blob: 2061408fe0f17ea4b480633d9c6ede97c38123b8 [file] [log] [blame]
/* Copyright (c) 2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/batterydata-lib.h>
static int of_batterydata_read_lut(const struct device_node *np,
int max_cols, int max_rows, int *ncols, int *nrows,
int *col_legend_data, int *row_legend_data,
int *lut_data)
{
struct property *prop;
const __be32 *data;
int cols, rows, size, i, j, *out_values;
prop = of_find_property(np, "qcom,lut-col-legend", NULL);
if (!prop) {
pr_err("%s: No col legend found\n", np->name);
return -EINVAL;
} else if (!prop->value) {
pr_err("%s: No col legend value found, np->name\n", np->name);
return -ENODATA;
} else if (prop->length > max_cols * sizeof(int)) {
pr_err("%s: Too many columns\n", np->name);
return -EINVAL;
}
cols = prop->length/sizeof(int);
*ncols = cols;
data = prop->value;
for (i = 0; i < cols; i++)
*col_legend_data++ = be32_to_cpup(data++);
prop = of_find_property(np, "qcom,lut-row-legend", NULL);
if (!prop || row_legend_data == NULL) {
/* single row lut */
rows = 1;
} else if (!prop->value) {
pr_err("%s: No row legend value found\n", np->name);
return -ENODATA;
} else if (prop->length > max_rows * sizeof(int)) {
pr_err("%s: Too many rows\n", np->name);
return -EINVAL;
} else {
rows = prop->length/sizeof(int);
*nrows = rows;
data = prop->value;
for (i = 0; i < rows; i++)
*row_legend_data++ = be32_to_cpup(data++);
}
prop = of_find_property(np, "qcom,lut-data", NULL);
data = prop->value;
size = prop->length/sizeof(int);
if (!prop || size != cols * rows) {
pr_err("%s: data size mismatch, %dx%d != %d\n",
np->name, cols, rows, size);
return -EINVAL;
}
for (i = 0; i < rows; i++) {
out_values = lut_data + (max_cols * i);
for (j = 0; j < cols; j++) {
*out_values++ = be32_to_cpup(data++);
pr_debug("Value = %d\n", *(out_values-1));
}
}
return 0;
}
static int of_batterydata_read_sf_lut(struct device_node *data_node,
const char *name, struct sf_lut *lut)
{
struct device_node *node = of_find_node_by_name(data_node, name);
int rc;
if (!lut) {
pr_debug("No lut provided, skipping\n");
return 0;
} else if (!node) {
pr_err("Couldn't find %s node.\n", name);
return -EINVAL;
}
rc = of_batterydata_read_lut(node, PC_CC_COLS, PC_CC_ROWS,
&lut->cols, &lut->rows, lut->row_entries,
lut->percent, *lut->sf);
if (rc) {
pr_err("Failed to read %s node.\n", name);
return rc;
}
return 0;
}
static int of_batterydata_read_pc_temp_ocv_lut(struct device_node *data_node,
const char *name, struct pc_temp_ocv_lut *lut)
{
struct device_node *node = of_find_node_by_name(data_node, name);
int rc;
if (!lut) {
pr_debug("No lut provided, skipping\n");
return 0;
} else if (!node) {
pr_err("Couldn't find %s node.\n", name);
return -EINVAL;
}
rc = of_batterydata_read_lut(node, PC_TEMP_COLS, PC_TEMP_ROWS,
&lut->cols, &lut->rows, lut->temp, lut->percent,
*lut->ocv);
if (rc) {
pr_err("Failed to read %s node.\n", name);
return rc;
}
return 0;
}
static int of_batterydata_read_single_row_lut(struct device_node *data_node,
const char *name, struct single_row_lut *lut)
{
struct device_node *node = of_find_node_by_name(data_node, name);
int rc;
if (!lut) {
pr_debug("No lut provided, skipping\n");
return 0;
} else if (!node) {
pr_err("Couldn't find %s node.\n", name);
return -EINVAL;
}
rc = of_batterydata_read_lut(node, MAX_SINGLE_LUT_COLS, 1,
&lut->cols, NULL, lut->x, NULL, lut->y);
if (rc) {
pr_err("Failed to read %s node.\n", name);
return rc;
}
return 0;
}
static int of_batterydata_read_batt_id_kohm(const struct device_node *np,
const char *propname, struct batt_ids *batt_ids)
{
struct property *prop;
const __be32 *data;
int num, i, *id_kohm = batt_ids->kohm;
