| #ifndef __ASM_SH_BITOPS_H |
| #define __ASM_SH_BITOPS_H |
| |
| #ifdef __KERNEL__ |
| #include <asm/system.h> |
| /* For __swab32 */ |
| #include <asm/byteorder.h> |
| |
| static __inline__ void set_bit(int nr, volatile void * addr) |
| { |
| int mask; |
| volatile unsigned int *a = addr; |
| unsigned long flags; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| local_irq_save(flags); |
| *a |= mask; |
| local_irq_restore(flags); |
| } |
| |
| static __inline__ void __set_bit(int nr, volatile void * addr) |
| { |
| int mask; |
| volatile unsigned int *a = addr; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| *a |= mask; |
| } |
| |
| /* |
| * clear_bit() doesn't provide any barrier for the compiler. |
| */ |
| #define smp_mb__before_clear_bit() barrier() |
| #define smp_mb__after_clear_bit() barrier() |
| static __inline__ void clear_bit(int nr, volatile void * addr) |
| { |
| int mask; |
| volatile unsigned int *a = addr; |
| unsigned long flags; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| local_irq_save(flags); |
| *a &= ~mask; |
| local_irq_restore(flags); |
| } |
| |
| static __inline__ void __clear_bit(int nr, volatile void * addr) |
| { |
| int mask; |
| volatile unsigned int *a = addr; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| *a &= ~mask; |
| } |
| |
| static __inline__ void change_bit(int nr, volatile void * addr) |
| { |
| int mask; |
| volatile unsigned int *a = addr; |
| unsigned long flags; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| local_irq_save(flags); |
| *a ^= mask; |
| local_irq_restore(flags); |
| } |
| |
| static __inline__ void __change_bit(int nr, volatile void * addr) |
| { |
| int mask; |
| volatile unsigned int *a = addr; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| *a ^= mask; |
| } |
| |
| static __inline__ int test_and_set_bit(int nr, volatile void * addr) |
| { |
| int mask, retval; |
| volatile unsigned int *a = addr; |
| unsigned long flags; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| local_irq_save(flags); |
| retval = (mask & *a) != 0; |
| *a |= mask; |
| local_irq_restore(flags); |
| |
| return retval; |
| } |
| |
| static __inline__ int __test_and_set_bit(int nr, volatile void * addr) |
| { |
| int mask, retval; |
| volatile unsigned int *a = addr; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| retval = (mask & *a) != 0; |
| *a |= mask; |
| |
| return retval; |
| } |
| |
| static __inline__ int test_and_clear_bit(int nr, volatile void * addr) |
| { |
| int mask, retval; |
| volatile unsigned int *a = addr; |
| unsigned long flags; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| local_irq_save(flags); |
| retval = (mask & *a) != 0; |
| *a &= ~mask; |
| local_irq_restore(flags); |
| |
| return retval; |
| } |
| |
| static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) |
| { |
| int mask, retval; |
| volatile unsigned int *a = addr; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| retval = (mask & *a) != 0; |
| *a &= ~mask; |
| |
| return retval; |
| } |
| |
| static __inline__ int test_and_change_bit(int nr, volatile void * addr) |
| { |
| int mask, retval; |
| volatile unsigned int *a = addr; |
| unsigned long flags; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| local_irq_save(flags); |
| retval = (mask & *a) != 0; |
| *a ^= mask; |
| local_irq_restore(flags); |
| |
| return retval; |
| } |
| |
| static __inline__ int __test_and_change_bit(int nr, volatile void * addr) |
| { |
| int mask, retval; |
| volatile unsigned int *a = addr; |
| |
| a += nr >> 5; |
| mask = 1 << (nr & 0x1f); |
| retval = (mask & *a) != 0; |
| *a ^= mask; |
| |
| return retval; |
| } |
| |
| static __inline__ int test_bit(int nr, const volatile void *addr) |
| { |
