blob: 5df15f432705a081d21cd7a64953cbaacfab2b60 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "audio_hw_primary"
/*#define LOG_NDEBUG 0*/
#include <errno.h>
#include <pthread.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/time.h>
#include <cutils/log.h>
#include <cutils/properties.h>
#include <cutils/str_parms.h>
#include <hardware/audio.h>
#include <hardware/hardware.h>
#include <system/audio.h>
#include <tinyalsa/asoundlib.h>
#include <audio_utils/resampler.h>
#include <audio_route/audio_route.h>
#define PCM_CARD 1
#define PCM_DEVICE 0
#define PCM_DEVICE_SCO 2
#define MIXER_CARD 1
#define OUT_PERIOD_SIZE 512
#define OUT_SHORT_PERIOD_COUNT 2
#define OUT_LONG_PERIOD_COUNT 8
#define OUT_SAMPLING_RATE 44100
#define IN_PERIOD_SIZE 1024
#define IN_PERIOD_COUNT 4
#define IN_SAMPLING_RATE 44100
#define SCO_PERIOD_SIZE 256
#define SCO_PERIOD_COUNT 4
#define SCO_SAMPLING_RATE 8000
/* minimum sleep time in out_write() when write threshold is not reached */
#define MIN_WRITE_SLEEP_US 2000
#define MAX_WRITE_SLEEP_US ((OUT_PERIOD_SIZE * OUT_SHORT_PERIOD_COUNT * 1000000) \
/ OUT_SAMPLING_RATE)
enum {
OUT_BUFFER_TYPE_UNKNOWN,
OUT_BUFFER_TYPE_SHORT,
OUT_BUFFER_TYPE_LONG,
};
struct pcm_config pcm_config_out = {
.channels = 2,
.rate = OUT_SAMPLING_RATE,
.period_size = OUT_PERIOD_SIZE,
.period_count = OUT_LONG_PERIOD_COUNT,
.format = PCM_FORMAT_S16_LE,
.start_threshold = OUT_PERIOD_SIZE * OUT_SHORT_PERIOD_COUNT,
};
struct pcm_config pcm_config_in = {
.channels = 2,
.rate = IN_SAMPLING_RATE,
.period_size = IN_PERIOD_SIZE,
.period_count = IN_PERIOD_COUNT,
.format = PCM_FORMAT_S16_LE,
.start_threshold = 1,
.stop_threshold = (IN_PERIOD_SIZE * IN_PERIOD_COUNT),
};
struct pcm_config pcm_config_sco = {
.channels = 1,
.rate = SCO_SAMPLING_RATE,
.period_size = SCO_PERIOD_SIZE,
.period_count = SCO_PERIOD_COUNT,
.format = PCM_FORMAT_S16_LE,
};
struct audio_device {
struct audio_hw_device hw_device;
pthread_mutex_t lock; /* see note below on mutex acquisition order */
unsigned int out_device;
unsigned int in_device;
bool standby;
bool mic_mute;
struct audio_route *ar;
int orientation;
bool screen_off;
struct stream_out *active_out;
struct stream_in *active_in;
};
struct stream_out {
struct audio_stream_out stream;
pthread_mutex_t lock; /* see note below on mutex acquisition order */
struct pcm *pcm;
struct pcm_config *pcm_config;
bool standby;
uint64_t written; /* total frames written, not cleared when entering standby */
struct resampler_itfe *resampler;
int16_t *buffer;
size_t buffer_frames;
int write_threshold;
int cur_write_threshold;
int buffer_type;
struct audio_device *dev;
};
struct stream_in {
struct audio_stream_in stream;
pthread_mutex_t lock; /* see note below on mutex acquisition order */
struct pcm *pcm;
struct pcm_config *pcm_config;
bool standby;
unsigned int requested_rate;
struct resampler_itfe *resampler;
struct resampler_buffer_provider buf_provider;
int16_t *buffer;
size_t buffer_size;
size_t frames_in;
int read_status;
struct audio_device *dev;
};
enum {
ORIENTATION_LANDSCAPE,
ORIENTATION_PORTRAIT,
ORIENTATION_SQUARE,
ORIENTATION_UNDEFINED,
};
static uint32_t out_get_sample_rate(const struct audio_stream *stream);
static size_t out_get_buffer_size(const struct audio_stream *stream);
static audio_format_t out_get_format(const struct audio_stream *stream);
static uint32_t in_get_sample_rate(const struct audio_stream *stream);
static size_t in_get_buffer_size(const struct audio_stream *stream);
static audio_format_t in_get_format(const struct audio_stream *stream);
static int get_next_buffer(struct resampler_buffer_provider *buffer_provider,
struct resampler_buffer* buffer);
static void release_buffer(struct resampler_buffer_provider *buffer_provider,
struct resampler_buffer* buffer);
/*
* NOTE: when multiple mutexes have to be acquired, always take the
* audio_device mutex first, followed by the stream_in and/or
* stream_out mutexes.
