioService[slotId]->mRadioResponseV1_6->isNrDualConnectivityEnabledResponse(
responseInfo, enable);
radioService[slotId]->checkReturnStatus(retStatus);
return 0;
}
int radio_1_6::allocatePduSessionIdResponse(int slotId, int responseType, int serial,
RIL_Errno e, void* response, size_t responseLen) {
#if VDBG
RLOGD("%s(): %d", __FUNCTION__, serial);
#endif
// If we don't have a radio service, there's nothing we can do
if (radioService[slotId]->mRadioResponseV1_6 == NULL) {
RLOGE("%s: radioService[%d]->mRadioResponseV1_6 == NULL", __FUNCTION__, slotId);
return 0;
}
V1_6::RadioResponseInfo responseInfo = {};
populateResponseInfo_1_6(responseInfo, serial, responseType, e);
Return<void> retStatus =
radioService[slotId]->mRadioResponseV1_6->allocatePduSessionIdResponse(responseInfo, -1);
radioService[slotId]->checkReturnStatus(retStatus);
return 0;
}
int radio_1_6::releasePduSessionIdResponse(int slotId, int responseType, int serial,
RIL_Errno e, void* response, size_t responseLen) {
#if VDBG
RLOGD("%s(): %d", __FUNCTION__, serial);
#endif
// If we don't have a radio service, there's nothing we can do
if (radioService[slotId]->mRadioResponseV1_6 == NULL) {
RLOGE("%s: radioService[%d]->mRadioResponseV1_6 == NULL", __FUNCTION__, slotId);
return 0;
}
V1_6::RadioResponseInfo responseInfo = {};
populateResponseInfo_1_6(responseInfo, serial, responseType, e);
Return<void> retStatus =
radioService[slotId]->mRadioResponseV1_6->releasePduSessionIdResponse(responseInfo);
radioService[slotId]->checkReturnStatus(retStatus);
return 0;
}
int radio_1_6::startHandoverResponse(int slotId, int responseType, int serial,
RIL_Errno e, void* response, size_t responseLen) {
// If we don't have a radio service, there's nothing we can do
if (radioService[slotId]->mRadioResponseV1_6 == NULL) {
RLOGE("%s: radioService[%d]->mRadioResponseV1_6 == NULL", __FUNCTION__, slotId);
return 0;
}
V1_6::RadioResponseInfo responseInfo = {};
populateResponseInfo_1_6(responseInfo, serial, responseType, e);
Return<void> retStatus =
radioService[slotId]->mRadioResponseV1_6->startHandoverResponse(responseInfo);
#if VDBG
RLOGD("%s(): %d", __FUNCTION__, serial);
#endif
return 0;
}
int radio_1_6::cancelHandoverResponse(int slotId, int responseType, int serial,
RIL_Errno e, void* response, size_t responseLen) {
// If we don't have a radio service, there's nothing we can do
if (radioService[slotId]->mRadioResponseV1_6 == NULL) {
RLOGE("%s: radioService[%d]->mRadioResponseV1_6 == NULL", __FUNCTION__, slotId);
return 0;
}
V1_6::RadioResponseInfo responseInfo = {};
populateResponseInfo_1_6(responseInfo, serial, responseType, e);
Return<void> retStatus =
radioService[slotId]->mRadioResponseV1_6->cancelHandoverResponse(responseInfo);
#if VDBG
RLOGD("%s(): %d", __FUNCTION__, serial);
#endif
return 0;
}
int radio_1_6::setDataThrottlingResponse(int slotId, int responseType,
int serial, RIL_Errno e, void *response, size_t responselen) {
#if VDBG
RLOGD("setDataThrottlingResponse: serial %d", serial);
#endif
if (radioService[slotId]->mRadioResponseV1_6 == NULL) {
RLOGE("%s: radioService[%d]->mRadioResponseV1_6 == NULL", __FUNCTION__, slotId);
return 0;
}
V1_6::RadioResponseInfo responseInfo = {};
populateResponseInfo_1_6(responseInfo, serial, responseType, e);
Return<void> retstatus =
radioService[slotId]->mRadioResponseV1_6->setDataThrottlingResponse(
responseInfo);
radioService[slotId]->checkReturnStatus(retstatus);
return 0;
}
/***************************************************************************************************
* INDICATION FUNCTIONS
* The below function handle unsolicited messages coming from the Radio
* (messages for which there is no pending request)
**************************************************************************************************/
RadioIndicationType convertIntToRadioIndicationType(int indicationType) {
return indicationType == RESPONSE_UNSOLICITED ? (RadioIndicationType::UNSOLICITED) :
(RadioIndicationType::UNSOLICITED_ACK_EXP);
}
int radio_1_6::radioStateChangedInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
RadioState radioState =
(RadioState) CALL_ONSTATEREQUEST(slotId);
RLOGD("radioStateChangedInd: radioState %d", radioState);
Return<void> retStatus = radioService[slotId]->mRadioIndication->radioStateChanged(
convertIntToRadioIndicationType(indicationType), radioState);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("radioStateChangedInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::callStateChangedInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
#if VDBG
RLOGD("callStateChangedInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->callStateChanged(
convertIntToRadioIndicationType(indicationType));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("callStateChangedInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::networkStateChangedInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
#if VDBG
RLOGD("networkStateChangedInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->networkStateChanged(
convertIntToRadioIndicationType(indicationType));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("networkStateChangedInd: radioService[%d]->mRadioIndication == NULL",
slotId);
}
return 0;
}
extern "C" uint8_t hexCharToInt(uint8_t c) {
if (c >= '0' && c <= '9') return (c - '0');
if (c >= 'A' && c <= 'F') return (c - 'A' + 10);
if (c >= 'a' && c <= 'f') return (c - 'a' + 10);
return INVALID_HEX_CHAR;
}
extern "C" uint8_t * convertHexStringToBytes(void *response, size_t responseLen) {
if (responseLen % 2 != 0) {
return NULL;
}
uint8_t *bytes = (uint8_t *)calloc(responseLen/2, sizeof(uint8_t));
if (bytes == NULL) {
RLOGE("convertHexStringToBytes: cannot allocate memory for bytes string");
return NULL;
}
uint8_t *hexString = (uint8_t *)response;
for (size_t i = 0; i < responseLen; i += 2) {
uint8_t hexChar1 = hexCharToInt(hexString[i]);
uint8_t hexChar2 = hexCharToInt(hexString[i + 1]);
if (hexChar1 == INVALID_HEX_CHAR || hexChar2 == INVALID_HEX_CHAR) {
RLOGE("convertHexStringToBytes: invalid hex char %d %d",
hexString[i], hexString[i + 1]);
free(bytes);
return NULL;
}
bytes[i/2] = ((hexChar1 << 4) | hexChar2);
}
return bytes;
}
int radio_1_6::newSmsInd(int slotId, int indicationType,
int token, RIL_Errno e, void *response, size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen == 0) {
RLOGE("newSmsInd: invalid response");
return 0;
}
uint8_t *bytes = convertHexStringToBytes(response, responseLen);
if (bytes == NULL) {
RLOGE("newSmsInd: convertHexStringToBytes failed");
return 0;
}
hidl_vec<uint8_t> pdu;
pdu.setToExternal(bytes, responseLen/2);
#if VDBG
RLOGD("newSmsInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->newSms(
convertIntToRadioIndicationType(indicationType), pdu);
radioService[slotId]->checkReturnStatus(retStatus);
free(bytes);
} else {
RLOGE("newSmsInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::newSmsStatusReportInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen == 0) {
RLOGE("newSmsStatusReportInd: invalid response");
return 0;
}
uint8_t *bytes = convertHexStringToBytes(response, responseLen);
if (bytes == NULL) {
RLOGE("newSmsStatusReportInd: convertHexStringToBytes failed");
return 0;
}
hidl_vec<uint8_t> pdu;
pdu.setToExternal(bytes, responseLen/2);
#if VDBG
RLOGD("newSmsStatusReportInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->newSmsStatusReport(
convertIntToRadioIndicationType(indicationType), pdu);
radioService[slotId]->checkReturnStatus(retStatus);
free(bytes);
} else {
RLOGE("newSmsStatusReportInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::newSmsOnSimInd(int slotId, int indicationType,
int token, RIL_Errno e, void *response, size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != sizeof(int)) {
RLOGE("newSmsOnSimInd: invalid response");
return 0;
}
int32_t recordNumber = ((int32_t *) response)[0];
#if VDBG
RLOGD("newSmsOnSimInd: slotIndex %d", recordNumber);
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->newSmsOnSim(
convertIntToRadioIndicationType(indicationType), recordNumber);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("newSmsOnSimInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::onUssdInd(int slotId, int indicationType,
int token, RIL_Errno e, void *response, size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != 2 * sizeof(char *)) {
RLOGE("onUssdInd: invalid response");
return 0;
}
char **strings = (char **) response;
char *mode = strings[0];
hidl_string msg = convertCharPtrToHidlString(strings[1]);
UssdModeType modeType = (UssdModeType) atoi(mode);
#if VDBG
RLOGD("onUssdInd: mode %s", mode);
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->onUssd(
convertIntToRadioIndicationType(indicationType), modeType, msg);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("onUssdInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::nitzTimeReceivedInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen == 0) {
RLOGE("nitzTimeReceivedInd: invalid response");
return 0;
}
hidl_string nitzTime = convertCharPtrToHidlString((char *) response);
#if VDBG
RLOGD("nitzTimeReceivedInd: nitzTime %s receivedTime %" PRId64, nitzTime.c_str(),
nitzTimeReceived[slotId]);
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->nitzTimeReceived(
convertIntToRadioIndicationType(indicationType), nitzTime,
nitzTimeReceived[slotId]);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("nitzTimeReceivedInd: radioService[%d]->mRadioIndication == NULL", slotId);
return -1;
}
return 0;
}
void convertRilSignalStrengthToHal(void *response, size_t responseLen,
SignalStrength& signalStrength) {
RIL_SignalStrength_v12 *rilSignalStrength = (RIL_SignalStrength_v12 *) response;
// Fixup LTE for backwards compatibility
// signalStrength: -1 -> 99
if (rilSignalStrength->LTE_SignalStrength.signalStrength == -1) {
rilSignalStrength->LTE_SignalStrength.signalStrength = 99;
}
// rsrp: -1 -> INT_MAX all other negative value to positive.
