| /* |
| * Implementation of the policy database. |
| * |
| * Author : Stephen Smalley, <sds@epoch.ncsc.mil> |
| */ |
| |
| /* |
| * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> |
| * |
| * Support for enhanced MLS infrastructure. |
| * |
| * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com> |
| * |
| * Added conditional policy language extensions |
| * |
| * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. |
| * Copyright (C) 2003 - 2004 Tresys Technology, LLC |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation, version 2. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/errno.h> |
| #include "security.h" |
| |
| #include "policydb.h" |
| #include "conditional.h" |
| #include "mls.h" |
| |
| #define _DEBUG_HASHES |
| |
| #ifdef DEBUG_HASHES |
| static char *symtab_name[SYM_NUM] = { |
| "common prefixes", |
| "classes", |
| "roles", |
| "types", |
| "users", |
| "bools", |
| "levels", |
| "categories", |
| }; |
| #endif |
| |
| int selinux_mls_enabled = 0; |
| |
| static unsigned int symtab_sizes[SYM_NUM] = { |
| 2, |
| 32, |
| 16, |
| 512, |
| 128, |
| 16, |
| 16, |
| 16, |
| }; |
| |
| struct policydb_compat_info { |
| int version; |
| int sym_num; |
| int ocon_num; |
| }; |
| |
| /* These need to be updated if SYM_NUM or OCON_NUM changes */ |
| static struct policydb_compat_info policydb_compat[] = { |
| { |
| .version = POLICYDB_VERSION_BASE, |
| .sym_num = SYM_NUM - 3, |
| .ocon_num = OCON_NUM - 1, |
| }, |
| { |
| .version = POLICYDB_VERSION_BOOL, |
| .sym_num = SYM_NUM - 2, |
| .ocon_num = OCON_NUM - 1, |
| }, |
| { |
| .version = POLICYDB_VERSION_IPV6, |
| .sym_num = SYM_NUM - 2, |
| .ocon_num = OCON_NUM, |
| }, |
| { |
| .version = POLICYDB_VERSION_NLCLASS, |
| .sym_num = SYM_NUM - 2, |
| .ocon_num = OCON_NUM, |
| }, |
| { |
| .version = POLICYDB_VERSION_MLS, |
| .sym_num = SYM_NUM, |
| .ocon_num = OCON_NUM, |
| }, |
| { |
| .version = POLICYDB_VERSION_AVTAB, |
| .sym_num = SYM_NUM, |
| .ocon_num = OCON_NUM, |
| }, |
| }; |
| |
| static struct policydb_compat_info *policydb_lookup_compat(int version) |
| { |
| int i; |
| struct policydb_compat_info *info = NULL; |
| |
| for (i = 0; i < sizeof(policydb_compat)/sizeof(*info); i++) { |
| if (policydb_compat[i].version == version) { |
| info = &policydb_compat[i]; |
| break; |
| } |
| } |
| return info; |
| } |
| |
| /* |
| * Initialize the role table. |
| */ |
| static int roles_init(struct policydb *p) |
| { |
| char *key = NULL; |
| int rc; |
| struct role_datum *role; |
| |
| role = kzalloc(sizeof(*role), GFP_KERNEL); |
| if (!role) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| role->value = ++p->p_roles.nprim; |
| if (role->value != OBJECT_R_VAL) { |
| rc = -EINVAL; |
| goto out_free_role; |
| } |
| key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL); |
| if (!key) { |
| rc = -ENOMEM; |
| goto out_free_role; |
| } |
| strcpy(key, OBJECT_R); |
| rc = hashtab_insert(p->p_roles.table, key, role); |
| if (rc) |
| goto out_free_key; |
| out: |
| return rc; |
| |
| out_free_key: |
| kfree(key); |
| out_free_role: |
| kfree(role); |
| goto out; |
| } |
| |
| /* |
| * Initialize a policy database structure. |
| */ |
| static int policydb_init(struct policydb *p) |
| { |
| int i, rc; |
| |
| memset(p, 0, sizeof(*p)); |
| |
| for (i = 0; i < SYM_NUM; i++) { |
| rc = symtab_init(&p->symtab[i], symtab_sizes[i]); |
| if (rc) |
| goto out_free_symtab; |
| } |
| |
| rc = avtab_init(&p->te_avtab); |
| if (rc) |
| goto out_free_symtab; |
| |
| rc = roles_init(p); |
| if (rc) |
| goto out_free_avtab; |
| |
| rc = cond_policydb_init(p); |
| if (rc) |
| goto out_free_avtab; |
| |
| out: |
| return rc; |
| |
| out_free_avtab: |
| avtab_destroy(&p->te_avtab); |
| |
| out_free_symtab: |
| for (i = 0; i < SYM_NUM; i++) |
| hashtab_destroy(p->symtab[i].table); |
| goto out; |
| } |
| |
| /* |
| * The following *_index functions are used to |
| * define the val_to_name and val_to_struct arrays |
| * in a policy database structure. The val_to_name |
| * arrays are used when converting security context |
| * structures into string representations. The |
| * val_to_struct arrays are used when the attributes |
| * of a class, role, or user are needed. |
| */ |
| |
| static int common_index(void *key, void *datum, void *datap) |
| { |
| struct policydb *p; |
| struct common_datum *comdatum; |
| |
| comdatum = datum; |
| p = datap; |
| if (!comdatum->value || comdatum->value > p->p_commons.nprim) |
| return -EINVAL; |
| p->p_common_val_to_name[comdatum->value - 1] = key; |
| return 0; |
| } |
| |
| static int class_index(void *key, void *datum, void *datap) |
| { |
| struct policydb *p; |
| struct class_datum *cladatum; |
| |
| cladatum = datum; |
| p = datap; |
| if (!cladatum->value || cladatum->value > p->p_classes.nprim) |
| return -EINVAL; |
| p->p_class_val_to_name[cladatum->value - 1] = key; |
| p->class_val_to_struct[cladatum->value - 1] = cladatum; |
| return 0; |
| } |
| |
| static int role_index(void *key, void *datum, void *datap) |
| { |
| struct policydb *p; |
| struct role_datum *role; |
| |
| role = datum; |
| p = datap; |
| if (!role->value || role->value > p->p_roles.nprim) |
| return -EINVAL; |
| p->p_role_val_to_name[role->value - 1] = key; |
| p->role_val_to_struct[role->value - 1] = role; |
| return 0; |
| } |
| |