*/
/* Helper functions */
static void select_devices(struct audio_device *adev)
{
int headphone_on;
int speaker_on;
int docked;
int main_mic_on;
headphone_on = adev->out_device & (AUDIO_DEVICE_OUT_WIRED_HEADSET |
AUDIO_DEVICE_OUT_WIRED_HEADPHONE);
speaker_on = adev->out_device & AUDIO_DEVICE_OUT_SPEAKER;
docked = adev->out_device & AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET;
main_mic_on = adev->in_device & AUDIO_DEVICE_IN_BUILTIN_MIC;
audio_route_reset(adev->ar);
if (speaker_on)
audio_route_apply_path(adev->ar, "speaker");
if (headphone_on)
audio_route_apply_path(adev->ar, "headphone");
if (docked)
audio_route_apply_path(adev->ar, "dock");
if (main_mic_on) {
if (adev->orientation == ORIENTATION_LANDSCAPE)
audio_route_apply_path(adev->ar, "main-mic-left");
else
audio_route_apply_path(adev->ar, "main-mic-top");
}
audio_route_update_mixer(adev->ar);
ALOGV("hp=%c speaker=%c dock=%c main-mic=%c", headphone_on ? 'y' : 'n',
speaker_on ? 'y' : 'n', docked ? 'y' : 'n', main_mic_on ? 'y' : 'n');
}
/* must be called with hw device and output stream mutexes locked */
static void do_out_standby(struct stream_out *out)
{
struct audio_device *adev = out->dev;
if (!out->standby) {
pcm_close(out->pcm);
out->pcm = NULL;
adev->active_out = NULL;
if (out->resampler) {
release_resampler(out->resampler);
out->resampler = NULL;
}
if (out->buffer) {
free(out->buffer);
out->buffer = NULL;
}
out->standby = true;
}
}
/* must be called with hw device and input stream mutexes locked */
static void do_in_standby(struct stream_in *in)
{
struct audio_device *adev = in->dev;
if (!in->standby) {
pcm_close(in->pcm);
in->pcm = NULL;
adev->active_in = NULL;
if (in->resampler) {
release_resampler(in->resampler);
in->resampler = NULL;
}
if (in->buffer) {
free(in->buffer);
in->buffer = NULL;
}
in->standby = true;
}
}
/* must be called with hw device and output stream mutexes locked */
static int start_output_stream(struct stream_out *out)
{
struct audio_device *adev = out->dev;
unsigned int device;
int ret;
/*
* Due to the lack of sample rate converters in the SoC,
* it greatly simplifies things to have only the main
* (speaker/headphone) PCM or the BC SCO PCM open at
* the same time.
*/
if (adev->out_device & AUDIO_DEVICE_OUT_ALL_SCO) {
device = PCM_DEVICE_SCO;
out->pcm_config = &pcm_config_sco;
} else {
device = PCM_DEVICE;
out->pcm_config = &pcm_config_out;
out->buffer_type = OUT_BUFFER_TYPE_UNKNOWN;
}
/*
* All open PCMs can only use a single group of rates at once:
* Group 1: 11.025, 22.05, 44.1
* Group 2: 8, 16, 32, 48
* Group 1 is used for digital audio playback since 44.1 is
* the most common rate, but group 2 is required for SCO.
*/
if (adev->active_in) {
struct stream_in *in = adev->active_in;
pthread_mutex_lock(&in->lock);
if (((out->pcm_config->rate % 8000 == 0) &&
(in->pcm_config->rate % 8000) != 0) ||
((out->pcm_config->rate % 11025 == 0) &&
(in->pcm_config->rate % 11025) != 0))
do_in_standby(in);
pthread_mutex_unlock(&in->lock);
}
out->pcm = pcm_open(PCM_CARD, device, PCM_OUT | PCM_NORESTART | PCM_MONOTONIC, out->pcm_config);
if (out->pcm && !pcm_is_ready(out->pcm)) {
ALOGE("pcm_open(out) failed: %s", pcm_get_error(out->pcm));
pcm_close(out->pcm);
return -ENOMEM;
}
/*
* If the stream rate differs from the PCM rate, we need to
* create a resampler.
*/
if (out_get_sample_rate(&out->stream.common) != out->pcm_config->rate) {
ret = create_resampler(out_get_sample_rate(&out->stream.common),
out->pcm_config->rate,
out->pcm_config->channels,
RESAMPLER_QUALITY_DEFAULT,
NULL,
&out->resampler);
out->buffer_frames = (pcm_config_out.period_size * out->pcm_config->rate) /
out_get_sample_rate(&out->stream.common) + 1;
out->buffer = malloc(pcm_frames_to_bytes(out->pcm, out->buffer_frames));
}
adev->active_out = out;
return 0;
}
/* must be called with hw device and input stream mutexes locked */
static int start_input_stream(struct stream_in *in)
{
struct audio_device *adev = in->dev;
unsigned int device;
int ret;
/*
* Due to the lack of sample rate converters in the SoC,
* it greatly simplifies things to have only the main
* mic PCM or the BC SCO PCM open at the same time.