// So remap here
if (rilSignalStrength->LTE_SignalStrength.rsrp == -1) {
rilSignalStrength->LTE_SignalStrength.rsrp = INT_MAX;
} else if (rilSignalStrength->LTE_SignalStrength.rsrp < -1) {
rilSignalStrength->LTE_SignalStrength.rsrp = -rilSignalStrength->LTE_SignalStrength.rsrp;
}
// rsrq: -1 -> INT_MAX
if (rilSignalStrength->LTE_SignalStrength.rsrq == -1) {
rilSignalStrength->LTE_SignalStrength.rsrq = INT_MAX;
}
// Not remapping rssnr is already using INT_MAX
// cqi: -1 -> INT_MAX
if (rilSignalStrength->LTE_SignalStrength.cqi == -1) {
rilSignalStrength->LTE_SignalStrength.cqi = INT_MAX;
}
signalStrength.gw.signalStrength = rilSignalStrength->GW_SignalStrength.signalStrength;
signalStrength.gw.bitErrorRate = rilSignalStrength->GW_SignalStrength.bitErrorRate;
// RIL_SignalStrength_v10 not support gw.timingAdvance. Set to INT_MAX as
// invalid value.
signalStrength.gw.timingAdvance = INT_MAX;
signalStrength.cdma.dbm = rilSignalStrength->CDMA_SignalStrength.dbm;
signalStrength.cdma.ecio = rilSignalStrength->CDMA_SignalStrength.ecio;
signalStrength.evdo.dbm = rilSignalStrength->EVDO_SignalStrength.dbm;
signalStrength.evdo.ecio = rilSignalStrength->EVDO_SignalStrength.ecio;
signalStrength.evdo.signalNoiseRatio =
rilSignalStrength->EVDO_SignalStrength.signalNoiseRatio;
signalStrength.lte.signalStrength = rilSignalStrength->LTE_SignalStrength.signalStrength;
signalStrength.lte.rsrp = rilSignalStrength->LTE_SignalStrength.rsrp;
signalStrength.lte.rsrq = rilSignalStrength->LTE_SignalStrength.rsrq;
signalStrength.lte.rssnr = rilSignalStrength->LTE_SignalStrength.rssnr;
signalStrength.lte.cqi = rilSignalStrength->LTE_SignalStrength.cqi;
signalStrength.lte.timingAdvance = rilSignalStrength->LTE_SignalStrength.timingAdvance;
signalStrength.tdScdma.rscp = rilSignalStrength->TD_SCDMA_SignalStrength.rscp;
}
void convertRilSignalStrengthToHal_1_4(void *response, size_t responseLen,
V1_4::SignalStrength& signalStrength_1_4) {
SignalStrength signalStrength = {};
convertRilSignalStrengthToHal(response, responseLen, signalStrength);
signalStrength_1_4.gsm = signalStrength.gw;
signalStrength_1_4.cdma = signalStrength.cdma;
signalStrength_1_4.evdo = signalStrength.evdo;
signalStrength_1_4.lte = signalStrength.lte;
RIL_SignalStrength_v12 *rilSignalStrength = (RIL_SignalStrength_v12 *) response;
signalStrength_1_4.wcdma.base.signalStrength =
rilSignalStrength->WCDMA_SignalStrength.signalStrength;
signalStrength_1_4.wcdma.base.bitErrorRate =
rilSignalStrength->WCDMA_SignalStrength.bitErrorRate;
signalStrength_1_4.wcdma.rscp = INT_MAX;
signalStrength_1_4.wcdma.ecno = INT_MAX;
signalStrength_1_4.tdscdma.signalStrength = INT_MAX;
signalStrength_1_4.tdscdma.bitErrorRate = INT_MAX;
signalStrength_1_4.tdscdma.rscp = INT_MAX;
signalStrength_1_4.nr.ssRsrp = rilSignalStrength->NR_SignalStrength.ssRsrp;
signalStrength_1_4.nr.ssRsrq = rilSignalStrength->NR_SignalStrength.ssRsrq;
signalStrength_1_4.nr.ssSinr = rilSignalStrength->NR_SignalStrength.ssSinr;
signalStrength_1_4.nr.csiRsrp = rilSignalStrength->NR_SignalStrength.csiRsrp;
signalStrength_1_4.nr.csiRsrq = rilSignalStrength->NR_SignalStrength.csiRsrq;
signalStrength_1_4.nr.csiSinr = rilSignalStrength->NR_SignalStrength.ssSinr;
}
int radio_1_6::currentSignalStrengthInd(int slotId,
int indicationType, int token, RIL_Errno e,
void *response, size_t responseLen) {
if (radioService[slotId] != NULL &&
(radioService[slotId]->mRadioIndication != NULL ||
radioService[slotId]->mRadioIndicationV1_4 != NULL)) {
if (response == NULL || responseLen != sizeof(RIL_SignalStrength_v12)) {
RLOGE("currentSignalStrengthInd: invalid response");
return 0;
}
#if VDBG
RLOGD("currentSignalStrengthInd");
#endif
Return<void> retStatus;
if (radioService[slotId]->mRadioIndicationV1_4 != NULL) {
V1_4::SignalStrength signalStrength_1_4 = {};
convertRilSignalStrengthToHal_1_4(response, responseLen, signalStrength_1_4);
retStatus = radioService[slotId]->mRadioIndicationV1_4->currentSignalStrength_1_4(
convertIntToRadioIndicationType(indicationType), signalStrength_1_4);
} else {
SignalStrength signalStrength = {};
convertRilSignalStrengthToHal(response, responseLen, signalStrength);
retStatus = radioService[slotId]->mRadioIndication->currentSignalStrength(
convertIntToRadioIndicationType(indicationType), signalStrength);
}
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("currentSignalStrengthInd: radioService[%d]->mRadioIndication == NULL",
slotId);
}
return 0;
}
void convertRilDataCallToHal(RIL_Data_Call_Response_v11 *dcResponse,
SetupDataCallResult& dcResult) {
dcResult.status = (DataCallFailCause) dcResponse->status;
dcResult.suggestedRetryTime = dcResponse->suggestedRetryTime;
dcResult.cid = dcResponse->cid;
dcResult.active = dcResponse->active;
dcResult.type = convertCharPtrToHidlString(dcResponse->type);
dcResult.ifname = convertCharPtrToHidlString(dcResponse->ifname);
dcResult.addresses = convertCharPtrToHidlString(dcResponse->addresses);
dcResult.dnses = convertCharPtrToHidlString(dcResponse->dnses);
dcResult.gateways = convertCharPtrToHidlString(dcResponse->gateways);
dcResult.pcscf = convertCharPtrToHidlString(dcResponse->pcscf);
dcResult.mtu = dcResponse->mtu;
}
hidl_vec<hidl_string> split(hidl_string str) {
std::vector<hidl_string> ret;
std::stringstream ss(static_cast<std::string>(str));
std::string tok;
while(getline(ss, tok, ' ')) {
ret.push_back(hidl_string(tok));
}
return ret;
}
::android::hardware::radio::V1_4::PdpProtocolType convertToPdpProtocolType(hidl_string str) {
if (strncmp("IP", str.c_str(), 2) == 0) {
return ::android::hardware::radio::V1_4::PdpProtocolType::IP;
} else if (strncmp("IPV6", str.c_str(), 4) == 0) {
return ::android::hardware::radio::V1_4::PdpProtocolType::IPV6;
} else if (strncmp("IPV4V6", str.c_str(), 6) == 0) {
return ::android::hardware::radio::V1_4::PdpProtocolType::IPV4V6;
} else if (strncmp("PPP", str.c_str(), 3) == 0) {
return ::android::hardware::radio::V1_4::PdpProtocolType::PPP;
} else if (strncmp("NON_IP", str.c_str(), 6) == 0) {
return ::android::hardware::radio::V1_4::PdpProtocolType::NON_IP;
} else if (strncmp("UNSTRUCTURED", str.c_str(), 12) == 0) {
return ::android::hardware::radio::V1_4::PdpProtocolType::UNSTRUCTURED;
} else {
return ::android::hardware::radio::V1_4::PdpProtocolType::UNKNOWN;
}
}
void convertRilDataCallToHal(RIL_Data_Call_Response_v11 *dcResponse,
::android::hardware::radio::V1_4::SetupDataCallResult& dcResult) {
dcResult.cause = (::android::hardware::radio::V1_4::DataCallFailCause) dcResponse->status;
dcResult.suggestedRetryTime = dcResponse->suggestedRetryTime;
dcResult.cid = dcResponse->cid;
dcResult.active = (::android::hardware::radio::V1_4::DataConnActiveStatus)dcResponse->active;
dcResult.type = convertToPdpProtocolType(convertCharPtrToHidlString(dcResponse->type));
dcResult.ifname = convertCharPtrToHidlString(dcResponse->ifname);
dcResult.addresses = split(convertCharPtrToHidlString(dcResponse->addresses));
dcResult.dnses = split(convertCharPtrToHidlString(dcResponse->dnses));
dcResult.gateways = split(convertCharPtrToHidlString(dcResponse->gateways));
dcResult.pcscf = split(convertCharPtrToHidlString(dcResponse->pcscf));
dcResult.mtu = dcResponse->mtu;
}
void convertRilDataCallToHal(RIL_Data_Call_Response_v12 *dcResponse,
::android::hardware::radio::V1_5::SetupDataCallResult& dcResult) {
dcResult.cause = (::android::hardware::radio::V1_4::DataCallFailCause) dcResponse->status;
dcResult.suggestedRetryTime = dcResponse->suggestedRetryTime;
dcResult.cid = dcResponse->cid;
dcResult.active = (::android::hardware::radio::V1_4::DataConnActiveStatus)dcResponse->active;
dcResult.type = convertToPdpProtocolType(convertCharPtrToHidlString(dcResponse->type));
dcResult.ifname = convertCharPtrToHidlString(dcResponse->ifname);
std::vector<::android::hardware::radio::V1_5::LinkAddress> linkAddresses;
std::stringstream ss(static_cast<std::string>(dcResponse->addresses));
std::string tok;
while(getline(ss, tok, ' ')) {
::android::hardware::radio::V1_5::LinkAddress la;
la.address = hidl_string(tok);
la.properties = 0;
la.deprecationTime = 0;
la.expirationTime = 0;
linkAddresses.push_back(la);
}
dcResult.addresses = linkAddresses;
dcResult.dnses = split(convertCharPtrToHidlString(dcResponse->dnses));
dcResult.gateways = split(convertCharPtrToHidlString(dcResponse->gateways));
dcResult.pcscf = split(convertCharPtrToHidlString(dcResponse->pcscf));
dcResult.mtuV4 = dcResponse->mtuV4;
dcResult.mtuV6 = dcResponse->mtuV6;
}
void convertRilDataCallListToHal(void *response, size_t responseLen,
hidl_vec<SetupDataCallResult>& dcResultList) {
int num = responseLen / sizeof(RIL_Data_Call_Response_v11);
RIL_Data_Call_Response_v11 *dcResponse = (RIL_Data_Call_Response_v11 *) response;
dcResultList.resize(num);
for (int i = 0; i < num; i++) {
convertRilDataCallToHal(&dcResponse[i], dcResultList[i]);
}
}
int radio_1_6::dataCallListChangedInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if ((response == NULL && responseLen != 0)
|| responseLen % sizeof(RIL_Data_Call_Response_v11) != 0) {
RLOGE("dataCallListChangedInd: invalid response");
return 0;
}
hidl_vec<SetupDataCallResult> dcList;
convertRilDataCallListToHal(response, responseLen, dcList);
#if VDBG
RLOGD("dataCallListChangedInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->dataCallListChanged(
convertIntToRadioIndicationType(indicationType), dcList);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("dataCallListChangedInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::suppSvcNotifyInd(int slotId, int indicationType,
int token, RIL_Errno e, void *response, size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != sizeof(RIL_SuppSvcNotification)) {
RLOGE("suppSvcNotifyInd: invalid response");
return 0;
}
SuppSvcNotification suppSvc = {};
RIL_SuppSvcNotification *ssn = (RIL_SuppSvcNotification *) response;
suppSvc.isMT = ssn->notificationType;
suppSvc.code = ssn->code;
suppSvc.index = ssn->index;
suppSvc.type = ssn->type;
suppSvc.number = convertCharPtrToHidlString(ssn->number);
#if VDBG
RLOGD("suppSvcNotifyInd: isMT %d code %d index %d type %d",
suppSvc.isMT, suppSvc.code, suppSvc.index, suppSvc.type);
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->suppSvcNotify(
convertIntToRadioIndicationType(indicationType), suppSvc);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("suppSvcNotifyInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::stkSessionEndInd(int slotId, int indicationType,
int token, RIL_Errno e, void *response, size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
#if VDBG
RLOGD("stkSessionEndInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->stkSessionEnd(