| static int type_index(void *key, void *datum, void *datap) |
| { |
| struct policydb *p; |
| struct type_datum *typdatum; |
| |
| typdatum = datum; |
| p = datap; |
| |
| if (typdatum->primary) { |
| if (!typdatum->value || typdatum->value > p->p_types.nprim) |
| return -EINVAL; |
| p->p_type_val_to_name[typdatum->value - 1] = key; |
| } |
| |
| return 0; |
| } |
| |
| static int user_index(void *key, void *datum, void *datap) |
| { |
| struct policydb *p; |
| struct user_datum *usrdatum; |
| |
| usrdatum = datum; |
| p = datap; |
| if (!usrdatum->value || usrdatum->value > p->p_users.nprim) |
| return -EINVAL; |
| p->p_user_val_to_name[usrdatum->value - 1] = key; |
| p->user_val_to_struct[usrdatum->value - 1] = usrdatum; |
| return 0; |
| } |
| |
| static int sens_index(void *key, void *datum, void *datap) |
| { |
| struct policydb *p; |
| struct level_datum *levdatum; |
| |
| levdatum = datum; |
| p = datap; |
| |
| if (!levdatum->isalias) { |
| if (!levdatum->level->sens || |
| levdatum->level->sens > p->p_levels.nprim) |
| return -EINVAL; |
| p->p_sens_val_to_name[levdatum->level->sens - 1] = key; |
| } |
| |
| return 0; |
| } |
| |
| static int cat_index(void *key, void *datum, void *datap) |
| { |
| struct policydb *p; |
| struct cat_datum *catdatum; |
| |
| catdatum = datum; |
| p = datap; |
| |
| if (!catdatum->isalias) { |
| if (!catdatum->value || catdatum->value > p->p_cats.nprim) |
| return -EINVAL; |
| p->p_cat_val_to_name[catdatum->value - 1] = key; |
| } |
| |
| return 0; |
| } |
| |
| static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) = |
| { |
| common_index, |
| class_index, |
| role_index, |
| type_index, |
| user_index, |
| cond_index_bool, |
| sens_index, |
| cat_index, |
| }; |
| |
| /* |
| * Define the common val_to_name array and the class |
| * val_to_name and val_to_struct arrays in a policy |
| * database structure. |
| * |
| * Caller must clean up upon failure. |
| */ |
| static int policydb_index_classes(struct policydb *p) |
| { |
| int rc; |
| |
| p->p_common_val_to_name = |
| kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL); |
| if (!p->p_common_val_to_name) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| rc = hashtab_map(p->p_commons.table, common_index, p); |
| if (rc) |
| goto out; |
| |
| p->class_val_to_struct = |
| kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL); |
| if (!p->class_val_to_struct) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| p->p_class_val_to_name = |
| kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL); |
| if (!p->p_class_val_to_name) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| rc = hashtab_map(p->p_classes.table, class_index, p); |
| out: |
| return rc; |
| } |
| |
| #ifdef DEBUG_HASHES |
| static void symtab_hash_eval(struct symtab *s) |
| { |
| int i; |
| |
| for (i = 0; i < SYM_NUM; i++) { |
| struct hashtab *h = s[i].table; |
| struct hashtab_info info; |
| |
| hashtab_stat(h, &info); |
| printk(KERN_INFO "%s: %d entries and %d/%d buckets used, " |
| "longest chain length %d\n", symtab_name[i], h->nel, |
| info.slots_used, h->size, info.max_chain_len); |
| } |
| } |
| #endif |
| |
| /* |
| * Define the other val_to_name and val_to_struct arrays |
| * in a policy database structure. |
| * |
| * Caller must clean up on failure. |
| */ |
| static int policydb_index_others(struct policydb *p) |
| { |
| int i, rc = 0; |
| |
| printk(KERN_INFO "security: %d users, %d roles, %d types, %d bools", |
| p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim); |
| if (selinux_mls_enabled) |
| printk(", %d sens, %d cats", p->p_levels.nprim, |
| p->p_cats.nprim); |
| printk("\n"); |
| |
| printk(KERN_INFO "security: %d classes, %d rules\n", |
| p->p_classes.nprim, p->te_avtab.nel); |
| |
| #ifdef DEBUG_HASHES |
| avtab_hash_eval(&p->te_avtab, "rules"); |
| symtab_hash_eval(p->symtab); |
| #endif |
| |
| p->role_val_to_struct = |
| kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)), |
| GFP_KERNEL); |
| if (!p->role_val_to_struct) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| p->user_val_to_struct = |
| kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)), |
| GFP_KERNEL); |
| if (!p->user_val_to_struct) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| if (cond_init_bool_indexes(p)) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| for (i = SYM_ROLES; i < SYM_NUM; i++) { |
| p->sym_val_to_name[i] = |
| kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL); |
| if (!p->sym_val_to_name[i]) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| rc = hashtab_map(p->symtab[i].table, index_f[i], p); |
| if (rc) |
| goto out; |
| } |
| |
| out: |
| return rc; |
| } |
| |
| /* |
| * The following *_destroy functions are used to |
| * free any memory allocated for each kind of |
| * symbol data in the policy database. |
| */ |
| |
| static int perm_destroy(void *key, void *datum, void *p) |
| { |
| kfree(key); |
| kfree(datum); |
| return 0; |
| } |
| |
| static int common_destroy(void *key, void *datum, void *p) |
| { |
| struct common_datum *comdatum; |
| |
| kfree(key); |
| comdatum = datum; |
| hashtab_map(comdatum->permissions.table, perm_destroy, NULL); |
| hashtab_destroy(comdatum->permissions.table); |
| kfree(datum); |
| return 0; |
| } |
| |
| static int class_destroy(void *key, void *datum, void *p) |