*/
if (adev->in_device & AUDIO_DEVICE_IN_ALL_SCO) {
device = PCM_DEVICE_SCO;
in->pcm_config = &pcm_config_sco;
} else {
device = PCM_DEVICE;
in->pcm_config = &pcm_config_in;
}
/*
* All open PCMs can only use a single group of rates at once:
* Group 1: 11.025, 22.05, 44.1
* Group 2: 8, 16, 32, 48
* Group 1 is used for digital audio playback since 44.1 is
* the most common rate, but group 2 is required for SCO.
*/
if (adev->active_out) {
struct stream_out *out = adev->active_out;
pthread_mutex_lock(&out->lock);
if (((in->pcm_config->rate % 8000 == 0) &&
(out->pcm_config->rate % 8000) != 0) ||
((in->pcm_config->rate % 11025 == 0) &&
(out->pcm_config->rate % 11025) != 0))
do_out_standby(out);
pthread_mutex_unlock(&out->lock);
}
in->pcm = pcm_open(PCM_CARD, device, PCM_IN, in->pcm_config);
if (in->pcm && !pcm_is_ready(in->pcm)) {
ALOGE("pcm_open(in) failed: %s", pcm_get_error(in->pcm));
pcm_close(in->pcm);
return -ENOMEM;
}
/*
* If the stream rate differs from the PCM rate, we need to
* create a resampler.
*/
if (in_get_sample_rate(&in->stream.common) != in->pcm_config->rate) {
in->buf_provider.get_next_buffer = get_next_buffer;
in->buf_provider.release_buffer = release_buffer;
ret = create_resampler(in->pcm_config->rate,
in_get_sample_rate(&in->stream.common),
1,
RESAMPLER_QUALITY_DEFAULT,
&in->buf_provider,
&in->resampler);
}
in->buffer_size = pcm_frames_to_bytes(in->pcm,
in->pcm_config->period_size);
in->buffer = malloc(in->buffer_size);
in->frames_in = 0;
adev->active_in = in;
return 0;
}
static int get_next_buffer(struct resampler_buffer_provider *buffer_provider,
struct resampler_buffer* buffer)
{
struct stream_in *in;
if (buffer_provider == NULL || buffer == NULL)
return -EINVAL;
in = (struct stream_in *)((char *)buffer_provider -
offsetof(struct stream_in, buf_provider));
if (in->pcm == NULL) {
buffer->raw = NULL;
buffer->frame_count = 0;
in->read_status = -ENODEV;
return -ENODEV;
}
if (in->frames_in == 0) {
in->read_status = pcm_read(in->pcm,
(void*)in->buffer,
in->buffer_size);
if (in->read_status != 0) {
ALOGE("get_next_buffer() pcm_read error %d", in->read_status);
buffer->raw = NULL;
buffer->frame_count = 0;
return in->read_status;
}
in->frames_in = in->pcm_config->period_size;
if (in->pcm_config->channels == 2) {
unsigned int i;
/* Discard right channel */
for (i = 1; i < in->frames_in; i++)
in->buffer[i] = in->buffer[i * 2];
}
}
buffer->frame_count = (buffer->frame_count > in->frames_in) ?
in->frames_in : buffer->frame_count;
buffer->i16 = in->buffer + (in->pcm_config->period_size - in->frames_in);
return in->read_status;
}
static void release_buffer(struct resampler_buffer_provider *buffer_provider,
struct resampler_buffer* buffer)
{
struct stream_in *in;
if (buffer_provider == NULL || buffer == NULL)
return;
in = (struct stream_in *)((char *)buffer_provider -
offsetof(struct stream_in, buf_provider));
in->frames_in -= buffer->frame_count;
}
/* read_frames() reads frames from kernel driver, down samples to capture rate
* if necessary and output the number of frames requested to the buffer specified */
static ssize_t read_frames(struct stream_in *in, void *buffer, ssize_t frames)
{
ssize_t frames_wr = 0;
while (frames_wr < frames) {
size_t frames_rd = frames - frames_wr;
if (in->resampler != NULL) {
in->resampler->resample_from_provider(in->resampler,
(int16_t *)((char *)buffer +
frames_wr * audio_stream_in_frame_size(&in->stream)),
&frames_rd);
} else {
struct resampler_buffer buf = {
{ raw : NULL, },
frame_count : frames_rd,
};
get_next_buffer(&in->buf_provider, &buf);
if (buf.raw != NULL) {
memcpy((char *)buffer +
frames_wr * audio_stream_in_frame_size(&in->stream),
buf.raw,
buf.frame_count * audio_stream_in_frame_size(&in->stream));
frames_rd = buf.frame_count;
}
release_buffer(&in->buf_provider, &buf);