convertIntToRadioIndicationType(indicationType));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("stkSessionEndInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::stkProactiveCommandInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen == 0) {
RLOGE("stkProactiveCommandInd: invalid response");
return 0;
}
#if VDBG
RLOGD("stkProactiveCommandInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->stkProactiveCommand(
convertIntToRadioIndicationType(indicationType),
convertCharPtrToHidlString((char *) response));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("stkProactiveCommandInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::stkEventNotifyInd(int slotId, int indicationType,
int token, RIL_Errno e, void *response, size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen == 0) {
RLOGE("stkEventNotifyInd: invalid response");
return 0;
}
#if VDBG
RLOGD("stkEventNotifyInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->stkEventNotify(
convertIntToRadioIndicationType(indicationType),
convertCharPtrToHidlString((char *) response));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("stkEventNotifyInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::stkCallSetupInd(int slotId, int indicationType,
int token, RIL_Errno e, void *response, size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != sizeof(int)) {
RLOGE("stkCallSetupInd: invalid response");
return 0;
}
int32_t timeout = ((int32_t *) response)[0];
#if VDBG
RLOGD("stkCallSetupInd: timeout %d", timeout);
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->stkCallSetup(
convertIntToRadioIndicationType(indicationType), timeout);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("stkCallSetupInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::simSmsStorageFullInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
#if VDBG
RLOGD("simSmsStorageFullInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->simSmsStorageFull(
convertIntToRadioIndicationType(indicationType));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("simSmsStorageFullInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::simRefreshInd(int slotId, int indicationType,
int token, RIL_Errno e, void *response, size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != sizeof(RIL_SimRefreshResponse_v7)) {
RLOGE("simRefreshInd: invalid response");
return 0;
}
SimRefreshResult refreshResult = {};
RIL_SimRefreshResponse_v7 *simRefreshResponse = ((RIL_SimRefreshResponse_v7 *) response);
refreshResult.type =
(V1_0::SimRefreshType) simRefreshResponse->result;
refreshResult.efId = simRefreshResponse->ef_id;
refreshResult.aid = convertCharPtrToHidlString(simRefreshResponse->aid);
#if VDBG
RLOGD("simRefreshInd: type %d efId %d", refreshResult.type, refreshResult.efId);
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->simRefresh(
convertIntToRadioIndicationType(indicationType), refreshResult);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("simRefreshInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
void convertRilCdmaSignalInfoRecordToHal(RIL_CDMA_SignalInfoRecord *signalInfoRecord,
CdmaSignalInfoRecord& record) {
record.isPresent = signalInfoRecord->isPresent;
record.signalType = signalInfoRecord->signalType;
record.alertPitch = signalInfoRecord->alertPitch;
record.signal = signalInfoRecord->signal;
}
int radio_1_6::callRingInd(int slotId, int indicationType,
int token, RIL_Errno e, void *response, size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
bool isGsm;
CdmaSignalInfoRecord record = {};
if (response == NULL || responseLen == 0) {
isGsm = true;
} else {
isGsm = false;
if (responseLen != sizeof (RIL_CDMA_SignalInfoRecord)) {
RLOGE("callRingInd: invalid response");
return 0;
}
convertRilCdmaSignalInfoRecordToHal((RIL_CDMA_SignalInfoRecord *) response, record);
}
#if VDBG
RLOGD("callRingInd: isGsm %d", isGsm);
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->callRing(
convertIntToRadioIndicationType(indicationType), isGsm, record);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("callRingInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::simStatusChangedInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
#if VDBG
RLOGD("simStatusChangedInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->simStatusChanged(
convertIntToRadioIndicationType(indicationType));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("simStatusChangedInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::cdmaNewSmsInd(int slotId, int indicationType,
int token, RIL_Errno e, void *response, size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != sizeof(RIL_CDMA_SMS_Message)) {
RLOGE("cdmaNewSmsInd: invalid response");
return 0;
}
CdmaSmsMessage msg = {};
RIL_CDMA_SMS_Message *rilMsg = (RIL_CDMA_SMS_Message *) response;
msg.teleserviceId = rilMsg->uTeleserviceID;
msg.isServicePresent = rilMsg->bIsServicePresent;
msg.serviceCategory = rilMsg->uServicecategory;
msg.address.digitMode =
(V1_0::CdmaSmsDigitMode) rilMsg->sAddress.digit_mode;
msg.address.numberMode =
(V1_0::CdmaSmsNumberMode) rilMsg->sAddress.number_mode;
msg.address.numberType =
(V1_0::CdmaSmsNumberType) rilMsg->sAddress.number_type;
msg.address.numberPlan =
(V1_0::CdmaSmsNumberPlan) rilMsg->sAddress.number_plan;
int digitLimit = MIN((rilMsg->sAddress.number_of_digits), RIL_CDMA_SMS_ADDRESS_MAX);
msg.address.digits.setToExternal(rilMsg->sAddress.digits, digitLimit);
msg.subAddress.subaddressType = (V1_0::CdmaSmsSubaddressType)
rilMsg->sSubAddress.subaddressType;
msg.subAddress.odd = rilMsg->sSubAddress.odd;
digitLimit= MIN((rilMsg->sSubAddress.number_of_digits), RIL_CDMA_SMS_SUBADDRESS_MAX);
msg.subAddress.digits.setToExternal(rilMsg->sSubAddress.digits, digitLimit);
digitLimit = MIN((rilMsg->uBearerDataLen), RIL_CDMA_SMS_BEARER_DATA_MAX);
msg.bearerData.setToExternal(rilMsg->aBearerData, digitLimit);
#if VDBG
RLOGD("cdmaNewSmsInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->cdmaNewSms(
convertIntToRadioIndicationType(indicationType), msg);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("cdmaNewSmsInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::newBroadcastSmsInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen == 0) {
RLOGE("newBroadcastSmsInd: invalid response");
return 0;
}
hidl_vec<uint8_t> data;
data.setToExternal((uint8_t *) response, responseLen);
#if VDBG
RLOGD("newBroadcastSmsInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->newBroadcastSms(
convertIntToRadioIndicationType(indicationType), data);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("newBroadcastSmsInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::cdmaRuimSmsStorageFullInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
#if VDBG
RLOGD("cdmaRuimSmsStorageFullInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->cdmaRuimSmsStorageFull(
convertIntToRadioIndicationType(indicationType));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("cdmaRuimSmsStorageFullInd: radioService[%d]->mRadioIndication == NULL",
slotId);
}
return 0;
}
int radio_1_6::restrictedStateChangedInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != sizeof(int)) {
RLOGE("restrictedStateChangedInd: invalid response");
return 0;
}
int32_t state = ((int32_t *) response)[0];
#if VDBG
RLOGD("restrictedStateChangedInd: state %d", state);
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->restrictedStateChanged(
convertIntToRadioIndicationType(indicationType), (PhoneRestrictedState) state);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("restrictedStateChangedInd: radioService[%d]->mRadioIndication == NULL",
slotId);
}
return 0;
}
int radio_1_6::enterEmergencyCallbackModeInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
#if VDBG
RLOGD("enterEmergencyCallbackModeInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->enterEmergencyCallbackMode(
convertIntToRadioIndicationType(indicationType));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("enterEmergencyCallbackModeInd: radioService[%d]->mRadioIndication == NULL",
slotId);
}
return 0;
}
int radio_1_6::cdmaCallWaitingInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != sizeof(RIL_CDMA_CallWaiting_v6)) {
RLOGE("cdmaCallWaitingInd: invalid response");
return 0;
}
CdmaCallWaiting callWaitingRecord = {};
RIL_CDMA_CallWaiting_v6 *callWaitingRil = ((RIL_CDMA_CallWaiting_v6 *) response);
callWaitingRecord.number = convertCharPtrToHidlString(callWaitingRil->number);
callWaitingRecord.numberPresentation =
(CdmaCallWaitingNumberPresentation) callWaitingRil->numberPresentation;
callWaitingRecord.name = convertCharPtrToHidlString(callWaitingRil->name);
convertRilCdmaSignalInfoRecordToHal(&callWaitingRil->signalInfoRecord,
callWaitingRecord.signalInfoRecord);
callWaitingRecord.numberType = (CdmaCallWaitingNumberType) callWaitingRil->number_type;
callWaitingRecord.numberPlan = (CdmaCallWaitingNumberPlan) callWaitingRil->number_plan;
#if VDBG
RLOGD("cdmaCallWaitingInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->cdmaCallWaiting(
convertIntToRadioIndicationType(indicationType), callWaitingRecord);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("cdmaCallWaitingInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::cdmaOtaProvisionStatusInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != sizeof(int)) {
RLOGE("cdmaOtaProvisionStatusInd: invalid response");
return 0;
}
int32_t status = ((int32_t *) response)[0];
#if VDBG
RLOGD("cdmaOtaProvisionStatusInd: status %d", status);
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->cdmaOtaProvisionStatus(
convertIntToRadioIndicationType(indicationType), (CdmaOtaProvisionStatus) status);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("cdmaOtaProvisionStatusInd: radioService[%d]->mRadioIndication == NULL",
slotId);
}
return 0;
}
int radio_1_6::cdmaInfoRecInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != sizeof(RIL_CDMA_InformationRecords)) {
RLOGE("cdmaInfoRecInd: invalid response");
return 0;
}
CdmaInformationRecords records = {};
RIL_CDMA_InformationRecords *recordsRil = (RIL_CDMA_InformationRecords *) response;
char* string8 = NULL;
int num = MIN(recordsRil->numberOfInfoRecs, RIL_CDMA_MAX_NUMBER_OF_INFO_RECS);
if (recordsRil->numberOfInfoRecs > RIL_CDMA_MAX_NUMBER_OF_INFO_RECS) {
RLOGE("cdmaInfoRecInd: received %d recs which is more than %d, dropping "
"additional ones", recordsRil->numberOfInfoRecs,
RIL_CDMA_MAX_NUMBER_OF_INFO_RECS);
}
records.infoRec.resize(num);
for (int i = 0 ; i < num ; i++) {
CdmaInformationRecord *record = &records.infoRec[i];
RIL_CDMA_InformationRecord *infoRec = &recordsRil->infoRec[i];
record->name = (CdmaInfoRecName) infoRec->name;
// All vectors should be size 0 except one which will be size 1. Set everything to
// size 0 initially.