| { |
| struct class_datum *cladatum; |
| struct constraint_node *constraint, *ctemp; |
| struct constraint_expr *e, *etmp; |
| |
| kfree(key); |
| cladatum = datum; |
| hashtab_map(cladatum->permissions.table, perm_destroy, NULL); |
| hashtab_destroy(cladatum->permissions.table); |
| constraint = cladatum->constraints; |
| while (constraint) { |
| e = constraint->expr; |
| while (e) { |
| ebitmap_destroy(&e->names); |
| etmp = e; |
| e = e->next; |
| kfree(etmp); |
| } |
| ctemp = constraint; |
| constraint = constraint->next; |
| kfree(ctemp); |
| } |
| |
| constraint = cladatum->validatetrans; |
| while (constraint) { |
| e = constraint->expr; |
| while (e) { |
| ebitmap_destroy(&e->names); |
| etmp = e; |
| e = e->next; |
| kfree(etmp); |
| } |
| ctemp = constraint; |
| constraint = constraint->next; |
| kfree(ctemp); |
| } |
| |
| kfree(cladatum->comkey); |
| kfree(datum); |
| return 0; |
| } |
| |
| static int role_destroy(void *key, void *datum, void *p) |
| { |
| struct role_datum *role; |
| |
| kfree(key); |
| role = datum; |
| ebitmap_destroy(&role->dominates); |
| ebitmap_destroy(&role->types); |
| kfree(datum); |
| return 0; |
| } |
| |
| static int type_destroy(void *key, void *datum, void *p) |
| { |
| kfree(key); |
| kfree(datum); |
| return 0; |
| } |
| |
| static int user_destroy(void *key, void *datum, void *p) |
| { |
| struct user_datum *usrdatum; |
| |
| kfree(key); |
| usrdatum = datum; |
| ebitmap_destroy(&usrdatum->roles); |
| ebitmap_destroy(&usrdatum->range.level[0].cat); |
| ebitmap_destroy(&usrdatum->range.level[1].cat); |
| ebitmap_destroy(&usrdatum->dfltlevel.cat); |
| kfree(datum); |
| return 0; |
| } |
| |
| static int sens_destroy(void *key, void *datum, void *p) |
| { |
| struct level_datum *levdatum; |
| |
| kfree(key); |
| levdatum = datum; |
| ebitmap_destroy(&levdatum->level->cat); |
| kfree(levdatum->level); |
| kfree(datum); |
| return 0; |
| } |
| |
| static int cat_destroy(void *key, void *datum, void *p) |
| { |
| kfree(key); |
| kfree(datum); |
| return 0; |
| } |
| |
| static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) = |
| { |
| common_destroy, |
| class_destroy, |
| role_destroy, |
| type_destroy, |
| user_destroy, |
| cond_destroy_bool, |
| sens_destroy, |
| cat_destroy, |
| }; |
| |
| static void ocontext_destroy(struct ocontext *c, int i) |
| { |
| context_destroy(&c->context[0]); |
| context_destroy(&c->context[1]); |
| if (i == OCON_ISID || i == OCON_FS || |
| i == OCON_NETIF || i == OCON_FSUSE) |
| kfree(c->u.name); |
| kfree(c); |
| } |
| |
| /* |
| * Free any memory allocated by a policy database structure. |
| */ |
| void policydb_destroy(struct policydb *p) |
| { |
| struct ocontext *c, *ctmp; |
| struct genfs *g, *gtmp; |
| int i; |
| struct role_allow *ra, *lra = NULL; |
| struct role_trans *tr, *ltr = NULL; |
| struct range_trans *rt, *lrt = NULL; |
| |
| for (i = 0; i < SYM_NUM; i++) { |
| hashtab_map(p->symtab[i].table, destroy_f[i], NULL); |
| hashtab_destroy(p->symtab[i].table); |
| } |
| |
| for (i = 0; i < SYM_NUM; i++) |
| kfree(p->sym_val_to_name[i]); |
| |
| kfree(p->class_val_to_struct); |
| kfree(p->role_val_to_struct); |
| kfree(p->user_val_to_struct); |
| |
| avtab_destroy(&p->te_avtab); |
| |
| for (i = 0; i < OCON_NUM; i++) { |
| c = p->ocontexts[i]; |
| while (c) { |
| ctmp = c; |
| c = c->next; |
| ocontext_destroy(ctmp,i); |
| } |
| } |
| |
| g = p->genfs; |
| while (g) { |
| kfree(g->fstype); |
| c = g->head; |
| while (c) { |
| ctmp = c; |
| c = c->next; |
| ocontext_destroy(ctmp,OCON_FSUSE); |
| } |
| gtmp = g; |
| g = g->next; |
| kfree(gtmp); |
| } |
| |
| cond_policydb_destroy(p); |
| |
| for (tr = p->role_tr; tr; tr = tr->next) { |
| kfree(ltr); |
| ltr = tr; |
| } |
| kfree(ltr); |
| |
| for (ra = p->role_allow; ra; ra = ra -> next) { |
| kfree(lra); |
| lra = ra; |
| } |
| kfree(lra); |
| |
| for (rt = p->range_tr; rt; rt = rt -> next) { |
| kfree(lrt); |
| lrt = rt; |
| } |
| kfree(lrt); |
| |
| if (p->type_attr_map) { |
| for (i = 0; i < p->p_types.nprim; i++) |
| ebitmap_destroy(&p->type_attr_map[i]); |
| } |
| kfree(p->type_attr_map); |
| |
| return; |
| } |
| |
| /* |
| * Load the initial SIDs specified in a policy database |
| * structure into a SID table. |
| */ |
| int policydb_load_isids(struct policydb *p, struct sidtab *s) |
| { |
| struct ocontext *head, *c; |
| int rc; |
| |
| rc = sidtab_init(s); |
| if (rc) { |
| printk(KERN_ERR "security: out of memory on SID table init\n"); |
| goto out; |
| } |
| |
| head = p->ocontexts[OCON_ISID]; |
| for (c = head; c; c = c->next) { |
| if (!c->context[0].user) { |
| printk(KERN_ERR "security: SID %s was never " |
| "defined.\n", c->u.name); |
| rc = -EINVAL; |
| goto out; |
| } |
| if (sidtab_insert(s, c->sid[0], &c->context[0])) { |
| printk(KERN_ERR "security: unable to load initial " |
| "SID %s.\n", c->u.name); |
| rc = -EINVAL; |
| goto out; |
| } |
| } |
| out: |
| return rc; |
| } |
| |
| /* |
| * Return 1 if the fields in the security context |
| * structure `c' are valid. Return 0 otherwise. |
| */ |
| int policydb_context_isvalid(struct policydb *p, struct context *c) |
| { |
| struct role_datum *role; |
| struct user_datum *usrdatum; |
| |
| if (!c->role || c->role > p->p_roles.nprim) |
| return 0; |
| |
| if (!c->user || c->user > p->p_users.nprim) |