}
/* in->read_status is updated by getNextBuffer() also called by
* in->resampler->resample_from_provider() */
if (in->read_status != 0)
return in->read_status;
frames_wr += frames_rd;
}
return frames_wr;
}
/* API functions */
static uint32_t out_get_sample_rate(const struct audio_stream *stream)
{
return pcm_config_out.rate;
}
static int out_set_sample_rate(struct audio_stream *stream, uint32_t rate)
{
return -ENOSYS;
}
static size_t out_get_buffer_size(const struct audio_stream *stream)
{
return pcm_config_out.period_size *
audio_stream_out_frame_size((const struct audio_stream_out *)stream);
}
static uint32_t out_get_channels(const struct audio_stream *stream)
{
return AUDIO_CHANNEL_OUT_STEREO;
}
static audio_format_t out_get_format(const struct audio_stream *stream)
{
return AUDIO_FORMAT_PCM_16_BIT;
}
static int out_set_format(struct audio_stream *stream, audio_format_t format)
{
return -ENOSYS;
}
static int out_standby(struct audio_stream *stream)
{
struct stream_out *out = (struct stream_out *)stream;
pthread_mutex_lock(&out->dev->lock);
pthread_mutex_lock(&out->lock);
do_out_standby(out);
pthread_mutex_unlock(&out->lock);
pthread_mutex_unlock(&out->dev->lock);
return 0;
}
static int out_dump(const struct audio_stream *stream, int fd)
{
return 0;
}
static int out_set_parameters(struct audio_stream *stream, const char *kvpairs)
{
struct stream_out *out = (struct stream_out *)stream;
struct audio_device *adev = out->dev;
struct str_parms *parms;
char value[32];
int ret;
unsigned int val;
parms = str_parms_create_str(kvpairs);
ret = str_parms_get_str(parms, AUDIO_PARAMETER_STREAM_ROUTING,
value, sizeof(value));
pthread_mutex_lock(&adev->lock);
if (ret >= 0) {
val = atoi(value);
if ((adev->out_device != val) && (val != 0)) {
/*
* If SCO is turned on/off, we need to put audio into standby
* because SCO uses a different PCM.
*/
if ((val & AUDIO_DEVICE_OUT_ALL_SCO) ^
(adev->out_device & AUDIO_DEVICE_OUT_ALL_SCO)) {
pthread_mutex_lock(&out->lock);
do_out_standby(out);
pthread_mutex_unlock(&out->lock);
}
adev->out_device = val;
select_devices(adev);
}
}
pthread_mutex_unlock(&adev->lock);
str_parms_destroy(parms);
return ret;
}
static char * out_get_parameters(const struct audio_stream *stream, const char *keys)
{
return strdup("");
}
static uint32_t out_get_latency(const struct audio_stream_out *stream)
{
struct stream_out *out = (struct stream_out *)stream;
struct audio_device *adev = out->dev;
size_t period_count;
pthread_mutex_lock(&adev->lock);
if (adev->screen_off && !adev->active_in && !(adev->out_device & AUDIO_DEVICE_OUT_ALL_SCO))
period_count = OUT_LONG_PERIOD_COUNT;
else
period_count = OUT_SHORT_PERIOD_COUNT;
pthread_mutex_unlock(&adev->lock);
return (pcm_config_out.period_size * period_count * 1000) / pcm_config_out.rate;
}
static int out_set_volume(struct audio_stream_out *stream, float left,
float right)
{
return -ENOSYS;
}
static ssize_t out_write(struct audio_stream_out *stream, const void* buffer,
size_t bytes)
{
int ret = 0;
struct stream_out *out = (struct stream_out *)stream;
struct audio_device *adev = out->dev;
size_t frame_size = audio_stream_out_frame_size(stream);
int16_t *in_buffer = (int16_t *)buffer;
size_t in_frames = bytes / frame_size;
size_t out_frames;
int buffer_type;
int kernel_frames;
bool sco_on;
/*
* acquiring hw device mutex systematically is useful if a low
* priority thread is waiting on the output stream mutex - e.g.
* executing out_set_parameters() while holding the hw device
* mutex
*/
pthread_mutex_lock(&adev->lock);
pthread_mutex_lock(&out->lock);
if (out->standby) {
ret = start_output_stream(out);
if (ret != 0) {
pthread_mutex_unlock(&adev->lock);
goto exit;
}
out->standby = false;
}
buffer_type = (adev->screen_off && !adev->active_in) ?