record->display.resize(0);
record->number.resize(0);
record->signal.resize(0);
record->redir.resize(0);
record->lineCtrl.resize(0);
record->clir.resize(0);
record->audioCtrl.resize(0);
switch (infoRec->name) {
case RIL_CDMA_DISPLAY_INFO_REC:
case RIL_CDMA_EXTENDED_DISPLAY_INFO_REC: {
if (infoRec->rec.display.alpha_len > CDMA_ALPHA_INFO_BUFFER_LENGTH) {
RLOGE("cdmaInfoRecInd: invalid display info response length %d "
"expected not more than %d", (int) infoRec->rec.display.alpha_len,
CDMA_ALPHA_INFO_BUFFER_LENGTH);
return 0;
}
string8 = (char*) malloc((infoRec->rec.display.alpha_len + 1) * sizeof(char));
if (string8 == NULL) {
RLOGE("cdmaInfoRecInd: Memory allocation failed for "
"responseCdmaInformationRecords");
return 0;
}
memcpy(string8, infoRec->rec.display.alpha_buf, infoRec->rec.display.alpha_len);
string8[(int)infoRec->rec.display.alpha_len] = '\0';
record->display.resize(1);
record->display[0].alphaBuf = string8;
free(string8);
string8 = NULL;
break;
}
case RIL_CDMA_CALLED_PARTY_NUMBER_INFO_REC:
case RIL_CDMA_CALLING_PARTY_NUMBER_INFO_REC:
case RIL_CDMA_CONNECTED_NUMBER_INFO_REC: {
if (infoRec->rec.number.len > CDMA_NUMBER_INFO_BUFFER_LENGTH) {
RLOGE("cdmaInfoRecInd: invalid display info response length %d "
"expected not more than %d", (int) infoRec->rec.number.len,
CDMA_NUMBER_INFO_BUFFER_LENGTH);
return 0;
}
string8 = (char*) malloc((infoRec->rec.number.len + 1) * sizeof(char));
if (string8 == NULL) {
RLOGE("cdmaInfoRecInd: Memory allocation failed for "
"responseCdmaInformationRecords");
return 0;
}
memcpy(string8, infoRec->rec.number.buf, infoRec->rec.number.len);
string8[(int)infoRec->rec.number.len] = '\0';
record->number.resize(1);
record->number[0].number = string8;
free(string8);
string8 = NULL;
record->number[0].numberType = infoRec->rec.number.number_type;
record->number[0].numberPlan = infoRec->rec.number.number_plan;
record->number[0].pi = infoRec->rec.number.pi;
record->number[0].si = infoRec->rec.number.si;
break;
}
case RIL_CDMA_SIGNAL_INFO_REC: {
record->signal.resize(1);
record->signal[0].isPresent = infoRec->rec.signal.isPresent;
record->signal[0].signalType = infoRec->rec.signal.signalType;
record->signal[0].alertPitch = infoRec->rec.signal.alertPitch;
record->signal[0].signal = infoRec->rec.signal.signal;
break;
}
case RIL_CDMA_REDIRECTING_NUMBER_INFO_REC: {
if (infoRec->rec.redir.redirectingNumber.len >
CDMA_NUMBER_INFO_BUFFER_LENGTH) {
RLOGE("cdmaInfoRecInd: invalid display info response length %d "
"expected not more than %d\n",
(int)infoRec->rec.redir.redirectingNumber.len,
CDMA_NUMBER_INFO_BUFFER_LENGTH);
return 0;
}
string8 = (char*) malloc((infoRec->rec.redir.redirectingNumber.len + 1) *
sizeof(char));
if (string8 == NULL) {
RLOGE("cdmaInfoRecInd: Memory allocation failed for "
"responseCdmaInformationRecords");
return 0;
}
memcpy(string8, infoRec->rec.redir.redirectingNumber.buf,
infoRec->rec.redir.redirectingNumber.len);
string8[(int)infoRec->rec.redir.redirectingNumber.len] = '\0';
record->redir.resize(1);
record->redir[0].redirectingNumber.number = string8;
free(string8);
string8 = NULL;
record->redir[0].redirectingNumber.numberType =
infoRec->rec.redir.redirectingNumber.number_type;
record->redir[0].redirectingNumber.numberPlan =
infoRec->rec.redir.redirectingNumber.number_plan;
record->redir[0].redirectingNumber.pi = infoRec->rec.redir.redirectingNumber.pi;
record->redir[0].redirectingNumber.si = infoRec->rec.redir.redirectingNumber.si;
record->redir[0].redirectingReason =
(CdmaRedirectingReason) infoRec->rec.redir.redirectingReason;
break;
}
case RIL_CDMA_LINE_CONTROL_INFO_REC: {
record->lineCtrl.resize(1);
record->lineCtrl[0].lineCtrlPolarityIncluded =
infoRec->rec.lineCtrl.lineCtrlPolarityIncluded;
record->lineCtrl[0].lineCtrlToggle = infoRec->rec.lineCtrl.lineCtrlToggle;
record->lineCtrl[0].lineCtrlReverse = infoRec->rec.lineCtrl.lineCtrlReverse;
record->lineCtrl[0].lineCtrlPowerDenial =
infoRec->rec.lineCtrl.lineCtrlPowerDenial;
break;
}
case RIL_CDMA_T53_CLIR_INFO_REC: {
record->clir.resize(1);
record->clir[0].cause = infoRec->rec.clir.cause;
break;
}
case RIL_CDMA_T53_AUDIO_CONTROL_INFO_REC: {
record->audioCtrl.resize(1);
record->audioCtrl[0].upLink = infoRec->rec.audioCtrl.upLink;
record->audioCtrl[0].downLink = infoRec->rec.audioCtrl.downLink;
break;
}
case RIL_CDMA_T53_RELEASE_INFO_REC:
RLOGE("cdmaInfoRecInd: RIL_CDMA_T53_RELEASE_INFO_REC: INVALID");
return 0;
default:
RLOGE("cdmaInfoRecInd: Incorrect name value");
return 0;
}
}
#if VDBG
RLOGD("cdmaInfoRecInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->cdmaInfoRec(
convertIntToRadioIndicationType(indicationType), records);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("cdmaInfoRecInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::indicateRingbackToneInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != sizeof(int)) {
RLOGE("indicateRingbackToneInd: invalid response");
return 0;
}
bool start = ((int32_t *) response)[0];
#if VDBG
RLOGD("indicateRingbackToneInd: start %d", start);
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->indicateRingbackTone(
convertIntToRadioIndicationType(indicationType), start);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("indicateRingbackToneInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::resendIncallMuteInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
#if VDBG
RLOGD("resendIncallMuteInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->resendIncallMute(
convertIntToRadioIndicationType(indicationType));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("resendIncallMuteInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::cdmaSubscriptionSourceChangedInd(int slotId,
int indicationType, int token, RIL_Errno e,
void *response, size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != sizeof(int)) {
RLOGE("cdmaSubscriptionSourceChangedInd: invalid response");
return 0;
}
int32_t cdmaSource = ((int32_t *) response)[0];
#if VDBG
RLOGD("cdmaSubscriptionSourceChangedInd: cdmaSource %d", cdmaSource);
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->
cdmaSubscriptionSourceChanged(convertIntToRadioIndicationType(indicationType),
(CdmaSubscriptionSource) cdmaSource);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("cdmaSubscriptionSourceChangedInd: radioService[%d]->mRadioIndication == NULL",
slotId);
}
return 0;
}
int radio_1_6::cdmaPrlChangedInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != sizeof(int)) {
RLOGE("cdmaPrlChangedInd: invalid response");
return 0;
}
int32_t version = ((int32_t *) response)[0];
#if VDBG
RLOGD("cdmaPrlChangedInd: version %d", version);
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->cdmaPrlChanged(
convertIntToRadioIndicationType(indicationType), version);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("cdmaPrlChangedInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::exitEmergencyCallbackModeInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
#if VDBG
RLOGD("exitEmergencyCallbackModeInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->exitEmergencyCallbackMode(
convertIntToRadioIndicationType(indicationType));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("exitEmergencyCallbackModeInd: radioService[%d]->mRadioIndication == NULL",
slotId);
}
return 0;
}
int radio_1_6::rilConnectedInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
RLOGD("rilConnectedInd");
Return<void> retStatus = radioService[slotId]->mRadioIndication->rilConnected(
convertIntToRadioIndicationType(indicationType));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("rilConnectedInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::voiceRadioTechChangedInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != sizeof(int)) {
RLOGE("voiceRadioTechChangedInd: invalid response");
return 0;
}
int32_t rat = ((int32_t *) response)[0];
#if VDBG
RLOGD("voiceRadioTechChangedInd: rat %d", rat);
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->voiceRadioTechChanged(
convertIntToRadioIndicationType(indicationType), (RadioTechnology) rat);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("voiceRadioTechChangedInd: radioService[%d]->mRadioIndication == NULL",
slotId);
}
return 0;
}
void convertRilCellInfoListToHal(void *response, size_t responseLen, hidl_vec<CellInfo>& records) {
int num = responseLen / sizeof(RIL_CellInfo_v12);
records.resize(num);
RIL_CellInfo_v12 *rillCellInfo = (RIL_CellInfo_v12 *) response;
for (int i = 0; i < num; i++) {
records[i].cellInfoType = (CellInfoType) rillCellInfo->cellInfoType;
records[i].registered = rillCellInfo->registered;
records[i].timeStampType = (TimeStampType) rillCellInfo->timeStampType;
records[i].timeStamp = rillCellInfo->timeStamp;
// All vectors should be size 0 except one which will be size 1. Set everything to
// size 0 initially.