| return 0; |
| |
| if (!c->type || c->type > p->p_types.nprim) |
| return 0; |
| |
| if (c->role != OBJECT_R_VAL) { |
| /* |
| * Role must be authorized for the type. |
| */ |
| role = p->role_val_to_struct[c->role - 1]; |
| if (!ebitmap_get_bit(&role->types, |
| c->type - 1)) |
| /* role may not be associated with type */ |
| return 0; |
| |
| /* |
| * User must be authorized for the role. |
| */ |
| usrdatum = p->user_val_to_struct[c->user - 1]; |
| if (!usrdatum) |
| return 0; |
| |
| if (!ebitmap_get_bit(&usrdatum->roles, |
| c->role - 1)) |
| /* user may not be associated with role */ |
| return 0; |
| } |
| |
| if (!mls_context_isvalid(p, c)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* |
| * Read a MLS range structure from a policydb binary |
| * representation file. |
| */ |
| static int mls_read_range_helper(struct mls_range *r, void *fp) |
| { |
| __le32 buf[2]; |
| u32 items; |
| int rc; |
| |
| rc = next_entry(buf, fp, sizeof(u32)); |
| if (rc < 0) |
| goto out; |
| |
| items = le32_to_cpu(buf[0]); |
| if (items > ARRAY_SIZE(buf)) { |
| printk(KERN_ERR "security: mls: range overflow\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| rc = next_entry(buf, fp, sizeof(u32) * items); |
| if (rc < 0) { |
| printk(KERN_ERR "security: mls: truncated range\n"); |
| goto out; |
| } |
| r->level[0].sens = le32_to_cpu(buf[0]); |
| if (items > 1) |
| r->level[1].sens = le32_to_cpu(buf[1]); |
| else |
| r->level[1].sens = r->level[0].sens; |
| |
| rc = ebitmap_read(&r->level[0].cat, fp); |
| if (rc) { |
| printk(KERN_ERR "security: mls: error reading low " |
| "categories\n"); |
| goto out; |
| } |
| if (items > 1) { |
| rc = ebitmap_read(&r->level[1].cat, fp); |
| if (rc) { |
| printk(KERN_ERR "security: mls: error reading high " |
| "categories\n"); |
| goto bad_high; |
| } |
| } else { |
| rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat); |
| if (rc) { |
| printk(KERN_ERR "security: mls: out of memory\n"); |
| goto bad_high; |
| } |
| } |
| |
| rc = 0; |
| out: |
| return rc; |
| bad_high: |
| ebitmap_destroy(&r->level[0].cat); |
| goto out; |
| } |
| |
| /* |
| * Read and validate a security context structure |
| * from a policydb binary representation file. |
| */ |
| static int context_read_and_validate(struct context *c, |
| struct policydb *p, |
| void *fp) |
| { |
| __le32 buf[3]; |
| int rc; |
| |
| rc = next_entry(buf, fp, sizeof buf); |
| if (rc < 0) { |
| printk(KERN_ERR "security: context truncated\n"); |
| goto out; |
| } |
| c->user = le32_to_cpu(buf[0]); |
| c->role = le32_to_cpu(buf[1]); |
| c->type = le32_to_cpu(buf[2]); |
| if (p->policyvers >= POLICYDB_VERSION_MLS) { |
| if (mls_read_range_helper(&c->range, fp)) { |
| printk(KERN_ERR "security: error reading MLS range of " |
| "context\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| } |
| |
| if (!policydb_context_isvalid(p, c)) { |
| printk(KERN_ERR "security: invalid security context\n"); |
| context_destroy(c); |
| rc = -EINVAL; |
| } |
| out: |
| return rc; |
| } |
| |
| /* |
| * The following *_read functions are used to |
| * read the symbol data from a policy database |
| * binary representation file. |
| */ |
| |
| static int perm_read(struct policydb *p, struct hashtab *h, void *fp) |
| { |
| char *key = NULL; |
| struct perm_datum *perdatum; |
| int rc; |
| __le32 buf[2]; |
| u32 len; |
| |
| perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL); |
| if (!perdatum) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| rc = next_entry(buf, fp, sizeof buf); |
| if (rc < 0) |
| goto bad; |
| |
| len = le32_to_cpu(buf[0]); |
| perdatum->value = le32_to_cpu(buf[1]); |
| |
| key = kmalloc(len + 1,GFP_KERNEL); |
| if (!key) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| rc = next_entry(key, fp, len); |
| if (rc < 0) |
| goto bad; |
| key[len] = 0; |
| |
| rc = hashtab_insert(h, key, perdatum); |
| if (rc) |
| goto bad; |
| out: |
| return rc; |
| bad: |
| perm_destroy(key, perdatum, NULL); |
| goto out; |
| } |
| |
| static int common_read(struct policydb *p, struct hashtab *h, void *fp) |
| { |
| char *key = NULL; |
| struct common_datum *comdatum; |
| __le32 buf[4]; |
| u32 len, nel; |
| int i, rc; |
| |
| comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL); |
| if (!comdatum) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| rc = next_entry(buf, fp, sizeof buf); |
| if (rc < 0) |
| goto bad; |
| |
| len = le32_to_cpu(buf[0]); |
| comdatum->value = le32_to_cpu(buf[1]); |
| |
| rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE); |
| if (rc) |
| goto bad; |
| comdatum->permissions.nprim = le32_to_cpu(buf[2]); |
| nel = le32_to_cpu(buf[3]); |
| |
| key = kmalloc(len + 1,GFP_KERNEL); |
| if (!key) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| rc = next_entry(key, fp, len); |
| if (rc < 0) |
| goto bad; |
| key[len] = 0; |
| |
| for (i = 0; i < nel; i++) { |
| rc = perm_read(p, comdatum->permissions.table, fp); |
| if (rc) |
| goto bad; |
| } |
| |
| rc = hashtab_insert(h, key, comdatum); |
| if (rc) |
| goto bad; |
| out: |
| return rc; |
| bad: |
| common_destroy(key, comdatum, NULL); |
| goto out; |
| } |
| |
| static int read_cons_helper(struct constraint_node **nodep, int ncons, |
| int allowxtarget, void *fp) |
| { |
| struct constraint_node *c, *lc; |
| struct constraint_expr *e, *le; |