OUT_BUFFER_TYPE_LONG : OUT_BUFFER_TYPE_SHORT;
sco_on = (adev->out_device & AUDIO_DEVICE_OUT_ALL_SCO);
pthread_mutex_unlock(&adev->lock);
/* detect changes in screen ON/OFF state and adapt buffer size
* if needed. Do not change buffer size when routed to SCO device. */
if (!sco_on && (buffer_type != out->buffer_type)) {
size_t period_count;
if (buffer_type == OUT_BUFFER_TYPE_LONG)
period_count = OUT_LONG_PERIOD_COUNT;
else
period_count = OUT_SHORT_PERIOD_COUNT;
out->write_threshold = out->pcm_config->period_size * period_count;
/* reset current threshold if exiting standby */
if (out->buffer_type == OUT_BUFFER_TYPE_UNKNOWN)
out->cur_write_threshold = out->write_threshold;
out->buffer_type = buffer_type;
}
/* Reduce number of channels, if necessary */
if (audio_channel_count_from_out_mask(out_get_channels(&stream->common)) >
(int)out->pcm_config->channels) {
unsigned int i;
/* Discard right channel */
for (i = 1; i < in_frames; i++)
in_buffer[i] = in_buffer[i * 2];
/* The frame size is now half */
frame_size /= 2;
}
/* Change sample rate, if necessary */
if (out_get_sample_rate(&stream->common) != out->pcm_config->rate) {
out_frames = out->buffer_frames;
out->resampler->resample_from_input(out->resampler,
in_buffer, &in_frames,
out->buffer, &out_frames);
in_buffer = out->buffer;
} else {
out_frames = in_frames;
}
if (!sco_on) {
int total_sleep_time_us = 0;
size_t period_size = out->pcm_config->period_size;
/* do not allow more than out->cur_write_threshold frames in kernel
* pcm driver buffer */
do {
struct timespec time_stamp;
if (pcm_get_htimestamp(out->pcm,
(unsigned int *)&kernel_frames,
&time_stamp) < 0)
break;
kernel_frames = pcm_get_buffer_size(out->pcm) - kernel_frames;
if (kernel_frames > out->cur_write_threshold) {
int sleep_time_us =
(int)(((int64_t)(kernel_frames - out->cur_write_threshold)
* 1000000) / out->pcm_config->rate);
if (sleep_time_us < MIN_WRITE_SLEEP_US)
break;
total_sleep_time_us += sleep_time_us;
if (total_sleep_time_us > MAX_WRITE_SLEEP_US) {
ALOGW("out_write() limiting sleep time %d to %d",
total_sleep_time_us, MAX_WRITE_SLEEP_US);
sleep_time_us = MAX_WRITE_SLEEP_US -
(total_sleep_time_us - sleep_time_us);
}
usleep(sleep_time_us);
}
} while ((kernel_frames > out->cur_write_threshold) &&
(total_sleep_time_us <= MAX_WRITE_SLEEP_US));
/* do not allow abrupt changes on buffer size. Increasing/decreasing
* the threshold by steps of 1/4th of the buffer size keeps the write
* time within a reasonable range during transitions.
* Also reset current threshold just above current filling status when
* kernel buffer is really depleted to allow for smooth catching up with
* target threshold.
*/
if (out->cur_write_threshold > out->write_threshold) {
out->cur_write_threshold -= period_size / 4;
if (out->cur_write_threshold < out->write_threshold) {
out->cur_write_threshold = out->write_threshold;
}
} else if (out->cur_write_threshold < out->write_threshold) {
out->cur_write_threshold += period_size / 4;
if (out->cur_write_threshold > out->write_threshold) {
out->cur_write_threshold = out->write_threshold;
}
} else if ((kernel_frames < out->write_threshold) &&
((out->write_threshold - kernel_frames) >
(int)(period_size * OUT_SHORT_PERIOD_COUNT))) {
out->cur_write_threshold = (kernel_frames / period_size + 1) * period_size;
out->cur_write_threshold += period_size / 4;
}
}
ret = pcm_write(out->pcm, in_buffer, out_frames * frame_size);
if (ret == -EPIPE) {
/* In case of underrun, don't sleep since we want to catch up asap */
pthread_mutex_unlock(&out->lock);
return ret;
}
if (ret == 0) {
out->written += out_frames;
}
exit:
pthread_mutex_unlock(&out->lock);
if (ret != 0) {
usleep(bytes * 1000000 / audio_stream_out_frame_size(&stream->common) /
out_get_sample_rate(&stream->common));
}
return bytes;
}
static int out_get_render_position(const struct audio_stream_out *stream,
uint32_t *dsp_frames)
{
return -EINVAL;
}
static int out_add_audio_effect(const struct audio_stream *stream, effect_handle_t effect)
{
return 0;
}
static int out_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect)
{
return 0;
}
static int out_get_next_write_timestamp(const struct audio_stream_out *stream,
int64_t *timestamp)
{
return -EINVAL;
}
static int out_get_presentation_position(const struct audio_stream_out *stream,
uint64_t *frames, struct timespec *timestamp)
{
struct stream_out *out = (struct stream_out *)stream;
int ret = -1;
pthread_mutex_lock(&out->lock);
size_t avail;
if (pcm_get_htimestamp(out->pcm, &avail, timestamp) == 0) {
size_t kernel_buffer_size = out->pcm_config->period_size * out->pcm_config->period_count;
// FIXME This calculation is incorrect if there is buffering after app processor
int64_t signed_frames = out->written - kernel_buffer_size + avail;
// It would be unusual for this value to be negative, but check just in case ...