records[i].gsm.resize(0);
records[i].wcdma.resize(0);
records[i].cdma.resize(0);
records[i].lte.resize(0);
records[i].tdscdma.resize(0);
switch(rillCellInfo->cellInfoType) {
case RIL_CELL_INFO_TYPE_GSM: {
records[i].gsm.resize(1);
CellInfoGsm *cellInfoGsm = &records[i].gsm[0];
cellInfoGsm->cellIdentityGsm.mcc =
std::to_string(rillCellInfo->CellInfo.gsm.cellIdentityGsm.mcc);
cellInfoGsm->cellIdentityGsm.mnc =
ril::util::mnc::decode(rillCellInfo->CellInfo.gsm.cellIdentityGsm.mnc);
cellInfoGsm->cellIdentityGsm.lac =
rillCellInfo->CellInfo.gsm.cellIdentityGsm.lac;
cellInfoGsm->cellIdentityGsm.cid =
rillCellInfo->CellInfo.gsm.cellIdentityGsm.cid;
cellInfoGsm->cellIdentityGsm.arfcn =
rillCellInfo->CellInfo.gsm.cellIdentityGsm.arfcn;
cellInfoGsm->cellIdentityGsm.bsic =
rillCellInfo->CellInfo.gsm.cellIdentityGsm.bsic;
cellInfoGsm->signalStrengthGsm.signalStrength =
rillCellInfo->CellInfo.gsm.signalStrengthGsm.signalStrength;
cellInfoGsm->signalStrengthGsm.bitErrorRate =
rillCellInfo->CellInfo.gsm.signalStrengthGsm.bitErrorRate;
cellInfoGsm->signalStrengthGsm.timingAdvance =
rillCellInfo->CellInfo.gsm.signalStrengthGsm.timingAdvance;
break;
}
case RIL_CELL_INFO_TYPE_WCDMA: {
records[i].wcdma.resize(1);
CellInfoWcdma *cellInfoWcdma = &records[i].wcdma[0];
cellInfoWcdma->cellIdentityWcdma.mcc =
std::to_string(rillCellInfo->CellInfo.wcdma.cellIdentityWcdma.mcc);
cellInfoWcdma->cellIdentityWcdma.mnc =
ril::util::mnc::decode(rillCellInfo->CellInfo.wcdma.cellIdentityWcdma.mnc);
cellInfoWcdma->cellIdentityWcdma.lac =
rillCellInfo->CellInfo.wcdma.cellIdentityWcdma.lac;
cellInfoWcdma->cellIdentityWcdma.cid =
rillCellInfo->CellInfo.wcdma.cellIdentityWcdma.cid;
cellInfoWcdma->cellIdentityWcdma.psc =
rillCellInfo->CellInfo.wcdma.cellIdentityWcdma.psc;
cellInfoWcdma->cellIdentityWcdma.uarfcn =
rillCellInfo->CellInfo.wcdma.cellIdentityWcdma.uarfcn;
cellInfoWcdma->signalStrengthWcdma.signalStrength =
rillCellInfo->CellInfo.wcdma.signalStrengthWcdma.signalStrength;
cellInfoWcdma->signalStrengthWcdma.bitErrorRate =
rillCellInfo->CellInfo.wcdma.signalStrengthWcdma.bitErrorRate;
break;
}
case RIL_CELL_INFO_TYPE_CDMA: {
records[i].cdma.resize(1);
CellInfoCdma *cellInfoCdma = &records[i].cdma[0];
cellInfoCdma->cellIdentityCdma.networkId =
rillCellInfo->CellInfo.cdma.cellIdentityCdma.networkId;
cellInfoCdma->cellIdentityCdma.systemId =
rillCellInfo->CellInfo.cdma.cellIdentityCdma.systemId;
cellInfoCdma->cellIdentityCdma.baseStationId =
rillCellInfo->CellInfo.cdma.cellIdentityCdma.basestationId;
cellInfoCdma->cellIdentityCdma.longitude =
rillCellInfo->CellInfo.cdma.cellIdentityCdma.longitude;
cellInfoCdma->cellIdentityCdma.latitude =
rillCellInfo->CellInfo.cdma.cellIdentityCdma.latitude;
cellInfoCdma->signalStrengthCdma.dbm =
rillCellInfo->CellInfo.cdma.signalStrengthCdma.dbm;
cellInfoCdma->signalStrengthCdma.ecio =
rillCellInfo->CellInfo.cdma.signalStrengthCdma.ecio;
cellInfoCdma->signalStrengthEvdo.dbm =
rillCellInfo->CellInfo.cdma.signalStrengthEvdo.dbm;
cellInfoCdma->signalStrengthEvdo.ecio =
rillCellInfo->CellInfo.cdma.signalStrengthEvdo.ecio;
cellInfoCdma->signalStrengthEvdo.signalNoiseRatio =
rillCellInfo->CellInfo.cdma.signalStrengthEvdo.signalNoiseRatio;
break;
}
case RIL_CELL_INFO_TYPE_LTE: {
records[i].lte.resize(1);
CellInfoLte *cellInfoLte = &records[i].lte[0];
cellInfoLte->cellIdentityLte.mcc =
std::to_string(rillCellInfo->CellInfo.lte.cellIdentityLte.mcc);
cellInfoLte->cellIdentityLte.mnc =
ril::util::mnc::decode(rillCellInfo->CellInfo.lte.cellIdentityLte.mnc);
cellInfoLte->cellIdentityLte.ci =
rillCellInfo->CellInfo.lte.cellIdentityLte.ci;
cellInfoLte->cellIdentityLte.pci =
rillCellInfo->CellInfo.lte.cellIdentityLte.pci;
cellInfoLte->cellIdentityLte.tac =
rillCellInfo->CellInfo.lte.cellIdentityLte.tac;
cellInfoLte->cellIdentityLte.earfcn =
rillCellInfo->CellInfo.lte.cellIdentityLte.earfcn;
cellInfoLte->signalStrengthLte.signalStrength =
rillCellInfo->CellInfo.lte.signalStrengthLte.signalStrength;
cellInfoLte->signalStrengthLte.rsrp =
rillCellInfo->CellInfo.lte.signalStrengthLte.rsrp;
cellInfoLte->signalStrengthLte.rsrq =
rillCellInfo->CellInfo.lte.signalStrengthLte.rsrq;
cellInfoLte->signalStrengthLte.rssnr =
rillCellInfo->CellInfo.lte.signalStrengthLte.rssnr;
cellInfoLte->signalStrengthLte.cqi =
rillCellInfo->CellInfo.lte.signalStrengthLte.cqi;
cellInfoLte->signalStrengthLte.timingAdvance =
rillCellInfo->CellInfo.lte.signalStrengthLte.timingAdvance;
break;
}
case RIL_CELL_INFO_TYPE_TD_SCDMA: {
records[i].tdscdma.resize(1);
CellInfoTdscdma *cellInfoTdscdma = &records[i].tdscdma[0];
cellInfoTdscdma->cellIdentityTdscdma.mcc =
std::to_string(rillCellInfo->CellInfo.tdscdma.cellIdentityTdscdma.mcc);
cellInfoTdscdma->cellIdentityTdscdma.mnc =
ril::util::mnc::decode(
rillCellInfo->CellInfo.tdscdma.cellIdentityTdscdma.mnc);
cellInfoTdscdma->cellIdentityTdscdma.lac =
rillCellInfo->CellInfo.tdscdma.cellIdentityTdscdma.lac;
cellInfoTdscdma->cellIdentityTdscdma.cid =
rillCellInfo->CellInfo.tdscdma.cellIdentityTdscdma.cid;
cellInfoTdscdma->cellIdentityTdscdma.cpid =
rillCellInfo->CellInfo.tdscdma.cellIdentityTdscdma.cpid;
cellInfoTdscdma->signalStrengthTdscdma.rscp =
rillCellInfo->CellInfo.tdscdma.signalStrengthTdscdma.rscp;
break;
}
default: {
break;
}
}
rillCellInfo += 1;
}
}
void convertRilCellInfoListToHal_1_2(void *response, size_t responseLen, hidl_vec<V1_2::CellInfo>& records) {
int num = responseLen / sizeof(RIL_CellInfo_v12);
records.resize(num);
RIL_CellInfo_v12 *rillCellInfo = (RIL_CellInfo_v12 *) response;
for (int i = 0; i < num; i++) {
records[i].cellInfoType = (CellInfoType) rillCellInfo->cellInfoType;
records[i].registered = rillCellInfo->registered;
records[i].timeStampType = (TimeStampType) rillCellInfo->timeStampType;
records[i].timeStamp = rillCellInfo->timeStamp;
records[i].connectionStatus =(V1_2::CellConnectionStatus)0;
// All vectors should be size 0 except one which will be size 1. Set everything to
// size 0 initially.
records[i].gsm.resize(0);
records[i].wcdma.resize(0);
records[i].cdma.resize(0);
records[i].lte.resize(0);
records[i].tdscdma.resize(0);
switch(rillCellInfo->cellInfoType) {
case RIL_CELL_INFO_TYPE_GSM: {
records[i].gsm.resize(1);
V1_2::CellInfoGsm *cellInfoGsm = &records[i].gsm[0];
cellInfoGsm->cellIdentityGsm.base.mcc =
std::to_string(rillCellInfo->CellInfo.gsm.cellIdentityGsm.mcc);
cellInfoGsm->cellIdentityGsm.base.mnc =
ril::util::mnc::decode(rillCellInfo->CellInfo.gsm.cellIdentityGsm.mnc);
cellInfoGsm->cellIdentityGsm.base.lac =
rillCellInfo->CellInfo.gsm.cellIdentityGsm.lac;
cellInfoGsm->cellIdentityGsm.base.cid =
rillCellInfo->CellInfo.gsm.cellIdentityGsm.cid;
cellInfoGsm->cellIdentityGsm.base.arfcn =
rillCellInfo->CellInfo.gsm.cellIdentityGsm.arfcn;
cellInfoGsm->cellIdentityGsm.base.bsic =
rillCellInfo->CellInfo.gsm.cellIdentityGsm.bsic;
cellInfoGsm->signalStrengthGsm.signalStrength =
rillCellInfo->CellInfo.gsm.signalStrengthGsm.signalStrength;
cellInfoGsm->signalStrengthGsm.bitErrorRate =
rillCellInfo->CellInfo.gsm.signalStrengthGsm.bitErrorRate;
cellInfoGsm->signalStrengthGsm.timingAdvance =
rillCellInfo->CellInfo.gsm.signalStrengthGsm.timingAdvance;
break;
}
case RIL_CELL_INFO_TYPE_WCDMA: {
records[i].wcdma.resize(1);
V1_2::CellInfoWcdma *cellInfoWcdma = &records[i].wcdma[0];
cellInfoWcdma->cellIdentityWcdma.base.mcc =
std::to_string(rillCellInfo->CellInfo.wcdma.cellIdentityWcdma.mcc);
cellInfoWcdma->cellIdentityWcdma.base.mnc =
ril::util::mnc::decode(rillCellInfo->CellInfo.wcdma.cellIdentityWcdma.mnc);
cellInfoWcdma->cellIdentityWcdma.base.lac =
rillCellInfo->CellInfo.wcdma.cellIdentityWcdma.lac;
cellInfoWcdma->cellIdentityWcdma.base.cid =
rillCellInfo->CellInfo.wcdma.cellIdentityWcdma.cid;
cellInfoWcdma->cellIdentityWcdma.base.psc =
rillCellInfo->CellInfo.wcdma.cellIdentityWcdma.psc;
cellInfoWcdma->cellIdentityWcdma.base.uarfcn =
rillCellInfo->CellInfo.wcdma.cellIdentityWcdma.uarfcn;
cellInfoWcdma->signalStrengthWcdma.base.signalStrength =
rillCellInfo->CellInfo.wcdma.signalStrengthWcdma.signalStrength;
cellInfoWcdma->signalStrengthWcdma.base.bitErrorRate =
rillCellInfo->CellInfo.wcdma.signalStrengthWcdma.bitErrorRate;
break;
}
case RIL_CELL_INFO_TYPE_CDMA: {
records[i].cdma.resize(1);
V1_2::CellInfoCdma *cellInfoCdma = &records[i].cdma[0];
cellInfoCdma->cellIdentityCdma.base.networkId =
rillCellInfo->CellInfo.cdma.cellIdentityCdma.networkId;
cellInfoCdma->cellIdentityCdma.base.systemId =
rillCellInfo->CellInfo.cdma.cellIdentityCdma.systemId;
cellInfoCdma->cellIdentityCdma.base.baseStationId =
rillCellInfo->CellInfo.cdma.cellIdentityCdma.basestationId;
cellInfoCdma->cellIdentityCdma.base.longitude =
rillCellInfo->CellInfo.cdma.cellIdentityCdma.longitude;
cellInfoCdma->cellIdentityCdma.base.latitude =
rillCellInfo->CellInfo.cdma.cellIdentityCdma.latitude;
cellInfoCdma->signalStrengthCdma.dbm =
rillCellInfo->CellInfo.cdma.signalStrengthCdma.dbm;
cellInfoCdma->signalStrengthCdma.ecio =
rillCellInfo->CellInfo.cdma.signalStrengthCdma.ecio;