| __le32 buf[3]; |
| u32 nexpr; |
| int rc, i, j, depth; |
| |
| lc = NULL; |
| for (i = 0; i < ncons; i++) { |
| c = kzalloc(sizeof(*c), GFP_KERNEL); |
| if (!c) |
| return -ENOMEM; |
| |
| if (lc) { |
| lc->next = c; |
| } else { |
| *nodep = c; |
| } |
| |
| rc = next_entry(buf, fp, (sizeof(u32) * 2)); |
| if (rc < 0) |
| return rc; |
| c->permissions = le32_to_cpu(buf[0]); |
| nexpr = le32_to_cpu(buf[1]); |
| le = NULL; |
| depth = -1; |
| for (j = 0; j < nexpr; j++) { |
| e = kzalloc(sizeof(*e), GFP_KERNEL); |
| if (!e) |
| return -ENOMEM; |
| |
| if (le) { |
| le->next = e; |
| } else { |
| c->expr = e; |
| } |
| |
| rc = next_entry(buf, fp, (sizeof(u32) * 3)); |
| if (rc < 0) |
| return rc; |
| e->expr_type = le32_to_cpu(buf[0]); |
| e->attr = le32_to_cpu(buf[1]); |
| e->op = le32_to_cpu(buf[2]); |
| |
| switch (e->expr_type) { |
| case CEXPR_NOT: |
| if (depth < 0) |
| return -EINVAL; |
| break; |
| case CEXPR_AND: |
| case CEXPR_OR: |
| if (depth < 1) |
| return -EINVAL; |
| depth--; |
| break; |
| case CEXPR_ATTR: |
| if (depth == (CEXPR_MAXDEPTH - 1)) |
| return -EINVAL; |
| depth++; |
| break; |
| case CEXPR_NAMES: |
| if (!allowxtarget && (e->attr & CEXPR_XTARGET)) |
| return -EINVAL; |
| if (depth == (CEXPR_MAXDEPTH - 1)) |
| return -EINVAL; |
| depth++; |
| if (ebitmap_read(&e->names, fp)) |
| return -EINVAL; |
| break; |
| default: |
| return -EINVAL; |
| } |
| le = e; |
| } |
| if (depth != 0) |
| return -EINVAL; |
| lc = c; |
| } |
| |
| return 0; |
| } |
| |
| static int class_read(struct policydb *p, struct hashtab *h, void *fp) |
| { |
| char *key = NULL; |
| struct class_datum *cladatum; |
| __le32 buf[6]; |
| u32 len, len2, ncons, nel; |
| int i, rc; |
| |
| cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL); |
| if (!cladatum) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| rc = next_entry(buf, fp, sizeof(u32)*6); |
| if (rc < 0) |
| goto bad; |
| |
| len = le32_to_cpu(buf[0]); |
| len2 = le32_to_cpu(buf[1]); |
| cladatum->value = le32_to_cpu(buf[2]); |
| |
| rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE); |
| if (rc) |
| goto bad; |
| cladatum->permissions.nprim = le32_to_cpu(buf[3]); |
| nel = le32_to_cpu(buf[4]); |
| |
| ncons = le32_to_cpu(buf[5]); |
| |
| key = kmalloc(len + 1,GFP_KERNEL); |
| if (!key) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| rc = next_entry(key, fp, len); |
| if (rc < 0) |
| goto bad; |
| key[len] = 0; |
| |
| if (len2) { |
| cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL); |
| if (!cladatum->comkey) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| rc = next_entry(cladatum->comkey, fp, len2); |
| if (rc < 0) |
| goto bad; |
| cladatum->comkey[len2] = 0; |
| |
| cladatum->comdatum = hashtab_search(p->p_commons.table, |
| cladatum->comkey); |
| if (!cladatum->comdatum) { |
| printk(KERN_ERR "security: unknown common %s\n", |
| cladatum->comkey); |
| rc = -EINVAL; |
| goto bad; |
| } |
| } |
| for (i = 0; i < nel; i++) { |
| rc = perm_read(p, cladatum->permissions.table, fp); |
| if (rc) |
| goto bad; |
| } |
| |
| rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp); |
| if (rc) |
| goto bad; |
| |
| if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) { |
| /* grab the validatetrans rules */ |
| rc = next_entry(buf, fp, sizeof(u32)); |
| if (rc < 0) |
| goto bad; |
| ncons = le32_to_cpu(buf[0]); |
| rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp); |
| if (rc) |
| goto bad; |
| } |
| |
| rc = hashtab_insert(h, key, cladatum); |
| if (rc) |
| goto bad; |
| |
| rc = 0; |
| out: |
| return rc; |
| bad: |
| class_destroy(key, cladatum, NULL); |
| goto out; |
| } |
| |
| static int role_read(struct policydb *p, struct hashtab *h, void *fp) |
| { |
| char *key = NULL; |
| struct role_datum *role; |
| int rc; |
| __le32 buf[2]; |
| u32 len; |
| |
| role = kzalloc(sizeof(*role), GFP_KERNEL); |
| if (!role) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| rc = next_entry(buf, fp, sizeof buf); |
| if (rc < 0) |
| goto bad; |
| |
| len = le32_to_cpu(buf[0]); |
| role->value = le32_to_cpu(buf[1]); |
| |
| key = kmalloc(len + 1,GFP_KERNEL); |
| if (!key) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| rc = next_entry(key, fp, len); |
| if (rc < 0) |
| goto bad; |
| key[len] = 0; |
| |
| rc = ebitmap_read(&role->dominates, fp); |
| if (rc) |
| goto bad; |
| |
| rc = ebitmap_read(&role->types, fp); |
| if (rc) |
| goto bad; |
| |
| if (strcmp(key, OBJECT_R) == 0) { |
| if (role->value != OBJECT_R_VAL) { |
| printk(KERN_ERR "Role %s has wrong value %d\n", |
| OBJECT_R, role->value); |
| rc = -EINVAL; |
| goto bad; |
| } |
| rc = 0; |
| goto bad; |
| } |
| |
| rc = hashtab_insert(h, key, role); |
| if (rc) |
| goto bad; |
| out: |
| return rc; |
| bad: |
| role_destroy(key, role, NULL); |
| goto out; |
| } |
| |
| static int type_read(struct policydb *p, struct hashtab *h, void *fp) |
| { |
| char *key = NULL; |
| struct type_datum *typdatum; |
| int rc; |
| __le32 buf[3]; |
| u32 len; |
| |
| typdatum = kzalloc(sizeof(*typdatum),GFP_KERNEL); |
| if (!typdatum) { |
| rc = -ENOMEM; |
| return rc; |
| } |
| |
| rc = next_entry(buf, fp, sizeof buf); |
| if (rc < 0) |
| goto bad; |
| |
| len = le32_to_cpu(buf[0]); |
| typdatum->value = le32_to_cpu(buf[1]); |
| typdatum->primary = le32_to_cpu(buf[2]); |