if (signed_frames >= 0) {
*frames = signed_frames;
ret = 0;
}
}
pthread_mutex_unlock(&out->lock);
return ret;
}
/** audio_stream_in implementation **/
static uint32_t in_get_sample_rate(const struct audio_stream *stream)
{
struct stream_in *in = (struct stream_in *)stream;
return in->requested_rate;
}
static int in_set_sample_rate(struct audio_stream *stream, uint32_t rate)
{
return 0;
}
static size_t in_get_buffer_size(const struct audio_stream *stream)
{
struct stream_in *in = (struct stream_in *)stream;
size_t size;
/*
* take resampling into account and return the closest majoring
* multiple of 16 frames, as audioflinger expects audio buffers to
* be a multiple of 16 frames
*/
size = (in->pcm_config->period_size * in_get_sample_rate(stream)) /
in->pcm_config->rate;
size = ((size + 15) / 16) * 16;
return size * audio_stream_in_frame_size(&in->stream);
}
static uint32_t in_get_channels(const struct audio_stream *stream)
{
return AUDIO_CHANNEL_IN_MONO;
}
static audio_format_t in_get_format(const struct audio_stream *stream)
{
return AUDIO_FORMAT_PCM_16_BIT;
}
static int in_set_format(struct audio_stream *stream, audio_format_t format)
{
return -ENOSYS;
}
static int in_standby(struct audio_stream *stream)
{
struct stream_in *in = (struct stream_in *)stream;
pthread_mutex_lock(&in->dev->lock);
pthread_mutex_lock(&in->lock);
do_in_standby(in);
pthread_mutex_unlock(&in->lock);
pthread_mutex_unlock(&in->dev->lock);
return 0;
}
static int in_dump(const struct audio_stream *stream, int fd)
{
return 0;
}
static int in_set_parameters(struct audio_stream *stream, const char *kvpairs)
{
struct stream_in *in = (struct stream_in *)stream;
struct audio_device *adev = in->dev;
struct str_parms *parms;
char value[32];
int ret;
unsigned int val;
parms = str_parms_create_str(kvpairs);
ret = str_parms_get_str(parms, AUDIO_PARAMETER_STREAM_ROUTING,
value, sizeof(value));
pthread_mutex_lock(&adev->lock);
if (ret >= 0) {
val = atoi(value) & ~AUDIO_DEVICE_BIT_IN;
if ((adev->in_device != val) && (val != 0)) {
/*
* If SCO is turned on/off, we need to put audio into standby
* because SCO uses a different PCM.
*/
if ((val & AUDIO_DEVICE_IN_ALL_SCO) ^
(adev->in_device & AUDIO_DEVICE_IN_ALL_SCO)) {
pthread_mutex_lock(&in->lock);
do_in_standby(in);
pthread_mutex_unlock(&in->lock);
}
adev->in_device = val;
select_devices(adev);
}
}
pthread_mutex_unlock(&adev->lock);
str_parms_destroy(parms);
return ret;
}
static char * in_get_parameters(const struct audio_stream *stream,
const char *keys)
{
return strdup("");
}
static int in_set_gain(struct audio_stream_in *stream, float gain)
{
return 0;
}
static ssize_t in_read(struct audio_stream_in *stream, void* buffer,
size_t bytes)
{
int ret = 0;
struct stream_in *in = (struct stream_in *)stream;
struct audio_device *adev = in->dev;
size_t frames_rq = bytes / audio_stream_in_frame_size(stream);
/*
* acquiring hw device mutex systematically is useful if a low
* priority thread is waiting on the input stream mutex - e.g.
* executing in_set_parameters() while holding the hw device
* mutex
*/
pthread_mutex_lock(&adev->lock);
pthread_mutex_lock(&in->lock);
if (in->standby) {
ret = start_input_stream(in);
if (ret == 0)
in->standby = 0;
}
pthread_mutex_unlock(&adev->lock);
if (ret < 0)
goto exit;
/*if (in->num_preprocessors != 0) {
ret = process_frames(in, buffer, frames_rq);
} else */if (in->resampler != NULL) {
ret = read_frames(in, buffer, frames_rq);
} else if (in->pcm_config->channels == 2) {
/*
* If the PCM is stereo, capture twice as many frames and
* discard the right channel.
*/
unsigned int i;
int16_t *in_buffer = (int16_t *)buffer;
ret = pcm_read(in->pcm, in->buffer, bytes * 2);
/* Discard right channel */
for (i = 0; i < frames_rq; i++)
in_buffer[i] = in->buffer[i * 2];
} else {
ret = pcm_read(in->pcm, buffer, bytes);
}
if (ret > 0)
ret = 0;
/*
* Instead of writing zeroes here, we could trust the hardware
* to always provide zeroes when muted.