| return 1UL & (((const volatile unsigned int *) addr)[nr >> 5] >> (nr & 31)); |
| } |
| |
| static __inline__ unsigned long ffz(unsigned long word) |
| { |
| unsigned long result; |
| |
| __asm__("1:\n\t" |
| "shlr %1\n\t" |
| "bt/s 1b\n\t" |
| " add #1, %0" |
| : "=r" (result), "=r" (word) |
| : "0" (~0L), "1" (word) |
| : "t"); |
| return result; |
| } |
| |
| /** |
| * __ffs - find first bit in word. |
| * @word: The word to search |
| * |
| * Undefined if no bit exists, so code should check against 0 first. |
| */ |
| static __inline__ unsigned long __ffs(unsigned long word) |
| { |
| unsigned long result; |
| |
| __asm__("1:\n\t" |
| "shlr %1\n\t" |
| "bf/s 1b\n\t" |
| " add #1, %0" |
| : "=r" (result), "=r" (word) |
| : "0" (~0L), "1" (word) |
| : "t"); |
| return result; |
| } |
| |
| /** |
| * find_next_bit - find the next set bit in a memory region |
| * @addr: The address to base the search on |
| * @offset: The bitnumber to start searching at |
| * @size: The maximum size to search |
| */ |
| static __inline__ unsigned long find_next_bit(const unsigned long *addr, |
| unsigned long size, unsigned long offset) |
| { |
| unsigned int *p = ((unsigned int *) addr) + (offset >> 5); |
| unsigned int result = offset & ~31UL; |
| unsigned int tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if (offset) { |
| tmp = *p++; |
| tmp &= ~0UL << offset; |
| if (size < 32) |
| goto found_first; |
| if (tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while (size >= 32) { |
| if ((tmp = *p++) != 0) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp &= ~0UL >> (32 - size); |
| if (tmp == 0UL) /* Are any bits set? */ |
| return result + size; /* Nope. */ |
| found_middle: |
| return result + __ffs(tmp); |
| } |
| |
| /** |
| * find_first_bit - find the first set bit in a memory region |
| * @addr: The address to start the search at |
| * @size: The maximum size to search |
| * |
| * Returns the bit-number of the first set bit, not the number of the byte |
| * containing a bit. |
| */ |
| #define find_first_bit(addr, size) \ |
| find_next_bit((addr), (size), 0) |
| |
| static __inline__ int find_next_zero_bit(const unsigned long *addr, int size, int offset) |
| { |
| const unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| unsigned long result = offset & ~31UL; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if (offset) { |
| tmp = *(p++); |
| tmp |= ~0UL >> (32-offset); |
| if (size < 32) |
| goto found_first; |
| if (~tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while (size & ~31UL) { |
| if (~(tmp = *(p++))) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp |= ~0UL << size; |
| found_middle: |
| return result + ffz(tmp); |
| } |
| |
| #define find_first_zero_bit(addr, size) \ |
| find_next_zero_bit((addr), (size), 0) |
| |
| /* |
| * ffs: find first bit set. This is defined the same way as |
| * the libc and compiler builtin ffs routines, therefore |
| * differs in spirit from the above ffz (man ffs). |
| */ |
| |
| #define ffs(x) generic_ffs(x) |
| |
| /* |
| * hweightN: returns the hamming weight (i.e. the number |
| * of bits set) of a N-bit word |
| */ |
| |
| #define hweight32(x) generic_hweight32(x) |
| #define hweight16(x) generic_hweight16(x) |
| #define hweight8(x) generic_hweight8(x) |
| |
| /* |
| * Every architecture must define this function. It's the fastest |
| * way of searching a 140-bit bitmap where the first 100 bits are |
| * unlikely to be set. It's guaranteed that at least one of the 140 |
| * bits is cleared. |
| */ |
| |
| static inline int sched_find_first_bit(const unsigned long *b) |
| { |
| if (unlikely(b[0])) |
| return __ffs(b[0]); |
| if (unlikely(b[1])) |
| return __ffs(b[1]) + 32; |
| if (unlikely(b[2])) |