| |
| key = kmalloc(len + 1,GFP_KERNEL); |
| if (!key) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| rc = next_entry(key, fp, len); |
| if (rc < 0) |
| goto bad; |
| key[len] = 0; |
| |
| rc = hashtab_insert(h, key, typdatum); |
| if (rc) |
| goto bad; |
| out: |
| return rc; |
| bad: |
| type_destroy(key, typdatum, NULL); |
| goto out; |
| } |
| |
| |
| /* |
| * Read a MLS level structure from a policydb binary |
| * representation file. |
| */ |
| static int mls_read_level(struct mls_level *lp, void *fp) |
| { |
| __le32 buf[1]; |
| int rc; |
| |
| memset(lp, 0, sizeof(*lp)); |
| |
| rc = next_entry(buf, fp, sizeof buf); |
| if (rc < 0) { |
| printk(KERN_ERR "security: mls: truncated level\n"); |
| goto bad; |
| } |
| lp->sens = le32_to_cpu(buf[0]); |
| |
| if (ebitmap_read(&lp->cat, fp)) { |
| printk(KERN_ERR "security: mls: error reading level " |
| "categories\n"); |
| goto bad; |
| } |
| return 0; |
| |
| bad: |
| return -EINVAL; |
| } |
| |
| static int user_read(struct policydb *p, struct hashtab *h, void *fp) |
| { |
| char *key = NULL; |
| struct user_datum *usrdatum; |
| int rc; |
| __le32 buf[2]; |
| u32 len; |
| |
| usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL); |
| if (!usrdatum) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| rc = next_entry(buf, fp, sizeof buf); |
| if (rc < 0) |
| goto bad; |
| |
| len = le32_to_cpu(buf[0]); |
| usrdatum->value = le32_to_cpu(buf[1]); |
| |
| key = kmalloc(len + 1,GFP_KERNEL); |
| if (!key) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| rc = next_entry(key, fp, len); |
| if (rc < 0) |
| goto bad; |
| key[len] = 0; |
| |
| rc = ebitmap_read(&usrdatum->roles, fp); |
| if (rc) |
| goto bad; |
| |
| if (p->policyvers >= POLICYDB_VERSION_MLS) { |
| rc = mls_read_range_helper(&usrdatum->range, fp); |
| if (rc) |
| goto bad; |
| rc = mls_read_level(&usrdatum->dfltlevel, fp); |
| if (rc) |
| goto bad; |
| } |
| |
| rc = hashtab_insert(h, key, usrdatum); |
| if (rc) |
| goto bad; |
| out: |
| return rc; |
| bad: |
| user_destroy(key, usrdatum, NULL); |
| goto out; |
| } |
| |
| static int sens_read(struct policydb *p, struct hashtab *h, void *fp) |
| { |
| char *key = NULL; |
| struct level_datum *levdatum; |
| int rc; |
| __le32 buf[2]; |
| u32 len; |
| |
| levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC); |
| if (!levdatum) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| rc = next_entry(buf, fp, sizeof buf); |
| if (rc < 0) |
| goto bad; |
| |
| len = le32_to_cpu(buf[0]); |
| levdatum->isalias = le32_to_cpu(buf[1]); |
| |
| key = kmalloc(len + 1,GFP_ATOMIC); |
| if (!key) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| rc = next_entry(key, fp, len); |
| if (rc < 0) |
| goto bad; |
| key[len] = 0; |
| |
| levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC); |
| if (!levdatum->level) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| if (mls_read_level(levdatum->level, fp)) { |
| rc = -EINVAL; |
| goto bad; |
| } |
| |
| rc = hashtab_insert(h, key, levdatum); |
| if (rc) |
| goto bad; |
| out: |
| return rc; |
| bad: |
| sens_destroy(key, levdatum, NULL); |
| goto out; |
| } |
| |
| static int cat_read(struct policydb *p, struct hashtab *h, void *fp) |
| { |
| char *key = NULL; |
| struct cat_datum *catdatum; |
| int rc; |
| __le32 buf[3]; |
| u32 len; |
| |
| catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC); |
| if (!catdatum) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| rc = next_entry(buf, fp, sizeof buf); |
| if (rc < 0) |
| goto bad; |
| |
| len = le32_to_cpu(buf[0]); |
| catdatum->value = le32_to_cpu(buf[1]); |
| catdatum->isalias = le32_to_cpu(buf[2]); |
| |
| key = kmalloc(len + 1,GFP_ATOMIC); |
| if (!key) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| rc = next_entry(key, fp, len); |
| if (rc < 0) |
| goto bad; |
| key[len] = 0; |
| |
| rc = hashtab_insert(h, key, catdatum); |
| if (rc) |
| goto bad; |
| out: |
| return rc; |
| |
| bad: |
| cat_destroy(key, catdatum, NULL); |
| goto out; |
| } |
| |
| static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) = |
| { |
| common_read, |
| class_read, |
| role_read, |
| type_read, |
| user_read, |
| cond_read_bool, |
| sens_read, |
| cat_read, |
| }; |
| |
| extern int ss_initialized; |
| |
| /* |
| * Read the configuration data from a policy database binary |
| * representation file into a policy database structure. |
| */ |
| int policydb_read(struct policydb *p, void *fp) |
| { |
| struct role_allow *ra, *lra; |
| struct role_trans *tr, *ltr; |
| struct ocontext *l, *c, *newc; |
| struct genfs *genfs_p, *genfs, *newgenfs; |
| int i, j, rc; |
| __le32 buf[8]; |
| u32 len, len2, config, nprim, nel, nel2; |
| char *policydb_str; |
| struct policydb_compat_info *info; |
| struct range_trans *rt, *lrt; |
| |
| config = 0; |
| |
| rc = policydb_init(p); |
| if (rc) |
| goto out; |
| |
| /* Read the magic number and string length. */ |
| rc = next_entry(buf, fp, sizeof(u32)* 2); |
| if (rc < 0) |
| goto bad; |
| |
| if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) { |
| printk(KERN_ERR "security: policydb magic number 0x%x does " |
| "not match expected magic number 0x%x\n", |
| le32_to_cpu(buf[0]), POLICYDB_MAGIC); |
| goto bad; |
| } |
| |
| len = le32_to_cpu(buf[1]); |
| if (len != strlen(POLICYDB_STRING)) { |