*/
if (ret == 0 && adev->mic_mute)
memset(buffer, 0, bytes);
exit:
if (ret < 0)
usleep(bytes * 1000000 / audio_stream_in_frame_size(stream) /
in_get_sample_rate(&stream->common));
pthread_mutex_unlock(&in->lock);
return bytes;
}
static uint32_t in_get_input_frames_lost(struct audio_stream_in *stream)
{
return 0;
}
static int in_add_audio_effect(const struct audio_stream *stream,
effect_handle_t effect)
{
return 0;
}
static int in_remove_audio_effect(const struct audio_stream *stream,
effect_handle_t effect)
{
return 0;
}
static int adev_open_output_stream(struct audio_hw_device *dev,
audio_io_handle_t handle,
audio_devices_t devices,
audio_output_flags_t flags,
struct audio_config *config,
struct audio_stream_out **stream_out)
{
struct audio_device *adev = (struct audio_device *)dev;
struct stream_out *out;
int ret;
out = (struct stream_out *)calloc(1, sizeof(struct stream_out));
if (!out)
return -ENOMEM;
out->stream.common.get_sample_rate = out_get_sample_rate;
out->stream.common.set_sample_rate = out_set_sample_rate;
out->stream.common.get_buffer_size = out_get_buffer_size;
out->stream.common.get_channels = out_get_channels;
out->stream.common.get_format = out_get_format;
out->stream.common.set_format = out_set_format;
out->stream.common.standby = out_standby;
out->stream.common.dump = out_dump;
out->stream.common.set_parameters = out_set_parameters;
out->stream.common.get_parameters = out_get_parameters;
out->stream.common.add_audio_effect = out_add_audio_effect;
out->stream.common.remove_audio_effect = out_remove_audio_effect;
out->stream.get_latency = out_get_latency;
out->stream.set_volume = out_set_volume;
out->stream.write = out_write;
out->stream.get_render_position = out_get_render_position;
out->stream.get_next_write_timestamp = out_get_next_write_timestamp;
out->stream.get_presentation_position = out_get_presentation_position;
out->dev = adev;
config->format = out_get_format(&out->stream.common);
config->channel_mask = out_get_channels(&out->stream.common);
config->sample_rate = out_get_sample_rate(&out->stream.common);
out->standby = true;
/* out->written = 0; by calloc() */
*stream_out = &out->stream;
return 0;
err_open:
free(out);
*stream_out = NULL;
return ret;
}
static void adev_close_output_stream(struct audio_hw_device *dev,
struct audio_stream_out *stream)
{
out_standby(&stream->common);
free(stream);
}
static int adev_set_parameters(struct audio_hw_device *dev, const char *kvpairs)
{
struct audio_device *adev = (struct audio_device *)dev;
struct str_parms *parms;
char *str;
char value[32];
int ret;
parms = str_parms_create_str(kvpairs);
ret = str_parms_get_str(parms, "orientation", value, sizeof(value));
if (ret >= 0) {
int orientation;
if (strcmp(value, "landscape") == 0)
orientation = ORIENTATION_LANDSCAPE;
else if (strcmp(value, "portrait") == 0)
orientation = ORIENTATION_PORTRAIT;
else if (strcmp(value, "square") == 0)
orientation = ORIENTATION_SQUARE;
else
orientation = ORIENTATION_UNDEFINED;
pthread_mutex_lock(&adev->lock);
if (orientation != adev->orientation) {
adev->orientation = orientation;
/*
* Orientation changes can occur with the input device
* closed so we must call select_devices() here to set
* up the mixer. This is because select_devices() will
* not be called when the input device is opened if no
* other input parameter is changed.
*/
select_devices(adev);
}
pthread_mutex_unlock(&adev->lock);
}
ret = str_parms_get_str(parms, "screen_state", value, sizeof(value));
if (ret >= 0) {
if (strcmp(value, AUDIO_PARAMETER_VALUE_ON) == 0)
adev->screen_off = false;
else
adev->screen_off = true;
}
str_parms_destroy(parms);
return ret;
}
static char * adev_get_parameters(const struct audio_hw_device *dev,
const char *keys)
{
return strdup("");
}
static int adev_init_check(const struct audio_hw_device *dev)
{
return 0;
}
static int adev_set_voice_volume(struct audio_hw_device *dev, float volume)
{
return -ENOSYS;
}
static int adev_set_master_volume(struct audio_hw_device *dev, float volume)
{
return -ENOSYS;
}
static int adev_set_mode(struct audio_hw_device *dev, audio_mode_t mode)
{
return 0;
}
static int adev_set_mic_mute(struct audio_hw_device *dev, bool state)
{
struct audio_device *adev = (struct audio_device *)dev;
adev->mic_mute = state;
return 0;
}
static int adev_get_mic_mute(const struct audio_hw_device *dev, bool *state)
{
struct audio_device *adev = (struct audio_device *)dev;