cellInfoCdma->signalStrengthEvdo.dbm =
rillCellInfo->CellInfo.cdma.signalStrengthEvdo.dbm;
cellInfoCdma->signalStrengthEvdo.ecio =
rillCellInfo->CellInfo.cdma.signalStrengthEvdo.ecio;
cellInfoCdma->signalStrengthEvdo.signalNoiseRatio =
rillCellInfo->CellInfo.cdma.signalStrengthEvdo.signalNoiseRatio;
break;
}
case RIL_CELL_INFO_TYPE_LTE: {
records[i].lte.resize(1);
V1_2::CellInfoLte *cellInfoLte = &records[i].lte[0];
cellInfoLte->cellIdentityLte.base.mcc =
std::to_string(rillCellInfo->CellInfo.lte.cellIdentityLte.mcc);
cellInfoLte->cellIdentityLte.base.mnc =
ril::util::mnc::decode(rillCellInfo->CellInfo.lte.cellIdentityLte.mnc);
cellInfoLte->cellIdentityLte.base.ci =
rillCellInfo->CellInfo.lte.cellIdentityLte.ci;
cellInfoLte->cellIdentityLte.base.pci =
rillCellInfo->CellInfo.lte.cellIdentityLte.pci;
cellInfoLte->cellIdentityLte.base.tac =
rillCellInfo->CellInfo.lte.cellIdentityLte.tac;
cellInfoLte->cellIdentityLte.base.earfcn =
rillCellInfo->CellInfo.lte.cellIdentityLte.earfcn;
cellInfoLte->signalStrengthLte.signalStrength =
rillCellInfo->CellInfo.lte.signalStrengthLte.signalStrength;
cellInfoLte->signalStrengthLte.rsrp =
rillCellInfo->CellInfo.lte.signalStrengthLte.rsrp;
cellInfoLte->signalStrengthLte.rsrq =
rillCellInfo->CellInfo.lte.signalStrengthLte.rsrq;
cellInfoLte->signalStrengthLte.rssnr =
rillCellInfo->CellInfo.lte.signalStrengthLte.rssnr;
cellInfoLte->signalStrengthLte.cqi =
rillCellInfo->CellInfo.lte.signalStrengthLte.cqi;
cellInfoLte->signalStrengthLte.timingAdvance =
rillCellInfo->CellInfo.lte.signalStrengthLte.timingAdvance;
break;
}
case RIL_CELL_INFO_TYPE_TD_SCDMA: {
records[i].tdscdma.resize(1);
V1_2::CellInfoTdscdma *cellInfoTdscdma = &records[i].tdscdma[0];
cellInfoTdscdma->cellIdentityTdscdma.base.mcc =
std::to_string(rillCellInfo->CellInfo.tdscdma.cellIdentityTdscdma.mcc);
cellInfoTdscdma->cellIdentityTdscdma.base.mnc =
ril::util::mnc::decode(
rillCellInfo->CellInfo.tdscdma.cellIdentityTdscdma.mnc);
cellInfoTdscdma->cellIdentityTdscdma.base.lac =
rillCellInfo->CellInfo.tdscdma.cellIdentityTdscdma.lac;
cellInfoTdscdma->cellIdentityTdscdma.base.cid =
rillCellInfo->CellInfo.tdscdma.cellIdentityTdscdma.cid;
cellInfoTdscdma->cellIdentityTdscdma.base.cpid =
rillCellInfo->CellInfo.tdscdma.cellIdentityTdscdma.cpid;
cellInfoTdscdma->signalStrengthTdscdma.rscp =
rillCellInfo->CellInfo.tdscdma.signalStrengthTdscdma.rscp;
break;
}
default: {
break;
}
}
rillCellInfo += 1;
}
}
void convertRilCellInfoListToHal_1_4(void *response, size_t responseLen, hidl_vec<V1_4::CellInfo>& records) {
int num = responseLen / sizeof(RIL_CellInfo_v16);
records.resize(num);
RIL_CellInfo_v16 *rillCellInfo = (RIL_CellInfo_v16 *) response;
for (int i = 0; i < num; i++) {
records[i].isRegistered = rillCellInfo->registered;
records[i].connectionStatus = (V1_2::CellConnectionStatus)rillCellInfo->connectionStatus;
switch(rillCellInfo->cellInfoType) {
case RIL_CELL_INFO_TYPE_GSM: {
V1_2::CellInfoGsm cellInfoGsm;
cellInfoGsm.cellIdentityGsm.base.mcc =
std::to_string(rillCellInfo->CellInfo.gsm.cellIdentityGsm.mcc);
cellInfoGsm.cellIdentityGsm.base.mnc =
ril::util::mnc::decode(rillCellInfo->CellInfo.gsm.cellIdentityGsm.mnc);
cellInfoGsm.cellIdentityGsm.base.lac =
rillCellInfo->CellInfo.gsm.cellIdentityGsm.lac;
cellInfoGsm.cellIdentityGsm.base.cid =
rillCellInfo->CellInfo.gsm.cellIdentityGsm.cid;
cellInfoGsm.cellIdentityGsm.base.arfcn =
rillCellInfo->CellInfo.gsm.cellIdentityGsm.arfcn;
cellInfoGsm.cellIdentityGsm.base.bsic =
rillCellInfo->CellInfo.gsm.cellIdentityGsm.bsic;
cellInfoGsm.signalStrengthGsm.signalStrength =
rillCellInfo->CellInfo.gsm.signalStrengthGsm.signalStrength;
cellInfoGsm.signalStrengthGsm.bitErrorRate =
rillCellInfo->CellInfo.gsm.signalStrengthGsm.bitErrorRate;
cellInfoGsm.signalStrengthGsm.timingAdvance =
rillCellInfo->CellInfo.gsm.signalStrengthGsm.timingAdvance;
records[i].info.gsm(cellInfoGsm);
break;
}
case RIL_CELL_INFO_TYPE_WCDMA: {
V1_2::CellInfoWcdma cellInfoWcdma;
cellInfoWcdma.cellIdentityWcdma.base.mcc =
std::to_string(rillCellInfo->CellInfo.wcdma.cellIdentityWcdma.mcc);
cellInfoWcdma.cellIdentityWcdma.base.mnc =
ril::util::mnc::decode(rillCellInfo->CellInfo.wcdma.cellIdentityWcdma.mnc);
cellInfoWcdma.cellIdentityWcdma.base.lac =
rillCellInfo->CellInfo.wcdma.cellIdentityWcdma.lac;
cellInfoWcdma.cellIdentityWcdma.base.cid =
rillCellInfo->CellInfo.wcdma.cellIdentityWcdma.cid;
cellInfoWcdma.cellIdentityWcdma.base.psc =
rillCellInfo->CellInfo.wcdma.cellIdentityWcdma.psc;
cellInfoWcdma.cellIdentityWcdma.base.uarfcn =
rillCellInfo->CellInfo.wcdma.cellIdentityWcdma.uarfcn;
cellInfoWcdma.signalStrengthWcdma.base.signalStrength =
rillCellInfo->CellInfo.wcdma.signalStrengthWcdma.signalStrength;
cellInfoWcdma.signalStrengthWcdma.base.bitErrorRate =
rillCellInfo->CellInfo.wcdma.signalStrengthWcdma.bitErrorRate;
records[i].info.wcdma(cellInfoWcdma);
break;
}
case RIL_CELL_INFO_TYPE_CDMA: {
V1_2::CellInfoCdma cellInfoCdma;
cellInfoCdma.cellIdentityCdma.base.networkId =
rillCellInfo->CellInfo.cdma.cellIdentityCdma.networkId;
cellInfoCdma.cellIdentityCdma.base.systemId =
rillCellInfo->CellInfo.cdma.cellIdentityCdma.systemId;
cellInfoCdma.cellIdentityCdma.base.baseStationId =
rillCellInfo->CellInfo.cdma.cellIdentityCdma.basestationId;
cellInfoCdma.cellIdentityCdma.base.longitude =
rillCellInfo->CellInfo.cdma.cellIdentityCdma.longitude;
cellInfoCdma.cellIdentityCdma.base.latitude =
rillCellInfo->CellInfo.cdma.cellIdentityCdma.latitude;
cellInfoCdma.signalStrengthCdma.dbm =
rillCellInfo->CellInfo.cdma.signalStrengthCdma.dbm;
cellInfoCdma.signalStrengthCdma.ecio =
rillCellInfo->CellInfo.cdma.signalStrengthCdma.ecio;
cellInfoCdma.signalStrengthEvdo.dbm =
rillCellInfo->CellInfo.cdma.signalStrengthEvdo.dbm;
cellInfoCdma.signalStrengthEvdo.ecio =
rillCellInfo->CellInfo.cdma.signalStrengthEvdo.ecio;
cellInfoCdma.signalStrengthEvdo.signalNoiseRatio =
rillCellInfo->CellInfo.cdma.signalStrengthEvdo.signalNoiseRatio;
records[i].info.cdma(cellInfoCdma);
break;
}
case RIL_CELL_INFO_TYPE_LTE: {
V1_4::CellInfoLte cellInfoLte;
cellInfoLte.base.cellIdentityLte.base.mcc =
std::to_string(rillCellInfo->CellInfo.lte.cellIdentityLte.mcc);
cellInfoLte.base.cellIdentityLte.base.mnc =
ril::util::mnc::decode(rillCellInfo->CellInfo.lte.cellIdentityLte.mnc);
cellInfoLte.base.cellIdentityLte.base.ci =
rillCellInfo->CellInfo.lte.cellIdentityLte.ci;
cellInfoLte.base.cellIdentityLte.base.pci =
rillCellInfo->CellInfo.lte.cellIdentityLte.pci;
cellInfoLte.base.cellIdentityLte.base.tac =
rillCellInfo->CellInfo.lte.cellIdentityLte.tac;
cellInfoLte.base.cellIdentityLte.base.earfcn =
rillCellInfo->CellInfo.lte.cellIdentityLte.earfcn;
cellInfoLte.base.signalStrengthLte.signalStrength =
rillCellInfo->CellInfo.lte.signalStrengthLte.signalStrength;
cellInfoLte.base.signalStrengthLte.rsrp =
rillCellInfo->CellInfo.lte.signalStrengthLte.rsrp;
cellInfoLte.base.signalStrengthLte.rsrq =
rillCellInfo->CellInfo.lte.signalStrengthLte.rsrq;
cellInfoLte.base.signalStrengthLte.rssnr =
rillCellInfo->CellInfo.lte.signalStrengthLte.rssnr;
cellInfoLte.base.signalStrengthLte.cqi =
rillCellInfo->CellInfo.lte.signalStrengthLte.cqi;
cellInfoLte.base.signalStrengthLte.timingAdvance =
rillCellInfo->CellInfo.lte.signalStrengthLte.timingAdvance;
records[i].info.lte(cellInfoLte);
break;
}
case RIL_CELL_INFO_TYPE_TD_SCDMA: {
V1_2::CellInfoTdscdma cellInfoTdscdma;
cellInfoTdscdma.cellIdentityTdscdma.base.mcc =
std::to_string(rillCellInfo->CellInfo.tdscdma.cellIdentityTdscdma.mcc);
cellInfoTdscdma.cellIdentityTdscdma.base.mnc =
ril::util::mnc::decode(
rillCellInfo->CellInfo.tdscdma.cellIdentityTdscdma.mnc);
cellInfoTdscdma.cellIdentityTdscdma.base.lac =
rillCellInfo->CellInfo.tdscdma.cellIdentityTdscdma.lac;
cellInfoTdscdma.cellIdentityTdscdma.base.cid =
rillCellInfo->CellInfo.tdscdma.cellIdentityTdscdma.cid;
cellInfoTdscdma.cellIdentityTdscdma.base.cpid =
rillCellInfo->CellInfo.tdscdma.cellIdentityTdscdma.cpid;
cellInfoTdscdma.signalStrengthTdscdma.rscp =
rillCellInfo->CellInfo.tdscdma.signalStrengthTdscdma.rscp;
records[i].info.tdscdma(cellInfoTdscdma);
break;
}
case RIL_CELL_INFO_TYPE_NR: {
V1_4::CellInfoNr cellInfoNr;
cellInfoNr.cellidentity.mcc =
std::to_string(rillCellInfo->CellInfo.nr.cellidentity.mcc);
cellInfoNr.cellidentity.mnc =
ril::util::mnc::decode(
rillCellInfo->CellInfo.nr.cellidentity.mnc);
cellInfoNr.cellidentity.nci =
rillCellInfo->CellInfo.nr.cellidentity.nci;
cellInfoNr.cellidentity.pci =
rillCellInfo->CellInfo.nr.cellidentity.pci;
cellInfoNr.cellidentity.tac =
rillCellInfo->CellInfo.nr.cellidentity.tac;
cellInfoNr.cellidentity.nrarfcn =
rillCellInfo->CellInfo.nr.cellidentity.nrarfcn;
cellInfoNr.cellidentity.operatorNames.alphaLong =
convertCharPtrToHidlString(rillCellInfo->CellInfo.nr.cellidentity.operatorNames.alphaLong);
cellInfoNr.cellidentity.operatorNames.alphaShort =
convertCharPtrToHidlString(rillCellInfo->CellInfo.nr.cellidentity.operatorNames.alphaShort);