| return __ffs(b[2]) + 64; |
| if (b[3]) |
| return __ffs(b[3]) + 96; |
| return __ffs(b[4]) + 128; |
| } |
| |
| #ifdef __LITTLE_ENDIAN__ |
| #define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr)) |
| #define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr)) |
| #define ext2_test_bit(nr, addr) test_bit((nr), (addr)) |
| #define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size)) |
| #define ext2_find_next_zero_bit(addr, size, offset) \ |
| find_next_zero_bit((unsigned long *)(addr), (size), (offset)) |
| #else |
| static __inline__ int ext2_set_bit(int nr, volatile void * addr) |
| { |
| int mask, retval; |
| unsigned long flags; |
| volatile unsigned char *ADDR = (unsigned char *) addr; |
| |
| ADDR += nr >> 3; |
| mask = 1 << (nr & 0x07); |
| local_irq_save(flags); |
| retval = (mask & *ADDR) != 0; |
| *ADDR |= mask; |
| local_irq_restore(flags); |
| return retval; |
| } |
| |
| static __inline__ int ext2_clear_bit(int nr, volatile void * addr) |
| { |
| int mask, retval; |
| unsigned long flags; |
| volatile unsigned char *ADDR = (unsigned char *) addr; |
| |
| ADDR += nr >> 3; |
| mask = 1 << (nr & 0x07); |
| local_irq_save(flags); |
| retval = (mask & *ADDR) != 0; |
| *ADDR &= ~mask; |
| local_irq_restore(flags); |
| return retval; |
| } |
| |
| static __inline__ int ext2_test_bit(int nr, const volatile void * addr) |
| { |
| int mask; |
| const volatile unsigned char *ADDR = (const unsigned char *) addr; |
| |
| ADDR += nr >> 3; |
| mask = 1 << (nr & 0x07); |
| return ((mask & *ADDR) != 0); |
| } |
| |
| #define ext2_find_first_zero_bit(addr, size) \ |
| ext2_find_next_zero_bit((addr), (size), 0) |
| |
| static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) |
| { |
| unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| unsigned long result = offset & ~31UL; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= 31UL; |
| if(offset) { |
| /* We hold the little endian value in tmp, but then the |
| * shift is illegal. So we could keep a big endian value |
| * in tmp, like this: |
| * |
| * tmp = __swab32(*(p++)); |
| * tmp |= ~0UL >> (32-offset); |
| * |
| * but this would decrease preformance, so we change the |
| * shift: |
| */ |
| tmp = *(p++); |
| tmp |= __swab32(~0UL >> (32-offset)); |
| if(size < 32) |
| goto found_first; |
| if(~tmp) |
| goto found_middle; |
| size -= 32; |
| result += 32; |
| } |
| while(size & ~31UL) { |
| if(~(tmp = *(p++))) |
| goto found_middle; |
| result += 32; |
| size -= 32; |
| } |
| if(!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| /* tmp is little endian, so we would have to swab the shift, |
| * see above. But then we have to swab tmp below for ffz, so |
| * we might as well do this here. |
| */ |
| return result + ffz(__swab32(tmp) | (~0UL << size)); |
| found_middle: |
| return result + ffz(__swab32(tmp)); |
| } |
| #endif |
| |
| #define ext2_set_bit_atomic(lock, nr, addr) \ |
| ({ \ |
| int ret; \ |
| spin_lock(lock); \ |
| ret = ext2_set_bit((nr), (addr)); \ |
| spin_unlock(lock); \ |
| ret; \ |
| }) |
| |
| #define ext2_clear_bit_atomic(lock, nr, addr) \ |
| ({ \ |
| int ret; \ |
| spin_lock(lock); \ |
| ret = ext2_clear_bit((nr), (addr)); \ |
| spin_unlock(lock); \ |
| ret; \ |
| }) |
| |
| /* Bitmap functions for the minix filesystem. */ |
| #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) |
| #define minix_set_bit(nr,addr) set_bit(nr,addr) |
| #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) |
| #define minix_test_bit(nr,addr) test_bit(nr,addr) |
| #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) |
| |
| /* |
| * fls: find last bit set. |
| */ |
| |
| #define fls(x) generic_fls(x) |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* __ASM_SH_BITOPS_H */ |