| printk(KERN_ERR "security: policydb string length %d does not " |
| "match expected length %Zu\n", |
| len, strlen(POLICYDB_STRING)); |
| goto bad; |
| } |
| policydb_str = kmalloc(len + 1,GFP_KERNEL); |
| if (!policydb_str) { |
| printk(KERN_ERR "security: unable to allocate memory for policydb " |
| "string of length %d\n", len); |
| rc = -ENOMEM; |
| goto bad; |
| } |
| rc = next_entry(policydb_str, fp, len); |
| if (rc < 0) { |
| printk(KERN_ERR "security: truncated policydb string identifier\n"); |
| kfree(policydb_str); |
| goto bad; |
| } |
| policydb_str[len] = 0; |
| if (strcmp(policydb_str, POLICYDB_STRING)) { |
| printk(KERN_ERR "security: policydb string %s does not match " |
| "my string %s\n", policydb_str, POLICYDB_STRING); |
| kfree(policydb_str); |
| goto bad; |
| } |
| /* Done with policydb_str. */ |
| kfree(policydb_str); |
| policydb_str = NULL; |
| |
| /* Read the version, config, and table sizes. */ |
| rc = next_entry(buf, fp, sizeof(u32)*4); |
| if (rc < 0) |
| goto bad; |
| |
| p->policyvers = le32_to_cpu(buf[0]); |
| if (p->policyvers < POLICYDB_VERSION_MIN || |
| p->policyvers > POLICYDB_VERSION_MAX) { |
| printk(KERN_ERR "security: policydb version %d does not match " |
| "my version range %d-%d\n", |
| le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX); |
| goto bad; |
| } |
| |
| if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) { |
| if (ss_initialized && !selinux_mls_enabled) { |
| printk(KERN_ERR "Cannot switch between non-MLS and MLS " |
| "policies\n"); |
| goto bad; |
| } |
| selinux_mls_enabled = 1; |
| config |= POLICYDB_CONFIG_MLS; |
| |
| if (p->policyvers < POLICYDB_VERSION_MLS) { |
| printk(KERN_ERR "security policydb version %d (MLS) " |
| "not backwards compatible\n", p->policyvers); |
| goto bad; |
| } |
| } else { |
| if (ss_initialized && selinux_mls_enabled) { |
| printk(KERN_ERR "Cannot switch between MLS and non-MLS " |
| "policies\n"); |
| goto bad; |
| } |
| } |
| |
| info = policydb_lookup_compat(p->policyvers); |
| if (!info) { |
| printk(KERN_ERR "security: unable to find policy compat info " |
| "for version %d\n", p->policyvers); |
| goto bad; |
| } |
| |
| if (le32_to_cpu(buf[2]) != info->sym_num || |
| le32_to_cpu(buf[3]) != info->ocon_num) { |
| printk(KERN_ERR "security: policydb table sizes (%d,%d) do " |
| "not match mine (%d,%d)\n", le32_to_cpu(buf[2]), |
| le32_to_cpu(buf[3]), |
| info->sym_num, info->ocon_num); |
| goto bad; |
| } |
| |
| for (i = 0; i < info->sym_num; i++) { |
| rc = next_entry(buf, fp, sizeof(u32)*2); |
| if (rc < 0) |
| goto bad; |
| nprim = le32_to_cpu(buf[0]); |
| nel = le32_to_cpu(buf[1]); |
| for (j = 0; j < nel; j++) { |
| rc = read_f[i](p, p->symtab[i].table, fp); |
| if (rc) |
| goto bad; |
| } |
| |
| p->symtab[i].nprim = nprim; |
| } |
| |
| rc = avtab_read(&p->te_avtab, fp, p->policyvers); |
| if (rc) |
| goto bad; |
| |
| if (p->policyvers >= POLICYDB_VERSION_BOOL) { |
| rc = cond_read_list(p, fp); |
| if (rc) |
| goto bad; |
| } |
| |
| rc = next_entry(buf, fp, sizeof(u32)); |
| if (rc < 0) |
| goto bad; |
| nel = le32_to_cpu(buf[0]); |
| ltr = NULL; |
| for (i = 0; i < nel; i++) { |
| tr = kzalloc(sizeof(*tr), GFP_KERNEL); |
| if (!tr) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| if (ltr) { |
| ltr->next = tr; |
| } else { |
| p->role_tr = tr; |
| } |
| rc = next_entry(buf, fp, sizeof(u32)*3); |
| if (rc < 0) |
| goto bad; |
| tr->role = le32_to_cpu(buf[0]); |
| tr->type = le32_to_cpu(buf[1]); |
| tr->new_role = le32_to_cpu(buf[2]); |
| ltr = tr; |
| } |
| |
| rc = next_entry(buf, fp, sizeof(u32)); |
| if (rc < 0) |
| goto bad; |
| nel = le32_to_cpu(buf[0]); |
| lra = NULL; |
| for (i = 0; i < nel; i++) { |
| ra = kzalloc(sizeof(*ra), GFP_KERNEL); |
| if (!ra) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| if (lra) { |
| lra->next = ra; |
| } else { |
| p->role_allow = ra; |
| } |
| rc = next_entry(buf, fp, sizeof(u32)*2); |
| if (rc < 0) |
| goto bad; |
| ra->role = le32_to_cpu(buf[0]); |
| ra->new_role = le32_to_cpu(buf[1]); |
| lra = ra; |
| } |
| |
| rc = policydb_index_classes(p); |
| if (rc) |
| goto bad; |
| |
| rc = policydb_index_others(p); |
| if (rc) |
| goto bad; |
| |
| for (i = 0; i < info->ocon_num; i++) { |
| rc = next_entry(buf, fp, sizeof(u32)); |
| if (rc < 0) |
| goto bad; |
| nel = le32_to_cpu(buf[0]); |
| l = NULL; |
| for (j = 0; j < nel; j++) { |
| c = kzalloc(sizeof(*c), GFP_KERNEL); |
| if (!c) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| if (l) { |
| l->next = c; |
| } else { |
| p->ocontexts[i] = c; |
| } |
| l = c; |
| rc = -EINVAL; |
| switch (i) { |
| case OCON_ISID: |
| rc = next_entry(buf, fp, sizeof(u32)); |
| if (rc < 0) |
| goto bad; |
| c->sid[0] = le32_to_cpu(buf[0]); |
| rc = context_read_and_validate(&c->context[0], p, fp); |
| if (rc) |
| goto bad; |
| break; |
| case OCON_FS: |
| case OCON_NETIF: |
| rc = next_entry(buf, fp, sizeof(u32)); |
| if (rc < 0) |
| goto bad; |
| len = le32_to_cpu(buf[0]); |
| c->u.name = kmalloc(len + 1,GFP_KERNEL); |
| if (!c->u.name) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| rc = next_entry(c->u.name, fp, len); |
| if (rc < 0) |
| goto bad; |
| c->u.name[len] = 0; |
| rc = context_read_and_validate(&c->context[0], p, fp); |
| if (rc) |
| goto bad; |
| rc = context_read_and_validate(&c->context[1], p, fp); |