cellInfoNr.signalStrength.ssRsrp =
rillCellInfo->CellInfo.nr.signalStrength.ssRsrp;
cellInfoNr.signalStrength.ssRsrq =
rillCellInfo->CellInfo.nr.signalStrength.ssRsrq;
cellInfoNr.signalStrength.ssSinr =
rillCellInfo->CellInfo.nr.signalStrength.ssSinr;
cellInfoNr.signalStrength.csiRsrp =
rillCellInfo->CellInfo.nr.signalStrength.csiRsrp;
cellInfoNr.signalStrength.csiRsrq =
rillCellInfo->CellInfo.nr.signalStrength.csiRsrq;
cellInfoNr.signalStrength.csiSinr =
rillCellInfo->CellInfo.nr.signalStrength.csiSinr;
records[i].info.nr(cellInfoNr);
break;
}
default: {
break;
}
}
rillCellInfo += 1;
}
}
int radio_1_6::cellInfoListInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if ((response == NULL && responseLen != 0) || responseLen % sizeof(RIL_CellInfo_v12) != 0) {
RLOGE("cellInfoListInd: invalid response");
return 0;
}
hidl_vec<CellInfo> records;
convertRilCellInfoListToHal(response, responseLen, records);
#if VDBG
RLOGD("cellInfoListInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->cellInfoList(
convertIntToRadioIndicationType(indicationType), records);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("cellInfoListInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::imsNetworkStateChangedInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
#if VDBG
RLOGD("imsNetworkStateChangedInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->imsNetworkStateChanged(
convertIntToRadioIndicationType(indicationType));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("imsNetworkStateChangedInd: radioService[%d]->mRadioIndication == NULL",
slotId);
}
return 0;
}
int radio_1_6::subscriptionStatusChangedInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != sizeof(int)) {
RLOGE("subscriptionStatusChangedInd: invalid response");
return 0;
}
bool activate = ((int32_t *) response)[0];
#if VDBG
RLOGD("subscriptionStatusChangedInd: activate %d", activate);
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->subscriptionStatusChanged(
convertIntToRadioIndicationType(indicationType), activate);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("subscriptionStatusChangedInd: radioService[%d]->mRadioIndication == NULL",
slotId);
}
return 0;
}
int radio_1_6::srvccStateNotifyInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != sizeof(int)) {
RLOGE("srvccStateNotifyInd: invalid response");
return 0;
}
int32_t state = ((int32_t *) response)[0];
#if VDBG
RLOGD("srvccStateNotifyInd: rat %d", state);
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->srvccStateNotify(
convertIntToRadioIndicationType(indicationType), (SrvccState) state);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("srvccStateNotifyInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
void convertRilHardwareConfigListToHal(void *response, size_t responseLen,
hidl_vec<HardwareConfig>& records) {
int num = responseLen / sizeof(RIL_HardwareConfig);
records.resize(num);
RIL_HardwareConfig *rilHardwareConfig = (RIL_HardwareConfig *) response;
for (int i = 0; i < num; i++) {
records[i].type = (HardwareConfigType) rilHardwareConfig[i].type;
records[i].uuid = convertCharPtrToHidlString(rilHardwareConfig[i].uuid);
records[i].state = (HardwareConfigState) rilHardwareConfig[i].state;
switch (rilHardwareConfig[i].type) {
case RIL_HARDWARE_CONFIG_MODEM: {
records[i].modem.resize(1);
records[i].sim.resize(0);
HardwareConfigModem *hwConfigModem = &records[i].modem[0];
hwConfigModem->rat = rilHardwareConfig[i].cfg.modem.rat;
hwConfigModem->maxVoice = rilHardwareConfig[i].cfg.modem.maxVoice;
hwConfigModem->maxData = rilHardwareConfig[i].cfg.modem.maxData;
hwConfigModem->maxStandby = rilHardwareConfig[i].cfg.modem.maxStandby;
break;
}
case RIL_HARDWARE_CONFIG_SIM: {
records[i].sim.resize(1);
records[i].modem.resize(0);
records[i].sim[0].modemUuid =
convertCharPtrToHidlString(rilHardwareConfig[i].cfg.sim.modemUuid);
break;
}
}
}
}
int radio_1_6::hardwareConfigChangedInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if ((response == NULL && responseLen != 0)
|| responseLen % sizeof(RIL_HardwareConfig) != 0) {
RLOGE("hardwareConfigChangedInd: invalid response");
return 0;
}
hidl_vec<HardwareConfig> configs;
convertRilHardwareConfigListToHal(response, responseLen, configs);
#if VDBG
RLOGD("hardwareConfigChangedInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->hardwareConfigChanged(
convertIntToRadioIndicationType(indicationType), configs);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("hardwareConfigChangedInd: radioService[%d]->mRadioIndication == NULL",
slotId);
}
return 0;
}
void convertRilRadioCapabilityToHal(void *response, size_t responseLen, RadioCapability& rc) {
RIL_RadioCapability *rilRadioCapability = (RIL_RadioCapability *) response;
rc.session = rilRadioCapability->session;
rc.phase = (V1_0::RadioCapabilityPhase) rilRadioCapability->phase;
rc.raf = rilRadioCapability->rat;
rc.logicalModemUuid = convertCharPtrToHidlString(rilRadioCapability->logicalModemUuid);
rc.status = (V1_0::RadioCapabilityStatus) rilRadioCapability->status;
}
int radio_1_6::radioCapabilityIndicationInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != sizeof(RIL_RadioCapability)) {
RLOGE("radioCapabilityIndicationInd: invalid response");
return 0;
}
RadioCapability rc = {};
convertRilRadioCapabilityToHal(response, responseLen, rc);
#if VDBG
RLOGD("radioCapabilityIndicationInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->radioCapabilityIndication(
convertIntToRadioIndicationType(indicationType), rc);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("radioCapabilityIndicationInd: radioService[%d]->mRadioIndication == NULL",
slotId);
}
return 0;
}
bool isServiceTypeCfQuery(RIL_SsServiceType serType, RIL_SsRequestType reqType) {
if ((reqType == SS_INTERROGATION) &&
(serType == SS_CFU ||
serType == SS_CF_BUSY ||
serType == SS_CF_NO_REPLY ||
serType == SS_CF_NOT_REACHABLE ||
serType == SS_CF_ALL ||
serType == SS_CF_ALL_CONDITIONAL)) {
return true;
}
return false;
}
int radio_1_6::onSupplementaryServiceIndicationInd(int slotId,
int indicationType, int token, RIL_Errno e,
void *response, size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != sizeof(RIL_StkCcUnsolSsResponse)) {
RLOGE("onSupplementaryServiceIndicationInd: invalid response");
return 0;
}
RIL_StkCcUnsolSsResponse *rilSsResponse = (RIL_StkCcUnsolSsResponse *) response;
StkCcUnsolSsResult ss = {};
ss.serviceType = (SsServiceType) rilSsResponse->serviceType;
ss.requestType = (SsRequestType) rilSsResponse->requestType;
ss.teleserviceType = (SsTeleserviceType) rilSsResponse->teleserviceType;
ss.serviceClass = rilSsResponse->serviceClass;
ss.result = (RadioError) rilSsResponse->result;
if (isServiceTypeCfQuery(rilSsResponse->serviceType, rilSsResponse->requestType)) {
#if VDBG
RLOGD("onSupplementaryServiceIndicationInd CF type, num of Cf elements %d",
rilSsResponse->cfData.numValidIndexes);
#endif
if (rilSsResponse->cfData.numValidIndexes > NUM_SERVICE_CLASSES) {
RLOGE("onSupplementaryServiceIndicationInd numValidIndexes is greater than "
"max value %d, truncating it to max value", NUM_SERVICE_CLASSES);
rilSsResponse->cfData.numValidIndexes = NUM_SERVICE_CLASSES;
}
ss.cfData.resize(1);
ss.ssInfo.resize(0);
/* number of call info's */
ss.cfData[0].cfInfo.resize(rilSsResponse->cfData.numValidIndexes);
for (int i = 0; i < rilSsResponse->cfData.numValidIndexes; i++) {
RIL_CallForwardInfo cf = rilSsResponse->cfData.cfInfo[i];
CallForwardInfo *cfInfo = &ss.cfData[0].cfInfo[i];
cfInfo->status = (CallForwardInfoStatus) cf.status;
cfInfo->reason = cf.reason;
cfInfo->serviceClass = cf.serviceClass;
cfInfo->toa = cf.toa;
cfInfo->number = convertCharPtrToHidlString(cf.number);
cfInfo->timeSeconds = cf.timeSeconds;
#if VDBG
RLOGD("onSupplementaryServiceIndicationInd: "
"Data: %d,reason=%d,cls=%d,toa=%d,num=%s,tout=%d],", cf.status,
cf.reason, cf.serviceClass, cf.toa, (char*)cf.number, cf.timeSeconds);
#endif
}
} else {
ss.ssInfo.resize(1);
ss.cfData.resize(0);
/* each int */
ss.ssInfo[0].ssInfo.resize(SS_INFO_MAX);
for (int i = 0; i < SS_INFO_MAX; i++) {
#if VDBG
RLOGD("onSupplementaryServiceIndicationInd: Data: %d",
rilSsResponse->ssInfo[i]);
#endif
ss.ssInfo[0].ssInfo[i] = rilSsResponse->ssInfo[i];
}
}
#if VDBG
RLOGD("onSupplementaryServiceIndicationInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->
onSupplementaryServiceIndication(convertIntToRadioIndicationType(indicationType),
ss);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("onSupplementaryServiceIndicationInd: "
"radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::stkCallControlAlphaNotifyInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen == 0) {
RLOGE("stkCallControlAlphaNotifyInd: invalid response");
return 0;
}
#if VDBG
RLOGD("stkCallControlAlphaNotifyInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->stkCallControlAlphaNotify(
convertIntToRadioIndicationType(indicationType),