prop = of_find_property(np, "qcom,batt-id-kohm", NULL);
if (!prop) {
pr_err("%s: No battery id resistor found\n", np->name);
return -EINVAL;
} else if (!prop->value) {
pr_err("%s: No battery id resistor value found, np->name\n",
np->name);
return -ENODATA;
} else if (prop->length > MAX_BATT_ID_NUM * sizeof(__be32)) {
pr_err("%s: Too many battery id resistors\n", np->name);
return -EINVAL;
}
num = prop->length/sizeof(__be32);
batt_ids->num = num;
data = prop->value;
for (i = 0; i < num; i++)
*id_kohm++ = be32_to_cpup(data++);
return 0;
}
#define OF_PROP_READ(property, qpnp_dt_property, node, rc, optional) \
do { \
if (rc) \
break; \
rc = of_property_read_u32(node, "qcom," qpnp_dt_property, \
&property); \
\
if ((rc == -EINVAL) && optional) { \
property = -EINVAL; \
rc = 0; \
} else if (rc) { \
pr_err("Error reading " #qpnp_dt_property \
" property rc = %d\n", rc); \
} \
} while (0)
static int of_batterydata_load_battery_data(struct device_node *node,
int best_id_kohm,
struct bms_battery_data *batt_data)
{
int rc;
rc = of_batterydata_read_single_row_lut(node, "qcom,fcc-temp-lut",
batt_data->fcc_temp_lut);
if (rc)
return rc;
rc = of_batterydata_read_pc_temp_ocv_lut(node,
"qcom,pc-temp-ocv-lut",
batt_data->pc_temp_ocv_lut);
if (rc)
return rc;
rc = of_batterydata_read_sf_lut(node, "qcom,rbatt-sf-lut",
batt_data->rbatt_sf_lut);
if (rc)
return rc;
OF_PROP_READ(batt_data->fcc, "fcc-mah", node, rc, false);
OF_PROP_READ(batt_data->default_rbatt_mohm,
"default-rbatt-mohm", node, rc, false);
OF_PROP_READ(batt_data->rbatt_capacitive_mohm,
"rbatt-capacitive-mohm", node, rc, false);
OF_PROP_READ(batt_data->flat_ocv_threshold_uv,
"flat-ocv-threshold", node, rc, true);
OF_PROP_READ(batt_data->max_voltage_uv,
"max-voltage-uv", node, rc, true);
OF_PROP_READ(batt_data->cutoff_uv, "v-cutoff-uv", node, rc, true);
OF_PROP_READ(batt_data->iterm_ua, "chg-term-ua", node, rc, true);
batt_data->batt_id_kohm = best_id_kohm;
return rc;
}
static int64_t of_batterydata_convert_battery_id_kohm(int batt_id_uv,
int rpull_up, int vadc_vdd)
{
int64_t resistor_value_kohm, denom;
/* calculate the battery id resistance reported via ADC */
denom = div64_s64(vadc_vdd * 1000000LL, batt_id_uv) - 1000000LL;
resistor_value_kohm = div64_s64(rpull_up * 1000000LL + denom/2, denom);
pr_debug("batt id voltage = %d, resistor value = %lld\n",
batt_id_uv, resistor_value_kohm);
return resistor_value_kohm;
}
int of_batterydata_read_data(struct device_node *batterydata_container_node,
struct bms_battery_data *batt_data,
int batt_id_uv)
{
struct device_node *node, *best_node;
struct batt_ids batt_ids;
int delta, best_delta, batt_id_kohm, rpull_up_kohm,
vadc_vdd_uv, best_id_kohm, i, rc = 0;
node = batterydata_container_node;
OF_PROP_READ(rpull_up_kohm, "rpull-up-kohm", node, rc, false);
OF_PROP_READ(vadc_vdd_uv, "vref-batt-therm", node, rc, false);
if (rc)
return rc;
batt_id_kohm = of_batterydata_convert_battery_id_kohm(batt_id_uv,
rpull_up_kohm, vadc_vdd_uv);
best_node = NULL;
best_delta = 0;
best_id_kohm = 0;
/*
* Find the battery data with a battery id resistor closest to this one
*/
for_each_child_of_node(batterydata_container_node, node) {
rc = of_batterydata_read_batt_id_kohm(node,
"qcom,batt-id-kohm",
&batt_ids);
if (rc)
continue;
for (i = 0; i < batt_ids.num; i++) {
delta = abs(batt_ids.kohm[i] - batt_id_kohm);
if (delta < best_delta || !best_node) {
best_node = node;
best_delta = delta;
best_id_kohm = batt_ids.kohm[i];
}
}
}
if (best_node == NULL) {
pr_err("No battery data found\n");
return -ENODATA;
}
return of_batterydata_load_battery_data(best_node,
best_id_kohm, batt_data);
}
MODULE_LICENSE("GPL v2");