*state = adev->mic_mute;
return 0;
}
static size_t adev_get_input_buffer_size(const struct audio_hw_device *dev,
const struct audio_config *config)
{
size_t size;
/*
* take resampling into account and return the closest majoring
* multiple of 16 frames, as audioflinger expects audio buffers to
* be a multiple of 16 frames
*/
size = (pcm_config_in.period_size * config->sample_rate) / pcm_config_in.rate;
size = ((size + 15) / 16) * 16;
return (size * audio_channel_count_from_in_mask(config->channel_mask) *
audio_bytes_per_sample(config->format));
}
static int adev_open_input_stream(struct audio_hw_device *dev,
audio_io_handle_t handle,
audio_devices_t devices,
struct audio_config *config,
struct audio_stream_in **stream_in,
audio_input_flags_t flags __unused)
{
struct audio_device *adev = (struct audio_device *)dev;
struct stream_in *in;
int ret;
*stream_in = NULL;
/* Respond with a request for mono if a different format is given. */
if (config->channel_mask != AUDIO_CHANNEL_IN_MONO) {
config->channel_mask = AUDIO_CHANNEL_IN_MONO;
return -EINVAL;
}
in = (struct stream_in *)calloc(1, sizeof(struct stream_in));
if (!in)
return -ENOMEM;
in->stream.common.get_sample_rate = in_get_sample_rate;
in->stream.common.set_sample_rate = in_set_sample_rate;
in->stream.common.get_buffer_size = in_get_buffer_size;
in->stream.common.get_channels = in_get_channels;
in->stream.common.get_format = in_get_format;
in->stream.common.set_format = in_set_format;
in->stream.common.standby = in_standby;
in->stream.common.dump = in_dump;
in->stream.common.set_parameters = in_set_parameters;
in->stream.common.get_parameters = in_get_parameters;
in->stream.common.add_audio_effect = in_add_audio_effect;
in->stream.common.remove_audio_effect = in_remove_audio_effect;
in->stream.set_gain = in_set_gain;
in->stream.read = in_read;
in->stream.get_input_frames_lost = in_get_input_frames_lost;
in->dev = adev;
in->standby = true;
in->requested_rate = config->sample_rate;
in->pcm_config = &pcm_config_in; /* default PCM config */
*stream_in = &in->stream;
return 0;
}
static void adev_close_input_stream(struct audio_hw_device *dev,
struct audio_stream_in *stream)
{
struct stream_in *in = (struct stream_in *)stream;
in_standby(&stream->common);
free(stream);
}
static int adev_dump(const audio_hw_device_t *device, int fd)
{
return 0;
}
static int adev_close(hw_device_t *device)
{
struct audio_device *adev = (struct audio_device *)device;
audio_route_free(adev->ar);
free(device);
return 0;
}
static int adev_open(const hw_module_t* module, const char* name,
hw_device_t** device)
{
struct audio_device *adev;
int ret;
if (strcmp(name, AUDIO_HARDWARE_INTERFACE) != 0)
return -EINVAL;
adev = calloc(1, sizeof(struct audio_device));
if (!adev)
return -ENOMEM;
adev->hw_device.common.tag = HARDWARE_DEVICE_TAG;
adev->hw_device.common.version = AUDIO_DEVICE_API_VERSION_2_0;
adev->hw_device.common.module = (struct hw_module_t *) module;
adev->hw_device.common.close = adev_close;
adev->hw_device.init_check = adev_init_check;
adev->hw_device.set_voice_volume = adev_set_voice_volume;
adev->hw_device.set_master_volume = adev_set_master_volume;
adev->hw_device.set_mode = adev_set_mode;
adev->hw_device.set_mic_mute = adev_set_mic_mute;
adev->hw_device.get_mic_mute = adev_get_mic_mute;
adev->hw_device.set_parameters = adev_set_parameters;
adev->hw_device.get_parameters = adev_get_parameters;
adev->hw_device.get_input_buffer_size = adev_get_input_buffer_size;
adev->hw_device.open_output_stream = adev_open_output_stream;
adev->hw_device.close_output_stream = adev_close_output_stream;
adev->hw_device.open_input_stream = adev_open_input_stream;
adev->hw_device.close_input_stream = adev_close_input_stream;
adev->hw_device.dump = adev_dump;
adev->ar = audio_route_init(MIXER_CARD, NULL);
adev->orientation = ORIENTATION_UNDEFINED;
adev->out_device = AUDIO_DEVICE_OUT_SPEAKER;
adev->in_device = AUDIO_DEVICE_IN_BUILTIN_MIC & ~AUDIO_DEVICE_BIT_IN;
*device = &adev->hw_device.common;
return 0;
}
static struct hw_module_methods_t hal_module_methods = {
.open = adev_open,
};
struct audio_module HAL_MODULE_INFO_SYM = {
.common = {
.tag = HARDWARE_MODULE_TAG,
.module_api_version = AUDIO_MODULE_API_VERSION_0_1,
.hal_api_version = HARDWARE_HAL_API_VERSION,
.id = AUDIO_HARDWARE_MODULE_ID,
.name = "Grouper audio HW HAL",
.author = "The Android Open Source Project",
.methods = &hal_module_methods,
},
};