| if (rc) |
| goto bad; |
| break; |
| case OCON_PORT: |
| rc = next_entry(buf, fp, sizeof(u32)*3); |
| if (rc < 0) |
| goto bad; |
| c->u.port.protocol = le32_to_cpu(buf[0]); |
| c->u.port.low_port = le32_to_cpu(buf[1]); |
| c->u.port.high_port = le32_to_cpu(buf[2]); |
| rc = context_read_and_validate(&c->context[0], p, fp); |
| if (rc) |
| goto bad; |
| break; |
| case OCON_NODE: |
| rc = next_entry(buf, fp, sizeof(u32)* 2); |
| if (rc < 0) |
| goto bad; |
| c->u.node.addr = le32_to_cpu(buf[0]); |
| c->u.node.mask = le32_to_cpu(buf[1]); |
| rc = context_read_and_validate(&c->context[0], p, fp); |
| if (rc) |
| goto bad; |
| break; |
| case OCON_FSUSE: |
| rc = next_entry(buf, fp, sizeof(u32)*2); |
| if (rc < 0) |
| goto bad; |
| c->v.behavior = le32_to_cpu(buf[0]); |
| if (c->v.behavior > SECURITY_FS_USE_NONE) |
| goto bad; |
| len = le32_to_cpu(buf[1]); |
| c->u.name = kmalloc(len + 1,GFP_KERNEL); |
| if (!c->u.name) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| rc = next_entry(c->u.name, fp, len); |
| if (rc < 0) |
| goto bad; |
| c->u.name[len] = 0; |
| rc = context_read_and_validate(&c->context[0], p, fp); |
| if (rc) |
| goto bad; |
| break; |
| case OCON_NODE6: { |
| int k; |
| |
| rc = next_entry(buf, fp, sizeof(u32) * 8); |
| if (rc < 0) |
| goto bad; |
| for (k = 0; k < 4; k++) |
| c->u.node6.addr[k] = le32_to_cpu(buf[k]); |
| for (k = 0; k < 4; k++) |
| c->u.node6.mask[k] = le32_to_cpu(buf[k+4]); |
| if (context_read_and_validate(&c->context[0], p, fp)) |
| goto bad; |
| break; |
| } |
| } |
| } |
| } |
| |
| rc = next_entry(buf, fp, sizeof(u32)); |
| if (rc < 0) |
| goto bad; |
| nel = le32_to_cpu(buf[0]); |
| genfs_p = NULL; |
| rc = -EINVAL; |
| for (i = 0; i < nel; i++) { |
| rc = next_entry(buf, fp, sizeof(u32)); |
| if (rc < 0) |
| goto bad; |
| len = le32_to_cpu(buf[0]); |
| newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL); |
| if (!newgenfs) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| |
| newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL); |
| if (!newgenfs->fstype) { |
| rc = -ENOMEM; |
| kfree(newgenfs); |
| goto bad; |
| } |
| rc = next_entry(newgenfs->fstype, fp, len); |
| if (rc < 0) { |
| kfree(newgenfs->fstype); |
| kfree(newgenfs); |
| goto bad; |
| } |
| newgenfs->fstype[len] = 0; |
| for (genfs_p = NULL, genfs = p->genfs; genfs; |
| genfs_p = genfs, genfs = genfs->next) { |
| if (strcmp(newgenfs->fstype, genfs->fstype) == 0) { |
| printk(KERN_ERR "security: dup genfs " |
| "fstype %s\n", newgenfs->fstype); |
| kfree(newgenfs->fstype); |
| kfree(newgenfs); |
| goto bad; |
| } |
| if (strcmp(newgenfs->fstype, genfs->fstype) < 0) |
| break; |
| } |
| newgenfs->next = genfs; |
| if (genfs_p) |
| genfs_p->next = newgenfs; |
| else |
| p->genfs = newgenfs; |
| rc = next_entry(buf, fp, sizeof(u32)); |
| if (rc < 0) |
| goto bad; |
| nel2 = le32_to_cpu(buf[0]); |
| for (j = 0; j < nel2; j++) { |
| rc = next_entry(buf, fp, sizeof(u32)); |
| if (rc < 0) |
| goto bad; |
| len = le32_to_cpu(buf[0]); |
| |
| newc = kzalloc(sizeof(*newc), GFP_KERNEL); |
| if (!newc) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| |
| newc->u.name = kmalloc(len + 1,GFP_KERNEL); |
| if (!newc->u.name) { |
| rc = -ENOMEM; |
| goto bad_newc; |
| } |
| rc = next_entry(newc->u.name, fp, len); |
| if (rc < 0) |
| goto bad_newc; |
| newc->u.name[len] = 0; |
| rc = next_entry(buf, fp, sizeof(u32)); |
| if (rc < 0) |
| goto bad_newc; |
| newc->v.sclass = le32_to_cpu(buf[0]); |
| if (context_read_and_validate(&newc->context[0], p, fp)) |
| goto bad_newc; |
| for (l = NULL, c = newgenfs->head; c; |
| l = c, c = c->next) { |
| if (!strcmp(newc->u.name, c->u.name) && |
| (!c->v.sclass || !newc->v.sclass || |
| newc->v.sclass == c->v.sclass)) { |
| printk(KERN_ERR "security: dup genfs " |
| "entry (%s,%s)\n", |
| newgenfs->fstype, c->u.name); |
| goto bad_newc; |
| } |
| len = strlen(newc->u.name); |
| len2 = strlen(c->u.name); |
| if (len > len2) |
| break; |
| } |
| |
| newc->next = c; |
| if (l) |
| l->next = newc; |
| else |
| newgenfs->head = newc; |
| } |
| } |
| |
| if (p->policyvers >= POLICYDB_VERSION_MLS) { |
| rc = next_entry(buf, fp, sizeof(u32)); |
| if (rc < 0) |
| goto bad; |
| nel = le32_to_cpu(buf[0]); |
| lrt = NULL; |
| for (i = 0; i < nel; i++) { |
| rt = kzalloc(sizeof(*rt), GFP_KERNEL); |
| if (!rt) { |
| rc = -ENOMEM; |
| goto bad; |
| } |
| if (lrt) |
| lrt->next = rt; |
| else |
| p->range_tr = rt; |
| rc = next_entry(buf, fp, (sizeof(u32) * 2)); |
| if (rc < 0) |
| goto bad; |
| rt->dom = le32_to_cpu(buf[0]); |
| rt->type = le32_to_cpu(buf[1]); |
| rc = mls_read_range_helper(&rt->range, fp); |
| if (rc) |
| goto bad; |
| lrt = rt; |
| } |
| } |
| |
| p->type_attr_map = kmalloc(p->p_types.nprim*sizeof(struct ebitmap), GFP_KERNEL); |
| if (!p->type_attr_map) |
| goto bad; |
| |
| for (i = 0; i < p->p_types.nprim; i++) { |
| ebitmap_init(&p->type_attr_map[i]); |
| if (p->policyvers >= POLICYDB_VERSION_AVTAB) { |
| if (ebitmap_read(&p->type_attr_map[i], fp)) |
| goto bad; |
| } |
| /* add the type itself as the degenerate case */ |
| if (ebitmap_set_bit(&p->type_attr_map[i], i, 1)) |
| goto bad; |
| } |
| |
| rc = 0; |
| out: |
| return rc; |
| bad_newc: |
| ocontext_destroy(newc,OCON_FSUSE); |
| bad: |
| if (!rc) |
| rc = -EINVAL; |
| policydb_destroy(p); |
| goto out; |
| } |