convertCharPtrToHidlString((char *) response));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("stkCallControlAlphaNotifyInd: radioService[%d]->mRadioIndication == NULL",
slotId);
}
return 0;
}
void convertRilLceDataInfoToHal(void *response, size_t responseLen, LceDataInfo& lce) {
RIL_LceDataInfo *rilLceDataInfo = (RIL_LceDataInfo *)response;
lce.lastHopCapacityKbps = rilLceDataInfo->last_hop_capacity_kbps;
lce.confidenceLevel = rilLceDataInfo->confidence_level;
lce.lceSuspended = rilLceDataInfo->lce_suspended;
}
int radio_1_6::lceDataInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != sizeof(RIL_LceDataInfo)) {
RLOGE("lceDataInd: invalid response");
return 0;
}
LceDataInfo lce = {};
convertRilLceDataInfoToHal(response, responseLen, lce);
#if VDBG
RLOGD("lceDataInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->lceData(
convertIntToRadioIndicationType(indicationType), lce);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("lceDataInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::pcoDataInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen != sizeof(RIL_PCO_Data)) {
RLOGE("pcoDataInd: invalid response");
return 0;
}
PcoDataInfo pco = {};
RIL_PCO_Data *rilPcoData = (RIL_PCO_Data *)response;
pco.cid = rilPcoData->cid;
pco.bearerProto = convertCharPtrToHidlString(rilPcoData->bearer_proto);
pco.pcoId = rilPcoData->pco_id;
pco.contents.setToExternal((uint8_t *) rilPcoData->contents, rilPcoData->contents_length);
#if VDBG
RLOGD("pcoDataInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->pcoData(
convertIntToRadioIndicationType(indicationType), pco);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("pcoDataInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::modemResetInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndication != NULL) {
if (response == NULL || responseLen == 0) {
RLOGE("modemResetInd: invalid response");
return 0;
}
#if VDBG
RLOGD("modemResetInd");
#endif
Return<void> retStatus = radioService[slotId]->mRadioIndication->modemReset(
convertIntToRadioIndicationType(indicationType),
convertCharPtrToHidlString((char *) response));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("modemResetInd: radioService[%d]->mRadioIndication == NULL", slotId);
}
return 0;
}
int radio_1_6::networkScanResultInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("networkScanResultInd");
#endif
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndicationV1_4 != NULL) {
if (response == NULL || responseLen == 0) {
RLOGE("networkScanResultInd: invalid response");
return 0;
}
RLOGD("networkScanResultInd");
#if VDBG
RLOGD("networkScanResultInd");
#endif
RIL_NetworkScanResult *networkScanResult = (RIL_NetworkScanResult *) response;
V1_1::NetworkScanResult result;
result.status = (V1_1::ScanStatus) networkScanResult->status;
result.error = (RadioError) networkScanResult->error;
convertRilCellInfoListToHal(
networkScanResult->network_infos,
networkScanResult->network_infos_length * sizeof(RIL_CellInfo_v12),
result.networkInfos);
Return<void> retStatus = radioService[slotId]->mRadioIndicationV1_4->networkScanResult(
convertIntToRadioIndicationType(indicationType), result);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("networkScanResultInd: radioService[%d]->mRadioIndicationV1_4 == NULL", slotId);
}
return 0;
}
int radio_1_6::carrierInfoForImsiEncryption(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (radioService[slotId] != NULL && radioService[slotId]->mRadioIndicationV1_4 != NULL) {
if (response == NULL || responseLen == 0) {
RLOGE("carrierInfoForImsiEncryption: invalid response");
return 0;
}
RLOGD("carrierInfoForImsiEncryption");
Return<void> retStatus = radioService[slotId]->mRadioIndicationV1_4->
carrierInfoForImsiEncryption(convertIntToRadioIndicationType(indicationType));
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE("carrierInfoForImsiEncryption: radioService[%d]->mRadioIndicationV1_4 == NULL",
slotId);
}
return 0;
}
int radio_1_6::reportPhysicalChannelConfigs(int slotId, int indicationType,
int token, RIL_Errno e,
void *response,
size_t responseLen) {
if (radioService[slotId] != NULL &&
radioService[slotId]->mRadioIndicationV1_4 != NULL) {
int *configs = (int *)response;
::android::hardware::hidl_vec<PhysicalChannelConfigV1_4> physChanConfig;
physChanConfig.resize(1);
physChanConfig[0].base.status =
(::android::hardware::radio::V1_2::CellConnectionStatus)configs[0];
physChanConfig[0].base.cellBandwidthDownlink = configs[1];
physChanConfig[0].rat =
(::android::hardware::radio::V1_4::RadioTechnology)configs[2];
physChanConfig[0].rfInfo.range(
(::android::hardware::radio::V1_4::FrequencyRange)configs[3]);
physChanConfig[0].contextIds.resize(1);
physChanConfig[0].contextIds[0] = configs[4];
RLOGD("reportPhysicalChannelConfigs: %d %d %d %d %d", configs[0],
configs[1], configs[2], configs[3], configs[4]);
Return<void> retStatus = radioService[slotId]
->mRadioIndicationV1_4->currentPhysicalChannelConfigs_1_4(
RadioIndicationType::UNSOLICITED, physChanConfig);
radioService[slotId]->checkReturnStatus(retStatus);
} else {
RLOGE(
"reportPhysicalChannelConfigs: radioService[%d]->mRadioIndicationV1_4 "
"== NULL",
slotId);
return -1;
}
return 0;
}
int radio_1_6::keepaliveStatusInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
#if VDBG
RLOGD("%s(): token=%d", __FUNCTION__, token);
#endif
if (radioService[slotId] == NULL || radioService[slotId]->mRadioIndication == NULL) {
RLOGE("%s: radioService[%d]->mRadioIndication == NULL", __FUNCTION__, slotId);
return 0;
}
auto ret = V1_1::IRadioIndication::castFrom(
radioService[slotId]->mRadioIndication);
if (!ret.isOk()) {
RLOGE("%s: ret.isOk() == false for radioService[%d]", __FUNCTION__, slotId);
return 0;
}
sp<V1_1::IRadioIndication> radioIndicationV1_1 = ret;
if (response == NULL || responseLen != sizeof(V1_1::KeepaliveStatus)) {
RLOGE("%s: invalid response", __FUNCTION__);
return 0;
}
V1_1::KeepaliveStatus ks;
convertRilKeepaliveStatusToHal(static_cast<RIL_KeepaliveStatus*>(response), ks);
Return<void> retStatus = radioIndicationV1_1->keepaliveStatus(
convertIntToRadioIndicationType(indicationType), ks);
radioService[slotId]->checkReturnStatus(retStatus);
return 0;
}
int radio_1_6::oemHookRawInd(int slotId,
int indicationType, int token, RIL_Errno e, void *response,
size_t responseLen) {
if (!kOemHookEnabled) return 0;
if (oemHookService[slotId] != NULL && oemHookService[slotId]->mOemHookIndication != NULL) {
if (response == NULL || responseLen == 0) {
RLOGE("oemHookRawInd: invalid response");
return 0;
}
hidl_vec<uint8_t> data;
data.setToExternal((uint8_t *) response, responseLen);
#if VDBG
RLOGD("oemHookRawInd");
#endif
Return<void> retStatus = oemHookService[slotId]->mOemHookIndication->oemHookRaw(
convertIntToRadioIndicationType(indicationType), data);
checkReturnStatus(slotId, retStatus, false);
} else {
RLOGE("oemHookRawInd: oemHookService[%d]->mOemHookIndication == NULL", slotId);
}
return 0;
}
void radio_1_6::registerService(RIL_RadioFunctions *callbacks, CommandInfo *commands) {
using namespace android::hardware;
int simCount = 1;
const char *serviceNames[] = {
android::RIL_getServiceName()
#if (SIM_COUNT >= 2)
, RIL2_SERVICE_NAME
#if (SIM_COUNT >= 3)
, RIL3_SERVICE_NAME
#if (SIM_COUNT >= 4)
, RIL4_SERVICE_NAME
#endif
#endif
#endif
};
#if (SIM_COUNT >= 2)
simCount = SIM_COUNT;
#endif
s_vendorFunctions = callbacks;
s_commands = commands;
configureRpcThreadpool(1, true /* callerWillJoin */);
for (int i = 0; i < simCount; i++) {
pthread_rwlock_t *radioServiceRwlockPtr = getRadioServiceRwlock(i);
int ret = pthread_rwlock_wrlock(radioServiceRwlockPtr);
assert(ret == 0);
RLOGD("sim i = %d registering ...", i);
radioService[i] = new RadioImpl_1_6;
radioService[i]->mSlotId = i;
RLOGD("registerService: starting android::hardware::radio::V1_6::IRadio %s for slot %d",
serviceNames[i], i);
android::status_t status = radioService[i]->registerAsService(serviceNames[i]);
LOG_ALWAYS_FATAL_IF(status != android::OK, "status %d", status);
RLOGD("registerService: OemHook is enabled = %s", kOemHookEnabled ? "true" : "false");
if (kOemHookEnabled) {
oemHookService[i] = new OemHookImpl;
oemHookService[i]->mSlotId = i;
// status = oemHookService[i]->registerAsService(serviceNames[i]);
}
ret = pthread_rwlock_unlock(radioServiceRwlockPtr);
assert(ret == 0);
}
}
void rilc_thread_pool() {
joinRpcThreadpool();
}
pthread_rwlock_t * radio_1_6::getRadioServiceRwlock(int slotId) {
pthread_rwlock_t *radioServiceRwlockPtr = &radioServiceRwlock;
#if (SIM_COUNT >= 2)
if (slotId == 2) radioServiceRwlockPtr = &radioServiceRwlock2;
#if (SIM_COUNT >= 3)
if (slotId == 3) radioServiceRwlockPtr = &radioServiceRwlock3;
#if (SIM_COUNT >= 4)
if (slotId == 4) radioServiceRwlockPtr = &radioServiceRwlock4;
#endif
#endif
#endif
return radioServiceRwlockPtr;
}
// should acquire write lock for the corresponding service before calling this
void radio_1_6::setNitzTimeReceived(int slotId, long timeReceived) {
nitzTimeReceived[slotId] = timeReceived;
}