| /* |
| * OMAP4 SMP source file. It contains platform specific fucntions |
| * needed for the linux smp kernel. |
| * |
| * Copyright (C) 2009 Texas Instruments, Inc. |
| * |
| * Author: |
| * Santosh Shilimkar <santosh.shilimkar@ti.com> |
| * |
| * Platform file needed for the OMAP4 SMP. This file is based on arm |
| * realview smp platform. |
| * * Copyright (c) 2002 ARM Limited. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/init.h> |
| #include <linux/device.h> |
| #include <linux/smp.h> |
| #include <linux/io.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/smp_scu.h> |
| #include <mach/hardware.h> |
| #include <mach/omap4-common.h> |
| |
| /* SCU base address */ |
| static void __iomem *scu_base; |
| |
| static DEFINE_SPINLOCK(boot_lock); |
| |
| void __cpuinit platform_secondary_init(unsigned int cpu) |
| { |
| /* |
| * If any interrupts are already enabled for the primary |
| * core (e.g. timer irq), then they will not have been enabled |
| * for us: do so |
| */ |
| gic_secondary_init(0); |
| |
| /* |
| * Synchronise with the boot thread. |
| */ |
| spin_lock(&boot_lock); |
| spin_unlock(&boot_lock); |
| } |
| |
| int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle) |
| { |
| /* |
| * Set synchronisation state between this boot processor |
| * and the secondary one |
| */ |
| spin_lock(&boot_lock); |
| |
| /* |
| * Update the AuxCoreBoot0 with boot state for secondary core. |
| * omap_secondary_startup() routine will hold the secondary core till |
| * the AuxCoreBoot1 register is updated with cpu state |
| * A barrier is added to ensure that write buffer is drained |
| */ |
| omap_modify_auxcoreboot0(0x200, 0xfffffdff); |
| flush_cache_all(); |
| smp_wmb(); |
| smp_cross_call(cpumask_of(cpu), 1); |
| |
| /* |
| * Now the secondary core is starting up let it run its |
| * calibrations, then wait for it to finish |
| */ |
| spin_unlock(&boot_lock); |
| |
| return 0; |
| } |
| |
| static void __init wakeup_secondary(void) |
| { |
| /* |
| * Write the address of secondary startup routine into the |
| * AuxCoreBoot1 where ROM code will jump and start executing |
| * on secondary core once out of WFE |
| * A barrier is added to ensure that write buffer is drained |
| */ |
| omap_auxcoreboot_addr(virt_to_phys(omap_secondary_startup)); |
| smp_wmb(); |
| |
| /* |
| * Send a 'sev' to wake the secondary core from WFE. |
| * Drain the outstanding writes to memory |
| */ |
| dsb_sev(); |
| mb(); |
| } |
| |
| /* |
| * Initialise the CPU possible map early - this describes the CPUs |
| * which may be present or become present in the system. |
| */ |
| void __init smp_init_cpus(void) |
| { |
| unsigned int i, ncores; |
| |
| /* Never released */ |
| scu_base = ioremap(OMAP44XX_SCU_BASE, SZ_256); |
| BUG_ON(!scu_base); |
| |
| ncores = scu_get_core_count(scu_base); |
| |
| /* sanity check */ |
| if (ncores > NR_CPUS) { |
| printk(KERN_WARNING |
| "OMAP4: no. of cores (%d) greater than configured " |
| "maximum of %d - clipping\n", |
| ncores, NR_CPUS); |
| ncores = NR_CPUS; |
| } |
| |
| for (i = 0; i < ncores; i++) |
| set_cpu_possible(i, true); |
| } |
| |
| void __init platform_smp_prepare_cpus(unsigned int max_cpus) |
| { |
| int i; |
| |
| /* |
| * Initialise the present map, which describes the set of CPUs |
| * actually populated at the present time. |
| */ |
| for (i = 0; i < max_cpus; i++) |
| set_cpu_present(i, true); |
| |
| /* |
| * Initialise the SCU and wake up the secondary core using |
| * wakeup_secondary(). |
| */ |
| scu_enable(scu_base); |
| wakeup_secondary(); |
| } |